1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GetElementPtrTypeIterator.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <cstring>
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42
43 const unsigned MaxDepth = 6;
44
45 /// Enable an experimental feature to leverage information about dominating
46 /// conditions to compute known bits. The individual options below control how
47 /// hard we search. The defaults are chosen to be fairly aggressive. If you
48 /// run into compile time problems when testing, scale them back and report
49 /// your findings.
50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
51 cl::Hidden, cl::init(false));
52
53 // This is expensive, so we only do it for the top level query value.
54 // (TODO: evaluate cost vs profit, consider higher thresholds)
55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
56 cl::Hidden, cl::init(1));
57
58 /// How many dominating blocks should be scanned looking for dominating
59 /// conditions?
60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
61 cl::Hidden,
62 cl::init(20));
63
64 // Controls the number of uses of the value searched for possible
65 // dominating comparisons.
66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
67 cl::Hidden, cl::init(20));
68
69 // If true, don't consider only compares whose only use is a branch.
70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
71 cl::Hidden, cl::init(false));
72
73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
74 /// 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
76 if (unsigned BitWidth = Ty->getScalarSizeInBits())
77 return BitWidth;
78
79 return DL.getPointerTypeSizeInBits(Ty);
80 }
81
82 // Many of these functions have internal versions that take an assumption
83 // exclusion set. This is because of the potential for mutual recursion to
84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The
85 // classic case of this is assume(x = y), which will attempt to determine
86 // bits in x from bits in y, which will attempt to determine bits in y from
87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
91
92 namespace {
93 // Simplifying using an assume can only be done in a particular control-flow
94 // context (the context instruction provides that context). If an assume and
95 // the context instruction are not in the same block then the DT helps in
96 // figuring out if we can use it.
97 struct Query {
98 ExclInvsSet ExclInvs;
99 AssumptionCache *AC;
100 const Instruction *CxtI;
101 const DominatorTree *DT;
102
Query__anondad606610111::Query103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
104 const DominatorTree *DT = nullptr)
105 : AC(AC), CxtI(CxtI), DT(DT) {}
106
Query__anondad606610111::Query107 Query(const Query &Q, const Value *NewExcl)
108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
109 ExclInvs.insert(NewExcl);
110 }
111 };
112 } // end anonymous namespace
113
114 // Given the provided Value and, potentially, a context instruction, return
115 // the preferred context instruction (if any).
safeCxtI(const Value * V,const Instruction * CxtI)116 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
117 // If we've been provided with a context instruction, then use that (provided
118 // it has been inserted).
119 if (CxtI && CxtI->getParent())
120 return CxtI;
121
122 // If the value is really an already-inserted instruction, then use that.
123 CxtI = dyn_cast<Instruction>(V);
124 if (CxtI && CxtI->getParent())
125 return CxtI;
126
127 return nullptr;
128 }
129
130 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
131 const DataLayout &DL, unsigned Depth,
132 const Query &Q);
133
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
135 const DataLayout &DL, unsigned Depth,
136 AssumptionCache *AC, const Instruction *CxtI,
137 const DominatorTree *DT) {
138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
139 Query(AC, safeCxtI(V, CxtI), DT));
140 }
141
haveNoCommonBitsSet(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
143 AssumptionCache *AC, const Instruction *CxtI,
144 const DominatorTree *DT) {
145 assert(LHS->getType() == RHS->getType() &&
146 "LHS and RHS should have the same type");
147 assert(LHS->getType()->isIntOrIntVectorTy() &&
148 "LHS and RHS should be integers");
149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
155 }
156
157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
158 const DataLayout &DL, unsigned Depth,
159 const Query &Q);
160
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)161 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
162 const DataLayout &DL, unsigned Depth,
163 AssumptionCache *AC, const Instruction *CxtI,
164 const DominatorTree *DT) {
165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
166 Query(AC, safeCxtI(V, CxtI), DT));
167 }
168
169 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
170 const Query &Q, const DataLayout &DL);
171
isKnownToBeAPowerOfTwo(Value * V,const DataLayout & DL,bool OrZero,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)172 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
173 unsigned Depth, AssumptionCache *AC,
174 const Instruction *CxtI,
175 const DominatorTree *DT) {
176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
177 Query(AC, safeCxtI(V, CxtI), DT), DL);
178 }
179
180 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
181 const Query &Q);
182
isKnownNonZero(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)183 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
184 AssumptionCache *AC, const Instruction *CxtI,
185 const DominatorTree *DT) {
186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
187 }
188
isKnownNonNegative(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)189 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
190 AssumptionCache *AC, const Instruction *CxtI,
191 const DominatorTree *DT) {
192 bool NonNegative, Negative;
193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
194 return NonNegative;
195 }
196
197 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
198 const Query &Q);
199
isKnownNonEqual(Value * V1,Value * V2,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
201 AssumptionCache *AC, const Instruction *CxtI,
202 const DominatorTree *DT) {
203 return ::isKnownNonEqual(V1, V2, DL, Query(AC,
204 safeCxtI(V1, safeCxtI(V2, CxtI)),
205 DT));
206 }
207
208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
209 unsigned Depth, const Query &Q);
210
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
212 unsigned Depth, AssumptionCache *AC,
213 const Instruction *CxtI, const DominatorTree *DT) {
214 return ::MaskedValueIsZero(V, Mask, DL, Depth,
215 Query(AC, safeCxtI(V, CxtI), DT));
216 }
217
218 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
219 unsigned Depth, const Query &Q);
220
ComputeNumSignBits(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)221 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
222 unsigned Depth, AssumptionCache *AC,
223 const Instruction *CxtI,
224 const DominatorTree *DT) {
225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
226 }
227
computeKnownBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout & DL,unsigned Depth,const Query & Q)228 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
229 APInt &KnownZero, APInt &KnownOne,
230 APInt &KnownZero2, APInt &KnownOne2,
231 const DataLayout &DL, unsigned Depth,
232 const Query &Q) {
233 if (!Add) {
234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
235 // We know that the top bits of C-X are clear if X contains less bits
236 // than C (i.e. no wrap-around can happen). For example, 20-X is
237 // positive if we can prove that X is >= 0 and < 16.
238 if (!CLHS->getValue().isNegative()) {
239 unsigned BitWidth = KnownZero.getBitWidth();
240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
241 // NLZ can't be BitWidth with no sign bit
242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
244
245 // If all of the MaskV bits are known to be zero, then we know the
246 // output top bits are zero, because we now know that the output is
247 // from [0-C].
248 if ((KnownZero2 & MaskV) == MaskV) {
249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
250 // Top bits known zero.
251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
252 }
253 }
254 }
255 }
256
257 unsigned BitWidth = KnownZero.getBitWidth();
258
259 // If an initial sequence of bits in the result is not needed, the
260 // corresponding bits in the operands are not needed.
261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
264
265 // Carry in a 1 for a subtract, rather than a 0.
266 APInt CarryIn(BitWidth, 0);
267 if (!Add) {
268 // Sum = LHS + ~RHS + 1
269 std::swap(KnownZero2, KnownOne2);
270 CarryIn.setBit(0);
271 }
272
273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
275
276 // Compute known bits of the carry.
277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
279
280 // Compute set of known bits (where all three relevant bits are known).
281 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
282 APInt RHSKnown = KnownZero2 | KnownOne2;
283 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
284 APInt Known = LHSKnown & RHSKnown & CarryKnown;
285
286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
287 "known bits of sum differ");
288
289 // Compute known bits of the result.
290 KnownZero = ~PossibleSumOne & Known;
291 KnownOne = PossibleSumOne & Known;
292
293 // Are we still trying to solve for the sign bit?
294 if (!Known.isNegative()) {
295 if (NSW) {
296 // Adding two non-negative numbers, or subtracting a negative number from
297 // a non-negative one, can't wrap into negative.
298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
299 KnownZero |= APInt::getSignBit(BitWidth);
300 // Adding two negative numbers, or subtracting a non-negative number from
301 // a negative one, can't wrap into non-negative.
302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
303 KnownOne |= APInt::getSignBit(BitWidth);
304 }
305 }
306 }
307
computeKnownBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout & DL,unsigned Depth,const Query & Q)308 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
309 APInt &KnownZero, APInt &KnownOne,
310 APInt &KnownZero2, APInt &KnownOne2,
311 const DataLayout &DL, unsigned Depth,
312 const Query &Q) {
313 unsigned BitWidth = KnownZero.getBitWidth();
314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
316
317 bool isKnownNegative = false;
318 bool isKnownNonNegative = false;
319 // If the multiplication is known not to overflow, compute the sign bit.
320 if (NSW) {
321 if (Op0 == Op1) {
322 // The product of a number with itself is non-negative.
323 isKnownNonNegative = true;
324 } else {
325 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
327 bool isKnownNegativeOp1 = KnownOne.isNegative();
328 bool isKnownNegativeOp0 = KnownOne2.isNegative();
329 // The product of two numbers with the same sign is non-negative.
330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332 // The product of a negative number and a non-negative number is either
333 // negative or zero.
334 if (!isKnownNonNegative)
335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
336 isKnownNonZero(Op0, DL, Depth, Q)) ||
337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
338 isKnownNonZero(Op1, DL, Depth, Q));
339 }
340 }
341
342 // If low bits are zero in either operand, output low known-0 bits.
343 // Also compute a conservative estimate for high known-0 bits.
344 // More trickiness is possible, but this is sufficient for the
345 // interesting case of alignment computation.
346 KnownOne.clearAllBits();
347 unsigned TrailZ = KnownZero.countTrailingOnes() +
348 KnownZero2.countTrailingOnes();
349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
350 KnownZero2.countLeadingOnes(),
351 BitWidth) - BitWidth;
352
353 TrailZ = std::min(TrailZ, BitWidth);
354 LeadZ = std::min(LeadZ, BitWidth);
355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
356 APInt::getHighBitsSet(BitWidth, LeadZ);
357
358 // Only make use of no-wrap flags if we failed to compute the sign bit
359 // directly. This matters if the multiplication always overflows, in
360 // which case we prefer to follow the result of the direct computation,
361 // though as the program is invoking undefined behaviour we can choose
362 // whatever we like here.
363 if (isKnownNonNegative && !KnownOne.isNegative())
364 KnownZero.setBit(BitWidth - 1);
365 else if (isKnownNegative && !KnownZero.isNegative())
366 KnownOne.setBit(BitWidth - 1);
367 }
368
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,APInt & KnownZero,APInt & KnownOne)369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
370 APInt &KnownZero,
371 APInt &KnownOne) {
372 unsigned BitWidth = KnownZero.getBitWidth();
373 unsigned NumRanges = Ranges.getNumOperands() / 2;
374 assert(NumRanges >= 1);
375
376 KnownZero.setAllBits();
377 KnownOne.setAllBits();
378
379 for (unsigned i = 0; i < NumRanges; ++i) {
380 ConstantInt *Lower =
381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
382 ConstantInt *Upper =
383 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
384 ConstantRange Range(Lower->getValue(), Upper->getValue());
385
386 // The first CommonPrefixBits of all values in Range are equal.
387 unsigned CommonPrefixBits =
388 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
389
390 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
391 KnownOne &= Range.getUnsignedMax() & Mask;
392 KnownZero &= ~Range.getUnsignedMax() & Mask;
393 }
394 }
395
isEphemeralValueOf(Instruction * I,const Value * E)396 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
397 SmallVector<const Value *, 16> WorkSet(1, I);
398 SmallPtrSet<const Value *, 32> Visited;
399 SmallPtrSet<const Value *, 16> EphValues;
400
401 // The instruction defining an assumption's condition itself is always
402 // considered ephemeral to that assumption (even if it has other
403 // non-ephemeral users). See r246696's test case for an example.
404 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
405 return true;
406
407 while (!WorkSet.empty()) {
408 const Value *V = WorkSet.pop_back_val();
409 if (!Visited.insert(V).second)
410 continue;
411
412 // If all uses of this value are ephemeral, then so is this value.
413 if (std::all_of(V->user_begin(), V->user_end(),
414 [&](const User *U) { return EphValues.count(U); })) {
415 if (V == E)
416 return true;
417
418 EphValues.insert(V);
419 if (const User *U = dyn_cast<User>(V))
420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
421 J != JE; ++J) {
422 if (isSafeToSpeculativelyExecute(*J))
423 WorkSet.push_back(*J);
424 }
425 }
426 }
427
428 return false;
429 }
430
431 // Is this an intrinsic that cannot be speculated but also cannot trap?
isAssumeLikeIntrinsic(const Instruction * I)432 static bool isAssumeLikeIntrinsic(const Instruction *I) {
433 if (const CallInst *CI = dyn_cast<CallInst>(I))
434 if (Function *F = CI->getCalledFunction())
435 switch (F->getIntrinsicID()) {
436 default: break;
437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
438 case Intrinsic::assume:
439 case Intrinsic::dbg_declare:
440 case Intrinsic::dbg_value:
441 case Intrinsic::invariant_start:
442 case Intrinsic::invariant_end:
443 case Intrinsic::lifetime_start:
444 case Intrinsic::lifetime_end:
445 case Intrinsic::objectsize:
446 case Intrinsic::ptr_annotation:
447 case Intrinsic::var_annotation:
448 return true;
449 }
450
451 return false;
452 }
453
isValidAssumeForContext(Value * V,const Query & Q)454 static bool isValidAssumeForContext(Value *V, const Query &Q) {
455 Instruction *Inv = cast<Instruction>(V);
456
457 // There are two restrictions on the use of an assume:
458 // 1. The assume must dominate the context (or the control flow must
459 // reach the assume whenever it reaches the context).
460 // 2. The context must not be in the assume's set of ephemeral values
461 // (otherwise we will use the assume to prove that the condition
462 // feeding the assume is trivially true, thus causing the removal of
463 // the assume).
464
465 if (Q.DT) {
466 if (Q.DT->dominates(Inv, Q.CxtI)) {
467 return true;
468 } else if (Inv->getParent() == Q.CxtI->getParent()) {
469 // The context comes first, but they're both in the same block. Make sure
470 // there is nothing in between that might interrupt the control flow.
471 for (BasicBlock::const_iterator I =
472 std::next(BasicBlock::const_iterator(Q.CxtI)),
473 IE(Inv); I != IE; ++I)
474 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
475 return false;
476
477 return !isEphemeralValueOf(Inv, Q.CxtI);
478 }
479
480 return false;
481 }
482
483 // When we don't have a DT, we do a limited search...
484 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
485 return true;
486 } else if (Inv->getParent() == Q.CxtI->getParent()) {
487 // Search forward from the assume until we reach the context (or the end
488 // of the block); the common case is that the assume will come first.
489 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
490 IE = Inv->getParent()->end(); I != IE; ++I)
491 if (&*I == Q.CxtI)
492 return true;
493
494 // The context must come first...
495 for (BasicBlock::const_iterator I =
496 std::next(BasicBlock::const_iterator(Q.CxtI)),
497 IE(Inv); I != IE; ++I)
498 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
499 return false;
500
501 return !isEphemeralValueOf(Inv, Q.CxtI);
502 }
503
504 return false;
505 }
506
isValidAssumeForContext(const Instruction * I,const Instruction * CxtI,const DominatorTree * DT)507 bool llvm::isValidAssumeForContext(const Instruction *I,
508 const Instruction *CxtI,
509 const DominatorTree *DT) {
510 return ::isValidAssumeForContext(const_cast<Instruction *>(I),
511 Query(nullptr, CxtI, DT));
512 }
513
514 template<typename LHS, typename RHS>
515 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
516 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
m_c_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)517 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
518 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
519 }
520
521 template<typename LHS, typename RHS>
522 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
523 BinaryOp_match<RHS, LHS, Instruction::And>>
m_c_And(const LHS & L,const RHS & R)524 m_c_And(const LHS &L, const RHS &R) {
525 return m_CombineOr(m_And(L, R), m_And(R, L));
526 }
527
528 template<typename LHS, typename RHS>
529 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
530 BinaryOp_match<RHS, LHS, Instruction::Or>>
m_c_Or(const LHS & L,const RHS & R)531 m_c_Or(const LHS &L, const RHS &R) {
532 return m_CombineOr(m_Or(L, R), m_Or(R, L));
533 }
534
535 template<typename LHS, typename RHS>
536 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
537 BinaryOp_match<RHS, LHS, Instruction::Xor>>
m_c_Xor(const LHS & L,const RHS & R)538 m_c_Xor(const LHS &L, const RHS &R) {
539 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
540 }
541
542 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
543 /// true (at the context instruction.) This is mostly a utility function for
544 /// the prototype dominating conditions reasoning below.
computeKnownBitsFromTrueCondition(Value * V,ICmpInst * Cmp,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)545 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
546 APInt &KnownZero,
547 APInt &KnownOne,
548 const DataLayout &DL,
549 unsigned Depth, const Query &Q) {
550 Value *LHS = Cmp->getOperand(0);
551 Value *RHS = Cmp->getOperand(1);
552 // TODO: We could potentially be more aggressive here. This would be worth
553 // evaluating. If we can, explore commoning this code with the assume
554 // handling logic.
555 if (LHS != V && RHS != V)
556 return;
557
558 const unsigned BitWidth = KnownZero.getBitWidth();
559
560 switch (Cmp->getPredicate()) {
561 default:
562 // We know nothing from this condition
563 break;
564 // TODO: implement unsigned bound from below (known one bits)
565 // TODO: common condition check implementations with assumes
566 // TODO: implement other patterns from assume (e.g. V & B == A)
567 case ICmpInst::ICMP_SGT:
568 if (LHS == V) {
569 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
570 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
571 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
572 // We know that the sign bit is zero.
573 KnownZero |= APInt::getSignBit(BitWidth);
574 }
575 }
576 break;
577 case ICmpInst::ICMP_EQ:
578 {
579 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
580 if (LHS == V)
581 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
582 else if (RHS == V)
583 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
584 else
585 llvm_unreachable("missing use?");
586 KnownZero |= KnownZeroTemp;
587 KnownOne |= KnownOneTemp;
588 }
589 break;
590 case ICmpInst::ICMP_ULE:
591 if (LHS == V) {
592 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
593 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
594 // The known zero bits carry over
595 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
596 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
597 }
598 break;
599 case ICmpInst::ICMP_ULT:
600 if (LHS == V) {
601 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
602 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
603 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
604 // power of 2, then one more).
605 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
606 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
607 SignBits++;
608 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
609 }
610 break;
611 };
612 }
613
614 /// Compute known bits in 'V' from conditions which are known to be true along
615 /// all paths leading to the context instruction. In particular, look for
616 /// cases where one branch of an interesting condition dominates the context
617 /// instruction. This does not do general dataflow.
618 /// NOTE: This code is EXPERIMENTAL and currently off by default.
computeKnownBitsFromDominatingCondition(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)619 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
620 APInt &KnownOne,
621 const DataLayout &DL,
622 unsigned Depth,
623 const Query &Q) {
624 // Need both the dominator tree and the query location to do anything useful
625 if (!Q.DT || !Q.CxtI)
626 return;
627 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
628 // The context instruction might be in a statically unreachable block. If
629 // so, asking dominator queries may yield suprising results. (e.g. the block
630 // may not have a dom tree node)
631 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
632 return;
633
634 // Avoid useless work
635 if (auto VI = dyn_cast<Instruction>(V))
636 if (VI->getParent() == Cxt->getParent())
637 return;
638
639 // Note: We currently implement two options. It's not clear which of these
640 // will survive long term, we need data for that.
641 // Option 1 - Try walking the dominator tree looking for conditions which
642 // might apply. This works well for local conditions (loop guards, etc..),
643 // but not as well for things far from the context instruction (presuming a
644 // low max blocks explored). If we can set an high enough limit, this would
645 // be all we need.
646 // Option 2 - We restrict out search to those conditions which are uses of
647 // the value we're interested in. This is independent of dom structure,
648 // but is slightly less powerful without looking through lots of use chains.
649 // It does handle conditions far from the context instruction (e.g. early
650 // function exits on entry) really well though.
651
652 // Option 1 - Search the dom tree
653 unsigned NumBlocksExplored = 0;
654 BasicBlock *Current = Cxt->getParent();
655 while (true) {
656 // Stop searching if we've gone too far up the chain
657 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
658 break;
659 NumBlocksExplored++;
660
661 if (!Q.DT->getNode(Current)->getIDom())
662 break;
663 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
664 if (!Current)
665 // found function entry
666 break;
667
668 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
669 if (!BI || BI->isUnconditional())
670 continue;
671 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
672 if (!Cmp)
673 continue;
674
675 // We're looking for conditions that are guaranteed to hold at the context
676 // instruction. Finding a condition where one path dominates the context
677 // isn't enough because both the true and false cases could merge before
678 // the context instruction we're actually interested in. Instead, we need
679 // to ensure that the taken *edge* dominates the context instruction. We
680 // know that the edge must be reachable since we started from a reachable
681 // block.
682 BasicBlock *BB0 = BI->getSuccessor(0);
683 BasicBlockEdge Edge(BI->getParent(), BB0);
684 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
685 continue;
686
687 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
688 Q);
689 }
690
691 // Option 2 - Search the other uses of V
692 unsigned NumUsesExplored = 0;
693 for (auto U : V->users()) {
694 // Avoid massive lists
695 if (NumUsesExplored >= DomConditionsMaxUses)
696 break;
697 NumUsesExplored++;
698 // Consider only compare instructions uniquely controlling a branch
699 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
700 if (!Cmp)
701 continue;
702
703 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
704 continue;
705
706 for (auto *CmpU : Cmp->users()) {
707 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
708 if (!BI || BI->isUnconditional())
709 continue;
710 // We're looking for conditions that are guaranteed to hold at the
711 // context instruction. Finding a condition where one path dominates
712 // the context isn't enough because both the true and false cases could
713 // merge before the context instruction we're actually interested in.
714 // Instead, we need to ensure that the taken *edge* dominates the context
715 // instruction.
716 BasicBlock *BB0 = BI->getSuccessor(0);
717 BasicBlockEdge Edge(BI->getParent(), BB0);
718 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
719 continue;
720
721 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
722 Q);
723 }
724 }
725 }
726
computeKnownBitsFromAssume(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)727 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
728 APInt &KnownOne, const DataLayout &DL,
729 unsigned Depth, const Query &Q) {
730 // Use of assumptions is context-sensitive. If we don't have a context, we
731 // cannot use them!
732 if (!Q.AC || !Q.CxtI)
733 return;
734
735 unsigned BitWidth = KnownZero.getBitWidth();
736
737 for (auto &AssumeVH : Q.AC->assumptions()) {
738 if (!AssumeVH)
739 continue;
740 CallInst *I = cast<CallInst>(AssumeVH);
741 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
742 "Got assumption for the wrong function!");
743 if (Q.ExclInvs.count(I))
744 continue;
745
746 // Warning: This loop can end up being somewhat performance sensetive.
747 // We're running this loop for once for each value queried resulting in a
748 // runtime of ~O(#assumes * #values).
749
750 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
751 "must be an assume intrinsic");
752
753 Value *Arg = I->getArgOperand(0);
754
755 if (Arg == V && isValidAssumeForContext(I, Q)) {
756 assert(BitWidth == 1 && "assume operand is not i1?");
757 KnownZero.clearAllBits();
758 KnownOne.setAllBits();
759 return;
760 }
761
762 // The remaining tests are all recursive, so bail out if we hit the limit.
763 if (Depth == MaxDepth)
764 continue;
765
766 Value *A, *B;
767 auto m_V = m_CombineOr(m_Specific(V),
768 m_CombineOr(m_PtrToInt(m_Specific(V)),
769 m_BitCast(m_Specific(V))));
770
771 CmpInst::Predicate Pred;
772 ConstantInt *C;
773 // assume(v = a)
774 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
775 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
776 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
777 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
778 KnownZero |= RHSKnownZero;
779 KnownOne |= RHSKnownOne;
780 // assume(v & b = a)
781 } else if (match(Arg,
782 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
783 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
786 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
787 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
788
789 // For those bits in the mask that are known to be one, we can propagate
790 // known bits from the RHS to V.
791 KnownZero |= RHSKnownZero & MaskKnownOne;
792 KnownOne |= RHSKnownOne & MaskKnownOne;
793 // assume(~(v & b) = a)
794 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
795 m_Value(A))) &&
796 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
797 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
798 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
799 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
800 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
801
802 // For those bits in the mask that are known to be one, we can propagate
803 // inverted known bits from the RHS to V.
804 KnownZero |= RHSKnownOne & MaskKnownOne;
805 KnownOne |= RHSKnownZero & MaskKnownOne;
806 // assume(v | b = a)
807 } else if (match(Arg,
808 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
809 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
810 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
811 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
812 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
813 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
814
815 // For those bits in B that are known to be zero, we can propagate known
816 // bits from the RHS to V.
817 KnownZero |= RHSKnownZero & BKnownZero;
818 KnownOne |= RHSKnownOne & BKnownZero;
819 // assume(~(v | b) = a)
820 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
821 m_Value(A))) &&
822 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
823 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
824 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
825 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
826 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
827
828 // For those bits in B that are known to be zero, we can propagate
829 // inverted known bits from the RHS to V.
830 KnownZero |= RHSKnownOne & BKnownZero;
831 KnownOne |= RHSKnownZero & BKnownZero;
832 // assume(v ^ b = a)
833 } else if (match(Arg,
834 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
840
841 // For those bits in B that are known to be zero, we can propagate known
842 // bits from the RHS to V. For those bits in B that are known to be one,
843 // we can propagate inverted known bits from the RHS to V.
844 KnownZero |= RHSKnownZero & BKnownZero;
845 KnownOne |= RHSKnownOne & BKnownZero;
846 KnownZero |= RHSKnownOne & BKnownOne;
847 KnownOne |= RHSKnownZero & BKnownOne;
848 // assume(~(v ^ b) = a)
849 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
850 m_Value(A))) &&
851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
854 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
855 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
856
857 // For those bits in B that are known to be zero, we can propagate
858 // inverted known bits from the RHS to V. For those bits in B that are
859 // known to be one, we can propagate known bits from the RHS to V.
860 KnownZero |= RHSKnownOne & BKnownZero;
861 KnownOne |= RHSKnownZero & BKnownZero;
862 KnownZero |= RHSKnownZero & BKnownOne;
863 KnownOne |= RHSKnownOne & BKnownOne;
864 // assume(v << c = a)
865 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
866 m_Value(A))) &&
867 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
868 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
869 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
870 // For those bits in RHS that are known, we can propagate them to known
871 // bits in V shifted to the right by C.
872 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
873 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
874 // assume(~(v << c) = a)
875 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
876 m_Value(A))) &&
877 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
878 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
879 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
880 // For those bits in RHS that are known, we can propagate them inverted
881 // to known bits in V shifted to the right by C.
882 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
883 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
884 // assume(v >> c = a)
885 } else if (match(Arg,
886 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
887 m_AShr(m_V, m_ConstantInt(C))),
888 m_Value(A))) &&
889 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
890 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
891 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
892 // For those bits in RHS that are known, we can propagate them to known
893 // bits in V shifted to the right by C.
894 KnownZero |= RHSKnownZero << C->getZExtValue();
895 KnownOne |= RHSKnownOne << C->getZExtValue();
896 // assume(~(v >> c) = a)
897 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
898 m_LShr(m_V, m_ConstantInt(C)),
899 m_AShr(m_V, m_ConstantInt(C)))),
900 m_Value(A))) &&
901 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
902 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
903 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
904 // For those bits in RHS that are known, we can propagate them inverted
905 // to known bits in V shifted to the right by C.
906 KnownZero |= RHSKnownOne << C->getZExtValue();
907 KnownOne |= RHSKnownZero << C->getZExtValue();
908 // assume(v >=_s c) where c is non-negative
909 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
910 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
911 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
912 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
913
914 if (RHSKnownZero.isNegative()) {
915 // We know that the sign bit is zero.
916 KnownZero |= APInt::getSignBit(BitWidth);
917 }
918 // assume(v >_s c) where c is at least -1.
919 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
920 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
921 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
922 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
923
924 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
925 // We know that the sign bit is zero.
926 KnownZero |= APInt::getSignBit(BitWidth);
927 }
928 // assume(v <=_s c) where c is negative
929 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
930 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
931 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
932 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
933
934 if (RHSKnownOne.isNegative()) {
935 // We know that the sign bit is one.
936 KnownOne |= APInt::getSignBit(BitWidth);
937 }
938 // assume(v <_s c) where c is non-positive
939 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
940 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
941 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
942 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
943
944 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
945 // We know that the sign bit is one.
946 KnownOne |= APInt::getSignBit(BitWidth);
947 }
948 // assume(v <=_u c)
949 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
950 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
951 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
952 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
953
954 // Whatever high bits in c are zero are known to be zero.
955 KnownZero |=
956 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
957 // assume(v <_u c)
958 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
959 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
960 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
961 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
962
963 // Whatever high bits in c are zero are known to be zero (if c is a power
964 // of 2, then one more).
965 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
966 KnownZero |=
967 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
968 else
969 KnownZero |=
970 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
971 }
972 }
973 }
974
975 // Compute known bits from a shift operator, including those with a
976 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
977 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
978 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
979 // functors that, given the known-zero or known-one bits respectively, and a
980 // shift amount, compute the implied known-zero or known-one bits of the shift
981 // operator's result respectively for that shift amount. The results from calling
982 // KZF and KOF are conservatively combined for all permitted shift amounts.
983 template <typename KZFunctor, typename KOFunctor>
computeKnownBitsFromShiftOperator(Operator * I,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,const DataLayout & DL,unsigned Depth,const Query & Q,KZFunctor KZF,KOFunctor KOF)984 static void computeKnownBitsFromShiftOperator(Operator *I,
985 APInt &KnownZero, APInt &KnownOne,
986 APInt &KnownZero2, APInt &KnownOne2,
987 const DataLayout &DL, unsigned Depth, const Query &Q,
988 KZFunctor KZF, KOFunctor KOF) {
989 unsigned BitWidth = KnownZero.getBitWidth();
990
991 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
992 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
993
994 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
995 KnownZero = KZF(KnownZero, ShiftAmt);
996 KnownOne = KOF(KnownOne, ShiftAmt);
997 return;
998 }
999
1000 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1001
1002 // Note: We cannot use KnownZero.getLimitedValue() here, because if
1003 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1004 // limit value (which implies all bits are known).
1005 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1006 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1007
1008 // It would be more-clearly correct to use the two temporaries for this
1009 // calculation. Reusing the APInts here to prevent unnecessary allocations.
1010 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1011
1012 // If we know the shifter operand is nonzero, we can sometimes infer more
1013 // known bits. However this is expensive to compute, so be lazy about it and
1014 // only compute it when absolutely necessary.
1015 Optional<bool> ShifterOperandIsNonZero;
1016
1017 // Early exit if we can't constrain any well-defined shift amount.
1018 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1019 ShifterOperandIsNonZero =
1020 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1021 if (!*ShifterOperandIsNonZero)
1022 return;
1023 }
1024
1025 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1026
1027 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1028 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1029 // Combine the shifted known input bits only for those shift amounts
1030 // compatible with its known constraints.
1031 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1032 continue;
1033 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1034 continue;
1035 // If we know the shifter is nonzero, we may be able to infer more known
1036 // bits. This check is sunk down as far as possible to avoid the expensive
1037 // call to isKnownNonZero if the cheaper checks above fail.
1038 if (ShiftAmt == 0) {
1039 if (!ShifterOperandIsNonZero.hasValue())
1040 ShifterOperandIsNonZero =
1041 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
1042 if (*ShifterOperandIsNonZero)
1043 continue;
1044 }
1045
1046 KnownZero &= KZF(KnownZero2, ShiftAmt);
1047 KnownOne &= KOF(KnownOne2, ShiftAmt);
1048 }
1049
1050 // If there are no compatible shift amounts, then we've proven that the shift
1051 // amount must be >= the BitWidth, and the result is undefined. We could
1052 // return anything we'd like, but we need to make sure the sets of known bits
1053 // stay disjoint (it should be better for some other code to actually
1054 // propagate the undef than to pick a value here using known bits).
1055 if ((KnownZero & KnownOne) != 0)
1056 KnownZero.clearAllBits(), KnownOne.clearAllBits();
1057 }
1058
computeKnownBitsFromOperator(Operator * I,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)1059 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1060 APInt &KnownOne, const DataLayout &DL,
1061 unsigned Depth, const Query &Q) {
1062 unsigned BitWidth = KnownZero.getBitWidth();
1063
1064 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
1065 switch (I->getOpcode()) {
1066 default: break;
1067 case Instruction::Load:
1068 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
1069 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1070 break;
1071 case Instruction::And: {
1072 // If either the LHS or the RHS are Zero, the result is zero.
1073 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1074 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1075
1076 // Output known-1 bits are only known if set in both the LHS & RHS.
1077 KnownOne &= KnownOne2;
1078 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1079 KnownZero |= KnownZero2;
1080
1081 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1082 // here we handle the more general case of adding any odd number by
1083 // matching the form add(x, add(x, y)) where y is odd.
1084 // TODO: This could be generalized to clearing any bit set in y where the
1085 // following bit is known to be unset in y.
1086 Value *Y = nullptr;
1087 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1088 m_Value(Y))) ||
1089 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1090 m_Value(Y)))) {
1091 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
1092 computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q);
1093 if (KnownOne3.countTrailingOnes() > 0)
1094 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1095 }
1096 break;
1097 }
1098 case Instruction::Or: {
1099 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1100 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1101
1102 // Output known-0 bits are only known if clear in both the LHS & RHS.
1103 KnownZero &= KnownZero2;
1104 // Output known-1 are known to be set if set in either the LHS | RHS.
1105 KnownOne |= KnownOne2;
1106 break;
1107 }
1108 case Instruction::Xor: {
1109 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
1110 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1111
1112 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1113 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1114 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1115 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1116 KnownZero = KnownZeroOut;
1117 break;
1118 }
1119 case Instruction::Mul: {
1120 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1121 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1122 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
1123 break;
1124 }
1125 case Instruction::UDiv: {
1126 // For the purposes of computing leading zeros we can conservatively
1127 // treat a udiv as a logical right shift by the power of 2 known to
1128 // be less than the denominator.
1129 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1130 unsigned LeadZ = KnownZero2.countLeadingOnes();
1131
1132 KnownOne2.clearAllBits();
1133 KnownZero2.clearAllBits();
1134 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1135 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1136 if (RHSUnknownLeadingOnes != BitWidth)
1137 LeadZ = std::min(BitWidth,
1138 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1139
1140 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1141 break;
1142 }
1143 case Instruction::Select:
1144 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
1145 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1146
1147 // Only known if known in both the LHS and RHS.
1148 KnownOne &= KnownOne2;
1149 KnownZero &= KnownZero2;
1150 break;
1151 case Instruction::FPTrunc:
1152 case Instruction::FPExt:
1153 case Instruction::FPToUI:
1154 case Instruction::FPToSI:
1155 case Instruction::SIToFP:
1156 case Instruction::UIToFP:
1157 break; // Can't work with floating point.
1158 case Instruction::PtrToInt:
1159 case Instruction::IntToPtr:
1160 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1161 // FALL THROUGH and handle them the same as zext/trunc.
1162 case Instruction::ZExt:
1163 case Instruction::Trunc: {
1164 Type *SrcTy = I->getOperand(0)->getType();
1165
1166 unsigned SrcBitWidth;
1167 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1168 // which fall through here.
1169 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
1170
1171 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1172 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1173 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1174 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1175 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1176 KnownOne = KnownOne.zextOrTrunc(BitWidth);
1177 // Any top bits are known to be zero.
1178 if (BitWidth > SrcBitWidth)
1179 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1180 break;
1181 }
1182 case Instruction::BitCast: {
1183 Type *SrcTy = I->getOperand(0)->getType();
1184 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1185 SrcTy->isFloatingPointTy()) &&
1186 // TODO: For now, not handling conversions like:
1187 // (bitcast i64 %x to <2 x i32>)
1188 !I->getType()->isVectorTy()) {
1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1190 break;
1191 }
1192 break;
1193 }
1194 case Instruction::SExt: {
1195 // Compute the bits in the result that are not present in the input.
1196 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1197
1198 KnownZero = KnownZero.trunc(SrcBitWidth);
1199 KnownOne = KnownOne.trunc(SrcBitWidth);
1200 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1201 KnownZero = KnownZero.zext(BitWidth);
1202 KnownOne = KnownOne.zext(BitWidth);
1203
1204 // If the sign bit of the input is known set or clear, then we know the
1205 // top bits of the result.
1206 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1207 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1208 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1209 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1210 break;
1211 }
1212 case Instruction::Shl: {
1213 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1214 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1215 return (KnownZero << ShiftAmt) |
1216 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1217 };
1218
1219 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1220 return KnownOne << ShiftAmt;
1221 };
1222
1223 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1224 KnownZero2, KnownOne2, DL, Depth, Q,
1225 KZF, KOF);
1226 break;
1227 }
1228 case Instruction::LShr: {
1229 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1230 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1231 return APIntOps::lshr(KnownZero, ShiftAmt) |
1232 // High bits known zero.
1233 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1234 };
1235
1236 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1237 return APIntOps::lshr(KnownOne, ShiftAmt);
1238 };
1239
1240 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1241 KnownZero2, KnownOne2, DL, Depth, Q,
1242 KZF, KOF);
1243 break;
1244 }
1245 case Instruction::AShr: {
1246 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1247 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1248 return APIntOps::ashr(KnownZero, ShiftAmt);
1249 };
1250
1251 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1252 return APIntOps::ashr(KnownOne, ShiftAmt);
1253 };
1254
1255 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1256 KnownZero2, KnownOne2, DL, Depth, Q,
1257 KZF, KOF);
1258 break;
1259 }
1260 case Instruction::Sub: {
1261 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1262 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1263 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1264 Depth, Q);
1265 break;
1266 }
1267 case Instruction::Add: {
1268 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1270 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1271 Depth, Q);
1272 break;
1273 }
1274 case Instruction::SRem:
1275 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1276 APInt RA = Rem->getValue().abs();
1277 if (RA.isPowerOf2()) {
1278 APInt LowBits = RA - 1;
1279 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
1280 Q);
1281
1282 // The low bits of the first operand are unchanged by the srem.
1283 KnownZero = KnownZero2 & LowBits;
1284 KnownOne = KnownOne2 & LowBits;
1285
1286 // If the first operand is non-negative or has all low bits zero, then
1287 // the upper bits are all zero.
1288 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1289 KnownZero |= ~LowBits;
1290
1291 // If the first operand is negative and not all low bits are zero, then
1292 // the upper bits are all one.
1293 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1294 KnownOne |= ~LowBits;
1295
1296 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1297 }
1298 }
1299
1300 // The sign bit is the LHS's sign bit, except when the result of the
1301 // remainder is zero.
1302 if (KnownZero.isNonNegative()) {
1303 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1304 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
1305 Depth + 1, Q);
1306 // If it's known zero, our sign bit is also zero.
1307 if (LHSKnownZero.isNegative())
1308 KnownZero.setBit(BitWidth - 1);
1309 }
1310
1311 break;
1312 case Instruction::URem: {
1313 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1314 APInt RA = Rem->getValue();
1315 if (RA.isPowerOf2()) {
1316 APInt LowBits = (RA - 1);
1317 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
1318 Q);
1319 KnownZero |= ~LowBits;
1320 KnownOne &= LowBits;
1321 break;
1322 }
1323 }
1324
1325 // Since the result is less than or equal to either operand, any leading
1326 // zero bits in either operand must also exist in the result.
1327 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
1328 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
1329
1330 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1331 KnownZero2.countLeadingOnes());
1332 KnownOne.clearAllBits();
1333 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1334 break;
1335 }
1336
1337 case Instruction::Alloca: {
1338 AllocaInst *AI = cast<AllocaInst>(I);
1339 unsigned Align = AI->getAlignment();
1340 if (Align == 0)
1341 Align = DL.getABITypeAlignment(AI->getType()->getElementType());
1342
1343 if (Align > 0)
1344 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1345 break;
1346 }
1347 case Instruction::GetElementPtr: {
1348 // Analyze all of the subscripts of this getelementptr instruction
1349 // to determine if we can prove known low zero bits.
1350 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1351 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
1352 Depth + 1, Q);
1353 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1354
1355 gep_type_iterator GTI = gep_type_begin(I);
1356 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1357 Value *Index = I->getOperand(i);
1358 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1359 // Handle struct member offset arithmetic.
1360
1361 // Handle case when index is vector zeroinitializer
1362 Constant *CIndex = cast<Constant>(Index);
1363 if (CIndex->isZeroValue())
1364 continue;
1365
1366 if (CIndex->getType()->isVectorTy())
1367 Index = CIndex->getSplatValue();
1368
1369 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1370 const StructLayout *SL = DL.getStructLayout(STy);
1371 uint64_t Offset = SL->getElementOffset(Idx);
1372 TrailZ = std::min<unsigned>(TrailZ,
1373 countTrailingZeros(Offset));
1374 } else {
1375 // Handle array index arithmetic.
1376 Type *IndexedTy = GTI.getIndexedType();
1377 if (!IndexedTy->isSized()) {
1378 TrailZ = 0;
1379 break;
1380 }
1381 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1382 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
1383 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1384 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
1385 Q);
1386 TrailZ = std::min(TrailZ,
1387 unsigned(countTrailingZeros(TypeSize) +
1388 LocalKnownZero.countTrailingOnes()));
1389 }
1390 }
1391
1392 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1393 break;
1394 }
1395 case Instruction::PHI: {
1396 PHINode *P = cast<PHINode>(I);
1397 // Handle the case of a simple two-predecessor recurrence PHI.
1398 // There's a lot more that could theoretically be done here, but
1399 // this is sufficient to catch some interesting cases.
1400 if (P->getNumIncomingValues() == 2) {
1401 for (unsigned i = 0; i != 2; ++i) {
1402 Value *L = P->getIncomingValue(i);
1403 Value *R = P->getIncomingValue(!i);
1404 Operator *LU = dyn_cast<Operator>(L);
1405 if (!LU)
1406 continue;
1407 unsigned Opcode = LU->getOpcode();
1408 // Check for operations that have the property that if
1409 // both their operands have low zero bits, the result
1410 // will have low zero bits.
1411 if (Opcode == Instruction::Add ||
1412 Opcode == Instruction::Sub ||
1413 Opcode == Instruction::And ||
1414 Opcode == Instruction::Or ||
1415 Opcode == Instruction::Mul) {
1416 Value *LL = LU->getOperand(0);
1417 Value *LR = LU->getOperand(1);
1418 // Find a recurrence.
1419 if (LL == I)
1420 L = LR;
1421 else if (LR == I)
1422 L = LL;
1423 else
1424 break;
1425 // Ok, we have a PHI of the form L op= R. Check for low
1426 // zero bits.
1427 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
1428
1429 // We need to take the minimum number of known bits
1430 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1431 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
1432
1433 KnownZero = APInt::getLowBitsSet(BitWidth,
1434 std::min(KnownZero2.countTrailingOnes(),
1435 KnownZero3.countTrailingOnes()));
1436 break;
1437 }
1438 }
1439 }
1440
1441 // Unreachable blocks may have zero-operand PHI nodes.
1442 if (P->getNumIncomingValues() == 0)
1443 break;
1444
1445 // Otherwise take the unions of the known bit sets of the operands,
1446 // taking conservative care to avoid excessive recursion.
1447 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1448 // Skip if every incoming value references to ourself.
1449 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1450 break;
1451
1452 KnownZero = APInt::getAllOnesValue(BitWidth);
1453 KnownOne = APInt::getAllOnesValue(BitWidth);
1454 for (Value *IncValue : P->incoming_values()) {
1455 // Skip direct self references.
1456 if (IncValue == P) continue;
1457
1458 KnownZero2 = APInt(BitWidth, 0);
1459 KnownOne2 = APInt(BitWidth, 0);
1460 // Recurse, but cap the recursion to one level, because we don't
1461 // want to waste time spinning around in loops.
1462 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
1463 MaxDepth - 1, Q);
1464 KnownZero &= KnownZero2;
1465 KnownOne &= KnownOne2;
1466 // If all bits have been ruled out, there's no need to check
1467 // more operands.
1468 if (!KnownZero && !KnownOne)
1469 break;
1470 }
1471 }
1472 break;
1473 }
1474 case Instruction::Call:
1475 case Instruction::Invoke:
1476 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1477 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1478 // If a range metadata is attached to this IntrinsicInst, intersect the
1479 // explicit range specified by the metadata and the implicit range of
1480 // the intrinsic.
1481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1482 switch (II->getIntrinsicID()) {
1483 default: break;
1484 case Intrinsic::bswap:
1485 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1486 Depth + 1, Q);
1487 KnownZero |= KnownZero2.byteSwap();
1488 KnownOne |= KnownOne2.byteSwap();
1489 break;
1490 case Intrinsic::ctlz:
1491 case Intrinsic::cttz: {
1492 unsigned LowBits = Log2_32(BitWidth)+1;
1493 // If this call is undefined for 0, the result will be less than 2^n.
1494 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1495 LowBits -= 1;
1496 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1497 break;
1498 }
1499 case Intrinsic::ctpop: {
1500 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
1501 Depth + 1, Q);
1502 // We can bound the space the count needs. Also, bits known to be zero
1503 // can't contribute to the population.
1504 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1505 unsigned LeadingZeros =
1506 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1507 assert(LeadingZeros <= BitWidth);
1508 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1509 KnownOne &= ~KnownZero;
1510 // TODO: we could bound KnownOne using the lower bound on the number
1511 // of bits which might be set provided by popcnt KnownOne2.
1512 break;
1513 }
1514 case Intrinsic::fabs: {
1515 Type *Ty = II->getType();
1516 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1517 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1518 break;
1519 }
1520 case Intrinsic::x86_sse42_crc32_64_64:
1521 KnownZero |= APInt::getHighBitsSet(64, 32);
1522 break;
1523 }
1524 }
1525 break;
1526 case Instruction::ExtractValue:
1527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1528 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1529 if (EVI->getNumIndices() != 1) break;
1530 if (EVI->getIndices()[0] == 0) {
1531 switch (II->getIntrinsicID()) {
1532 default: break;
1533 case Intrinsic::uadd_with_overflow:
1534 case Intrinsic::sadd_with_overflow:
1535 computeKnownBitsAddSub(true, II->getArgOperand(0),
1536 II->getArgOperand(1), false, KnownZero,
1537 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
1538 break;
1539 case Intrinsic::usub_with_overflow:
1540 case Intrinsic::ssub_with_overflow:
1541 computeKnownBitsAddSub(false, II->getArgOperand(0),
1542 II->getArgOperand(1), false, KnownZero,
1543 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
1544 break;
1545 case Intrinsic::umul_with_overflow:
1546 case Intrinsic::smul_with_overflow:
1547 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1548 KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
1549 Depth, Q);
1550 break;
1551 }
1552 }
1553 }
1554 }
1555 }
1556
getAlignment(const Value * V,const DataLayout & DL)1557 static unsigned getAlignment(const Value *V, const DataLayout &DL) {
1558 unsigned Align = 0;
1559 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1560 Align = GO->getAlignment();
1561 if (Align == 0) {
1562 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1563 Type *ObjectType = GVar->getType()->getElementType();
1564 if (ObjectType->isSized()) {
1565 // If the object is defined in the current Module, we'll be giving
1566 // it the preferred alignment. Otherwise, we have to assume that it
1567 // may only have the minimum ABI alignment.
1568 if (GVar->isStrongDefinitionForLinker())
1569 Align = DL.getPreferredAlignment(GVar);
1570 else
1571 Align = DL.getABITypeAlignment(ObjectType);
1572 }
1573 }
1574 }
1575 } else if (const Argument *A = dyn_cast<Argument>(V)) {
1576 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1577
1578 if (!Align && A->hasStructRetAttr()) {
1579 // An sret parameter has at least the ABI alignment of the return type.
1580 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1581 if (EltTy->isSized())
1582 Align = DL.getABITypeAlignment(EltTy);
1583 }
1584 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1585 Align = AI->getAlignment();
1586 else if (auto CS = ImmutableCallSite(V))
1587 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1588 else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1589 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1591 Align = CI->getLimitedValue();
1592 }
1593
1594 return Align;
1595 }
1596
1597 /// Determine which bits of V are known to be either zero or one and return
1598 /// them in the KnownZero/KnownOne bit sets.
1599 ///
1600 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1601 /// we cannot optimize based on the assumption that it is zero without changing
1602 /// it to be an explicit zero. If we don't change it to zero, other code could
1603 /// optimized based on the contradictory assumption that it is non-zero.
1604 /// Because instcombine aggressively folds operations with undef args anyway,
1605 /// this won't lose us code quality.
1606 ///
1607 /// This function is defined on values with integer type, values with pointer
1608 /// type, and vectors of integers. In the case
1609 /// where V is a vector, known zero, and known one values are the
1610 /// same width as the vector element, and the bit is set only if it is true
1611 /// for all of the elements in the vector.
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)1612 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1613 const DataLayout &DL, unsigned Depth, const Query &Q) {
1614 assert(V && "No Value?");
1615 assert(Depth <= MaxDepth && "Limit Search Depth");
1616 unsigned BitWidth = KnownZero.getBitWidth();
1617
1618 assert((V->getType()->isIntOrIntVectorTy() ||
1619 V->getType()->isFPOrFPVectorTy() ||
1620 V->getType()->getScalarType()->isPointerTy()) &&
1621 "Not integer, floating point, or pointer type!");
1622 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1623 (!V->getType()->isIntOrIntVectorTy() ||
1624 V->getType()->getScalarSizeInBits() == BitWidth) &&
1625 KnownZero.getBitWidth() == BitWidth &&
1626 KnownOne.getBitWidth() == BitWidth &&
1627 "V, KnownOne and KnownZero should have same BitWidth");
1628
1629 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1630 // We know all of the bits for a constant!
1631 KnownOne = CI->getValue();
1632 KnownZero = ~KnownOne;
1633 return;
1634 }
1635 // Null and aggregate-zero are all-zeros.
1636 if (isa<ConstantPointerNull>(V) ||
1637 isa<ConstantAggregateZero>(V)) {
1638 KnownOne.clearAllBits();
1639 KnownZero = APInt::getAllOnesValue(BitWidth);
1640 return;
1641 }
1642 // Handle a constant vector by taking the intersection of the known bits of
1643 // each element. There is no real need to handle ConstantVector here, because
1644 // we don't handle undef in any particularly useful way.
1645 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1646 // We know that CDS must be a vector of integers. Take the intersection of
1647 // each element.
1648 KnownZero.setAllBits(); KnownOne.setAllBits();
1649 APInt Elt(KnownZero.getBitWidth(), 0);
1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651 Elt = CDS->getElementAsInteger(i);
1652 KnownZero &= ~Elt;
1653 KnownOne &= Elt;
1654 }
1655 return;
1656 }
1657
1658 // Start out not knowing anything.
1659 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1660
1661 // Limit search depth.
1662 // All recursive calls that increase depth must come after this.
1663 if (Depth == MaxDepth)
1664 return;
1665
1666 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1667 // the bits of its aliasee.
1668 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1669 if (!GA->mayBeOverridden())
1670 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
1671 return;
1672 }
1673
1674 if (Operator *I = dyn_cast<Operator>(V))
1675 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
1676
1677 // Aligned pointers have trailing zeros - refine KnownZero set
1678 if (V->getType()->isPointerTy()) {
1679 unsigned Align = getAlignment(V, DL);
1680 if (Align)
1681 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1682 }
1683
1684 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1685 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1686 // computeKnownBitsFromOperator.
1687
1688 // Check whether a nearby assume intrinsic can determine some known bits.
1689 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
1690
1691 // Check whether there's a dominating condition which implies something about
1692 // this value at the given context.
1693 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1694 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
1695 Q);
1696
1697 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698 }
1699
1700 /// Determine whether the sign bit is known to be zero or one.
1701 /// Convenience wrapper around computeKnownBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout & DL,unsigned Depth,const Query & Q)1702 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1703 const DataLayout &DL, unsigned Depth, const Query &Q) {
1704 unsigned BitWidth = getBitWidth(V->getType(), DL);
1705 if (!BitWidth) {
1706 KnownZero = false;
1707 KnownOne = false;
1708 return;
1709 }
1710 APInt ZeroBits(BitWidth, 0);
1711 APInt OneBits(BitWidth, 0);
1712 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
1713 KnownOne = OneBits[BitWidth - 1];
1714 KnownZero = ZeroBits[BitWidth - 1];
1715 }
1716
1717 /// Return true if the given value is known to have exactly one
1718 /// bit set when defined. For vectors return true if every element is known to
1719 /// be a power of two when defined. Supports values with integer or pointer
1720 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(Value * V,bool OrZero,unsigned Depth,const Query & Q,const DataLayout & DL)1721 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1722 const Query &Q, const DataLayout &DL) {
1723 if (Constant *C = dyn_cast<Constant>(V)) {
1724 if (C->isNullValue())
1725 return OrZero;
1726 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1727 return CI->getValue().isPowerOf2();
1728 // TODO: Handle vector constants.
1729 }
1730
1731 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1732 // it is shifted off the end then the result is undefined.
1733 if (match(V, m_Shl(m_One(), m_Value())))
1734 return true;
1735
1736 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1737 // bottom. If it is shifted off the bottom then the result is undefined.
1738 if (match(V, m_LShr(m_SignBit(), m_Value())))
1739 return true;
1740
1741 // The remaining tests are all recursive, so bail out if we hit the limit.
1742 if (Depth++ == MaxDepth)
1743 return false;
1744
1745 Value *X = nullptr, *Y = nullptr;
1746 // A shift of a power of two is a power of two or zero.
1747 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1748 match(V, m_Shr(m_Value(X), m_Value()))))
1749 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
1750
1751 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1752 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
1753
1754 if (SelectInst *SI = dyn_cast<SelectInst>(V))
1755 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
1756 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
1757
1758 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1759 // A power of two and'd with anything is a power of two or zero.
1760 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
1761 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
1762 return true;
1763 // X & (-X) is always a power of two or zero.
1764 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1765 return true;
1766 return false;
1767 }
1768
1769 // Adding a power-of-two or zero to the same power-of-two or zero yields
1770 // either the original power-of-two, a larger power-of-two or zero.
1771 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1773 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1774 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1775 match(X, m_And(m_Value(), m_Specific(Y))))
1776 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
1777 return true;
1778 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1779 match(Y, m_And(m_Value(), m_Specific(X))))
1780 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
1781 return true;
1782
1783 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1784 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1785 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
1786
1787 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1788 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
1789 // If i8 V is a power of two or zero:
1790 // ZeroBits: 1 1 1 0 1 1 1 1
1791 // ~ZeroBits: 0 0 0 1 0 0 0 0
1792 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1793 // If OrZero isn't set, we cannot give back a zero result.
1794 // Make sure either the LHS or RHS has a bit set.
1795 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1796 return true;
1797 }
1798 }
1799
1800 // An exact divide or right shift can only shift off zero bits, so the result
1801 // is a power of two only if the first operand is a power of two and not
1802 // copying a sign bit (sdiv int_min, 2).
1803 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1804 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1805 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1806 Depth, Q, DL);
1807 }
1808
1809 return false;
1810 }
1811
1812 /// \brief Test whether a GEP's result is known to be non-null.
1813 ///
1814 /// Uses properties inherent in a GEP to try to determine whether it is known
1815 /// to be non-null.
1816 ///
1817 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(GEPOperator * GEP,const DataLayout & DL,unsigned Depth,const Query & Q)1818 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
1819 unsigned Depth, const Query &Q) {
1820 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1821 return false;
1822
1823 // FIXME: Support vector-GEPs.
1824 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1825
1826 // If the base pointer is non-null, we cannot walk to a null address with an
1827 // inbounds GEP in address space zero.
1828 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
1829 return true;
1830
1831 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1832 // If so, then the GEP cannot produce a null pointer, as doing so would
1833 // inherently violate the inbounds contract within address space zero.
1834 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1835 GTI != GTE; ++GTI) {
1836 // Struct types are easy -- they must always be indexed by a constant.
1837 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1838 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1839 unsigned ElementIdx = OpC->getZExtValue();
1840 const StructLayout *SL = DL.getStructLayout(STy);
1841 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1842 if (ElementOffset > 0)
1843 return true;
1844 continue;
1845 }
1846
1847 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1848 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1849 continue;
1850
1851 // Fast path the constant operand case both for efficiency and so we don't
1852 // increment Depth when just zipping down an all-constant GEP.
1853 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1854 if (!OpC->isZero())
1855 return true;
1856 continue;
1857 }
1858
1859 // We post-increment Depth here because while isKnownNonZero increments it
1860 // as well, when we pop back up that increment won't persist. We don't want
1861 // to recurse 10k times just because we have 10k GEP operands. We don't
1862 // bail completely out because we want to handle constant GEPs regardless
1863 // of depth.
1864 if (Depth++ >= MaxDepth)
1865 continue;
1866
1867 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
1868 return true;
1869 }
1870
1871 return false;
1872 }
1873
1874 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1875 /// ensure that the value it's attached to is never Value? 'RangeType' is
1876 /// is the type of the value described by the range.
rangeMetadataExcludesValue(MDNode * Ranges,const APInt & Value)1877 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1878 const APInt& Value) {
1879 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1880 assert(NumRanges >= 1);
1881 for (unsigned i = 0; i < NumRanges; ++i) {
1882 ConstantInt *Lower =
1883 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1884 ConstantInt *Upper =
1885 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1886 ConstantRange Range(Lower->getValue(), Upper->getValue());
1887 if (Range.contains(Value))
1888 return false;
1889 }
1890 return true;
1891 }
1892
1893 /// Return true if the given value is known to be non-zero when defined.
1894 /// For vectors return true if every element is known to be non-zero when
1895 /// defined. Supports values with integer or pointer type and vectors of
1896 /// integers.
isKnownNonZero(Value * V,const DataLayout & DL,unsigned Depth,const Query & Q)1897 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
1898 const Query &Q) {
1899 if (Constant *C = dyn_cast<Constant>(V)) {
1900 if (C->isNullValue())
1901 return false;
1902 if (isa<ConstantInt>(C))
1903 // Must be non-zero due to null test above.
1904 return true;
1905 // TODO: Handle vectors
1906 return false;
1907 }
1908
1909 if (Instruction* I = dyn_cast<Instruction>(V)) {
1910 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1911 // If the possible ranges don't contain zero, then the value is
1912 // definitely non-zero.
1913 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1914 const APInt ZeroValue(Ty->getBitWidth(), 0);
1915 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1916 return true;
1917 }
1918 }
1919 }
1920
1921 // The remaining tests are all recursive, so bail out if we hit the limit.
1922 if (Depth++ >= MaxDepth)
1923 return false;
1924
1925 // Check for pointer simplifications.
1926 if (V->getType()->isPointerTy()) {
1927 if (isKnownNonNull(V))
1928 return true;
1929 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1930 if (isGEPKnownNonNull(GEP, DL, Depth, Q))
1931 return true;
1932 }
1933
1934 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
1935
1936 // X | Y != 0 if X != 0 or Y != 0.
1937 Value *X = nullptr, *Y = nullptr;
1938 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1939 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
1940
1941 // ext X != 0 if X != 0.
1942 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1943 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
1944
1945 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
1946 // if the lowest bit is shifted off the end.
1947 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1948 // shl nuw can't remove any non-zero bits.
1949 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1950 if (BO->hasNoUnsignedWrap())
1951 return isKnownNonZero(X, DL, Depth, Q);
1952
1953 APInt KnownZero(BitWidth, 0);
1954 APInt KnownOne(BitWidth, 0);
1955 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1956 if (KnownOne[0])
1957 return true;
1958 }
1959 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
1960 // defined if the sign bit is shifted off the end.
1961 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1962 // shr exact can only shift out zero bits.
1963 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1964 if (BO->isExact())
1965 return isKnownNonZero(X, DL, Depth, Q);
1966
1967 bool XKnownNonNegative, XKnownNegative;
1968 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1969 if (XKnownNegative)
1970 return true;
1971
1972 // If the shifter operand is a constant, and all of the bits shifted
1973 // out are known to be zero, and X is known non-zero then at least one
1974 // non-zero bit must remain.
1975 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1976 APInt KnownZero(BitWidth, 0);
1977 APInt KnownOne(BitWidth, 0);
1978 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
1979
1980 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1981 // Is there a known one in the portion not shifted out?
1982 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1983 return true;
1984 // Are all the bits to be shifted out known zero?
1985 if (KnownZero.countTrailingOnes() >= ShiftVal)
1986 return isKnownNonZero(X, DL, Depth, Q);
1987 }
1988 }
1989 // div exact can only produce a zero if the dividend is zero.
1990 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1991 return isKnownNonZero(X, DL, Depth, Q);
1992 }
1993 // X + Y.
1994 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1995 bool XKnownNonNegative, XKnownNegative;
1996 bool YKnownNonNegative, YKnownNegative;
1997 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
1998 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
1999
2000 // If X and Y are both non-negative (as signed values) then their sum is not
2001 // zero unless both X and Y are zero.
2002 if (XKnownNonNegative && YKnownNonNegative)
2003 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
2004 return true;
2005
2006 // If X and Y are both negative (as signed values) then their sum is not
2007 // zero unless both X and Y equal INT_MIN.
2008 if (BitWidth && XKnownNegative && YKnownNegative) {
2009 APInt KnownZero(BitWidth, 0);
2010 APInt KnownOne(BitWidth, 0);
2011 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2012 // The sign bit of X is set. If some other bit is set then X is not equal
2013 // to INT_MIN.
2014 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
2015 if ((KnownOne & Mask) != 0)
2016 return true;
2017 // The sign bit of Y is set. If some other bit is set then Y is not equal
2018 // to INT_MIN.
2019 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
2020 if ((KnownOne & Mask) != 0)
2021 return true;
2022 }
2023
2024 // The sum of a non-negative number and a power of two is not zero.
2025 if (XKnownNonNegative &&
2026 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
2027 return true;
2028 if (YKnownNonNegative &&
2029 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
2030 return true;
2031 }
2032 // X * Y.
2033 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2034 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2035 // If X and Y are non-zero then so is X * Y as long as the multiplication
2036 // does not overflow.
2037 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
2038 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
2039 return true;
2040 }
2041 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2042 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2043 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
2044 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
2045 return true;
2046 }
2047 // PHI
2048 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2049 // Try and detect a recurrence that monotonically increases from a
2050 // starting value, as these are common as induction variables.
2051 if (PN->getNumIncomingValues() == 2) {
2052 Value *Start = PN->getIncomingValue(0);
2053 Value *Induction = PN->getIncomingValue(1);
2054 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2055 std::swap(Start, Induction);
2056 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2057 if (!C->isZero() && !C->isNegative()) {
2058 ConstantInt *X;
2059 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2060 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2061 !X->isNegative())
2062 return true;
2063 }
2064 }
2065 }
2066 }
2067
2068 if (!BitWidth) return false;
2069 APInt KnownZero(BitWidth, 0);
2070 APInt KnownOne(BitWidth, 0);
2071 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
2072 return KnownOne != 0;
2073 }
2074
2075 /// Return true if V2 == V1 + X, where X is known non-zero.
isAddOfNonZero(Value * V1,Value * V2,const DataLayout & DL,const Query & Q)2076 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
2077 const Query &Q) {
2078 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2079 if (!BO || BO->getOpcode() != Instruction::Add)
2080 return false;
2081 Value *Op = nullptr;
2082 if (V2 == BO->getOperand(0))
2083 Op = BO->getOperand(1);
2084 else if (V2 == BO->getOperand(1))
2085 Op = BO->getOperand(0);
2086 else
2087 return false;
2088 return isKnownNonZero(Op, DL, 0, Q);
2089 }
2090
2091 /// Return true if it is known that V1 != V2.
isKnownNonEqual(Value * V1,Value * V2,const DataLayout & DL,const Query & Q)2092 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
2093 const Query &Q) {
2094 if (V1->getType()->isVectorTy() || V1 == V2)
2095 return false;
2096 if (V1->getType() != V2->getType())
2097 // We can't look through casts yet.
2098 return false;
2099 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
2100 return true;
2101
2102 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2103 // Are any known bits in V1 contradictory to known bits in V2? If V1
2104 // has a known zero where V2 has a known one, they must not be equal.
2105 auto BitWidth = Ty->getBitWidth();
2106 APInt KnownZero1(BitWidth, 0);
2107 APInt KnownOne1(BitWidth, 0);
2108 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
2109 APInt KnownZero2(BitWidth, 0);
2110 APInt KnownOne2(BitWidth, 0);
2111 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
2112
2113 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2114 if (OppositeBits.getBoolValue())
2115 return true;
2116 }
2117 return false;
2118 }
2119
2120 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
2121 /// simplify operations downstream. Mask is known to be zero for bits that V
2122 /// cannot have.
2123 ///
2124 /// This function is defined on values with integer type, values with pointer
2125 /// type, and vectors of integers. In the case
2126 /// where V is a vector, the mask, known zero, and known one values are the
2127 /// same width as the vector element, and the bit is set only if it is true
2128 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,const Query & Q)2129 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
2130 unsigned Depth, const Query &Q) {
2131 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2132 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
2133 return (KnownZero & Mask) == Mask;
2134 }
2135
2136
2137
2138 /// Return the number of times the sign bit of the register is replicated into
2139 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2140 /// (itself), but other cases can give us information. For example, immediately
2141 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2142 /// other, so we return 3.
2143 ///
2144 /// 'Op' must have a scalar integer type.
2145 ///
ComputeNumSignBits(Value * V,const DataLayout & DL,unsigned Depth,const Query & Q)2146 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
2147 const Query &Q) {
2148 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
2149 unsigned Tmp, Tmp2;
2150 unsigned FirstAnswer = 1;
2151
2152 // Note that ConstantInt is handled by the general computeKnownBits case
2153 // below.
2154
2155 if (Depth == 6)
2156 return 1; // Limit search depth.
2157
2158 Operator *U = dyn_cast<Operator>(V);
2159 switch (Operator::getOpcode(V)) {
2160 default: break;
2161 case Instruction::SExt:
2162 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2163 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
2164
2165 case Instruction::SDiv: {
2166 const APInt *Denominator;
2167 // sdiv X, C -> adds log(C) sign bits.
2168 if (match(U->getOperand(1), m_APInt(Denominator))) {
2169
2170 // Ignore non-positive denominator.
2171 if (!Denominator->isStrictlyPositive())
2172 break;
2173
2174 // Calculate the incoming numerator bits.
2175 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2176
2177 // Add floor(log(C)) bits to the numerator bits.
2178 return std::min(TyBits, NumBits + Denominator->logBase2());
2179 }
2180 break;
2181 }
2182
2183 case Instruction::SRem: {
2184 const APInt *Denominator;
2185 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2186 // positive constant. This let us put a lower bound on the number of sign
2187 // bits.
2188 if (match(U->getOperand(1), m_APInt(Denominator))) {
2189
2190 // Ignore non-positive denominator.
2191 if (!Denominator->isStrictlyPositive())
2192 break;
2193
2194 // Calculate the incoming numerator bits. SRem by a positive constant
2195 // can't lower the number of sign bits.
2196 unsigned NumrBits =
2197 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2198
2199 // Calculate the leading sign bit constraints by examining the
2200 // denominator. Given that the denominator is positive, there are two
2201 // cases:
2202 //
2203 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2204 // (1 << ceilLogBase2(C)).
2205 //
2206 // 2. the numerator is negative. Then the result range is (-C,0] and
2207 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2208 //
2209 // Thus a lower bound on the number of sign bits is `TyBits -
2210 // ceilLogBase2(C)`.
2211
2212 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2213 return std::max(NumrBits, ResBits);
2214 }
2215 break;
2216 }
2217
2218 case Instruction::AShr: {
2219 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2220 // ashr X, C -> adds C sign bits. Vectors too.
2221 const APInt *ShAmt;
2222 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2223 Tmp += ShAmt->getZExtValue();
2224 if (Tmp > TyBits) Tmp = TyBits;
2225 }
2226 return Tmp;
2227 }
2228 case Instruction::Shl: {
2229 const APInt *ShAmt;
2230 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2231 // shl destroys sign bits.
2232 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2233 Tmp2 = ShAmt->getZExtValue();
2234 if (Tmp2 >= TyBits || // Bad shift.
2235 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2236 return Tmp - Tmp2;
2237 }
2238 break;
2239 }
2240 case Instruction::And:
2241 case Instruction::Or:
2242 case Instruction::Xor: // NOT is handled here.
2243 // Logical binary ops preserve the number of sign bits at the worst.
2244 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2245 if (Tmp != 1) {
2246 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
2247 FirstAnswer = std::min(Tmp, Tmp2);
2248 // We computed what we know about the sign bits as our first
2249 // answer. Now proceed to the generic code that uses
2250 // computeKnownBits, and pick whichever answer is better.
2251 }
2252 break;
2253
2254 case Instruction::Select:
2255 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
2256 if (Tmp == 1) return 1; // Early out.
2257 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
2258 return std::min(Tmp, Tmp2);
2259
2260 case Instruction::Add:
2261 // Add can have at most one carry bit. Thus we know that the output
2262 // is, at worst, one more bit than the inputs.
2263 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2264 if (Tmp == 1) return 1; // Early out.
2265
2266 // Special case decrementing a value (ADD X, -1):
2267 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2268 if (CRHS->isAllOnesValue()) {
2269 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2270 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
2271 Q);
2272
2273 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2274 // sign bits set.
2275 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2276 return TyBits;
2277
2278 // If we are subtracting one from a positive number, there is no carry
2279 // out of the result.
2280 if (KnownZero.isNegative())
2281 return Tmp;
2282 }
2283
2284 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
2285 if (Tmp2 == 1) return 1;
2286 return std::min(Tmp, Tmp2)-1;
2287
2288 case Instruction::Sub:
2289 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
2290 if (Tmp2 == 1) return 1;
2291
2292 // Handle NEG.
2293 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2294 if (CLHS->isNullValue()) {
2295 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2296 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
2297 Q);
2298 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2299 // sign bits set.
2300 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2301 return TyBits;
2302
2303 // If the input is known to be positive (the sign bit is known clear),
2304 // the output of the NEG has the same number of sign bits as the input.
2305 if (KnownZero.isNegative())
2306 return Tmp2;
2307
2308 // Otherwise, we treat this like a SUB.
2309 }
2310
2311 // Sub can have at most one carry bit. Thus we know that the output
2312 // is, at worst, one more bit than the inputs.
2313 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
2314 if (Tmp == 1) return 1; // Early out.
2315 return std::min(Tmp, Tmp2)-1;
2316
2317 case Instruction::PHI: {
2318 PHINode *PN = cast<PHINode>(U);
2319 unsigned NumIncomingValues = PN->getNumIncomingValues();
2320 // Don't analyze large in-degree PHIs.
2321 if (NumIncomingValues > 4) break;
2322 // Unreachable blocks may have zero-operand PHI nodes.
2323 if (NumIncomingValues == 0) break;
2324
2325 // Take the minimum of all incoming values. This can't infinitely loop
2326 // because of our depth threshold.
2327 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
2328 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2329 if (Tmp == 1) return Tmp;
2330 Tmp = std::min(
2331 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
2332 }
2333 return Tmp;
2334 }
2335
2336 case Instruction::Trunc:
2337 // FIXME: it's tricky to do anything useful for this, but it is an important
2338 // case for targets like X86.
2339 break;
2340 }
2341
2342 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2343 // use this information.
2344 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2345 APInt Mask;
2346 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
2347
2348 if (KnownZero.isNegative()) { // sign bit is 0
2349 Mask = KnownZero;
2350 } else if (KnownOne.isNegative()) { // sign bit is 1;
2351 Mask = KnownOne;
2352 } else {
2353 // Nothing known.
2354 return FirstAnswer;
2355 }
2356
2357 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2358 // the number of identical bits in the top of the input value.
2359 Mask = ~Mask;
2360 Mask <<= Mask.getBitWidth()-TyBits;
2361 // Return # leading zeros. We use 'min' here in case Val was zero before
2362 // shifting. We don't want to return '64' as for an i32 "0".
2363 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2364 }
2365
2366 /// This function computes the integer multiple of Base that equals V.
2367 /// If successful, it returns true and returns the multiple in
2368 /// Multiple. If unsuccessful, it returns false. It looks
2369 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)2370 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2371 bool LookThroughSExt, unsigned Depth) {
2372 const unsigned MaxDepth = 6;
2373
2374 assert(V && "No Value?");
2375 assert(Depth <= MaxDepth && "Limit Search Depth");
2376 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2377
2378 Type *T = V->getType();
2379
2380 ConstantInt *CI = dyn_cast<ConstantInt>(V);
2381
2382 if (Base == 0)
2383 return false;
2384
2385 if (Base == 1) {
2386 Multiple = V;
2387 return true;
2388 }
2389
2390 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2391 Constant *BaseVal = ConstantInt::get(T, Base);
2392 if (CO && CO == BaseVal) {
2393 // Multiple is 1.
2394 Multiple = ConstantInt::get(T, 1);
2395 return true;
2396 }
2397
2398 if (CI && CI->getZExtValue() % Base == 0) {
2399 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2400 return true;
2401 }
2402
2403 if (Depth == MaxDepth) return false; // Limit search depth.
2404
2405 Operator *I = dyn_cast<Operator>(V);
2406 if (!I) return false;
2407
2408 switch (I->getOpcode()) {
2409 default: break;
2410 case Instruction::SExt:
2411 if (!LookThroughSExt) return false;
2412 // otherwise fall through to ZExt
2413 case Instruction::ZExt:
2414 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2415 LookThroughSExt, Depth+1);
2416 case Instruction::Shl:
2417 case Instruction::Mul: {
2418 Value *Op0 = I->getOperand(0);
2419 Value *Op1 = I->getOperand(1);
2420
2421 if (I->getOpcode() == Instruction::Shl) {
2422 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2423 if (!Op1CI) return false;
2424 // Turn Op0 << Op1 into Op0 * 2^Op1
2425 APInt Op1Int = Op1CI->getValue();
2426 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2427 APInt API(Op1Int.getBitWidth(), 0);
2428 API.setBit(BitToSet);
2429 Op1 = ConstantInt::get(V->getContext(), API);
2430 }
2431
2432 Value *Mul0 = nullptr;
2433 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2434 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2435 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2436 if (Op1C->getType()->getPrimitiveSizeInBits() <
2437 MulC->getType()->getPrimitiveSizeInBits())
2438 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2439 if (Op1C->getType()->getPrimitiveSizeInBits() >
2440 MulC->getType()->getPrimitiveSizeInBits())
2441 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2442
2443 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2444 Multiple = ConstantExpr::getMul(MulC, Op1C);
2445 return true;
2446 }
2447
2448 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2449 if (Mul0CI->getValue() == 1) {
2450 // V == Base * Op1, so return Op1
2451 Multiple = Op1;
2452 return true;
2453 }
2454 }
2455
2456 Value *Mul1 = nullptr;
2457 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2458 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2459 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2460 if (Op0C->getType()->getPrimitiveSizeInBits() <
2461 MulC->getType()->getPrimitiveSizeInBits())
2462 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2463 if (Op0C->getType()->getPrimitiveSizeInBits() >
2464 MulC->getType()->getPrimitiveSizeInBits())
2465 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2466
2467 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2468 Multiple = ConstantExpr::getMul(MulC, Op0C);
2469 return true;
2470 }
2471
2472 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2473 if (Mul1CI->getValue() == 1) {
2474 // V == Base * Op0, so return Op0
2475 Multiple = Op0;
2476 return true;
2477 }
2478 }
2479 }
2480 }
2481
2482 // We could not determine if V is a multiple of Base.
2483 return false;
2484 }
2485
2486 /// Return true if we can prove that the specified FP value is never equal to
2487 /// -0.0.
2488 ///
2489 /// NOTE: this function will need to be revisited when we support non-default
2490 /// rounding modes!
2491 ///
CannotBeNegativeZero(const Value * V,unsigned Depth)2492 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2493 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2494 return !CFP->getValueAPF().isNegZero();
2495
2496 // FIXME: Magic number! At the least, this should be given a name because it's
2497 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2498 // expose it as a parameter, so it can be used for testing / experimenting.
2499 if (Depth == 6)
2500 return false; // Limit search depth.
2501
2502 const Operator *I = dyn_cast<Operator>(V);
2503 if (!I) return false;
2504
2505 // Check if the nsz fast-math flag is set
2506 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2507 if (FPO->hasNoSignedZeros())
2508 return true;
2509
2510 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2511 if (I->getOpcode() == Instruction::FAdd)
2512 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2513 if (CFP->isNullValue())
2514 return true;
2515
2516 // sitofp and uitofp turn into +0.0 for zero.
2517 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2518 return true;
2519
2520 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2521 // sqrt(-0.0) = -0.0, no other negative results are possible.
2522 if (II->getIntrinsicID() == Intrinsic::sqrt)
2523 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
2524
2525 if (const CallInst *CI = dyn_cast<CallInst>(I))
2526 if (const Function *F = CI->getCalledFunction()) {
2527 if (F->isDeclaration()) {
2528 // abs(x) != -0.0
2529 if (F->getName() == "abs") return true;
2530 // fabs[lf](x) != -0.0
2531 if (F->getName() == "fabs") return true;
2532 if (F->getName() == "fabsf") return true;
2533 if (F->getName() == "fabsl") return true;
2534 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2535 F->getName() == "sqrtl")
2536 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
2537 }
2538 }
2539
2540 return false;
2541 }
2542
CannotBeOrderedLessThanZero(const Value * V,unsigned Depth)2543 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2544 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2545 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2546
2547 // FIXME: Magic number! At the least, this should be given a name because it's
2548 // used similarly in CannotBeNegativeZero(). A better fix may be to
2549 // expose it as a parameter, so it can be used for testing / experimenting.
2550 if (Depth == 6)
2551 return false; // Limit search depth.
2552
2553 const Operator *I = dyn_cast<Operator>(V);
2554 if (!I) return false;
2555
2556 switch (I->getOpcode()) {
2557 default: break;
2558 case Instruction::FMul:
2559 // x*x is always non-negative or a NaN.
2560 if (I->getOperand(0) == I->getOperand(1))
2561 return true;
2562 // Fall through
2563 case Instruction::FAdd:
2564 case Instruction::FDiv:
2565 case Instruction::FRem:
2566 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2567 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2568 case Instruction::FPExt:
2569 case Instruction::FPTrunc:
2570 // Widening/narrowing never change sign.
2571 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2572 case Instruction::Call:
2573 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2574 switch (II->getIntrinsicID()) {
2575 default: break;
2576 case Intrinsic::exp:
2577 case Intrinsic::exp2:
2578 case Intrinsic::fabs:
2579 case Intrinsic::sqrt:
2580 return true;
2581 case Intrinsic::powi:
2582 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2583 // powi(x,n) is non-negative if n is even.
2584 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2585 return true;
2586 }
2587 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2588 case Intrinsic::fma:
2589 case Intrinsic::fmuladd:
2590 // x*x+y is non-negative if y is non-negative.
2591 return I->getOperand(0) == I->getOperand(1) &&
2592 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2593 }
2594 break;
2595 }
2596 return false;
2597 }
2598
2599 /// If the specified value can be set by repeating the same byte in memory,
2600 /// return the i8 value that it is represented with. This is
2601 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2602 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2603 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)2604 Value *llvm::isBytewiseValue(Value *V) {
2605 // All byte-wide stores are splatable, even of arbitrary variables.
2606 if (V->getType()->isIntegerTy(8)) return V;
2607
2608 // Handle 'null' ConstantArrayZero etc.
2609 if (Constant *C = dyn_cast<Constant>(V))
2610 if (C->isNullValue())
2611 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2612
2613 // Constant float and double values can be handled as integer values if the
2614 // corresponding integer value is "byteable". An important case is 0.0.
2615 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2616 if (CFP->getType()->isFloatTy())
2617 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2618 if (CFP->getType()->isDoubleTy())
2619 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2620 // Don't handle long double formats, which have strange constraints.
2621 }
2622
2623 // We can handle constant integers that are multiple of 8 bits.
2624 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2625 if (CI->getBitWidth() % 8 == 0) {
2626 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2627
2628 if (!CI->getValue().isSplat(8))
2629 return nullptr;
2630 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2631 }
2632 }
2633
2634 // A ConstantDataArray/Vector is splatable if all its members are equal and
2635 // also splatable.
2636 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2637 Value *Elt = CA->getElementAsConstant(0);
2638 Value *Val = isBytewiseValue(Elt);
2639 if (!Val)
2640 return nullptr;
2641
2642 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2643 if (CA->getElementAsConstant(I) != Elt)
2644 return nullptr;
2645
2646 return Val;
2647 }
2648
2649 // Conceptually, we could handle things like:
2650 // %a = zext i8 %X to i16
2651 // %b = shl i16 %a, 8
2652 // %c = or i16 %a, %b
2653 // but until there is an example that actually needs this, it doesn't seem
2654 // worth worrying about.
2655 return nullptr;
2656 }
2657
2658
2659 // This is the recursive version of BuildSubAggregate. It takes a few different
2660 // arguments. Idxs is the index within the nested struct From that we are
2661 // looking at now (which is of type IndexedType). IdxSkip is the number of
2662 // indices from Idxs that should be left out when inserting into the resulting
2663 // struct. To is the result struct built so far, new insertvalue instructions
2664 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)2665 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2666 SmallVectorImpl<unsigned> &Idxs,
2667 unsigned IdxSkip,
2668 Instruction *InsertBefore) {
2669 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2670 if (STy) {
2671 // Save the original To argument so we can modify it
2672 Value *OrigTo = To;
2673 // General case, the type indexed by Idxs is a struct
2674 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2675 // Process each struct element recursively
2676 Idxs.push_back(i);
2677 Value *PrevTo = To;
2678 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2679 InsertBefore);
2680 Idxs.pop_back();
2681 if (!To) {
2682 // Couldn't find any inserted value for this index? Cleanup
2683 while (PrevTo != OrigTo) {
2684 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2685 PrevTo = Del->getAggregateOperand();
2686 Del->eraseFromParent();
2687 }
2688 // Stop processing elements
2689 break;
2690 }
2691 }
2692 // If we successfully found a value for each of our subaggregates
2693 if (To)
2694 return To;
2695 }
2696 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2697 // the struct's elements had a value that was inserted directly. In the latter
2698 // case, perhaps we can't determine each of the subelements individually, but
2699 // we might be able to find the complete struct somewhere.
2700
2701 // Find the value that is at that particular spot
2702 Value *V = FindInsertedValue(From, Idxs);
2703
2704 if (!V)
2705 return nullptr;
2706
2707 // Insert the value in the new (sub) aggregrate
2708 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2709 "tmp", InsertBefore);
2710 }
2711
2712 // This helper takes a nested struct and extracts a part of it (which is again a
2713 // struct) into a new value. For example, given the struct:
2714 // { a, { b, { c, d }, e } }
2715 // and the indices "1, 1" this returns
2716 // { c, d }.
2717 //
2718 // It does this by inserting an insertvalue for each element in the resulting
2719 // struct, as opposed to just inserting a single struct. This will only work if
2720 // each of the elements of the substruct are known (ie, inserted into From by an
2721 // insertvalue instruction somewhere).
2722 //
2723 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)2724 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2725 Instruction *InsertBefore) {
2726 assert(InsertBefore && "Must have someplace to insert!");
2727 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2728 idx_range);
2729 Value *To = UndefValue::get(IndexedType);
2730 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2731 unsigned IdxSkip = Idxs.size();
2732
2733 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2734 }
2735
2736 /// Given an aggregrate and an sequence of indices, see if
2737 /// the scalar value indexed is already around as a register, for example if it
2738 /// were inserted directly into the aggregrate.
2739 ///
2740 /// If InsertBefore is not null, this function will duplicate (modified)
2741 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)2742 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2743 Instruction *InsertBefore) {
2744 // Nothing to index? Just return V then (this is useful at the end of our
2745 // recursion).
2746 if (idx_range.empty())
2747 return V;
2748 // We have indices, so V should have an indexable type.
2749 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2750 "Not looking at a struct or array?");
2751 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2752 "Invalid indices for type?");
2753
2754 if (Constant *C = dyn_cast<Constant>(V)) {
2755 C = C->getAggregateElement(idx_range[0]);
2756 if (!C) return nullptr;
2757 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2758 }
2759
2760 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2761 // Loop the indices for the insertvalue instruction in parallel with the
2762 // requested indices
2763 const unsigned *req_idx = idx_range.begin();
2764 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2765 i != e; ++i, ++req_idx) {
2766 if (req_idx == idx_range.end()) {
2767 // We can't handle this without inserting insertvalues
2768 if (!InsertBefore)
2769 return nullptr;
2770
2771 // The requested index identifies a part of a nested aggregate. Handle
2772 // this specially. For example,
2773 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2774 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2775 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2776 // This can be changed into
2777 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2778 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2779 // which allows the unused 0,0 element from the nested struct to be
2780 // removed.
2781 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2782 InsertBefore);
2783 }
2784
2785 // This insert value inserts something else than what we are looking for.
2786 // See if the (aggregate) value inserted into has the value we are
2787 // looking for, then.
2788 if (*req_idx != *i)
2789 return FindInsertedValue(I->getAggregateOperand(), idx_range,
2790 InsertBefore);
2791 }
2792 // If we end up here, the indices of the insertvalue match with those
2793 // requested (though possibly only partially). Now we recursively look at
2794 // the inserted value, passing any remaining indices.
2795 return FindInsertedValue(I->getInsertedValueOperand(),
2796 makeArrayRef(req_idx, idx_range.end()),
2797 InsertBefore);
2798 }
2799
2800 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2801 // If we're extracting a value from an aggregate that was extracted from
2802 // something else, we can extract from that something else directly instead.
2803 // However, we will need to chain I's indices with the requested indices.
2804
2805 // Calculate the number of indices required
2806 unsigned size = I->getNumIndices() + idx_range.size();
2807 // Allocate some space to put the new indices in
2808 SmallVector<unsigned, 5> Idxs;
2809 Idxs.reserve(size);
2810 // Add indices from the extract value instruction
2811 Idxs.append(I->idx_begin(), I->idx_end());
2812
2813 // Add requested indices
2814 Idxs.append(idx_range.begin(), idx_range.end());
2815
2816 assert(Idxs.size() == size
2817 && "Number of indices added not correct?");
2818
2819 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2820 }
2821 // Otherwise, we don't know (such as, extracting from a function return value
2822 // or load instruction)
2823 return nullptr;
2824 }
2825
2826 /// Analyze the specified pointer to see if it can be expressed as a base
2827 /// pointer plus a constant offset. Return the base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const DataLayout & DL)2828 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2829 const DataLayout &DL) {
2830 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2831 APInt ByteOffset(BitWidth, 0);
2832 while (1) {
2833 if (Ptr->getType()->isVectorTy())
2834 break;
2835
2836 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2837 APInt GEPOffset(BitWidth, 0);
2838 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2839 break;
2840
2841 ByteOffset += GEPOffset;
2842
2843 Ptr = GEP->getPointerOperand();
2844 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2845 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2846 Ptr = cast<Operator>(Ptr)->getOperand(0);
2847 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2848 if (GA->mayBeOverridden())
2849 break;
2850 Ptr = GA->getAliasee();
2851 } else {
2852 break;
2853 }
2854 }
2855 Offset = ByteOffset.getSExtValue();
2856 return Ptr;
2857 }
2858
2859
2860 /// This function computes the length of a null-terminated C string pointed to
2861 /// by V. If successful, it returns true and returns the string in Str.
2862 /// If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)2863 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2864 uint64_t Offset, bool TrimAtNul) {
2865 assert(V);
2866
2867 // Look through bitcast instructions and geps.
2868 V = V->stripPointerCasts();
2869
2870 // If the value is a GEP instruction or constant expression, treat it as an
2871 // offset.
2872 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2873 // Make sure the GEP has exactly three arguments.
2874 if (GEP->getNumOperands() != 3)
2875 return false;
2876
2877 // Make sure the index-ee is a pointer to array of i8.
2878 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
2879 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
2880 if (!AT || !AT->getElementType()->isIntegerTy(8))
2881 return false;
2882
2883 // Check to make sure that the first operand of the GEP is an integer and
2884 // has value 0 so that we are sure we're indexing into the initializer.
2885 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2886 if (!FirstIdx || !FirstIdx->isZero())
2887 return false;
2888
2889 // If the second index isn't a ConstantInt, then this is a variable index
2890 // into the array. If this occurs, we can't say anything meaningful about
2891 // the string.
2892 uint64_t StartIdx = 0;
2893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2894 StartIdx = CI->getZExtValue();
2895 else
2896 return false;
2897 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2898 TrimAtNul);
2899 }
2900
2901 // The GEP instruction, constant or instruction, must reference a global
2902 // variable that is a constant and is initialized. The referenced constant
2903 // initializer is the array that we'll use for optimization.
2904 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2905 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2906 return false;
2907
2908 // Handle the all-zeros case
2909 if (GV->getInitializer()->isNullValue()) {
2910 // This is a degenerate case. The initializer is constant zero so the
2911 // length of the string must be zero.
2912 Str = "";
2913 return true;
2914 }
2915
2916 // Must be a Constant Array
2917 const ConstantDataArray *Array =
2918 dyn_cast<ConstantDataArray>(GV->getInitializer());
2919 if (!Array || !Array->isString())
2920 return false;
2921
2922 // Get the number of elements in the array
2923 uint64_t NumElts = Array->getType()->getArrayNumElements();
2924
2925 // Start out with the entire array in the StringRef.
2926 Str = Array->getAsString();
2927
2928 if (Offset > NumElts)
2929 return false;
2930
2931 // Skip over 'offset' bytes.
2932 Str = Str.substr(Offset);
2933
2934 if (TrimAtNul) {
2935 // Trim off the \0 and anything after it. If the array is not nul
2936 // terminated, we just return the whole end of string. The client may know
2937 // some other way that the string is length-bound.
2938 Str = Str.substr(0, Str.find('\0'));
2939 }
2940 return true;
2941 }
2942
2943 // These next two are very similar to the above, but also look through PHI
2944 // nodes.
2945 // TODO: See if we can integrate these two together.
2946
2947 /// If we can compute the length of the string pointed to by
2948 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSetImpl<PHINode * > & PHIs)2949 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2950 // Look through noop bitcast instructions.
2951 V = V->stripPointerCasts();
2952
2953 // If this is a PHI node, there are two cases: either we have already seen it
2954 // or we haven't.
2955 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2956 if (!PHIs.insert(PN).second)
2957 return ~0ULL; // already in the set.
2958
2959 // If it was new, see if all the input strings are the same length.
2960 uint64_t LenSoFar = ~0ULL;
2961 for (Value *IncValue : PN->incoming_values()) {
2962 uint64_t Len = GetStringLengthH(IncValue, PHIs);
2963 if (Len == 0) return 0; // Unknown length -> unknown.
2964
2965 if (Len == ~0ULL) continue;
2966
2967 if (Len != LenSoFar && LenSoFar != ~0ULL)
2968 return 0; // Disagree -> unknown.
2969 LenSoFar = Len;
2970 }
2971
2972 // Success, all agree.
2973 return LenSoFar;
2974 }
2975
2976 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2977 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2978 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2979 if (Len1 == 0) return 0;
2980 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2981 if (Len2 == 0) return 0;
2982 if (Len1 == ~0ULL) return Len2;
2983 if (Len2 == ~0ULL) return Len1;
2984 if (Len1 != Len2) return 0;
2985 return Len1;
2986 }
2987
2988 // Otherwise, see if we can read the string.
2989 StringRef StrData;
2990 if (!getConstantStringInfo(V, StrData))
2991 return 0;
2992
2993 return StrData.size()+1;
2994 }
2995
2996 /// If we can compute the length of the string pointed to by
2997 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)2998 uint64_t llvm::GetStringLength(Value *V) {
2999 if (!V->getType()->isPointerTy()) return 0;
3000
3001 SmallPtrSet<PHINode*, 32> PHIs;
3002 uint64_t Len = GetStringLengthH(V, PHIs);
3003 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3004 // an empty string as a length.
3005 return Len == ~0ULL ? 1 : Len;
3006 }
3007
3008 /// \brief \p PN defines a loop-variant pointer to an object. Check if the
3009 /// previous iteration of the loop was referring to the same object as \p PN.
isSameUnderlyingObjectInLoop(PHINode * PN,LoopInfo * LI)3010 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3011 // Find the loop-defined value.
3012 Loop *L = LI->getLoopFor(PN->getParent());
3013 if (PN->getNumIncomingValues() != 2)
3014 return true;
3015
3016 // Find the value from previous iteration.
3017 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3018 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3019 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3020 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3021 return true;
3022
3023 // If a new pointer is loaded in the loop, the pointer references a different
3024 // object in every iteration. E.g.:
3025 // for (i)
3026 // int *p = a[i];
3027 // ...
3028 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3029 if (!L->isLoopInvariant(Load->getPointerOperand()))
3030 return false;
3031 return true;
3032 }
3033
GetUnderlyingObject(Value * V,const DataLayout & DL,unsigned MaxLookup)3034 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3035 unsigned MaxLookup) {
3036 if (!V->getType()->isPointerTy())
3037 return V;
3038 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3039 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3040 V = GEP->getPointerOperand();
3041 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3042 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3043 V = cast<Operator>(V)->getOperand(0);
3044 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3045 if (GA->mayBeOverridden())
3046 return V;
3047 V = GA->getAliasee();
3048 } else {
3049 // See if InstructionSimplify knows any relevant tricks.
3050 if (Instruction *I = dyn_cast<Instruction>(V))
3051 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3052 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3053 V = Simplified;
3054 continue;
3055 }
3056
3057 return V;
3058 }
3059 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3060 }
3061 return V;
3062 }
3063
GetUnderlyingObjects(Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout & DL,LoopInfo * LI,unsigned MaxLookup)3064 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3065 const DataLayout &DL, LoopInfo *LI,
3066 unsigned MaxLookup) {
3067 SmallPtrSet<Value *, 4> Visited;
3068 SmallVector<Value *, 4> Worklist;
3069 Worklist.push_back(V);
3070 do {
3071 Value *P = Worklist.pop_back_val();
3072 P = GetUnderlyingObject(P, DL, MaxLookup);
3073
3074 if (!Visited.insert(P).second)
3075 continue;
3076
3077 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3078 Worklist.push_back(SI->getTrueValue());
3079 Worklist.push_back(SI->getFalseValue());
3080 continue;
3081 }
3082
3083 if (PHINode *PN = dyn_cast<PHINode>(P)) {
3084 // If this PHI changes the underlying object in every iteration of the
3085 // loop, don't look through it. Consider:
3086 // int **A;
3087 // for (i) {
3088 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3089 // Curr = A[i];
3090 // *Prev, *Curr;
3091 //
3092 // Prev is tracking Curr one iteration behind so they refer to different
3093 // underlying objects.
3094 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3095 isSameUnderlyingObjectInLoop(PN, LI))
3096 for (Value *IncValue : PN->incoming_values())
3097 Worklist.push_back(IncValue);
3098 continue;
3099 }
3100
3101 Objects.push_back(P);
3102 } while (!Worklist.empty());
3103 }
3104
3105 /// Return true if the only users of this pointer are lifetime markers.
onlyUsedByLifetimeMarkers(const Value * V)3106 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3107 for (const User *U : V->users()) {
3108 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3109 if (!II) return false;
3110
3111 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3112 II->getIntrinsicID() != Intrinsic::lifetime_end)
3113 return false;
3114 }
3115 return true;
3116 }
3117
isDereferenceableFromAttribute(const Value * BV,APInt Offset,Type * Ty,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3118 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
3119 Type *Ty, const DataLayout &DL,
3120 const Instruction *CtxI,
3121 const DominatorTree *DT,
3122 const TargetLibraryInfo *TLI) {
3123 assert(Offset.isNonNegative() && "offset can't be negative");
3124 assert(Ty->isSized() && "must be sized");
3125
3126 APInt DerefBytes(Offset.getBitWidth(), 0);
3127 bool CheckForNonNull = false;
3128 if (const Argument *A = dyn_cast<Argument>(BV)) {
3129 DerefBytes = A->getDereferenceableBytes();
3130 if (!DerefBytes.getBoolValue()) {
3131 DerefBytes = A->getDereferenceableOrNullBytes();
3132 CheckForNonNull = true;
3133 }
3134 } else if (auto CS = ImmutableCallSite(BV)) {
3135 DerefBytes = CS.getDereferenceableBytes(0);
3136 if (!DerefBytes.getBoolValue()) {
3137 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3138 CheckForNonNull = true;
3139 }
3140 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3141 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3142 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3143 DerefBytes = CI->getLimitedValue();
3144 }
3145 if (!DerefBytes.getBoolValue()) {
3146 if (MDNode *MD =
3147 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3148 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3149 DerefBytes = CI->getLimitedValue();
3150 }
3151 CheckForNonNull = true;
3152 }
3153 }
3154
3155 if (DerefBytes.getBoolValue())
3156 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
3157 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3158 return true;
3159
3160 return false;
3161 }
3162
isDereferenceableFromAttribute(const Value * V,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3163 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3164 const Instruction *CtxI,
3165 const DominatorTree *DT,
3166 const TargetLibraryInfo *TLI) {
3167 Type *VTy = V->getType();
3168 Type *Ty = VTy->getPointerElementType();
3169 if (!Ty->isSized())
3170 return false;
3171
3172 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3173 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
3174 }
3175
isAligned(const Value * Base,APInt Offset,unsigned Align,const DataLayout & DL)3176 static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3177 const DataLayout &DL) {
3178 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
3179
3180 if (!BaseAlign) {
3181 Type *Ty = Base->getType()->getPointerElementType();
3182 if (!Ty->isSized())
3183 return false;
3184 BaseAlign = DL.getABITypeAlignment(Ty);
3185 }
3186
3187 APInt Alignment(Offset.getBitWidth(), Align);
3188
3189 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3190 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3191 }
3192
isAligned(const Value * Base,unsigned Align,const DataLayout & DL)3193 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3194 Type *Ty = Base->getType();
3195 assert(Ty->isSized() && "must be sized");
3196 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
3197 return isAligned(Base, Offset, Align, DL);
3198 }
3199
3200 /// Test if V is always a pointer to allocated and suitably aligned memory for
3201 /// a simple load or store.
isDereferenceableAndAlignedPointer(const Value * V,unsigned Align,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI,SmallPtrSetImpl<const Value * > & Visited)3202 static bool isDereferenceableAndAlignedPointer(
3203 const Value *V, unsigned Align, const DataLayout &DL,
3204 const Instruction *CtxI, const DominatorTree *DT,
3205 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
3206 // Note that it is not safe to speculate into a malloc'd region because
3207 // malloc may return null.
3208
3209 // These are obviously ok if aligned.
3210 if (isa<AllocaInst>(V))
3211 return isAligned(V, Align, DL);
3212
3213 // It's not always safe to follow a bitcast, for example:
3214 // bitcast i8* (alloca i8) to i32*
3215 // would result in a 4-byte load from a 1-byte alloca. However,
3216 // if we're casting from a pointer from a type of larger size
3217 // to a type of smaller size (or the same size), and the alignment
3218 // is at least as large as for the resulting pointer type, then
3219 // we can look through the bitcast.
3220 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3221 Type *STy = BC->getSrcTy()->getPointerElementType(),
3222 *DTy = BC->getDestTy()->getPointerElementType();
3223 if (STy->isSized() && DTy->isSized() &&
3224 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3225 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
3226 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3227 CtxI, DT, TLI, Visited);
3228 }
3229
3230 // Global variables which can't collapse to null are ok.
3231 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
3232 if (!GV->hasExternalWeakLinkage())
3233 return isAligned(V, Align, DL);
3234
3235 // byval arguments are okay.
3236 if (const Argument *A = dyn_cast<Argument>(V))
3237 if (A->hasByValAttr())
3238 return isAligned(V, Align, DL);
3239
3240 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
3241 return isAligned(V, Align, DL);
3242
3243 // For GEPs, determine if the indexing lands within the allocated object.
3244 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3245 Type *VTy = GEP->getType();
3246 Type *Ty = VTy->getPointerElementType();
3247 const Value *Base = GEP->getPointerOperand();
3248
3249 // Conservatively require that the base pointer be fully dereferenceable
3250 // and aligned.
3251 if (!Visited.insert(Base).second)
3252 return false;
3253 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3254 Visited))
3255 return false;
3256
3257 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
3258 if (!GEP->accumulateConstantOffset(DL, Offset))
3259 return false;
3260
3261 // Check if the load is within the bounds of the underlying object
3262 // and offset is aligned.
3263 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3264 Type *BaseType = Base->getType()->getPointerElementType();
3265 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3266 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3267 !(Offset & APInt(Offset.getBitWidth(), Align-1));
3268 }
3269
3270 // For gc.relocate, look through relocations
3271 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
3272 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
3273 GCRelocateOperands RelocateInst(I);
3274 return isDereferenceableAndAlignedPointer(
3275 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
3276 }
3277
3278 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
3279 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3280 CtxI, DT, TLI, Visited);
3281
3282 // If we don't know, assume the worst.
3283 return false;
3284 }
3285
isDereferenceableAndAlignedPointer(const Value * V,unsigned Align,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3286 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3287 const DataLayout &DL,
3288 const Instruction *CtxI,
3289 const DominatorTree *DT,
3290 const TargetLibraryInfo *TLI) {
3291 // When dereferenceability information is provided by a dereferenceable
3292 // attribute, we know exactly how many bytes are dereferenceable. If we can
3293 // determine the exact offset to the attributed variable, we can use that
3294 // information here.
3295 Type *VTy = V->getType();
3296 Type *Ty = VTy->getPointerElementType();
3297
3298 // Require ABI alignment for loads without alignment specification
3299 if (Align == 0)
3300 Align = DL.getABITypeAlignment(Ty);
3301
3302 if (Ty->isSized()) {
3303 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3304 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
3305
3306 if (Offset.isNonNegative())
3307 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3308 isAligned(BV, Offset, Align, DL))
3309 return true;
3310 }
3311
3312 SmallPtrSet<const Value *, 32> Visited;
3313 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3314 Visited);
3315 }
3316
isDereferenceablePointer(const Value * V,const DataLayout & DL,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3317 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3318 const Instruction *CtxI,
3319 const DominatorTree *DT,
3320 const TargetLibraryInfo *TLI) {
3321 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
3322 }
3323
isSafeToSpeculativelyExecute(const Value * V,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3324 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3325 const Instruction *CtxI,
3326 const DominatorTree *DT,
3327 const TargetLibraryInfo *TLI) {
3328 const Operator *Inst = dyn_cast<Operator>(V);
3329 if (!Inst)
3330 return false;
3331
3332 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3333 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3334 if (C->canTrap())
3335 return false;
3336
3337 switch (Inst->getOpcode()) {
3338 default:
3339 return true;
3340 case Instruction::UDiv:
3341 case Instruction::URem: {
3342 // x / y is undefined if y == 0.
3343 const APInt *V;
3344 if (match(Inst->getOperand(1), m_APInt(V)))
3345 return *V != 0;
3346 return false;
3347 }
3348 case Instruction::SDiv:
3349 case Instruction::SRem: {
3350 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3351 const APInt *Numerator, *Denominator;
3352 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3353 return false;
3354 // We cannot hoist this division if the denominator is 0.
3355 if (*Denominator == 0)
3356 return false;
3357 // It's safe to hoist if the denominator is not 0 or -1.
3358 if (*Denominator != -1)
3359 return true;
3360 // At this point we know that the denominator is -1. It is safe to hoist as
3361 // long we know that the numerator is not INT_MIN.
3362 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3363 return !Numerator->isMinSignedValue();
3364 // The numerator *might* be MinSignedValue.
3365 return false;
3366 }
3367 case Instruction::Load: {
3368 const LoadInst *LI = cast<LoadInst>(Inst);
3369 if (!LI->isUnordered() ||
3370 // Speculative load may create a race that did not exist in the source.
3371 LI->getParent()->getParent()->hasFnAttribute(
3372 Attribute::SanitizeThread) ||
3373 // Speculative load may load data from dirty regions.
3374 LI->getParent()->getParent()->hasFnAttribute(
3375 Attribute::SanitizeAddress))
3376 return false;
3377 const DataLayout &DL = LI->getModule()->getDataLayout();
3378 return isDereferenceableAndAlignedPointer(
3379 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3380 }
3381 case Instruction::Call: {
3382 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3383 switch (II->getIntrinsicID()) {
3384 // These synthetic intrinsics have no side-effects and just mark
3385 // information about their operands.
3386 // FIXME: There are other no-op synthetic instructions that potentially
3387 // should be considered at least *safe* to speculate...
3388 case Intrinsic::dbg_declare:
3389 case Intrinsic::dbg_value:
3390 return true;
3391
3392 case Intrinsic::bswap:
3393 case Intrinsic::ctlz:
3394 case Intrinsic::ctpop:
3395 case Intrinsic::cttz:
3396 case Intrinsic::objectsize:
3397 case Intrinsic::sadd_with_overflow:
3398 case Intrinsic::smul_with_overflow:
3399 case Intrinsic::ssub_with_overflow:
3400 case Intrinsic::uadd_with_overflow:
3401 case Intrinsic::umul_with_overflow:
3402 case Intrinsic::usub_with_overflow:
3403 return true;
3404 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3405 // errno like libm sqrt would.
3406 case Intrinsic::sqrt:
3407 case Intrinsic::fma:
3408 case Intrinsic::fmuladd:
3409 case Intrinsic::fabs:
3410 case Intrinsic::minnum:
3411 case Intrinsic::maxnum:
3412 return true;
3413 // TODO: some fp intrinsics are marked as having the same error handling
3414 // as libm. They're safe to speculate when they won't error.
3415 // TODO: are convert_{from,to}_fp16 safe?
3416 // TODO: can we list target-specific intrinsics here?
3417 default: break;
3418 }
3419 }
3420 return false; // The called function could have undefined behavior or
3421 // side-effects, even if marked readnone nounwind.
3422 }
3423 case Instruction::VAArg:
3424 case Instruction::Alloca:
3425 case Instruction::Invoke:
3426 case Instruction::PHI:
3427 case Instruction::Store:
3428 case Instruction::Ret:
3429 case Instruction::Br:
3430 case Instruction::IndirectBr:
3431 case Instruction::Switch:
3432 case Instruction::Unreachable:
3433 case Instruction::Fence:
3434 case Instruction::AtomicRMW:
3435 case Instruction::AtomicCmpXchg:
3436 case Instruction::LandingPad:
3437 case Instruction::Resume:
3438 case Instruction::CatchSwitch:
3439 case Instruction::CatchPad:
3440 case Instruction::CatchRet:
3441 case Instruction::CleanupPad:
3442 case Instruction::CleanupRet:
3443 return false; // Misc instructions which have effects
3444 }
3445 }
3446
mayBeMemoryDependent(const Instruction & I)3447 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3448 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3449 }
3450
3451 /// Return true if we know that the specified value is never null.
isKnownNonNull(const Value * V,const TargetLibraryInfo * TLI)3452 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3453 assert(V->getType()->isPointerTy() && "V must be pointer type");
3454
3455 // Alloca never returns null, malloc might.
3456 if (isa<AllocaInst>(V)) return true;
3457
3458 // A byval, inalloca, or nonnull argument is never null.
3459 if (const Argument *A = dyn_cast<Argument>(V))
3460 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3461
3462 // A global variable in address space 0 is non null unless extern weak.
3463 // Other address spaces may have null as a valid address for a global,
3464 // so we can't assume anything.
3465 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3466 return !GV->hasExternalWeakLinkage() &&
3467 GV->getType()->getAddressSpace() == 0;
3468
3469 // A Load tagged w/nonnull metadata is never null.
3470 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3471 return LI->getMetadata(LLVMContext::MD_nonnull);
3472
3473 if (auto CS = ImmutableCallSite(V))
3474 if (CS.isReturnNonNull())
3475 return true;
3476
3477 // operator new never returns null.
3478 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
3479 return true;
3480
3481 return false;
3482 }
3483
isKnownNonNullFromDominatingCondition(const Value * V,const Instruction * CtxI,const DominatorTree * DT)3484 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3485 const Instruction *CtxI,
3486 const DominatorTree *DT) {
3487 assert(V->getType()->isPointerTy() && "V must be pointer type");
3488
3489 unsigned NumUsesExplored = 0;
3490 for (auto U : V->users()) {
3491 // Avoid massive lists
3492 if (NumUsesExplored >= DomConditionsMaxUses)
3493 break;
3494 NumUsesExplored++;
3495 // Consider only compare instructions uniquely controlling a branch
3496 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3497 if (!Cmp)
3498 continue;
3499
3500 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3501 continue;
3502
3503 for (auto *CmpU : Cmp->users()) {
3504 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3505 if (!BI)
3506 continue;
3507
3508 assert(BI->isConditional() && "uses a comparison!");
3509
3510 BasicBlock *NonNullSuccessor = nullptr;
3511 CmpInst::Predicate Pred;
3512
3513 if (match(const_cast<ICmpInst*>(Cmp),
3514 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3515 if (Pred == ICmpInst::ICMP_EQ)
3516 NonNullSuccessor = BI->getSuccessor(1);
3517 else if (Pred == ICmpInst::ICMP_NE)
3518 NonNullSuccessor = BI->getSuccessor(0);
3519 }
3520
3521 if (NonNullSuccessor) {
3522 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3523 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3524 return true;
3525 }
3526 }
3527 }
3528
3529 return false;
3530 }
3531
isKnownNonNullAt(const Value * V,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)3532 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3533 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3534 if (isKnownNonNull(V, TLI))
3535 return true;
3536
3537 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3538 }
3539
computeOverflowForUnsignedMul(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3540 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3541 const DataLayout &DL,
3542 AssumptionCache *AC,
3543 const Instruction *CxtI,
3544 const DominatorTree *DT) {
3545 // Multiplying n * m significant bits yields a result of n + m significant
3546 // bits. If the total number of significant bits does not exceed the
3547 // result bit width (minus 1), there is no overflow.
3548 // This means if we have enough leading zero bits in the operands
3549 // we can guarantee that the result does not overflow.
3550 // Ref: "Hacker's Delight" by Henry Warren
3551 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3552 APInt LHSKnownZero(BitWidth, 0);
3553 APInt LHSKnownOne(BitWidth, 0);
3554 APInt RHSKnownZero(BitWidth, 0);
3555 APInt RHSKnownOne(BitWidth, 0);
3556 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3557 DT);
3558 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3559 DT);
3560 // Note that underestimating the number of zero bits gives a more
3561 // conservative answer.
3562 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3563 RHSKnownZero.countLeadingOnes();
3564 // First handle the easy case: if we have enough zero bits there's
3565 // definitely no overflow.
3566 if (ZeroBits >= BitWidth)
3567 return OverflowResult::NeverOverflows;
3568
3569 // Get the largest possible values for each operand.
3570 APInt LHSMax = ~LHSKnownZero;
3571 APInt RHSMax = ~RHSKnownZero;
3572
3573 // We know the multiply operation doesn't overflow if the maximum values for
3574 // each operand will not overflow after we multiply them together.
3575 bool MaxOverflow;
3576 LHSMax.umul_ov(RHSMax, MaxOverflow);
3577 if (!MaxOverflow)
3578 return OverflowResult::NeverOverflows;
3579
3580 // We know it always overflows if multiplying the smallest possible values for
3581 // the operands also results in overflow.
3582 bool MinOverflow;
3583 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3584 if (MinOverflow)
3585 return OverflowResult::AlwaysOverflows;
3586
3587 return OverflowResult::MayOverflow;
3588 }
3589
computeOverflowForUnsignedAdd(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3590 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3591 const DataLayout &DL,
3592 AssumptionCache *AC,
3593 const Instruction *CxtI,
3594 const DominatorTree *DT) {
3595 bool LHSKnownNonNegative, LHSKnownNegative;
3596 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3597 AC, CxtI, DT);
3598 if (LHSKnownNonNegative || LHSKnownNegative) {
3599 bool RHSKnownNonNegative, RHSKnownNegative;
3600 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3601 AC, CxtI, DT);
3602
3603 if (LHSKnownNegative && RHSKnownNegative) {
3604 // The sign bit is set in both cases: this MUST overflow.
3605 // Create a simple add instruction, and insert it into the struct.
3606 return OverflowResult::AlwaysOverflows;
3607 }
3608
3609 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3610 // The sign bit is clear in both cases: this CANNOT overflow.
3611 // Create a simple add instruction, and insert it into the struct.
3612 return OverflowResult::NeverOverflows;
3613 }
3614 }
3615
3616 return OverflowResult::MayOverflow;
3617 }
3618
computeOverflowForSignedAdd(Value * LHS,Value * RHS,AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3619 static OverflowResult computeOverflowForSignedAdd(
3620 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3621 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3622 if (Add && Add->hasNoSignedWrap()) {
3623 return OverflowResult::NeverOverflows;
3624 }
3625
3626 bool LHSKnownNonNegative, LHSKnownNegative;
3627 bool RHSKnownNonNegative, RHSKnownNegative;
3628 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3629 AC, CxtI, DT);
3630 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3631 AC, CxtI, DT);
3632
3633 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3634 (LHSKnownNegative && RHSKnownNonNegative)) {
3635 // The sign bits are opposite: this CANNOT overflow.
3636 return OverflowResult::NeverOverflows;
3637 }
3638
3639 // The remaining code needs Add to be available. Early returns if not so.
3640 if (!Add)
3641 return OverflowResult::MayOverflow;
3642
3643 // If the sign of Add is the same as at least one of the operands, this add
3644 // CANNOT overflow. This is particularly useful when the sum is
3645 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3646 // operands.
3647 bool LHSOrRHSKnownNonNegative =
3648 (LHSKnownNonNegative || RHSKnownNonNegative);
3649 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3650 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3651 bool AddKnownNonNegative, AddKnownNegative;
3652 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3653 /*Depth=*/0, AC, CxtI, DT);
3654 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3655 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3656 return OverflowResult::NeverOverflows;
3657 }
3658 }
3659
3660 return OverflowResult::MayOverflow;
3661 }
3662
computeOverflowForSignedAdd(AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3663 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3664 const DataLayout &DL,
3665 AssumptionCache *AC,
3666 const Instruction *CxtI,
3667 const DominatorTree *DT) {
3668 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3669 Add, DL, AC, CxtI, DT);
3670 }
3671
computeOverflowForSignedAdd(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3672 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3673 const DataLayout &DL,
3674 AssumptionCache *AC,
3675 const Instruction *CxtI,
3676 const DominatorTree *DT) {
3677 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3678 }
3679
isGuaranteedToTransferExecutionToSuccessor(const Instruction * I)3680 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3681 // FIXME: This conservative implementation can be relaxed. E.g. most
3682 // atomic operations are guaranteed to terminate on most platforms
3683 // and most functions terminate.
3684
3685 return !I->isAtomic() && // atomics may never succeed on some platforms
3686 !isa<CallInst>(I) && // could throw and might not terminate
3687 !isa<InvokeInst>(I) && // might not terminate and could throw to
3688 // non-successor (see bug 24185 for details).
3689 !isa<ResumeInst>(I) && // has no successors
3690 !isa<ReturnInst>(I); // has no successors
3691 }
3692
isGuaranteedToExecuteForEveryIteration(const Instruction * I,const Loop * L)3693 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3694 const Loop *L) {
3695 // The loop header is guaranteed to be executed for every iteration.
3696 //
3697 // FIXME: Relax this constraint to cover all basic blocks that are
3698 // guaranteed to be executed at every iteration.
3699 if (I->getParent() != L->getHeader()) return false;
3700
3701 for (const Instruction &LI : *L->getHeader()) {
3702 if (&LI == I) return true;
3703 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3704 }
3705 llvm_unreachable("Instruction not contained in its own parent basic block.");
3706 }
3707
propagatesFullPoison(const Instruction * I)3708 bool llvm::propagatesFullPoison(const Instruction *I) {
3709 switch (I->getOpcode()) {
3710 case Instruction::Add:
3711 case Instruction::Sub:
3712 case Instruction::Xor:
3713 case Instruction::Trunc:
3714 case Instruction::BitCast:
3715 case Instruction::AddrSpaceCast:
3716 // These operations all propagate poison unconditionally. Note that poison
3717 // is not any particular value, so xor or subtraction of poison with
3718 // itself still yields poison, not zero.
3719 return true;
3720
3721 case Instruction::AShr:
3722 case Instruction::SExt:
3723 // For these operations, one bit of the input is replicated across
3724 // multiple output bits. A replicated poison bit is still poison.
3725 return true;
3726
3727 case Instruction::Shl: {
3728 // Left shift *by* a poison value is poison. The number of
3729 // positions to shift is unsigned, so no negative values are
3730 // possible there. Left shift by zero places preserves poison. So
3731 // it only remains to consider left shift of poison by a positive
3732 // number of places.
3733 //
3734 // A left shift by a positive number of places leaves the lowest order bit
3735 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3736 // make the poison operand violate that flag, yielding a fresh full-poison
3737 // value.
3738 auto *OBO = cast<OverflowingBinaryOperator>(I);
3739 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3740 }
3741
3742 case Instruction::Mul: {
3743 // A multiplication by zero yields a non-poison zero result, so we need to
3744 // rule out zero as an operand. Conservatively, multiplication by a
3745 // non-zero constant is not multiplication by zero.
3746 //
3747 // Multiplication by a non-zero constant can leave some bits
3748 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3749 // order bit unpoisoned. So we need to consider that.
3750 //
3751 // Multiplication by 1 preserves poison. If the multiplication has a
3752 // no-wrap flag, then we can make the poison operand violate that flag
3753 // when multiplied by any integer other than 0 and 1.
3754 auto *OBO = cast<OverflowingBinaryOperator>(I);
3755 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3756 for (Value *V : OBO->operands()) {
3757 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3758 // A ConstantInt cannot yield poison, so we can assume that it is
3759 // the other operand that is poison.
3760 return !CI->isZero();
3761 }
3762 }
3763 }
3764 return false;
3765 }
3766
3767 case Instruction::GetElementPtr:
3768 // A GEP implicitly represents a sequence of additions, subtractions,
3769 // truncations, sign extensions and multiplications. The multiplications
3770 // are by the non-zero sizes of some set of types, so we do not have to be
3771 // concerned with multiplication by zero. If the GEP is in-bounds, then
3772 // these operations are implicitly no-signed-wrap so poison is propagated
3773 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3774 return cast<GEPOperator>(I)->isInBounds();
3775
3776 default:
3777 return false;
3778 }
3779 }
3780
getGuaranteedNonFullPoisonOp(const Instruction * I)3781 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3782 switch (I->getOpcode()) {
3783 case Instruction::Store:
3784 return cast<StoreInst>(I)->getPointerOperand();
3785
3786 case Instruction::Load:
3787 return cast<LoadInst>(I)->getPointerOperand();
3788
3789 case Instruction::AtomicCmpXchg:
3790 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3791
3792 case Instruction::AtomicRMW:
3793 return cast<AtomicRMWInst>(I)->getPointerOperand();
3794
3795 case Instruction::UDiv:
3796 case Instruction::SDiv:
3797 case Instruction::URem:
3798 case Instruction::SRem:
3799 return I->getOperand(1);
3800
3801 default:
3802 return nullptr;
3803 }
3804 }
3805
isKnownNotFullPoison(const Instruction * PoisonI)3806 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3807 // We currently only look for uses of poison values within the same basic
3808 // block, as that makes it easier to guarantee that the uses will be
3809 // executed given that PoisonI is executed.
3810 //
3811 // FIXME: Expand this to consider uses beyond the same basic block. To do
3812 // this, look out for the distinction between post-dominance and strong
3813 // post-dominance.
3814 const BasicBlock *BB = PoisonI->getParent();
3815
3816 // Set of instructions that we have proved will yield poison if PoisonI
3817 // does.
3818 SmallSet<const Value *, 16> YieldsPoison;
3819 YieldsPoison.insert(PoisonI);
3820
3821 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3822 I != E; ++I) {
3823 if (&*I != PoisonI) {
3824 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3825 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3826 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3827 return false;
3828 }
3829
3830 // Mark poison that propagates from I through uses of I.
3831 if (YieldsPoison.count(&*I)) {
3832 for (const User *User : I->users()) {
3833 const Instruction *UserI = cast<Instruction>(User);
3834 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3835 YieldsPoison.insert(User);
3836 }
3837 }
3838 }
3839 return false;
3840 }
3841
isKnownNonNaN(Value * V,FastMathFlags FMF)3842 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3843 if (FMF.noNaNs())
3844 return true;
3845
3846 if (auto *C = dyn_cast<ConstantFP>(V))
3847 return !C->isNaN();
3848 return false;
3849 }
3850
isKnownNonZero(Value * V)3851 static bool isKnownNonZero(Value *V) {
3852 if (auto *C = dyn_cast<ConstantFP>(V))
3853 return !C->isZero();
3854 return false;
3855 }
3856
matchSelectPattern(CmpInst::Predicate Pred,FastMathFlags FMF,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS)3857 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3858 FastMathFlags FMF,
3859 Value *CmpLHS, Value *CmpRHS,
3860 Value *TrueVal, Value *FalseVal,
3861 Value *&LHS, Value *&RHS) {
3862 LHS = CmpLHS;
3863 RHS = CmpRHS;
3864
3865 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3866 // return inconsistent results between implementations.
3867 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3868 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3869 // Therefore we behave conservatively and only proceed if at least one of the
3870 // operands is known to not be zero, or if we don't care about signed zeroes.
3871 switch (Pred) {
3872 default: break;
3873 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3874 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3875 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3876 !isKnownNonZero(CmpRHS))
3877 return {SPF_UNKNOWN, SPNB_NA, false};
3878 }
3879
3880 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3881 bool Ordered = false;
3882
3883 // When given one NaN and one non-NaN input:
3884 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3885 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3886 // ordered comparison fails), which could be NaN or non-NaN.
3887 // so here we discover exactly what NaN behavior is required/accepted.
3888 if (CmpInst::isFPPredicate(Pred)) {
3889 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3890 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3891
3892 if (LHSSafe && RHSSafe) {
3893 // Both operands are known non-NaN.
3894 NaNBehavior = SPNB_RETURNS_ANY;
3895 } else if (CmpInst::isOrdered(Pred)) {
3896 // An ordered comparison will return false when given a NaN, so it
3897 // returns the RHS.
3898 Ordered = true;
3899 if (LHSSafe)
3900 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3901 NaNBehavior = SPNB_RETURNS_NAN;
3902 else if (RHSSafe)
3903 NaNBehavior = SPNB_RETURNS_OTHER;
3904 else
3905 // Completely unsafe.
3906 return {SPF_UNKNOWN, SPNB_NA, false};
3907 } else {
3908 Ordered = false;
3909 // An unordered comparison will return true when given a NaN, so it
3910 // returns the LHS.
3911 if (LHSSafe)
3912 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3913 NaNBehavior = SPNB_RETURNS_OTHER;
3914 else if (RHSSafe)
3915 NaNBehavior = SPNB_RETURNS_NAN;
3916 else
3917 // Completely unsafe.
3918 return {SPF_UNKNOWN, SPNB_NA, false};
3919 }
3920 }
3921
3922 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3923 std::swap(CmpLHS, CmpRHS);
3924 Pred = CmpInst::getSwappedPredicate(Pred);
3925 if (NaNBehavior == SPNB_RETURNS_NAN)
3926 NaNBehavior = SPNB_RETURNS_OTHER;
3927 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3928 NaNBehavior = SPNB_RETURNS_NAN;
3929 Ordered = !Ordered;
3930 }
3931
3932 // ([if]cmp X, Y) ? X : Y
3933 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3934 switch (Pred) {
3935 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3936 case ICmpInst::ICMP_UGT:
3937 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3938 case ICmpInst::ICMP_SGT:
3939 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3940 case ICmpInst::ICMP_ULT:
3941 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3942 case ICmpInst::ICMP_SLT:
3943 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3944 case FCmpInst::FCMP_UGT:
3945 case FCmpInst::FCMP_UGE:
3946 case FCmpInst::FCMP_OGT:
3947 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3948 case FCmpInst::FCMP_ULT:
3949 case FCmpInst::FCMP_ULE:
3950 case FCmpInst::FCMP_OLT:
3951 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3952 }
3953 }
3954
3955 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3956 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3957 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3958
3959 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3960 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3961 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3962 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3963 }
3964
3965 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3966 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3967 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3968 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3969 }
3970 }
3971
3972 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3973 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3974 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3975 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3976 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3977 LHS = TrueVal;
3978 RHS = FalseVal;
3979 return {SPF_SMIN, SPNB_NA, false};
3980 }
3981 }
3982 }
3983
3984 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3985
3986 return {SPF_UNKNOWN, SPNB_NA, false};
3987 }
3988
lookThroughCast(CmpInst * CmpI,Value * V1,Value * V2,Instruction::CastOps * CastOp)3989 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3990 Instruction::CastOps *CastOp) {
3991 CastInst *CI = dyn_cast<CastInst>(V1);
3992 Constant *C = dyn_cast<Constant>(V2);
3993 CastInst *CI2 = dyn_cast<CastInst>(V2);
3994 if (!CI)
3995 return nullptr;
3996 *CastOp = CI->getOpcode();
3997
3998 if (CI2) {
3999 // If V1 and V2 are both the same cast from the same type, we can look
4000 // through V1.
4001 if (CI2->getOpcode() == CI->getOpcode() &&
4002 CI2->getSrcTy() == CI->getSrcTy())
4003 return CI2->getOperand(0);
4004 return nullptr;
4005 } else if (!C) {
4006 return nullptr;
4007 }
4008
4009 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4010 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4011 // This is only valid if the truncated value can be sign-extended
4012 // back to the original value.
4013 if (ConstantExpr::getSExt(T, C->getType()) == C)
4014 return T;
4015 return nullptr;
4016 }
4017 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4018 return ConstantExpr::getTrunc(C, CI->getSrcTy());
4019
4020 if (isa<TruncInst>(CI))
4021 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4022
4023 if (isa<FPToUIInst>(CI))
4024 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4025
4026 if (isa<FPToSIInst>(CI))
4027 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4028
4029 if (isa<UIToFPInst>(CI))
4030 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4031
4032 if (isa<SIToFPInst>(CI))
4033 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4034
4035 if (isa<FPTruncInst>(CI))
4036 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4037
4038 if (isa<FPExtInst>(CI))
4039 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4040
4041 return nullptr;
4042 }
4043
matchSelectPattern(Value * V,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp)4044 SelectPatternResult llvm::matchSelectPattern(Value *V,
4045 Value *&LHS, Value *&RHS,
4046 Instruction::CastOps *CastOp) {
4047 SelectInst *SI = dyn_cast<SelectInst>(V);
4048 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4049
4050 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4051 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4052
4053 CmpInst::Predicate Pred = CmpI->getPredicate();
4054 Value *CmpLHS = CmpI->getOperand(0);
4055 Value *CmpRHS = CmpI->getOperand(1);
4056 Value *TrueVal = SI->getTrueValue();
4057 Value *FalseVal = SI->getFalseValue();
4058 FastMathFlags FMF;
4059 if (isa<FPMathOperator>(CmpI))
4060 FMF = CmpI->getFastMathFlags();
4061
4062 // Bail out early.
4063 if (CmpI->isEquality())
4064 return {SPF_UNKNOWN, SPNB_NA, false};
4065
4066 // Deal with type mismatches.
4067 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4068 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4069 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4070 cast<CastInst>(TrueVal)->getOperand(0), C,
4071 LHS, RHS);
4072 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4073 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4074 C, cast<CastInst>(FalseVal)->getOperand(0),
4075 LHS, RHS);
4076 }
4077 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4078 LHS, RHS);
4079 }
4080
getConstantRangeFromMetadata(MDNode & Ranges)4081 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4082 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4083 assert(NumRanges >= 1 && "Must have at least one range!");
4084 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4085
4086 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4087 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4088
4089 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4090
4091 for (unsigned i = 1; i < NumRanges; ++i) {
4092 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4093 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4094
4095 // Note: unionWith will potentially create a range that contains values not
4096 // contained in any of the original N ranges.
4097 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4098 }
4099
4100 return CR;
4101 }
4102
4103 /// Return true if "icmp Pred LHS RHS" is always true.
isTruePredicate(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4104 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4105 const DataLayout &DL, unsigned Depth,
4106 AssumptionCache *AC, const Instruction *CxtI,
4107 const DominatorTree *DT) {
4108 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4109 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4110 return true;
4111
4112 switch (Pred) {
4113 default:
4114 return false;
4115
4116 case CmpInst::ICMP_SLE: {
4117 const APInt *C;
4118
4119 // LHS s<= LHS +_{nsw} C if C >= 0
4120 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4121 return !C->isNegative();
4122 return false;
4123 }
4124
4125 case CmpInst::ICMP_ULE: {
4126 const APInt *C;
4127
4128 // LHS u<= LHS +_{nuw} C for any C
4129 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4130 return true;
4131
4132 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4133 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4134 const APInt *&CA, const APInt *&CB) {
4135 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4136 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4137 return true;
4138
4139 // If X & C == 0 then (X | C) == X +_{nuw} C
4140 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4141 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4142 unsigned BitWidth = CA->getBitWidth();
4143 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4144 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4145
4146 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4147 return true;
4148 }
4149
4150 return false;
4151 };
4152
4153 Value *X;
4154 const APInt *CLHS, *CRHS;
4155 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4156 return CLHS->ule(*CRHS);
4157
4158 return false;
4159 }
4160 }
4161 }
4162
4163 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4164 /// ALHS ARHS" is true.
isImpliedCondOperands(CmpInst::Predicate Pred,Value * ALHS,Value * ARHS,Value * BLHS,Value * BRHS,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4165 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
4166 Value *ARHS, Value *BLHS, Value *BRHS,
4167 const DataLayout &DL, unsigned Depth,
4168 AssumptionCache *AC, const Instruction *CxtI,
4169 const DominatorTree *DT) {
4170 switch (Pred) {
4171 default:
4172 return false;
4173
4174 case CmpInst::ICMP_SLT:
4175 case CmpInst::ICMP_SLE:
4176 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4177 DT) &&
4178 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4179 DT);
4180
4181 case CmpInst::ICMP_ULT:
4182 case CmpInst::ICMP_ULE:
4183 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4184 DT) &&
4185 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4186 DT);
4187 }
4188 }
4189
isImpliedCondition(Value * LHS,Value * RHS,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4190 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4191 unsigned Depth, AssumptionCache *AC,
4192 const Instruction *CxtI,
4193 const DominatorTree *DT) {
4194 assert(LHS->getType() == RHS->getType() && "mismatched type");
4195 Type *OpTy = LHS->getType();
4196 assert(OpTy->getScalarType()->isIntegerTy(1));
4197
4198 // LHS ==> RHS by definition
4199 if (LHS == RHS) return true;
4200
4201 if (OpTy->isVectorTy())
4202 // TODO: extending the code below to handle vectors
4203 return false;
4204 assert(OpTy->isIntegerTy(1) && "implied by above");
4205
4206 ICmpInst::Predicate APred, BPred;
4207 Value *ALHS, *ARHS;
4208 Value *BLHS, *BRHS;
4209
4210 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4211 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4212 return false;
4213
4214 if (APred == BPred)
4215 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4216 CxtI, DT);
4217
4218 return false;
4219 }
4220