1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "class_linker-inl.h"
20 #include "mirror/class-inl.h"
21 #include "mirror/dex_cache.h"
22 #include "scoped_thread_state_change.h"
23
24 namespace art {
25
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)26 static inline mirror::DexCache* FindDexCacheWithHint(Thread* self,
27 const DexFile& dex_file,
28 Handle<mirror::DexCache> hint_dex_cache)
29 SHARED_REQUIRES(Locks::mutator_lock_) {
30 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
31 return hint_dex_cache.Get();
32 } else {
33 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
34 }
35 }
36
GetRootHandle(StackHandleScopeCollection * handles,ClassLinker::ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)37 static inline ReferenceTypeInfo::TypeHandle GetRootHandle(StackHandleScopeCollection* handles,
38 ClassLinker::ClassRoot class_root,
39 ReferenceTypeInfo::TypeHandle* cache) {
40 if (!ReferenceTypeInfo::IsValidHandle(*cache)) {
41 // Mutator lock is required for NewHandle.
42 ClassLinker* linker = Runtime::Current()->GetClassLinker();
43 ScopedObjectAccess soa(Thread::Current());
44 *cache = handles->NewHandle(linker->GetClassRoot(class_root));
45 }
46 return *cache;
47 }
48
49 // Returns true if klass is admissible to the propagation: non-null and resolved.
50 // For an array type, we also check if the component type is admissible.
IsAdmissible(mirror::Class * klass)51 static bool IsAdmissible(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
52 return klass != nullptr && klass->IsResolved() &&
53 (!klass->IsArrayClass() || IsAdmissible(klass->GetComponentType()));
54 }
55
GetObjectClassHandle()56 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetObjectClassHandle() {
57 return GetRootHandle(handles_, ClassLinker::kJavaLangObject, &object_class_handle_);
58 }
59
GetClassClassHandle()60 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetClassClassHandle() {
61 return GetRootHandle(handles_, ClassLinker::kJavaLangClass, &class_class_handle_);
62 }
63
GetStringClassHandle()64 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetStringClassHandle() {
65 return GetRootHandle(handles_, ClassLinker::kJavaLangString, &string_class_handle_);
66 }
67
GetThrowableClassHandle()68 ReferenceTypeInfo::TypeHandle ReferenceTypePropagation::HandleCache::GetThrowableClassHandle() {
69 return GetRootHandle(handles_, ClassLinker::kJavaLangThrowable, &throwable_class_handle_);
70 }
71
72 class ReferenceTypePropagation::RTPVisitor : public HGraphDelegateVisitor {
73 public:
RTPVisitor(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,HandleCache * handle_cache,ArenaVector<HInstruction * > * worklist,bool is_first_run)74 RTPVisitor(HGraph* graph,
75 Handle<mirror::DexCache> hint_dex_cache,
76 HandleCache* handle_cache,
77 ArenaVector<HInstruction*>* worklist,
78 bool is_first_run)
79 : HGraphDelegateVisitor(graph),
80 hint_dex_cache_(hint_dex_cache),
81 handle_cache_(handle_cache),
82 worklist_(worklist),
83 is_first_run_(is_first_run) {}
84
85 void VisitNewInstance(HNewInstance* new_instance) OVERRIDE;
86 void VisitLoadClass(HLoadClass* load_class) OVERRIDE;
87 void VisitClinitCheck(HClinitCheck* clinit_check) OVERRIDE;
88 void VisitLoadString(HLoadString* instr) OVERRIDE;
89 void VisitLoadException(HLoadException* instr) OVERRIDE;
90 void VisitNewArray(HNewArray* instr) OVERRIDE;
91 void VisitParameterValue(HParameterValue* instr) OVERRIDE;
92 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
93 void SetClassAsTypeInfo(HInstruction* instr, mirror::Class* klass, bool is_exact)
94 SHARED_REQUIRES(Locks::mutator_lock_);
95 void VisitInstanceFieldGet(HInstanceFieldGet* instr) OVERRIDE;
96 void VisitStaticFieldGet(HStaticFieldGet* instr) OVERRIDE;
97 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) OVERRIDE;
98 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) OVERRIDE;
99 void VisitInvoke(HInvoke* instr) OVERRIDE;
100 void VisitArrayGet(HArrayGet* instr) OVERRIDE;
101 void VisitCheckCast(HCheckCast* instr) OVERRIDE;
102 void VisitBoundType(HBoundType* instr) OVERRIDE;
103 void VisitNullCheck(HNullCheck* instr) OVERRIDE;
104 void UpdateReferenceTypeInfo(HInstruction* instr,
105 uint16_t type_idx,
106 const DexFile& dex_file,
107 bool is_exact);
108
109 private:
110 Handle<mirror::DexCache> hint_dex_cache_;
111 HandleCache* handle_cache_;
112 ArenaVector<HInstruction*>* worklist_;
113 const bool is_first_run_;
114 };
115
ReferenceTypePropagation(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,StackHandleScopeCollection * handles,bool is_first_run,const char * name)116 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
117 Handle<mirror::DexCache> hint_dex_cache,
118 StackHandleScopeCollection* handles,
119 bool is_first_run,
120 const char* name)
121 : HOptimization(graph, name),
122 hint_dex_cache_(hint_dex_cache),
123 handle_cache_(handles),
124 worklist_(graph->GetArena()->Adapter(kArenaAllocReferenceTypePropagation)),
125 is_first_run_(is_first_run) {
126 }
127
ValidateTypes()128 void ReferenceTypePropagation::ValidateTypes() {
129 // TODO: move this to the graph checker.
130 if (kIsDebugBuild) {
131 ScopedObjectAccess soa(Thread::Current());
132 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
133 HBasicBlock* block = it.Current();
134 for (HInstructionIterator iti(block->GetInstructions()); !iti.Done(); iti.Advance()) {
135 HInstruction* instr = iti.Current();
136 if (instr->GetType() == Primitive::kPrimNot) {
137 DCHECK(instr->GetReferenceTypeInfo().IsValid())
138 << "Invalid RTI for instruction: " << instr->DebugName();
139 if (instr->IsBoundType()) {
140 DCHECK(instr->AsBoundType()->GetUpperBound().IsValid());
141 } else if (instr->IsLoadClass()) {
142 HLoadClass* cls = instr->AsLoadClass();
143 DCHECK(cls->GetReferenceTypeInfo().IsExact());
144 DCHECK(!cls->GetLoadedClassRTI().IsValid() || cls->GetLoadedClassRTI().IsExact());
145 } else if (instr->IsNullCheck()) {
146 DCHECK(instr->GetReferenceTypeInfo().IsEqual(instr->InputAt(0)->GetReferenceTypeInfo()))
147 << "NullCheck " << instr->GetReferenceTypeInfo()
148 << "Input(0) " << instr->InputAt(0)->GetReferenceTypeInfo();
149 }
150 }
151 }
152 }
153 }
154 }
155
Visit(HInstruction * instruction)156 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
157 RTPVisitor visitor(graph_, hint_dex_cache_, &handle_cache_, &worklist_, is_first_run_);
158 instruction->Accept(&visitor);
159 }
160
Run()161 void ReferenceTypePropagation::Run() {
162 worklist_.reserve(kDefaultWorklistSize);
163
164 // To properly propagate type info we need to visit in the dominator-based order.
165 // Reverse post order guarantees a node's dominators are visited first.
166 // We take advantage of this order in `VisitBasicBlock`.
167 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
168 VisitBasicBlock(it.Current());
169 }
170
171 ProcessWorklist();
172 ValidateTypes();
173 }
174
VisitBasicBlock(HBasicBlock * block)175 void ReferenceTypePropagation::VisitBasicBlock(HBasicBlock* block) {
176 RTPVisitor visitor(graph_, hint_dex_cache_, &handle_cache_, &worklist_, is_first_run_);
177 // Handle Phis first as there might be instructions in the same block who depend on them.
178 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
179 VisitPhi(it.Current()->AsPhi());
180 }
181
182 // Handle instructions.
183 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
184 HInstruction* instr = it.Current();
185 instr->Accept(&visitor);
186 }
187
188 // Add extra nodes to bound types.
189 BoundTypeForIfNotNull(block);
190 BoundTypeForIfInstanceOf(block);
191 }
192
193 // Check if we should create a bound type for the given object at the specified
194 // position. Because of inlining and the fact we run RTP more than once and we
195 // might have a HBoundType already. If we do, we should not create a new one.
196 // In this case we also assert that there are no other uses of the object (except
197 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)198 static bool ShouldCreateBoundType(HInstruction* position,
199 HInstruction* obj,
200 ReferenceTypeInfo upper_bound,
201 HInstruction* dominator_instr,
202 HBasicBlock* dominator_block)
203 SHARED_REQUIRES(Locks::mutator_lock_) {
204 // If the position where we should insert the bound type is not already a
205 // a bound type then we need to create one.
206 if (position == nullptr || !position->IsBoundType()) {
207 return true;
208 }
209
210 HBoundType* existing_bound_type = position->AsBoundType();
211 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
212 if (kIsDebugBuild) {
213 // Check that the existing HBoundType dominates all the uses.
214 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
215 HInstruction* user = use.GetUser();
216 if (dominator_instr != nullptr) {
217 DCHECK(!dominator_instr->StrictlyDominates(user)
218 || user == existing_bound_type
219 || existing_bound_type->StrictlyDominates(user));
220 } else if (dominator_block != nullptr) {
221 DCHECK(!dominator_block->Dominates(user->GetBlock())
222 || user == existing_bound_type
223 || existing_bound_type->StrictlyDominates(user));
224 }
225 }
226 }
227 } else {
228 // TODO: if the current bound type is a refinement we could update the
229 // existing_bound_type with the a new upper limit. However, we also need to
230 // update its users and have access to the work list.
231 }
232 return false;
233 }
234
BoundTypeForIfNotNull(HBasicBlock * block)235 void ReferenceTypePropagation::BoundTypeForIfNotNull(HBasicBlock* block) {
236 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
237 if (ifInstruction == nullptr) {
238 return;
239 }
240 HInstruction* ifInput = ifInstruction->InputAt(0);
241 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
242 return;
243 }
244 HInstruction* input0 = ifInput->InputAt(0);
245 HInstruction* input1 = ifInput->InputAt(1);
246 HInstruction* obj = nullptr;
247
248 if (input1->IsNullConstant()) {
249 obj = input0;
250 } else if (input0->IsNullConstant()) {
251 obj = input1;
252 } else {
253 return;
254 }
255
256 if (!obj->CanBeNull() || obj->IsNullConstant()) {
257 // Null check is dead code and will be removed by DCE.
258 return;
259 }
260 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
261
262 // We only need to bound the type if we have uses in the relevant block.
263 // So start with null and create the HBoundType lazily, only if it's needed.
264 HBoundType* bound_type = nullptr;
265 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
266 ? ifInstruction->IfTrueSuccessor()
267 : ifInstruction->IfFalseSuccessor();
268
269 const HUseList<HInstruction*>& uses = obj->GetUses();
270 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
271 HInstruction* user = it->GetUser();
272 size_t index = it->GetIndex();
273 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
274 ++it;
275 if (notNullBlock->Dominates(user->GetBlock())) {
276 if (bound_type == nullptr) {
277 ScopedObjectAccess soa(Thread::Current());
278 HInstruction* insert_point = notNullBlock->GetFirstInstruction();
279 ReferenceTypeInfo object_rti = ReferenceTypeInfo::Create(
280 handle_cache_.GetObjectClassHandle(), /* is_exact */ true);
281 if (ShouldCreateBoundType(insert_point, obj, object_rti, nullptr, notNullBlock)) {
282 bound_type = new (graph_->GetArena()) HBoundType(obj);
283 bound_type->SetUpperBound(object_rti, /* bound_can_be_null */ false);
284 if (obj->GetReferenceTypeInfo().IsValid()) {
285 bound_type->SetReferenceTypeInfo(obj->GetReferenceTypeInfo());
286 }
287 notNullBlock->InsertInstructionBefore(bound_type, insert_point);
288 } else {
289 // We already have a bound type on the position we would need to insert
290 // the new one. The existing bound type should dominate all the users
291 // (dchecked) so there's no need to continue.
292 break;
293 }
294 }
295 user->ReplaceInput(bound_type, index);
296 }
297 }
298 }
299
300 // Returns true if one of the patterns below has been recognized. If so, the
301 // InstanceOf instruction together with the true branch of `ifInstruction` will
302 // be returned using the out parameters.
303 // Recognized patterns:
304 // (1) patterns equivalent to `if (obj instanceof X)`
305 // (a) InstanceOf -> Equal to 1 -> If
306 // (b) InstanceOf -> NotEqual to 0 -> If
307 // (c) InstanceOf -> If
308 // (2) patterns equivalent to `if (!(obj instanceof X))`
309 // (a) InstanceOf -> Equal to 0 -> If
310 // (b) InstanceOf -> NotEqual to 1 -> If
311 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)312 static bool MatchIfInstanceOf(HIf* ifInstruction,
313 /* out */ HInstanceOf** instanceOf,
314 /* out */ HBasicBlock** trueBranch) {
315 HInstruction* input = ifInstruction->InputAt(0);
316
317 if (input->IsEqual()) {
318 HInstruction* rhs = input->AsEqual()->GetConstantRight();
319 if (rhs != nullptr) {
320 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
321 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
322 if (rhs->AsIntConstant()->IsTrue()) {
323 // Case (1a)
324 *trueBranch = ifInstruction->IfTrueSuccessor();
325 } else {
326 // Case (2a)
327 DCHECK(rhs->AsIntConstant()->IsFalse()) << rhs->AsIntConstant()->GetValue();
328 *trueBranch = ifInstruction->IfFalseSuccessor();
329 }
330 *instanceOf = lhs->AsInstanceOf();
331 return true;
332 }
333 }
334 } else if (input->IsNotEqual()) {
335 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
336 if (rhs != nullptr) {
337 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
338 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
339 if (rhs->AsIntConstant()->IsFalse()) {
340 // Case (1b)
341 *trueBranch = ifInstruction->IfTrueSuccessor();
342 } else {
343 // Case (2b)
344 DCHECK(rhs->AsIntConstant()->IsTrue()) << rhs->AsIntConstant()->GetValue();
345 *trueBranch = ifInstruction->IfFalseSuccessor();
346 }
347 *instanceOf = lhs->AsInstanceOf();
348 return true;
349 }
350 }
351 } else if (input->IsInstanceOf()) {
352 // Case (1c)
353 *instanceOf = input->AsInstanceOf();
354 *trueBranch = ifInstruction->IfTrueSuccessor();
355 return true;
356 } else if (input->IsBooleanNot()) {
357 HInstruction* not_input = input->InputAt(0);
358 if (not_input->IsInstanceOf()) {
359 // Case (2c)
360 *instanceOf = not_input->AsInstanceOf();
361 *trueBranch = ifInstruction->IfFalseSuccessor();
362 return true;
363 }
364 }
365
366 return false;
367 }
368
369 // Detects if `block` is the True block for the pattern
370 // `if (x instanceof ClassX) { }`
371 // If that's the case insert an HBoundType instruction to bound the type of `x`
372 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)373 void ReferenceTypePropagation::BoundTypeForIfInstanceOf(HBasicBlock* block) {
374 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
375 if (ifInstruction == nullptr) {
376 return;
377 }
378
379 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
380 HInstanceOf* instanceOf = nullptr;
381 HBasicBlock* instanceOfTrueBlock = nullptr;
382 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
383 return;
384 }
385
386 HLoadClass* load_class = instanceOf->InputAt(1)->AsLoadClass();
387 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
388 {
389 if (!class_rti.IsValid()) {
390 // He have loaded an unresolved class. Don't bother bounding the type.
391 return;
392 }
393 }
394 // We only need to bound the type if we have uses in the relevant block.
395 // So start with null and create the HBoundType lazily, only if it's needed.
396 HBoundType* bound_type = nullptr;
397
398 HInstruction* obj = instanceOf->InputAt(0);
399 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
400 // This method is being called while doing a fixed-point calculation
401 // over phis. Non-phis instruction whose type is already known do
402 // not need to be bound to another type.
403 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
404 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
405 // input.
406 return;
407 }
408 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
409 const HUseList<HInstruction*>& uses = obj->GetUses();
410 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
411 HInstruction* user = it->GetUser();
412 size_t index = it->GetIndex();
413 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
414 ++it;
415 if (instanceOfTrueBlock->Dominates(user->GetBlock())) {
416 if (bound_type == nullptr) {
417 ScopedObjectAccess soa(Thread::Current());
418 HInstruction* insert_point = instanceOfTrueBlock->GetFirstInstruction();
419 if (ShouldCreateBoundType(insert_point, obj, class_rti, nullptr, instanceOfTrueBlock)) {
420 bound_type = new (graph_->GetArena()) HBoundType(obj);
421 bound_type->SetUpperBound(class_rti, /* InstanceOf fails for null. */ false);
422 instanceOfTrueBlock->InsertInstructionBefore(bound_type, insert_point);
423 } else {
424 // We already have a bound type on the position we would need to insert
425 // the new one. The existing bound type should dominate all the users
426 // (dchecked) so there's no need to continue.
427 break;
428 }
429 }
430 user->ReplaceInput(bound_type, index);
431 }
432 }
433 }
434
SetClassAsTypeInfo(HInstruction * instr,mirror::Class * klass,bool is_exact)435 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
436 mirror::Class* klass,
437 bool is_exact) {
438 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
439 // Calls to String.<init> are replaced with a StringFactory.
440 if (kIsDebugBuild) {
441 HInvoke* invoke = instr->AsInvoke();
442 ClassLinker* cl = Runtime::Current()->GetClassLinker();
443 Thread* self = Thread::Current();
444 StackHandleScope<2> hs(self);
445 Handle<mirror::DexCache> dex_cache(
446 hs.NewHandle(FindDexCacheWithHint(self, invoke->GetDexFile(), hint_dex_cache_)));
447 // Use a null loader. We should probably use the compiling method's class loader,
448 // but then we would need to pass it to RTPVisitor just for this debug check. Since
449 // the method is from the String class, the null loader is good enough.
450 Handle<mirror::ClassLoader> loader;
451 ArtMethod* method = cl->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
452 invoke->GetDexFile(), invoke->GetDexMethodIndex(), dex_cache, loader, nullptr, kDirect);
453 DCHECK(method != nullptr);
454 mirror::Class* declaring_class = method->GetDeclaringClass();
455 DCHECK(declaring_class != nullptr);
456 DCHECK(declaring_class->IsStringClass())
457 << "Expected String class: " << PrettyDescriptor(declaring_class);
458 DCHECK(method->IsConstructor())
459 << "Expected String.<init>: " << PrettyMethod(method);
460 }
461 instr->SetReferenceTypeInfo(
462 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact */ true));
463 } else if (IsAdmissible(klass)) {
464 ReferenceTypeInfo::TypeHandle handle = handle_cache_->NewHandle(klass);
465 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
466 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
467 } else {
468 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
469 }
470 }
471
UpdateReferenceTypeInfo(HInstruction * instr,uint16_t type_idx,const DexFile & dex_file,bool is_exact)472 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
473 uint16_t type_idx,
474 const DexFile& dex_file,
475 bool is_exact) {
476 DCHECK_EQ(instr->GetType(), Primitive::kPrimNot);
477
478 ScopedObjectAccess soa(Thread::Current());
479 mirror::DexCache* dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
480 // Get type from dex cache assuming it was populated by the verifier.
481 SetClassAsTypeInfo(instr, dex_cache->GetResolvedType(type_idx), is_exact);
482 }
483
VisitNewInstance(HNewInstance * instr)484 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
485 UpdateReferenceTypeInfo(instr, instr->GetTypeIndex(), instr->GetDexFile(), /* is_exact */ true);
486 }
487
VisitNewArray(HNewArray * instr)488 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
489 UpdateReferenceTypeInfo(instr, instr->GetTypeIndex(), instr->GetDexFile(), /* is_exact */ true);
490 }
491
GetClassFromDexCache(Thread * self,const DexFile & dex_file,uint16_t type_idx,Handle<mirror::DexCache> hint_dex_cache)492 static mirror::Class* GetClassFromDexCache(Thread* self,
493 const DexFile& dex_file,
494 uint16_t type_idx,
495 Handle<mirror::DexCache> hint_dex_cache)
496 SHARED_REQUIRES(Locks::mutator_lock_) {
497 mirror::DexCache* dex_cache = FindDexCacheWithHint(self, dex_file, hint_dex_cache);
498 // Get type from dex cache assuming it was populated by the verifier.
499 return dex_cache->GetResolvedType(type_idx);
500 }
501
VisitParameterValue(HParameterValue * instr)502 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
503 // We check if the existing type is valid: the inliner may have set it.
504 if (instr->GetType() == Primitive::kPrimNot && !instr->GetReferenceTypeInfo().IsValid()) {
505 ScopedObjectAccess soa(Thread::Current());
506 mirror::Class* resolved_class = GetClassFromDexCache(soa.Self(),
507 instr->GetDexFile(),
508 instr->GetTypeIndex(),
509 hint_dex_cache_);
510 SetClassAsTypeInfo(instr, resolved_class, /* is_exact */ false);
511 }
512 }
513
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)514 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
515 const FieldInfo& info) {
516 if (instr->GetType() != Primitive::kPrimNot) {
517 return;
518 }
519
520 ScopedObjectAccess soa(Thread::Current());
521 mirror::Class* klass = nullptr;
522
523 // The field index is unknown only during tests.
524 if (info.GetFieldIndex() != kUnknownFieldIndex) {
525 ClassLinker* cl = Runtime::Current()->GetClassLinker();
526 ArtField* field = cl->GetResolvedField(info.GetFieldIndex(), info.GetDexCache().Get());
527 // TODO: There are certain cases where we can't resolve the field.
528 // b/21914925 is open to keep track of a repro case for this issue.
529 if (field != nullptr) {
530 klass = field->GetType<false>();
531 }
532 }
533
534 SetClassAsTypeInfo(instr, klass, /* is_exact */ false);
535 }
536
VisitInstanceFieldGet(HInstanceFieldGet * instr)537 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
538 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
539 }
540
VisitStaticFieldGet(HStaticFieldGet * instr)541 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
542 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
543 }
544
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)545 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
546 HUnresolvedInstanceFieldGet* instr) {
547 // TODO: Use descriptor to get the actual type.
548 if (instr->GetFieldType() == Primitive::kPrimNot) {
549 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
550 }
551 }
552
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)553 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
554 HUnresolvedStaticFieldGet* instr) {
555 // TODO: Use descriptor to get the actual type.
556 if (instr->GetFieldType() == Primitive::kPrimNot) {
557 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
558 }
559 }
560
VisitLoadClass(HLoadClass * instr)561 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
562 ScopedObjectAccess soa(Thread::Current());
563 // Get type from dex cache assuming it was populated by the verifier.
564 mirror::Class* resolved_class = GetClassFromDexCache(soa.Self(),
565 instr->GetDexFile(),
566 instr->GetTypeIndex(),
567 hint_dex_cache_);
568 if (IsAdmissible(resolved_class)) {
569 instr->SetLoadedClassRTI(ReferenceTypeInfo::Create(
570 handle_cache_->NewHandle(resolved_class), /* is_exact */ true));
571 }
572 instr->SetReferenceTypeInfo(
573 ReferenceTypeInfo::Create(handle_cache_->GetClassClassHandle(), /* is_exact */ true));
574 }
575
VisitClinitCheck(HClinitCheck * instr)576 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
577 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
578 }
579
VisitLoadString(HLoadString * instr)580 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
581 instr->SetReferenceTypeInfo(
582 ReferenceTypeInfo::Create(handle_cache_->GetStringClassHandle(), /* is_exact */ true));
583 }
584
VisitLoadException(HLoadException * instr)585 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
586 DCHECK(instr->GetBlock()->IsCatchBlock());
587 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
588
589 if (catch_info->IsCatchAllTypeIndex()) {
590 instr->SetReferenceTypeInfo(
591 ReferenceTypeInfo::Create(handle_cache_->GetThrowableClassHandle(), /* is_exact */ false));
592 } else {
593 UpdateReferenceTypeInfo(instr,
594 catch_info->GetCatchTypeIndex(),
595 catch_info->GetCatchDexFile(),
596 /* is_exact */ false);
597 }
598 }
599
VisitNullCheck(HNullCheck * instr)600 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
601 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
602 if (parent_rti.IsValid()) {
603 instr->SetReferenceTypeInfo(parent_rti);
604 }
605 }
606
VisitBoundType(HBoundType * instr)607 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
608 ReferenceTypeInfo class_rti = instr->GetUpperBound();
609 if (class_rti.IsValid()) {
610 ScopedObjectAccess soa(Thread::Current());
611 // Narrow the type as much as possible.
612 HInstruction* obj = instr->InputAt(0);
613 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
614 if (class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
615 instr->SetReferenceTypeInfo(
616 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact */ true));
617 } else if (obj_rti.IsValid()) {
618 if (class_rti.IsSupertypeOf(obj_rti)) {
619 // Object type is more specific.
620 instr->SetReferenceTypeInfo(obj_rti);
621 } else {
622 // Upper bound is more specific.
623 instr->SetReferenceTypeInfo(
624 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact */ false));
625 }
626 } else {
627 // Object not typed yet. Leave BoundType untyped for now rather than
628 // assign the type conservatively.
629 }
630 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
631 } else {
632 // The owner of the BoundType was already visited. If the class is unresolved,
633 // the BoundType should have been removed from the data flow and this method
634 // should remove it from the graph.
635 DCHECK(!instr->HasUses());
636 instr->GetBlock()->RemoveInstruction(instr);
637 }
638 }
639
VisitCheckCast(HCheckCast * check_cast)640 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
641 HLoadClass* load_class = check_cast->InputAt(1)->AsLoadClass();
642 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
643 HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
644 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
645 // The next instruction is not an uninitialized BoundType. This must be
646 // an RTP pass after SsaBuilder and we do not need to do anything.
647 return;
648 }
649 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
650
651 if (class_rti.IsValid()) {
652 DCHECK(is_first_run_);
653 // This is the first run of RTP and class is resolved.
654 bound_type->SetUpperBound(class_rti, /* CheckCast succeeds for nulls. */ true);
655 } else {
656 // This is the first run of RTP and class is unresolved. Remove the binding.
657 // The instruction itself is removed in VisitBoundType so as to not
658 // invalidate HInstructionIterator.
659 bound_type->ReplaceWith(bound_type->InputAt(0));
660 }
661 }
662
VisitPhi(HPhi * phi)663 void ReferenceTypePropagation::VisitPhi(HPhi* phi) {
664 if (phi->IsDead() || phi->GetType() != Primitive::kPrimNot) {
665 return;
666 }
667
668 if (phi->GetBlock()->IsLoopHeader()) {
669 // Set the initial type for the phi. Use the non back edge input for reaching
670 // a fixed point faster.
671 HInstruction* first_input = phi->InputAt(0);
672 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
673 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
674 phi->SetCanBeNull(first_input->CanBeNull());
675 phi->SetReferenceTypeInfo(first_input_rti);
676 }
677 AddToWorklist(phi);
678 } else {
679 // Eagerly compute the type of the phi, for quicker convergence. Note
680 // that we don't need to add users to the worklist because we are
681 // doing a reverse post-order visit, therefore either the phi users are
682 // non-loop phi and will be visited later in the visit, or are loop-phis,
683 // and they are already in the work list.
684 UpdateNullability(phi);
685 UpdateReferenceTypeInfo(phi);
686 }
687 }
688
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b)689 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
690 const ReferenceTypeInfo& b) {
691 if (!b.IsValid()) {
692 return a;
693 }
694 if (!a.IsValid()) {
695 return b;
696 }
697
698 bool is_exact = a.IsExact() && b.IsExact();
699 ReferenceTypeInfo::TypeHandle result_type_handle;
700 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
701 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
702 bool a_is_interface = a_type_handle->IsInterface();
703 bool b_is_interface = b_type_handle->IsInterface();
704
705 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
706 result_type_handle = a_type_handle;
707 } else if (a.IsSupertypeOf(b)) {
708 result_type_handle = a_type_handle;
709 is_exact = false;
710 } else if (b.IsSupertypeOf(a)) {
711 result_type_handle = b_type_handle;
712 is_exact = false;
713 } else if (!a_is_interface && !b_is_interface) {
714 result_type_handle =
715 handle_cache_.NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
716 is_exact = false;
717 } else {
718 // This can happen if:
719 // - both types are interfaces. TODO(calin): implement
720 // - one is an interface, the other a class, and the type does not implement the interface
721 // e.g:
722 // void foo(Interface i, boolean cond) {
723 // Object o = cond ? i : new Object();
724 // }
725 result_type_handle = handle_cache_.GetObjectClassHandle();
726 is_exact = false;
727 }
728
729 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
730 }
731
UpdateArrayGet(HArrayGet * instr,HandleCache * handle_cache)732 void ReferenceTypePropagation::UpdateArrayGet(HArrayGet* instr, HandleCache* handle_cache) {
733 DCHECK_EQ(Primitive::kPrimNot, instr->GetType());
734
735 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
736 if (!parent_rti.IsValid()) {
737 return;
738 }
739
740 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
741 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
742 ReferenceTypeInfo::TypeHandle component_handle =
743 handle_cache->NewHandle(handle->GetComponentType());
744 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
745 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
746 } else {
747 // We don't know what the parent actually is, so we fallback to object.
748 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
749 }
750 }
751
UpdateReferenceTypeInfo(HInstruction * instr)752 bool ReferenceTypePropagation::UpdateReferenceTypeInfo(HInstruction* instr) {
753 ScopedObjectAccess soa(Thread::Current());
754
755 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
756 if (instr->IsBoundType()) {
757 UpdateBoundType(instr->AsBoundType());
758 } else if (instr->IsPhi()) {
759 UpdatePhi(instr->AsPhi());
760 } else if (instr->IsNullCheck()) {
761 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
762 if (parent_rti.IsValid()) {
763 instr->SetReferenceTypeInfo(parent_rti);
764 }
765 } else if (instr->IsArrayGet()) {
766 // TODO: consider if it's worth "looking back" and binding the input object
767 // to an array type.
768 UpdateArrayGet(instr->AsArrayGet(), &handle_cache_);
769 } else {
770 LOG(FATAL) << "Invalid instruction (should not get here)";
771 }
772
773 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
774 }
775
VisitInvoke(HInvoke * instr)776 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
777 if (instr->GetType() != Primitive::kPrimNot) {
778 return;
779 }
780
781 ScopedObjectAccess soa(Thread::Current());
782 ClassLinker* cl = Runtime::Current()->GetClassLinker();
783 mirror::DexCache* dex_cache =
784 FindDexCacheWithHint(soa.Self(), instr->GetDexFile(), hint_dex_cache_);
785 size_t pointer_size = cl->GetImagePointerSize();
786 ArtMethod* method = dex_cache->GetResolvedMethod(instr->GetDexMethodIndex(), pointer_size);
787 mirror::Class* klass = (method == nullptr) ? nullptr : method->GetReturnType(false, pointer_size);
788 SetClassAsTypeInfo(instr, klass, /* is_exact */ false);
789 }
790
VisitArrayGet(HArrayGet * instr)791 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
792 if (instr->GetType() != Primitive::kPrimNot) {
793 return;
794 }
795
796 ScopedObjectAccess soa(Thread::Current());
797 UpdateArrayGet(instr, handle_cache_);
798 if (!instr->GetReferenceTypeInfo().IsValid()) {
799 worklist_->push_back(instr);
800 }
801 }
802
UpdateBoundType(HBoundType * instr)803 void ReferenceTypePropagation::UpdateBoundType(HBoundType* instr) {
804 ReferenceTypeInfo new_rti = instr->InputAt(0)->GetReferenceTypeInfo();
805 if (!new_rti.IsValid()) {
806 return; // No new info yet.
807 }
808
809 // Make sure that we don't go over the bounded type.
810 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
811 if (!upper_bound_rti.IsSupertypeOf(new_rti)) {
812 // Note that the input might be exact, in which case we know the branch leading
813 // to the bound type is dead. We play it safe by not marking the bound type as
814 // exact.
815 bool is_exact = upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes();
816 new_rti = ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), is_exact);
817 }
818 instr->SetReferenceTypeInfo(new_rti);
819 }
820
821 // NullConstant inputs are ignored during merging as they do not provide any useful information.
822 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)823 void ReferenceTypePropagation::UpdatePhi(HPhi* instr) {
824 DCHECK(instr->IsLive());
825
826 size_t input_count = instr->InputCount();
827 size_t first_input_index_not_null = 0;
828 while (first_input_index_not_null < input_count &&
829 instr->InputAt(first_input_index_not_null)->IsNullConstant()) {
830 first_input_index_not_null++;
831 }
832 if (first_input_index_not_null == input_count) {
833 // All inputs are NullConstants, set the type to object.
834 // This may happen in the presence of inlining.
835 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
836 return;
837 }
838
839 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
840
841 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
842 // Early return if we are Object and inexact.
843 instr->SetReferenceTypeInfo(new_rti);
844 return;
845 }
846
847 for (size_t i = first_input_index_not_null + 1; i < input_count; i++) {
848 if (instr->InputAt(i)->IsNullConstant()) {
849 continue;
850 }
851 new_rti = MergeTypes(new_rti, instr->InputAt(i)->GetReferenceTypeInfo());
852 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
853 if (!new_rti.IsExact()) {
854 break;
855 } else {
856 continue;
857 }
858 }
859 }
860
861 if (new_rti.IsValid()) {
862 instr->SetReferenceTypeInfo(new_rti);
863 }
864 }
865
866 // Re-computes and updates the nullability of the instruction. Returns whether or
867 // not the nullability was changed.
UpdateNullability(HInstruction * instr)868 bool ReferenceTypePropagation::UpdateNullability(HInstruction* instr) {
869 DCHECK((instr->IsPhi() && instr->AsPhi()->IsLive())
870 || instr->IsBoundType()
871 || instr->IsNullCheck()
872 || instr->IsArrayGet());
873
874 if (!instr->IsPhi() && !instr->IsBoundType()) {
875 return false;
876 }
877
878 bool existing_can_be_null = instr->CanBeNull();
879 if (instr->IsPhi()) {
880 HPhi* phi = instr->AsPhi();
881 bool new_can_be_null = false;
882 for (size_t i = 0; i < phi->InputCount(); i++) {
883 if (phi->InputAt(i)->CanBeNull()) {
884 new_can_be_null = true;
885 break;
886 }
887 }
888 phi->SetCanBeNull(new_can_be_null);
889 } else if (instr->IsBoundType()) {
890 HBoundType* bound_type = instr->AsBoundType();
891 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
892 }
893 return existing_can_be_null != instr->CanBeNull();
894 }
895
ProcessWorklist()896 void ReferenceTypePropagation::ProcessWorklist() {
897 while (!worklist_.empty()) {
898 HInstruction* instruction = worklist_.back();
899 worklist_.pop_back();
900 bool updated_nullability = UpdateNullability(instruction);
901 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
902 if (updated_nullability || updated_reference_type) {
903 AddDependentInstructionsToWorklist(instruction);
904 }
905 }
906 }
907
AddToWorklist(HInstruction * instruction)908 void ReferenceTypePropagation::AddToWorklist(HInstruction* instruction) {
909 DCHECK_EQ(instruction->GetType(), Primitive::kPrimNot)
910 << instruction->DebugName() << ":" << instruction->GetType();
911 worklist_.push_back(instruction);
912 }
913
AddDependentInstructionsToWorklist(HInstruction * instruction)914 void ReferenceTypePropagation::AddDependentInstructionsToWorklist(HInstruction* instruction) {
915 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
916 HInstruction* user = use.GetUser();
917 if ((user->IsPhi() && user->AsPhi()->IsLive())
918 || user->IsBoundType()
919 || user->IsNullCheck()
920 || (user->IsArrayGet() && (user->GetType() == Primitive::kPrimNot))) {
921 AddToWorklist(user);
922 }
923 }
924 }
925
926 } // namespace art
927