• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19 
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25 
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31 
32 #include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirGen.h" // requires math.h
36 #include "AudioResamplerDyn.h"
37 
38 //#define DEBUG_RESAMPLER
39 
40 namespace android {
41 
42 /*
43  * InBuffer is a type agnostic input buffer.
44  *
45  * Layout of the state buffer for halfNumCoefs=8.
46  *
47  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
48  *  S            I                                R
49  *
50  * S = mState
51  * I = mImpulse
52  * R = mRingFull
53  * p = past samples, convoluted with the (p)ositive side of sinc()
54  * n = future samples, convoluted with the (n)egative side of sinc()
55  * r = extra space for implementing the ring buffer
56  */
57 
58 template<typename TC, typename TI, typename TO>
InBuffer()59 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
60     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
61 {
62 }
63 
64 template<typename TC, typename TI, typename TO>
~InBuffer()65 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
66 {
67     init();
68 }
69 
70 template<typename TC, typename TI, typename TO>
init()71 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
72 {
73     free(mState);
74     mState = NULL;
75     mImpulse = NULL;
76     mRingFull = NULL;
77     mStateCount = 0;
78 }
79 
80 // resizes the state buffer to accommodate the appropriate filter length
81 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)82 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
83 {
84     // calculate desired state size
85     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
86 
87     // check if buffer needs resizing
88     if (mState
89             && stateCount == mStateCount
90             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
91         return;
92     }
93 
94     // create new buffer
95     TI* state = NULL;
96     (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
97     memset(state, 0, stateCount*sizeof(*state));
98 
99     // attempt to preserve state
100     if (mState) {
101         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
102         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
103         TI* dst = state;
104 
105         if (srcLo < mState) {
106             dst += mState-srcLo;
107             srcLo = mState;
108         }
109         if (srcHi > mState + mStateCount) {
110             srcHi = mState + mStateCount;
111         }
112         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
113         free(mState);
114     }
115 
116     // set class member vars
117     mState = state;
118     mStateCount = stateCount;
119     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
120     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
121 }
122 
123 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
124 template<typename TC, typename TI, typename TO>
125 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)126 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
127         const TI* const in, const size_t inputIndex)
128 {
129     TI* head = impulse + halfNumCoefs*CHANNELS;
130     for (size_t i=0 ; i<CHANNELS ; i++) {
131         head[i] = in[inputIndex*CHANNELS + i];
132     }
133 }
134 
135 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
136 template<typename TC, typename TI, typename TO>
137 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)138 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
139         const TI* const in, const size_t inputIndex)
140 {
141     impulse += CHANNELS;
142 
143     if (CC_UNLIKELY(impulse >= mRingFull)) {
144         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
145         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
146         impulse -= shiftDown;
147     }
148     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
149 }
150 
151 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)152 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
153         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
154 {
155     int bits = 0;
156     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
157             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
158     for (int i=lscale; i; ++bits, i>>=1)
159         ;
160     mL = L;
161     mShift = kNumPhaseBits - bits;
162     mHalfNumCoefs = halfNumCoefs;
163 }
164 
165 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)166 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
167         int inChannelCount, int32_t sampleRate, src_quality quality)
168     : AudioResampler(inChannelCount, sampleRate, quality),
169       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
170     mCoefBuffer(NULL)
171 {
172     mVolumeSimd[0] = mVolumeSimd[1] = 0;
173     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
174     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
175     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
176     mInSampleRate = 0;
177     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
178 }
179 
180 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()181 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
182 {
183     free(mCoefBuffer);
184 }
185 
186 template<typename TC, typename TI, typename TO>
init()187 void AudioResamplerDyn<TC, TI, TO>::init()
188 {
189     mFilterSampleRate = 0; // always trigger new filter generation
190     mInBuffer.init();
191 }
192 
193 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)194 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
195 {
196     AudioResampler::setVolume(left, right);
197     if (is_same<TO, float>::value || is_same<TO, double>::value) {
198         mVolumeSimd[0] = static_cast<TO>(left);
199         mVolumeSimd[1] = static_cast<TO>(right);
200     } else {  // integer requires scaling to U4_28 (rounding down)
201         // integer volumes are clamped to 0 to UNITY_GAIN so there
202         // are no issues with signed overflow.
203         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
204         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
205     }
206 }
207 
max(T a,T b)208 template<typename T> T max(T a, T b) {return a > b ? a : b;}
209 
absdiff(T a,T b)210 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
211 
212 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)213 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
214         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
215 {
216     TC* buf = NULL;
217     static const double atten = 0.9998;   // to avoid ripple overflow
218     double fcr;
219     double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
220 
221     (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
222     if (inSampleRate < outSampleRate) { // upsample
223         fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
224     } else { // downsample
225         fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
226     }
227     // create and set filter
228     firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
229     c.mFirCoefs = buf;
230     if (mCoefBuffer) {
231         free(mCoefBuffer);
232     }
233     mCoefBuffer = buf;
234 #ifdef DEBUG_RESAMPLER
235     // print basic filter stats
236     printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
237             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
238     // test the filter and report results
239     double fp = (fcr - tbw/2)/c.mL;
240     double fs = (fcr + tbw/2)/c.mL;
241     double passMin, passMax, passRipple;
242     double stopMax, stopRipple;
243     testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
244             passMin, passMax, passRipple, stopMax, stopRipple);
245     printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
246     printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
247 #endif
248 }
249 
250 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)251 static int gcd(int n, int m)
252 {
253     if (m == 0) {
254         return n;
255     }
256     return gcd(m, n % m);
257 }
258 
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)259 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
260         int32_t filterSampleRate, int32_t outSampleRate)
261 {
262 
263     // different upsampling ratios do not need a filter change.
264     if (filterSampleRate != 0
265             && filterSampleRate < outSampleRate
266             && newSampleRate < outSampleRate)
267         return true;
268 
269     // check design criteria again if downsampling is detected.
270     int pdiff = absdiff(newSampleRate, prevSampleRate);
271     int adiff = absdiff(newSampleRate, filterSampleRate);
272 
273     // allow up to 6% relative change increments.
274     // allow up to 12% absolute change increments (from filter design)
275     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
276 }
277 
278 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)279 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
280 {
281     if (mInSampleRate == inSampleRate) {
282         return;
283     }
284     int32_t oldSampleRate = mInSampleRate;
285     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
286     bool useS32 = false;
287 
288     mInSampleRate = inSampleRate;
289 
290     // TODO: Add precalculated Equiripple filters
291 
292     if (mFilterQuality != getQuality() ||
293             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
294         mFilterSampleRate = inSampleRate;
295         mFilterQuality = getQuality();
296 
297         // Begin Kaiser Filter computation
298         //
299         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
300         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
301         //
302         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
303         // 96-98dB
304         //
305 
306         double stopBandAtten;
307         double tbwCheat = 1.; // how much we "cheat" into aliasing
308         int halfLength;
309         if (mFilterQuality == DYN_HIGH_QUALITY) {
310             // 32b coefficients, 64 length
311             useS32 = true;
312             stopBandAtten = 98.;
313             if (inSampleRate >= mSampleRate * 4) {
314                 halfLength = 48;
315             } else if (inSampleRate >= mSampleRate * 2) {
316                 halfLength = 40;
317             } else {
318                 halfLength = 32;
319             }
320         } else if (mFilterQuality == DYN_LOW_QUALITY) {
321             // 16b coefficients, 16-32 length
322             useS32 = false;
323             stopBandAtten = 80.;
324             if (inSampleRate >= mSampleRate * 4) {
325                 halfLength = 24;
326             } else if (inSampleRate >= mSampleRate * 2) {
327                 halfLength = 16;
328             } else {
329                 halfLength = 8;
330             }
331             if (inSampleRate <= mSampleRate) {
332                 tbwCheat = 1.05;
333             } else {
334                 tbwCheat = 1.03;
335             }
336         } else { // DYN_MED_QUALITY
337             // 16b coefficients, 32-64 length
338             // note: > 64 length filters with 16b coefs can have quantization noise problems
339             useS32 = false;
340             stopBandAtten = 84.;
341             if (inSampleRate >= mSampleRate * 4) {
342                 halfLength = 32;
343             } else if (inSampleRate >= mSampleRate * 2) {
344                 halfLength = 24;
345             } else {
346                 halfLength = 16;
347             }
348             if (inSampleRate <= mSampleRate) {
349                 tbwCheat = 1.03;
350             } else {
351                 tbwCheat = 1.01;
352             }
353         }
354 
355         // determine the number of polyphases in the filterbank.
356         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
357         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
358         //
359         // We are a bit more lax on this.
360 
361         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
362 
363         // TODO: Once dynamic sample rate change is an option, the code below
364         // should be modified to execute only when dynamic sample rate change is enabled.
365         //
366         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
367         // we increase the phases to compensate, but more phases means more memory per
368         // filter and more time to compute the filter.
369         //
370         // if we know that the filter will be used for dynamic sample rate changes,
371         // that would allow us skip this part for fixed sample rate resamplers.
372         //
373         while (phases<63) {
374             phases *= 2; // this code only needed to support dynamic rate changes
375         }
376 
377         if (phases>=256) {  // too many phases, always interpolate
378             phases = 127;
379         }
380 
381         // create the filter
382         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
383         createKaiserFir(mConstants, stopBandAtten,
384                 inSampleRate, mSampleRate, tbwCheat);
385     } // End Kaiser filter
386 
387     // update phase and state based on the new filter.
388     const Constants& c(mConstants);
389     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
390     const uint32_t phaseWrapLimit = c.mL << c.mShift;
391     // try to preserve as much of the phase fraction as possible for on-the-fly changes
392     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
393             * phaseWrapLimit / oldPhaseWrapLimit;
394     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
395     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
396             * inSampleRate / mSampleRate);
397 
398     // determine which resampler to use
399     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
400     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
401     if (locked) {
402         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
403     }
404 
405     // stride is the minimum number of filter coefficients processed per loop iteration.
406     // We currently only allow a stride of 16 to match with SIMD processing.
407     // This means that the filter length must be a multiple of 16,
408     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
409     //
410     // Note: A stride of 2 is achieved with non-SIMD processing.
411     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
412     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
413     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
414             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
415     // stride 16 (falls back to stride 2 for machines that do not support NEON)
416     if (locked) {
417         switch (mChannelCount) {
418         case 1:
419             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
420             break;
421         case 2:
422             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
423             break;
424         case 3:
425             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
426             break;
427         case 4:
428             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
429             break;
430         case 5:
431             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
432             break;
433         case 6:
434             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
435             break;
436         case 7:
437             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
438             break;
439         case 8:
440             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
441             break;
442         }
443     } else {
444         switch (mChannelCount) {
445         case 1:
446             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
447             break;
448         case 2:
449             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
450             break;
451         case 3:
452             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
453             break;
454         case 4:
455             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
456             break;
457         case 5:
458             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
459             break;
460         case 6:
461             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
462             break;
463         case 7:
464             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
465             break;
466         case 8:
467             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
468             break;
469         }
470     }
471 #ifdef DEBUG_RESAMPLER
472     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
473             mChannelCount, locked ? "locked" : "interpolated",
474             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
475 #endif
476 }
477 
478 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)479 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
480             AudioBufferProvider* provider)
481 {
482     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
483 }
484 
485 template<typename TC, typename TI, typename TO>
486 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)487 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
488         AudioBufferProvider* provider)
489 {
490     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
491     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
492     const Constants& c(mConstants);
493     const TC* const coefs = mConstants.mFirCoefs;
494     TI* impulse = mInBuffer.getImpulse();
495     size_t inputIndex = 0;
496     uint32_t phaseFraction = mPhaseFraction;
497     const uint32_t phaseIncrement = mPhaseIncrement;
498     size_t outputIndex = 0;
499     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
500     const uint32_t phaseWrapLimit = c.mL << c.mShift;
501     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
502             / phaseWrapLimit;
503     // sanity check that inFrameCount is in signed 32 bit integer range.
504     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
505 
506     //ALOGV("inFrameCount:%d  outFrameCount:%d"
507     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
508     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
509 
510     // NOTE: be very careful when modifying the code here. register
511     // pressure is very high and a small change might cause the compiler
512     // to generate far less efficient code.
513     // Always sanity check the result with objdump or test-resample.
514 
515     // the following logic is a bit convoluted to keep the main processing loop
516     // as tight as possible with register allocation.
517     while (outputIndex < outputSampleCount) {
518         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
519         //        "  phaseFraction:%u  phaseWrapLimit:%u",
520         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
521 
522         // check inputIndex overflow
523         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
524                 inputIndex, mBuffer.frameCount);
525         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
526         // We may not fetch a new buffer if the existing data is sufficient.
527         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
528             mBuffer.frameCount = inFrameCount;
529             provider->getNextBuffer(&mBuffer);
530             if (mBuffer.raw == NULL) {
531                 goto resample_exit;
532             }
533             inFrameCount -= mBuffer.frameCount;
534             if (phaseFraction >= phaseWrapLimit) { // read in data
535                 mInBuffer.template readAdvance<CHANNELS>(
536                         impulse, c.mHalfNumCoefs,
537                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
538                 inputIndex++;
539                 phaseFraction -= phaseWrapLimit;
540                 while (phaseFraction >= phaseWrapLimit) {
541                     if (inputIndex >= mBuffer.frameCount) {
542                         inputIndex = 0;
543                         provider->releaseBuffer(&mBuffer);
544                         break;
545                     }
546                     mInBuffer.template readAdvance<CHANNELS>(
547                             impulse, c.mHalfNumCoefs,
548                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
549                     inputIndex++;
550                     phaseFraction -= phaseWrapLimit;
551                 }
552             }
553         }
554         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
555         const size_t frameCount = mBuffer.frameCount;
556         const int coefShift = c.mShift;
557         const int halfNumCoefs = c.mHalfNumCoefs;
558         const TO* const volumeSimd = mVolumeSimd;
559 
560         // main processing loop
561         while (CC_LIKELY(outputIndex < outputSampleCount)) {
562             // caution: fir() is inlined and may be large.
563             // output will be loaded with the appropriate values
564             //
565             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
566             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
567             //
568             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
569             //        "  phaseFraction:%u  phaseWrapLimit:%u",
570             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
571             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
572             fir<CHANNELS, LOCKED, STRIDE>(
573                     &out[outputIndex],
574                     phaseFraction, phaseWrapLimit,
575                     coefShift, halfNumCoefs, coefs,
576                     impulse, volumeSimd);
577 
578             outputIndex += OUTPUT_CHANNELS;
579 
580             phaseFraction += phaseIncrement;
581             while (phaseFraction >= phaseWrapLimit) {
582                 if (inputIndex >= frameCount) {
583                     goto done;  // need a new buffer
584                 }
585                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
586                 inputIndex++;
587                 phaseFraction -= phaseWrapLimit;
588             }
589         }
590 done:
591         // We arrive here when we're finished or when the input buffer runs out.
592         // Regardless we need to release the input buffer if we've acquired it.
593         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
594             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
595                     inputIndex, frameCount);  // must have been fully read.
596             inputIndex = 0;
597             provider->releaseBuffer(&mBuffer);
598             ALOG_ASSERT(mBuffer.frameCount == 0);
599         }
600     }
601 
602 resample_exit:
603     // inputIndex must be zero in all three cases:
604     // (1) the buffer never was been acquired; (2) the buffer was
605     // released at "done:"; or (3) getNextBuffer() failed.
606     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d  phaseFraction:%u",
607             inputIndex, mBuffer.frameCount, phaseFraction);
608     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
609     mInBuffer.setImpulse(impulse);
610     mPhaseFraction = phaseFraction;
611     return outputIndex / OUTPUT_CHANNELS;
612 }
613 
614 /* instantiate templates used by AudioResampler::create */
615 template class AudioResamplerDyn<float, float, float>;
616 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
617 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
618 
619 // ----------------------------------------------------------------------------
620 } // namespace android
621