• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkReduceOrder.h"
8 
reduce(const SkDLine & line)9 int SkReduceOrder::reduce(const SkDLine& line) {
10     fLine[0] = line[0];
11     int different = line[0] != line[1];
12     fLine[1] = line[different];
13     return 1 + different;
14 }
15 
coincident_line(const SkDQuad & quad,SkDQuad & reduction)16 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
17     reduction[0] = reduction[1] = quad[0];
18     return 1;
19 }
20 
reductionLineCount(const SkDQuad & reduction)21 static int reductionLineCount(const SkDQuad& reduction) {
22     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
23 }
24 
vertical_line(const SkDQuad & quad,SkDQuad & reduction)25 static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) {
26     reduction[0] = quad[0];
27     reduction[1] = quad[2];
28     return reductionLineCount(reduction);
29 }
30 
horizontal_line(const SkDQuad & quad,SkDQuad & reduction)31 static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) {
32     reduction[0] = quad[0];
33     reduction[1] = quad[2];
34     return reductionLineCount(reduction);
35 }
36 
check_linear(const SkDQuad & quad,int minX,int maxX,int minY,int maxY,SkDQuad & reduction)37 static int check_linear(const SkDQuad& quad,
38         int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
39     if (!quad.isLinear(0, 2)) {
40         return 0;
41     }
42     // four are colinear: return line formed by outside
43     reduction[0] = quad[0];
44     reduction[1] = quad[2];
45     return reductionLineCount(reduction);
46 }
47 
48 // reduce to a quadratic or smaller
49 // look for identical points
50 // look for all four points in a line
51     // note that three points in a line doesn't simplify a cubic
52 // look for approximation with single quadratic
53     // save approximation with multiple quadratics for later
reduce(const SkDQuad & quad)54 int SkReduceOrder::reduce(const SkDQuad& quad) {
55     int index, minX, maxX, minY, maxY;
56     int minXSet, minYSet;
57     minX = maxX = minY = maxY = 0;
58     minXSet = minYSet = 0;
59     for (index = 1; index < 3; ++index) {
60         if (quad[minX].fX > quad[index].fX) {
61             minX = index;
62         }
63         if (quad[minY].fY > quad[index].fY) {
64             minY = index;
65         }
66         if (quad[maxX].fX < quad[index].fX) {
67             maxX = index;
68         }
69         if (quad[maxY].fY < quad[index].fY) {
70             maxY = index;
71         }
72     }
73     for (index = 0; index < 3; ++index) {
74         if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
75             minXSet |= 1 << index;
76         }
77         if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
78             minYSet |= 1 << index;
79         }
80     }
81     if (minXSet == 0x7) {  // test for vertical line
82         if (minYSet == 0x7) {  // return 1 if all three are coincident
83             return coincident_line(quad, fQuad);
84         }
85         return vertical_line(quad, fQuad);
86     }
87     if (minYSet == 0x7) {  // test for horizontal line
88         return horizontal_line(quad, fQuad);
89     }
90     int result = check_linear(quad, minX, maxX, minY, maxY, fQuad);
91     if (result) {
92         return result;
93     }
94     fQuad = quad;
95     return 3;
96 }
97 
98 ////////////////////////////////////////////////////////////////////////////////////
99 
coincident_line(const SkDCubic & cubic,SkDCubic & reduction)100 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
101     reduction[0] = reduction[1] = cubic[0];
102     return 1;
103 }
104 
reductionLineCount(const SkDCubic & reduction)105 static int reductionLineCount(const SkDCubic& reduction) {
106     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
107 }
108 
vertical_line(const SkDCubic & cubic,SkDCubic & reduction)109 static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) {
110     reduction[0] = cubic[0];
111     reduction[1] = cubic[3];
112     return reductionLineCount(reduction);
113 }
114 
horizontal_line(const SkDCubic & cubic,SkDCubic & reduction)115 static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) {
116     reduction[0] = cubic[0];
117     reduction[1] = cubic[3];
118     return reductionLineCount(reduction);
119 }
120 
121 // check to see if it is a quadratic or a line
check_quadratic(const SkDCubic & cubic,SkDCubic & reduction)122 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
123     double dx10 = cubic[1].fX - cubic[0].fX;
124     double dx23 = cubic[2].fX - cubic[3].fX;
125     double midX = cubic[0].fX + dx10 * 3 / 2;
126     double sideAx = midX - cubic[3].fX;
127     double sideBx = dx23 * 3 / 2;
128     if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
129             : !AlmostEqualUlps_Pin(sideAx, sideBx)) {
130         return 0;
131     }
132     double dy10 = cubic[1].fY - cubic[0].fY;
133     double dy23 = cubic[2].fY - cubic[3].fY;
134     double midY = cubic[0].fY + dy10 * 3 / 2;
135     double sideAy = midY - cubic[3].fY;
136     double sideBy = dy23 * 3 / 2;
137     if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
138             : !AlmostEqualUlps_Pin(sideAy, sideBy)) {
139         return 0;
140     }
141     reduction[0] = cubic[0];
142     reduction[1].fX = midX;
143     reduction[1].fY = midY;
144     reduction[2] = cubic[3];
145     return 3;
146 }
147 
check_linear(const SkDCubic & cubic,int minX,int maxX,int minY,int maxY,SkDCubic & reduction)148 static int check_linear(const SkDCubic& cubic,
149         int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
150     if (!cubic.isLinear(0, 3)) {
151         return 0;
152     }
153     // four are colinear: return line formed by outside
154     reduction[0] = cubic[0];
155     reduction[1] = cubic[3];
156     return reductionLineCount(reduction);
157 }
158 
159 /* food for thought:
160 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
161 
162 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
163 corresponding quadratic Bezier are (given in convex combinations of
164 points):
165 
166 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
167 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
168 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
169 
170 Of course, this curve does not interpolate the end-points, but it would
171 be interesting to see the behaviour of such a curve in an applet.
172 
173 --
174 Kalle Rutanen
175 http://kaba.hilvi.org
176 
177 */
178 
179 // reduce to a quadratic or smaller
180 // look for identical points
181 // look for all four points in a line
182     // note that three points in a line doesn't simplify a cubic
183 // look for approximation with single quadratic
184     // save approximation with multiple quadratics for later
reduce(const SkDCubic & cubic,Quadratics allowQuadratics)185 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
186     int index, minX, maxX, minY, maxY;
187     int minXSet, minYSet;
188     minX = maxX = minY = maxY = 0;
189     minXSet = minYSet = 0;
190     for (index = 1; index < 4; ++index) {
191         if (cubic[minX].fX > cubic[index].fX) {
192             minX = index;
193         }
194         if (cubic[minY].fY > cubic[index].fY) {
195             minY = index;
196         }
197         if (cubic[maxX].fX < cubic[index].fX) {
198             maxX = index;
199         }
200         if (cubic[maxY].fY < cubic[index].fY) {
201             maxY = index;
202         }
203     }
204     for (index = 0; index < 4; ++index) {
205         double cx = cubic[index].fX;
206         double cy = cubic[index].fY;
207         double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
208                 SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
209         if (denom == 0) {
210             minXSet |= 1 << index;
211             minYSet |= 1 << index;
212             continue;
213         }
214         double inv = 1 / denom;
215         if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
216             minXSet |= 1 << index;
217         }
218         if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
219             minYSet |= 1 << index;
220         }
221     }
222     if (minXSet == 0xF) {  // test for vertical line
223         if (minYSet == 0xF) {  // return 1 if all four are coincident
224             return coincident_line(cubic, fCubic);
225         }
226         return vertical_line(cubic, fCubic);
227     }
228     if (minYSet == 0xF) {  // test for horizontal line
229         return horizontal_line(cubic, fCubic);
230     }
231     int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
232     if (result) {
233         return result;
234     }
235     if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
236             && (result = check_quadratic(cubic, fCubic))) {
237         return result;
238     }
239     fCubic = cubic;
240     return 4;
241 }
242 
Quad(const SkPoint a[3],SkPoint * reducePts)243 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
244     SkDQuad quad;
245     quad.set(a);
246     SkReduceOrder reducer;
247     int order = reducer.reduce(quad);
248     if (order == 2) {  // quad became line
249         for (int index = 0; index < order; ++index) {
250             *reducePts++ = reducer.fLine[index].asSkPoint();
251         }
252     }
253     return SkPathOpsPointsToVerb(order - 1);
254 }
255 
Conic(const SkPoint a[3],SkScalar weight,SkPoint * reducePts)256 SkPath::Verb SkReduceOrder::Conic(const SkPoint a[3], SkScalar weight, SkPoint* reducePts) {
257     SkPath::Verb verb = SkReduceOrder::Quad(a, reducePts);
258     if (verb > SkPath::kLine_Verb && weight == 1) {
259         return SkPath::kQuad_Verb;
260     }
261     return verb == SkPath::kQuad_Verb ? SkPath::kConic_Verb : verb;
262 }
263 
Cubic(const SkPoint a[4],SkPoint * reducePts)264 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
265     if (SkDPoint::ApproximatelyEqual(a[0], a[1]) && SkDPoint::ApproximatelyEqual(a[0], a[2])
266             && SkDPoint::ApproximatelyEqual(a[0], a[3])) {
267         reducePts[0] = a[0];
268         return SkPath::kMove_Verb;
269     }
270     SkDCubic cubic;
271     cubic.set(a);
272     SkReduceOrder reducer;
273     int order = reducer.reduce(cubic, kAllow_Quadratics);
274     if (order == 2 || order == 3) {  // cubic became line or quad
275         for (int index = 0; index < order; ++index) {
276             *reducePts++ = reducer.fQuad[index].asSkPoint();
277         }
278     }
279     return SkPathOpsPointsToVerb(order - 1);
280 }
281