1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24
25 #include "art_method.h"
26 #include "base/macros.h"
27 #include "base/stl_util.h"
28 #include "base/scoped_flock.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "image-inl.h"
33 #include "image_space_fs.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/object-inl.h"
36 #include "oat_file.h"
37 #include "os.h"
38 #include "space-inl.h"
39 #include "utils.h"
40
41 namespace art {
42 namespace gc {
43 namespace space {
44
45 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
46
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)47 ImageSpace::ImageSpace(const std::string& image_filename,
48 const char* image_location,
49 MemMap* mem_map,
50 accounting::ContinuousSpaceBitmap* live_bitmap,
51 uint8_t* end)
52 : MemMapSpace(image_filename,
53 mem_map,
54 mem_map->Begin(),
55 end,
56 end,
57 kGcRetentionPolicyNeverCollect),
58 oat_file_non_owned_(nullptr),
59 image_location_(image_location) {
60 DCHECK(live_bitmap != nullptr);
61 live_bitmap_.reset(live_bitmap);
62 }
63
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)64 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
65 CHECK_ALIGNED(min_delta, kPageSize);
66 CHECK_ALIGNED(max_delta, kPageSize);
67 CHECK_LT(min_delta, max_delta);
68
69 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
70 if (r % 2 == 0) {
71 r = RoundUp(r, kPageSize);
72 } else {
73 r = RoundDown(r, kPageSize);
74 }
75 CHECK_LE(min_delta, r);
76 CHECK_GE(max_delta, r);
77 CHECK_ALIGNED(r, kPageSize);
78 return r;
79 }
80
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)81 static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
82 std::string* error_msg) {
83 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
84 std::vector<std::string> boot_class_path;
85 Split(boot_class_path_string, ':', &boot_class_path);
86 if (boot_class_path.empty()) {
87 *error_msg = "Failed to generate image because no boot class path specified";
88 return false;
89 }
90 // We should clean up so we are more likely to have room for the image.
91 if (Runtime::Current()->IsZygote()) {
92 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
93 PruneDalvikCache(image_isa);
94 }
95
96 std::vector<std::string> arg_vector;
97
98 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
99 arg_vector.push_back(dex2oat);
100
101 std::string image_option_string("--image=");
102 image_option_string += image_filename;
103 arg_vector.push_back(image_option_string);
104
105 for (size_t i = 0; i < boot_class_path.size(); i++) {
106 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
107 }
108
109 std::string oat_file_option_string("--oat-file=");
110 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
111 arg_vector.push_back(oat_file_option_string);
112
113 // Note: we do not generate a fully debuggable boot image so we do not pass the
114 // compiler flag --debuggable here.
115
116 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
117 CHECK_EQ(image_isa, kRuntimeISA)
118 << "We should always be generating an image for the current isa.";
119
120 int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
121 ART_BASE_ADDRESS_MAX_DELTA);
122 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
123 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
124 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
125
126 if (!kIsTargetBuild) {
127 arg_vector.push_back("--host");
128 }
129
130 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
131 for (size_t i = 0; i < compiler_options.size(); ++i) {
132 arg_vector.push_back(compiler_options[i].c_str());
133 }
134
135 std::string command_line(Join(arg_vector, ' '));
136 LOG(INFO) << "GenerateImage: " << command_line;
137 return Exec(arg_vector, error_msg);
138 }
139
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)140 bool ImageSpace::FindImageFilename(const char* image_location,
141 const InstructionSet image_isa,
142 std::string* system_filename,
143 bool* has_system,
144 std::string* cache_filename,
145 bool* dalvik_cache_exists,
146 bool* has_cache,
147 bool* is_global_cache) {
148 *has_system = false;
149 *has_cache = false;
150 // image_location = /system/framework/boot.art
151 // system_image_location = /system/framework/<image_isa>/boot.art
152 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
153 if (OS::FileExists(system_image_filename.c_str())) {
154 *system_filename = system_image_filename;
155 *has_system = true;
156 }
157
158 bool have_android_data = false;
159 *dalvik_cache_exists = false;
160 std::string dalvik_cache;
161 GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
162 &have_android_data, dalvik_cache_exists, is_global_cache);
163
164 if (have_android_data && *dalvik_cache_exists) {
165 // Always set output location even if it does not exist,
166 // so that the caller knows where to create the image.
167 //
168 // image_location = /system/framework/boot.art
169 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
170 std::string error_msg;
171 if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
172 LOG(WARNING) << error_msg;
173 return *has_system;
174 }
175 *has_cache = OS::FileExists(cache_filename->c_str());
176 }
177 return *has_system || *has_cache;
178 }
179
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)180 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
181 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
182 if (image_file.get() == nullptr) {
183 return false;
184 }
185 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
186 if (!success || !image_header->IsValid()) {
187 return false;
188 }
189 return true;
190 }
191
192 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)193 static bool RelocateImage(const char* image_location, const char* dest_filename,
194 InstructionSet isa, std::string* error_msg) {
195 // We should clean up so we are more likely to have room for the image.
196 if (Runtime::Current()->IsZygote()) {
197 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
198 PruneDalvikCache(isa);
199 }
200
201 std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
202
203 std::string input_image_location_arg("--input-image-location=");
204 input_image_location_arg += image_location;
205
206 std::string output_image_filename_arg("--output-image-file=");
207 output_image_filename_arg += dest_filename;
208
209 std::string instruction_set_arg("--instruction-set=");
210 instruction_set_arg += GetInstructionSetString(isa);
211
212 std::string base_offset_arg("--base-offset-delta=");
213 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
214 ART_BASE_ADDRESS_MAX_DELTA));
215
216 std::vector<std::string> argv;
217 argv.push_back(patchoat);
218
219 argv.push_back(input_image_location_arg);
220 argv.push_back(output_image_filename_arg);
221
222 argv.push_back(instruction_set_arg);
223 argv.push_back(base_offset_arg);
224
225 std::string command_line(Join(argv, ' '));
226 LOG(INFO) << "RelocateImage: " << command_line;
227 return Exec(argv, error_msg);
228 }
229
ReadSpecificImageHeader(const char * filename,std::string * error_msg)230 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
231 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
232 if (!ReadSpecificImageHeader(filename, hdr.get())) {
233 *error_msg = StringPrintf("Unable to read image header for %s", filename);
234 return nullptr;
235 }
236 return hdr.release();
237 }
238
ReadImageHeaderOrDie(const char * image_location,const InstructionSet image_isa)239 ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
240 const InstructionSet image_isa) {
241 std::string error_msg;
242 ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
243 if (image_header == nullptr) {
244 LOG(FATAL) << error_msg;
245 }
246 return image_header;
247 }
248
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)249 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
250 const InstructionSet image_isa,
251 std::string* error_msg) {
252 std::string system_filename;
253 bool has_system = false;
254 std::string cache_filename;
255 bool has_cache = false;
256 bool dalvik_cache_exists = false;
257 bool is_global_cache = false;
258 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
259 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
260 if (Runtime::Current()->ShouldRelocate()) {
261 if (has_system && has_cache) {
262 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
263 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
264 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
265 *error_msg = StringPrintf("Unable to read image header for %s at %s",
266 image_location, system_filename.c_str());
267 return nullptr;
268 }
269 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
270 *error_msg = StringPrintf("Unable to read image header for %s at %s",
271 image_location, cache_filename.c_str());
272 return nullptr;
273 }
274 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
275 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
276 image_location);
277 return nullptr;
278 }
279 return cache_hdr.release();
280 } else if (!has_cache) {
281 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
282 image_location);
283 return nullptr;
284 } else if (!has_system && has_cache) {
285 // This can probably just use the cache one.
286 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
287 }
288 } else {
289 // We don't want to relocate, Just pick the appropriate one if we have it and return.
290 if (has_system && has_cache) {
291 // We want the cache if the checksum matches, otherwise the system.
292 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
293 error_msg));
294 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
295 error_msg));
296 if (system.get() == nullptr ||
297 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
298 return cache.release();
299 } else {
300 return system.release();
301 }
302 } else if (has_system) {
303 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
304 } else if (has_cache) {
305 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
306 }
307 }
308 }
309
310 *error_msg = StringPrintf("Unable to find image file for %s", image_location);
311 return nullptr;
312 }
313
ChecksumsMatch(const char * image_a,const char * image_b)314 static bool ChecksumsMatch(const char* image_a, const char* image_b) {
315 ImageHeader hdr_a;
316 ImageHeader hdr_b;
317 return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
318 && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
319 }
320
ImageCreationAllowed(bool is_global_cache,std::string * error_msg)321 static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
322 // Anyone can write into a "local" cache.
323 if (!is_global_cache) {
324 return true;
325 }
326
327 // Only the zygote is allowed to create the global boot image.
328 if (Runtime::Current()->IsZygote()) {
329 return true;
330 }
331
332 *error_msg = "Only the zygote can create the global boot image.";
333 return false;
334 }
335
336 static constexpr uint64_t kLowSpaceValue = 50 * MB;
337 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
338
339 // Read the free space of the cache partition and make a decision whether to keep the generated
340 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)341 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
342 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
343 struct statvfs buf;
344
345 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
346 if (res != 0) {
347 // Could not stat. Conservatively tell the system to delete the image.
348 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
349 return false;
350 }
351
352 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
353 // Zygote is privileged, but other things are not. Use bavail.
354 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
355
356 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
357 // environment. We do not want to fail quickening the boot image there, as it is beneficial
358 // for time-to-UI.
359 if (fs_overall_size > kTmpFsSentinelValue) {
360 if (fs_free_size < kLowSpaceValue) {
361 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image"
362 " generation, need at least %" PRIu64 ".",
363 static_cast<double>(fs_free_size) / MB,
364 kLowSpaceValue / MB);
365 return false;
366 }
367 }
368 return true;
369 }
370
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)371 ImageSpace* ImageSpace::CreateBootImage(const char* image_location,
372 const InstructionSet image_isa,
373 bool secondary_image,
374 std::string* error_msg) {
375 ScopedTrace trace(__FUNCTION__);
376 std::string system_filename;
377 bool has_system = false;
378 std::string cache_filename;
379 bool has_cache = false;
380 bool dalvik_cache_exists = false;
381 bool is_global_cache = true;
382 bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
383 &has_system, &cache_filename, &dalvik_cache_exists,
384 &has_cache, &is_global_cache);
385
386 const bool is_zygote = Runtime::Current()->IsZygote();
387 if (is_zygote && !secondary_image) {
388 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
389 }
390
391 ImageSpace* space;
392 bool relocate = Runtime::Current()->ShouldRelocate();
393 bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
394 if (found_image) {
395 const std::string* image_filename;
396 bool is_system = false;
397 bool relocated_version_used = false;
398 if (relocate) {
399 if (!dalvik_cache_exists) {
400 *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
401 "any dalvik_cache to find/place it in.",
402 image_location, system_filename.c_str());
403 return nullptr;
404 }
405 if (has_system) {
406 if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
407 // We already have a relocated version
408 image_filename = &cache_filename;
409 relocated_version_used = true;
410 } else {
411 // We cannot have a relocated version, Relocate the system one and use it.
412
413 std::string reason;
414 bool success;
415
416 // Check whether we are allowed to relocate.
417 if (!can_compile) {
418 reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
419 success = false;
420 } else if (!ImageCreationAllowed(is_global_cache, &reason)) {
421 // Whether we can write to the cache.
422 success = false;
423 } else if (secondary_image) {
424 if (is_zygote) {
425 // Secondary image is out of date. Clear cache and exit to let it retry from scratch.
426 LOG(ERROR) << "Cannot patch secondary image '" << image_location
427 << "', clearing dalvik_cache and restarting zygote.";
428 PruneDalvikCache(image_isa);
429 _exit(1);
430 } else {
431 reason = "Should not have to patch secondary image.";
432 success = false;
433 }
434 } else {
435 // Try to relocate.
436 success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
437 }
438
439 if (success) {
440 relocated_version_used = true;
441 image_filename = &cache_filename;
442 } else {
443 *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
444 image_location, system_filename.c_str(),
445 cache_filename.c_str(), reason.c_str());
446 // We failed to create files, remove any possibly garbage output.
447 // Since ImageCreationAllowed was true above, we are the zygote
448 // and therefore the only process expected to generate these for
449 // the device.
450 PruneDalvikCache(image_isa);
451 return nullptr;
452 }
453 }
454 } else {
455 CHECK(has_cache);
456 // We can just use cache's since it should be fine. This might or might not be relocated.
457 image_filename = &cache_filename;
458 }
459 } else {
460 if (has_system && has_cache) {
461 // Check they have the same cksum. If they do use the cache. Otherwise system.
462 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
463 image_filename = &cache_filename;
464 relocated_version_used = true;
465 } else {
466 image_filename = &system_filename;
467 is_system = true;
468 }
469 } else if (has_system) {
470 image_filename = &system_filename;
471 is_system = true;
472 } else {
473 CHECK(has_cache);
474 image_filename = &cache_filename;
475 }
476 }
477 {
478 // Note that we must not use the file descriptor associated with
479 // ScopedFlock::GetFile to Init the image file. We want the file
480 // descriptor (and the associated exclusive lock) to be released when
481 // we leave Create.
482 ScopedFlock image_lock;
483 // Should this be a RDWR lock? This is only a defensive measure, as at
484 // this point the image should exist.
485 // However, only the zygote can write into the global dalvik-cache, so
486 // restrict to zygote processes, or any process that isn't using
487 // /data/dalvik-cache (which we assume to be allowed to write there).
488 const bool rw_lock = is_zygote || !is_global_cache;
489 image_lock.Init(image_filename->c_str(),
490 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
491 true /* block */,
492 error_msg);
493 VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
494 << image_location;
495 // If we are in /system we can assume the image is good. We can also
496 // assume this if we are using a relocated image (i.e. image checksum
497 // matches) since this is only different by the offset. We need this to
498 // make sure that host tests continue to work.
499 // Since we are the boot image, pass null since we load the oat file from the boot image oat
500 // file name.
501 space = ImageSpace::Init(image_filename->c_str(),
502 image_location,
503 !(is_system || relocated_version_used),
504 /* oat_file */nullptr,
505 error_msg);
506 }
507 if (space != nullptr) {
508 // Check whether there is enough space left over in the data partition. Even if we can load
509 // the image, we need to be conservative, as some parts of the platform are not very tolerant
510 // of space constraints.
511 // ImageSpace doesn't know about the data partition per se, it relies on the FindImageFilename
512 // helper (which relies on GetDalvikCache). So for now, if we load an image out of /system,
513 // ignore the check (as it would test for free space in /system instead).
514 if (!is_system && !CheckSpace(*image_filename, error_msg)) {
515 // No. Delete the generated image and try to run out of the dex files.
516 PruneDalvikCache(image_isa);
517 return nullptr;
518 }
519 return space;
520 }
521
522 if (relocated_version_used) {
523 // Something is wrong with the relocated copy (even though checksums match). Cleanup.
524 // This can happen if the .oat is corrupt, since the above only checks the .art checksums.
525 // TODO: Check the oat file validity earlier.
526 *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s "
527 "but image failed to load: %s",
528 image_location, cache_filename.c_str(), system_filename.c_str(),
529 error_msg->c_str());
530 PruneDalvikCache(image_isa);
531 return nullptr;
532 } else if (is_system) {
533 // If the /system file exists, it should be up-to-date, don't try to generate it.
534 *error_msg = StringPrintf("Failed to load /system image '%s': %s",
535 image_filename->c_str(), error_msg->c_str());
536 return nullptr;
537 } else {
538 // Otherwise, log a warning and fall through to GenerateImage.
539 LOG(WARNING) << *error_msg;
540 }
541 }
542
543 if (!can_compile) {
544 *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
545 return nullptr;
546 } else if (!dalvik_cache_exists) {
547 *error_msg = StringPrintf("No place to put generated image.");
548 return nullptr;
549 } else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
550 return nullptr;
551 } else if (secondary_image) {
552 *error_msg = "Cannot compile a secondary image.";
553 return nullptr;
554 } else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
555 *error_msg = StringPrintf("Failed to generate image '%s': %s",
556 cache_filename.c_str(), error_msg->c_str());
557 // We failed to create files, remove any possibly garbage output.
558 // Since ImageCreationAllowed was true above, we are the zygote
559 // and therefore the only process expected to generate these for
560 // the device.
561 PruneDalvikCache(image_isa);
562 return nullptr;
563 } else {
564 // Check whether there is enough space left over after we have generated the image.
565 if (!CheckSpace(cache_filename, error_msg)) {
566 // No. Delete the generated image and try to run out of the dex files.
567 PruneDalvikCache(image_isa);
568 return nullptr;
569 }
570
571 // Note that we must not use the file descriptor associated with
572 // ScopedFlock::GetFile to Init the image file. We want the file
573 // descriptor (and the associated exclusive lock) to be released when
574 // we leave Create.
575 ScopedFlock image_lock;
576 image_lock.Init(cache_filename.c_str(), error_msg);
577 space = ImageSpace::Init(cache_filename.c_str(), image_location, true, nullptr, error_msg);
578 if (space == nullptr) {
579 *error_msg = StringPrintf("Failed to load generated image '%s': %s",
580 cache_filename.c_str(), error_msg->c_str());
581 }
582 return space;
583 }
584 }
585
VerifyImageAllocations()586 void ImageSpace::VerifyImageAllocations() {
587 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
588 while (current < End()) {
589 CHECK_ALIGNED(current, kObjectAlignment);
590 auto* obj = reinterpret_cast<mirror::Object*>(current);
591 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
592 CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
593 if (kUseBakerOrBrooksReadBarrier) {
594 obj->AssertReadBarrierPointer();
595 }
596 current += RoundUp(obj->SizeOf(), kObjectAlignment);
597 }
598 }
599
600 // Helper class for relocating from one range of memory to another.
601 class RelocationRange {
602 public:
603 RelocationRange() = default;
604 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)605 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
606 : source_(source),
607 dest_(dest),
608 length_(length) {}
609
InSource(uintptr_t address) const610 bool InSource(uintptr_t address) const {
611 return address - source_ < length_;
612 }
613
InDest(uintptr_t address) const614 bool InDest(uintptr_t address) const {
615 return address - dest_ < length_;
616 }
617
618 // Translate a source address to the destination space.
ToDest(uintptr_t address) const619 uintptr_t ToDest(uintptr_t address) const {
620 DCHECK(InSource(address));
621 return address + Delta();
622 }
623
624 // Returns the delta between the dest from the source.
Delta() const625 uintptr_t Delta() const {
626 return dest_ - source_;
627 }
628
Source() const629 uintptr_t Source() const {
630 return source_;
631 }
632
Dest() const633 uintptr_t Dest() const {
634 return dest_;
635 }
636
Length() const637 uintptr_t Length() const {
638 return length_;
639 }
640
641 private:
642 const uintptr_t source_;
643 const uintptr_t dest_;
644 const uintptr_t length_;
645 };
646
operator <<(std::ostream & os,const RelocationRange & reloc)647 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
648 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
649 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
650 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
651 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
652 }
653
654 class FixupVisitor : public ValueObject {
655 public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)656 FixupVisitor(const RelocationRange& boot_image,
657 const RelocationRange& boot_oat,
658 const RelocationRange& app_image,
659 const RelocationRange& app_oat)
660 : boot_image_(boot_image),
661 boot_oat_(boot_oat),
662 app_image_(app_image),
663 app_oat_(app_oat) {}
664
665 // Return the relocated address of a heap object.
666 template <typename T>
ForwardObject(T * src) const667 ALWAYS_INLINE T* ForwardObject(T* src) const {
668 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
669 if (boot_image_.InSource(uint_src)) {
670 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
671 }
672 if (app_image_.InSource(uint_src)) {
673 return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
674 }
675 // Since we are fixing up the app image, there should only be pointers to the app image and
676 // boot image.
677 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
678 return src;
679 }
680
681 // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const682 ALWAYS_INLINE const void* ForwardCode(const void* src) const {
683 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
684 if (boot_oat_.InSource(uint_src)) {
685 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
686 }
687 if (app_oat_.InSource(uint_src)) {
688 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
689 }
690 DCHECK(src == nullptr) << src;
691 return src;
692 }
693
694 // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const695 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
696 return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
697 }
698
699 protected:
700 // Source section.
701 const RelocationRange boot_image_;
702 const RelocationRange boot_oat_;
703 const RelocationRange app_image_;
704 const RelocationRange app_oat_;
705 };
706
707 // Adapt for mirror::Class::FixupNativePointers.
708 class FixupObjectAdapter : public FixupVisitor {
709 public:
710 template<typename... Args>
FixupObjectAdapter(Args...args)711 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
712
713 template <typename T>
operator ()(T * obj) const714 T* operator()(T* obj) const {
715 return ForwardObject(obj);
716 }
717 };
718
719 class FixupRootVisitor : public FixupVisitor {
720 public:
721 template<typename... Args>
FixupRootVisitor(Args...args)722 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
723
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const724 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
725 SHARED_REQUIRES(Locks::mutator_lock_) {
726 if (!root->IsNull()) {
727 VisitRoot(root);
728 }
729 }
730
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const731 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
732 SHARED_REQUIRES(Locks::mutator_lock_) {
733 mirror::Object* ref = root->AsMirrorPtr();
734 mirror::Object* new_ref = ForwardObject(ref);
735 if (ref != new_ref) {
736 root->Assign(new_ref);
737 }
738 }
739 };
740
741 class FixupObjectVisitor : public FixupVisitor {
742 public:
743 template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const size_t pointer_size,Args...args)744 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
745 const size_t pointer_size,
746 Args... args)
747 : FixupVisitor(args...),
748 pointer_size_(pointer_size),
749 visited_(visited) {}
750
751 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const752 ALWAYS_INLINE void VisitRootIfNonNull(
753 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
754
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const755 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
756 const {}
757
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const758 ALWAYS_INLINE void operator()(mirror::Object* obj,
759 MemberOffset offset,
760 bool is_static ATTRIBUTE_UNUSED) const
761 NO_THREAD_SAFETY_ANALYSIS {
762 // There could be overlap between ranges, we must avoid visiting the same reference twice.
763 // Avoid the class field since we already fixed it up in FixupClassVisitor.
764 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
765 // Space is not yet added to the heap, don't do a read barrier.
766 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
767 offset);
768 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
769 // image.
770 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
771 }
772 }
773
774 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
775 // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
776 template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const777 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
778 NO_THREAD_SAFETY_ANALYSIS {
779 DCHECK(array != nullptr);
780 DCHECK(visitor.IsInAppImage(array));
781 // The bit for the array contents is different than the bit for the array. Since we may have
782 // already visited the array as a long / int array from walking the bitmap without knowing it
783 // was a pointer array.
784 static_assert(kObjectAlignment == 8u, "array bit may be in another object");
785 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
786 reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
787 // If the bit is not set then the contents have not yet been updated.
788 if (!visited_->Test(contents_bit)) {
789 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
790 visited_->Set(contents_bit);
791 }
792 }
793
794 // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const795 void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
796 SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
797 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
798 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
799 mirror::Reference::ReferentOffset(),
800 ForwardObject(obj));
801 }
802
operator ()(mirror::Object * obj) const803 void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
804 if (visited_->Test(obj)) {
805 // Already visited.
806 return;
807 }
808 visited_->Set(obj);
809
810 // Handle class specially first since we need it to be updated to properly visit the rest of
811 // the instance fields.
812 {
813 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
814 DCHECK(klass != nullptr) << "Null class in image";
815 // No AsClass since our fields aren't quite fixed up yet.
816 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
817 if (klass != new_klass) {
818 obj->SetClass<kVerifyNone>(new_klass);
819 }
820 if (new_klass != klass && IsInAppImage(new_klass)) {
821 // Make sure the klass contents are fixed up since we depend on it to walk the fields.
822 operator()(new_klass);
823 }
824 }
825
826 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
827 *this,
828 *this);
829 // Note that this code relies on no circular dependencies.
830 // We want to use our own class loader and not the one in the image.
831 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
832 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
833 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
834 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
835 pointer_size_,
836 visitor);
837 // Deal with the pointer arrays. Use the helper function since multiple classes can reference
838 // the same arrays.
839 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
840 if (vtable != nullptr && IsInAppImage(vtable)) {
841 operator()(vtable);
842 UpdatePointerArrayContents(vtable, visitor);
843 }
844 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
845 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
846 // contents.
847 if (iftable != nullptr && IsInAppImage(iftable)) {
848 operator()(iftable);
849 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
850 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
851 mirror::PointerArray* methods =
852 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
853 if (visitor.IsInAppImage(methods)) {
854 operator()(methods);
855 DCHECK(methods != nullptr);
856 UpdatePointerArrayContents(methods, visitor);
857 }
858 }
859 }
860 }
861 }
862 }
863
864 private:
865 const size_t pointer_size_;
866 gc::accounting::ContinuousSpaceBitmap* const visited_;
867 };
868
869 class ForwardObjectAdapter {
870 public:
ForwardObjectAdapter(const FixupVisitor * visitor)871 ALWAYS_INLINE ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
872
873 template <typename T>
operator ()(T * src) const874 ALWAYS_INLINE T* operator()(T* src) const {
875 return visitor_->ForwardObject(src);
876 }
877
878 private:
879 const FixupVisitor* const visitor_;
880 };
881
882 class ForwardCodeAdapter {
883 public:
ForwardCodeAdapter(const FixupVisitor * visitor)884 ALWAYS_INLINE ForwardCodeAdapter(const FixupVisitor* visitor)
885 : visitor_(visitor) {}
886
887 template <typename T>
operator ()(T * src) const888 ALWAYS_INLINE T* operator()(T* src) const {
889 return visitor_->ForwardCode(src);
890 }
891
892 private:
893 const FixupVisitor* const visitor_;
894 };
895
896 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
897 public:
898 template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,size_t pointer_size,Args...args)899 explicit FixupArtMethodVisitor(bool fixup_heap_objects, size_t pointer_size, Args... args)
900 : FixupVisitor(args...),
901 fixup_heap_objects_(fixup_heap_objects),
902 pointer_size_(pointer_size) {}
903
Visit(ArtMethod * method)904 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
905 // TODO: Separate visitor for runtime vs normal methods.
906 if (UNLIKELY(method->IsRuntimeMethod())) {
907 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
908 if (table != nullptr) {
909 ImtConflictTable* new_table = ForwardObject(table);
910 if (table != new_table) {
911 method->SetImtConflictTable(new_table, pointer_size_);
912 }
913 }
914 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
915 const void* new_code = ForwardCode(old_code);
916 if (old_code != new_code) {
917 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
918 }
919 } else {
920 if (fixup_heap_objects_) {
921 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
922 }
923 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
924 }
925 }
926
927 private:
928 const bool fixup_heap_objects_;
929 const size_t pointer_size_;
930 };
931
932 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
933 public:
934 template<typename... Args>
FixupArtFieldVisitor(Args...args)935 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
936
Visit(ArtField * field)937 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
938 field->UpdateObjects(ForwardObjectAdapter(this));
939 }
940 };
941
942 // Relocate an image space mapped at target_base which possibly used to be at a different base
943 // address. Only needs a single image space, not one for both source and destination.
944 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
945 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)946 static bool RelocateInPlace(ImageHeader& image_header,
947 uint8_t* target_base,
948 accounting::ContinuousSpaceBitmap* bitmap,
949 const OatFile* app_oat_file,
950 std::string* error_msg) {
951 DCHECK(error_msg != nullptr);
952 if (!image_header.IsPic()) {
953 if (image_header.GetImageBegin() == target_base) {
954 return true;
955 }
956 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
957 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
958 return false;
959 }
960 // Set up sections.
961 uint32_t boot_image_begin = 0;
962 uint32_t boot_image_end = 0;
963 uint32_t boot_oat_begin = 0;
964 uint32_t boot_oat_end = 0;
965 const size_t pointer_size = image_header.GetPointerSize();
966 gc::Heap* const heap = Runtime::Current()->GetHeap();
967 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
968 if (boot_image_begin == boot_image_end) {
969 *error_msg = "Can not relocate app image without boot image space";
970 return false;
971 }
972 if (boot_oat_begin == boot_oat_end) {
973 *error_msg = "Can not relocate app image without boot oat file";
974 return false;
975 }
976 const uint32_t boot_image_size = boot_image_end - boot_image_begin;
977 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
978 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
979 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
980 if (boot_image_size != image_header_boot_image_size) {
981 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
982 PRIu64,
983 static_cast<uint64_t>(boot_image_size),
984 static_cast<uint64_t>(image_header_boot_image_size));
985 return false;
986 }
987 if (boot_oat_size != image_header_boot_oat_size) {
988 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
989 PRIu64,
990 static_cast<uint64_t>(boot_oat_size),
991 static_cast<uint64_t>(image_header_boot_oat_size));
992 return false;
993 }
994 TimingLogger logger(__FUNCTION__, true, false);
995 RelocationRange boot_image(image_header.GetBootImageBegin(),
996 boot_image_begin,
997 boot_image_size);
998 RelocationRange boot_oat(image_header.GetBootOatBegin(),
999 boot_oat_begin,
1000 boot_oat_size);
1001 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1002 reinterpret_cast<uintptr_t>(target_base),
1003 image_header.GetImageSize());
1004 // Use the oat data section since this is where the OatFile::Begin is.
1005 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1006 // Not necessarily in low 4GB.
1007 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1008 image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1009 VLOG(image) << "App image " << app_image;
1010 VLOG(image) << "App oat " << app_oat;
1011 VLOG(image) << "Boot image " << boot_image;
1012 VLOG(image) << "Boot oat " << boot_oat;
1013 // True if we need to fixup any heap pointers, otherwise only code pointers.
1014 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1015 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1016 if (!fixup_image && !fixup_code) {
1017 // Nothing to fix up.
1018 return true;
1019 }
1020 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1021 // Need to update the image to be at the target base.
1022 const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1023 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1024 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1025 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1026 if (fixup_image) {
1027 // Two pass approach, fix up all classes first, then fix up non class-objects.
1028 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1029 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1030 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1031 target_base,
1032 image_header.GetImageSize()));
1033 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1034 pointer_size,
1035 boot_image,
1036 boot_oat,
1037 app_image,
1038 app_oat);
1039 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1040 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1041 // its probably not required.
1042 ScopedObjectAccess soa(Thread::Current());
1043 timing.NewTiming("Fixup objects");
1044 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1045 // Fixup image roots.
1046 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1047 image_header.GetImageRoots<kWithoutReadBarrier>())));
1048 image_header.RelocateImageObjects(app_image.Delta());
1049 CHECK_EQ(image_header.GetImageBegin(), target_base);
1050 // Fix up dex cache DexFile pointers.
1051 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1052 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1053 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1054 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1055 // Fix up dex cache pointers.
1056 GcRoot<mirror::String>* strings = dex_cache->GetStrings();
1057 if (strings != nullptr) {
1058 GcRoot<mirror::String>* new_strings = fixup_adapter.ForwardObject(strings);
1059 if (strings != new_strings) {
1060 dex_cache->SetStrings(new_strings);
1061 }
1062 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1063 }
1064 GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
1065 if (types != nullptr) {
1066 GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
1067 if (types != new_types) {
1068 dex_cache->SetResolvedTypes(new_types);
1069 }
1070 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1071 }
1072 ArtMethod** methods = dex_cache->GetResolvedMethods();
1073 if (methods != nullptr) {
1074 ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
1075 if (methods != new_methods) {
1076 dex_cache->SetResolvedMethods(new_methods);
1077 }
1078 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1079 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
1080 ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1081 if (orig != copy) {
1082 mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
1083 }
1084 }
1085 }
1086 ArtField** fields = dex_cache->GetResolvedFields();
1087 if (fields != nullptr) {
1088 ArtField** new_fields = fixup_adapter.ForwardObject(fields);
1089 if (fields != new_fields) {
1090 dex_cache->SetResolvedFields(new_fields);
1091 }
1092 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1093 ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
1094 ArtField* copy = fixup_adapter.ForwardObject(orig);
1095 if (orig != copy) {
1096 mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
1097 }
1098 }
1099 }
1100 }
1101 }
1102 {
1103 // Only touches objects in the app image, no need for mutator lock.
1104 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1105 FixupArtMethodVisitor method_visitor(fixup_image,
1106 pointer_size,
1107 boot_image,
1108 boot_oat,
1109 app_image,
1110 app_oat);
1111 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1112 }
1113 if (fixup_image) {
1114 {
1115 // Only touches objects in the app image, no need for mutator lock.
1116 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1117 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1118 image_header.VisitPackedArtFields(&field_visitor, target_base);
1119 }
1120 {
1121 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1122 image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
1123 }
1124 {
1125 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1126 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1127 }
1128 // In the app image case, the image methods are actually in the boot image.
1129 image_header.RelocateImageMethods(boot_image.Delta());
1130 const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1131 if (class_table_section.Size() > 0u) {
1132 // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1133 // This also relies on visit roots not doing any verification which could fail after we update
1134 // the roots to be the image addresses.
1135 ScopedObjectAccess soa(Thread::Current());
1136 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1137 ClassTable temp_table;
1138 temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1139 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1140 temp_table.VisitRoots(root_visitor);
1141 }
1142 }
1143 if (VLOG_IS_ON(image)) {
1144 logger.Dump(LOG(INFO));
1145 }
1146 return true;
1147 }
1148
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)1149 ImageSpace* ImageSpace::Init(const char* image_filename,
1150 const char* image_location,
1151 bool validate_oat_file,
1152 const OatFile* oat_file,
1153 std::string* error_msg) {
1154 CHECK(image_filename != nullptr);
1155 CHECK(image_location != nullptr);
1156
1157 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
1158 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
1159
1160 std::unique_ptr<File> file;
1161 {
1162 TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
1163 file.reset(OS::OpenFileForReading(image_filename));
1164 if (file == nullptr) {
1165 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
1166 return nullptr;
1167 }
1168 }
1169 ImageHeader temp_image_header;
1170 ImageHeader* image_header = &temp_image_header;
1171 {
1172 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
1173 bool success = file->ReadFully(image_header, sizeof(*image_header));
1174 if (!success || !image_header->IsValid()) {
1175 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
1176 return nullptr;
1177 }
1178 }
1179 // Check that the file is larger or equal to the header size + data size.
1180 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
1181 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
1182 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
1183 image_file_size,
1184 sizeof(ImageHeader) + image_header->GetDataSize());
1185 return nullptr;
1186 }
1187
1188 if (oat_file != nullptr) {
1189 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
1190 // app image case. Otherwise, we open the oat file after the image and check the checksum there.
1191 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1192 const uint32_t image_oat_checksum = image_header->GetOatChecksum();
1193 if (oat_checksum != image_oat_checksum) {
1194 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
1195 oat_checksum,
1196 image_oat_checksum,
1197 image_filename);
1198 return nullptr;
1199 }
1200 }
1201
1202 if (VLOG_IS_ON(startup)) {
1203 LOG(INFO) << "Dumping image sections";
1204 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1205 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
1206 auto& section = image_header->GetImageSection(section_idx);
1207 LOG(INFO) << section_idx << " start="
1208 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
1209 << section;
1210 }
1211 }
1212
1213 const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
1214 // The location we want to map from is the first aligned page after the end of the stored
1215 // (possibly compressed) data.
1216 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
1217 kPageSize);
1218 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
1219 if (end_of_bitmap != image_file_size) {
1220 *error_msg = StringPrintf(
1221 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
1222 end_of_bitmap);
1223 return nullptr;
1224 }
1225
1226 // The preferred address to map the image, null specifies any address. If we manage to map the
1227 // image at the image begin, the amount of fixup work required is minimized.
1228 std::vector<uint8_t*> addresses(1, image_header->GetImageBegin());
1229 if (image_header->IsPic()) {
1230 // Can also map at a random low_4gb address since we can relocate in-place.
1231 addresses.push_back(nullptr);
1232 }
1233
1234 // Note: The image header is part of the image due to mmap page alignment required of offset.
1235 std::unique_ptr<MemMap> map;
1236 std::string temp_error_msg;
1237 for (uint8_t* address : addresses) {
1238 TimingLogger::ScopedTiming timing("MapImageFile", &logger);
1239 // Only care about the error message for the last address in addresses. We want to avoid the
1240 // overhead of printing the process maps if we can relocate.
1241 std::string* out_error_msg = (address == addresses.back()) ? &temp_error_msg : nullptr;
1242 const ImageHeader::StorageMode storage_mode = image_header->GetStorageMode();
1243 if (storage_mode == ImageHeader::kStorageModeUncompressed) {
1244 map.reset(MemMap::MapFileAtAddress(address,
1245 image_header->GetImageSize(),
1246 PROT_READ | PROT_WRITE,
1247 MAP_PRIVATE,
1248 file->Fd(),
1249 0,
1250 /*low_4gb*/true,
1251 /*reuse*/false,
1252 image_filename,
1253 /*out*/out_error_msg));
1254 } else {
1255 if (storage_mode != ImageHeader::kStorageModeLZ4 &&
1256 storage_mode != ImageHeader::kStorageModeLZ4HC) {
1257 *error_msg = StringPrintf("Invalid storage mode in image header %d",
1258 static_cast<int>(storage_mode));
1259 return nullptr;
1260 }
1261 // Reserve output and decompress into it.
1262 map.reset(MemMap::MapAnonymous(image_location,
1263 address,
1264 image_header->GetImageSize(),
1265 PROT_READ | PROT_WRITE,
1266 /*low_4gb*/true,
1267 /*reuse*/false,
1268 /*out*/out_error_msg));
1269 if (map != nullptr) {
1270 const size_t stored_size = image_header->GetDataSize();
1271 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header.
1272 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1273 PROT_READ,
1274 MAP_PRIVATE,
1275 file->Fd(),
1276 /*offset*/0,
1277 /*low_4gb*/false,
1278 image_filename,
1279 out_error_msg));
1280 if (temp_map == nullptr) {
1281 DCHECK(!out_error_msg->empty());
1282 return nullptr;
1283 }
1284 memcpy(map->Begin(), image_header, sizeof(ImageHeader));
1285 const uint64_t start = NanoTime();
1286 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
1287 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
1288 const size_t decompressed_size = LZ4_decompress_safe(
1289 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
1290 reinterpret_cast<char*>(map->Begin()) + decompress_offset,
1291 stored_size,
1292 map->Size() - decompress_offset);
1293 VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
1294 if (decompressed_size + sizeof(ImageHeader) != image_header->GetImageSize()) {
1295 *error_msg = StringPrintf(
1296 "Decompressed size does not match expected image size %zu vs %zu",
1297 decompressed_size + sizeof(ImageHeader),
1298 image_header->GetImageSize());
1299 return nullptr;
1300 }
1301 }
1302 }
1303 if (map != nullptr) {
1304 break;
1305 }
1306 }
1307
1308 if (map == nullptr) {
1309 DCHECK(!temp_error_msg.empty());
1310 *error_msg = temp_error_msg;
1311 return nullptr;
1312 }
1313 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
1314
1315 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
1316 bitmap_section.Size(),
1317 PROT_READ, MAP_PRIVATE,
1318 file->Fd(),
1319 image_bitmap_offset,
1320 /*low_4gb*/false,
1321 /*reuse*/false,
1322 image_filename,
1323 error_msg));
1324 if (image_bitmap_map == nullptr) {
1325 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
1326 return nullptr;
1327 }
1328 // Loaded the map, use the image header from the file now in case we patch it with
1329 // RelocateInPlace.
1330 image_header = reinterpret_cast<ImageHeader*>(map->Begin());
1331 const uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
1332 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
1333 image_filename,
1334 bitmap_index));
1335 // Bitmap only needs to cover until the end of the mirror objects section.
1336 const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
1337 // We only want the mirror object, not the ArtFields and ArtMethods.
1338 uint8_t* const image_end = map->Begin() + image_objects.End();
1339 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
1340 {
1341 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
1342 bitmap.reset(
1343 accounting::ContinuousSpaceBitmap::CreateFromMemMap(
1344 bitmap_name,
1345 image_bitmap_map.release(),
1346 reinterpret_cast<uint8_t*>(map->Begin()),
1347 image_objects.End()));
1348 if (bitmap == nullptr) {
1349 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
1350 return nullptr;
1351 }
1352 }
1353 {
1354 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
1355 if (!RelocateInPlace(*image_header,
1356 map->Begin(),
1357 bitmap.get(),
1358 oat_file,
1359 error_msg)) {
1360 return nullptr;
1361 }
1362 }
1363 // We only want the mirror object, not the ArtFields and ArtMethods.
1364 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
1365 image_location,
1366 map.release(),
1367 bitmap.release(),
1368 image_end));
1369
1370 // VerifyImageAllocations() will be called later in Runtime::Init()
1371 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
1372 // and ArtField::java_lang_reflect_ArtField_, which are used from
1373 // Object::SizeOf() which VerifyImageAllocations() calls, are not
1374 // set yet at this point.
1375 if (oat_file == nullptr) {
1376 TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
1377 space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
1378 if (space->oat_file_ == nullptr) {
1379 DCHECK(!error_msg->empty());
1380 return nullptr;
1381 }
1382 space->oat_file_non_owned_ = space->oat_file_.get();
1383 } else {
1384 space->oat_file_non_owned_ = oat_file;
1385 }
1386
1387 if (validate_oat_file) {
1388 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
1389 if (!space->ValidateOatFile(error_msg)) {
1390 DCHECK(!error_msg->empty());
1391 return nullptr;
1392 }
1393 }
1394
1395 Runtime* runtime = Runtime::Current();
1396
1397 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
1398 // to set the runtime methods.
1399 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
1400 if (image_header->IsAppImage()) {
1401 CHECK_EQ(runtime->GetResolutionMethod(),
1402 image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1403 CHECK_EQ(runtime->GetImtConflictMethod(),
1404 image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1405 CHECK_EQ(runtime->GetImtUnimplementedMethod(),
1406 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1407 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAll),
1408 image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod));
1409 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly),
1410 image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod));
1411 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs),
1412 image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod));
1413 } else if (!runtime->HasResolutionMethod()) {
1414 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
1415 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1416 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1417 runtime->SetImtUnimplementedMethod(
1418 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1419 runtime->SetCalleeSaveMethod(
1420 image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod), Runtime::kSaveAll);
1421 runtime->SetCalleeSaveMethod(
1422 image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod), Runtime::kRefsOnly);
1423 runtime->SetCalleeSaveMethod(
1424 image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod), Runtime::kRefsAndArgs);
1425 }
1426
1427 VLOG(image) << "ImageSpace::Init exiting " << *space.get();
1428 if (VLOG_IS_ON(image)) {
1429 logger.Dump(LOG(INFO));
1430 }
1431 return space.release();
1432 }
1433
OpenOatFile(const char * image_path,std::string * error_msg) const1434 OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
1435 const ImageHeader& image_header = GetImageHeader();
1436 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1437
1438 CHECK(image_header.GetOatDataBegin() != nullptr);
1439
1440 OatFile* oat_file = OatFile::Open(oat_filename,
1441 oat_filename,
1442 image_header.GetOatDataBegin(),
1443 image_header.GetOatFileBegin(),
1444 !Runtime::Current()->IsAotCompiler(),
1445 /*low_4gb*/false,
1446 nullptr,
1447 error_msg);
1448 if (oat_file == nullptr) {
1449 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1450 oat_filename.c_str(), GetName(), error_msg->c_str());
1451 return nullptr;
1452 }
1453 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1454 uint32_t image_oat_checksum = image_header.GetOatChecksum();
1455 if (oat_checksum != image_oat_checksum) {
1456 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1457 " in image %s", oat_checksum, image_oat_checksum, GetName());
1458 return nullptr;
1459 }
1460 int32_t image_patch_delta = image_header.GetPatchDelta();
1461 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1462 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1463 // We should have already relocated by this point. Bail out.
1464 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1465 "in image %s", oat_patch_delta, image_patch_delta, GetName());
1466 return nullptr;
1467 }
1468
1469 return oat_file;
1470 }
1471
ValidateOatFile(std::string * error_msg) const1472 bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
1473 CHECK(oat_file_.get() != nullptr);
1474 for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
1475 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1476 uint32_t dex_file_location_checksum;
1477 if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
1478 *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
1479 "%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
1480 return false;
1481 }
1482 if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
1483 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
1484 "dex file '%s' (0x%x != 0x%x)",
1485 oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
1486 oat_dex_file->GetDexFileLocationChecksum(),
1487 dex_file_location_checksum);
1488 return false;
1489 }
1490 }
1491 return true;
1492 }
1493
GetOatFile() const1494 const OatFile* ImageSpace::GetOatFile() const {
1495 return oat_file_non_owned_;
1496 }
1497
ReleaseOatFile()1498 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1499 CHECK(oat_file_ != nullptr);
1500 return std::move(oat_file_);
1501 }
1502
Dump(std::ostream & os) const1503 void ImageSpace::Dump(std::ostream& os) const {
1504 os << GetType()
1505 << " begin=" << reinterpret_cast<void*>(Begin())
1506 << ",end=" << reinterpret_cast<void*>(End())
1507 << ",size=" << PrettySize(Size())
1508 << ",name=\"" << GetName() << "\"]";
1509 }
1510
CreateMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1511 void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
1512 const std::string& boot_classpath,
1513 std::vector<std::string>* image_file_names) {
1514 DCHECK(image_file_names != nullptr);
1515
1516 std::vector<std::string> images;
1517 Split(boot_classpath, ':', &images);
1518
1519 // Add the rest into the list. We have to adjust locations, possibly:
1520 //
1521 // For example, image_file_name is /a/b/c/d/e.art
1522 // images[0] is f/c/d/e.art
1523 // ----------------------------------------------
1524 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art
1525 const std::string& first_image = images[0];
1526 // Length of common suffix.
1527 size_t common = 0;
1528 while (common < input_image_file_name.size() &&
1529 common < first_image.size() &&
1530 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1531 ++common;
1532 }
1533 // We want to replace the prefix of the input image with the prefix of the boot class path.
1534 // This handles the case where the image file contains @ separators.
1535 // Example image_file_name is oats/system@framework@boot.art
1536 // images[0] is .../arm/boot.art
1537 // means that the image name prefix will be oats/system@framework@
1538 // so that the other images are openable.
1539 const size_t old_prefix_length = first_image.size() - common;
1540 const std::string new_prefix = input_image_file_name.substr(
1541 0,
1542 input_image_file_name.size() - common);
1543
1544 // Apply pattern to images[1] .. images[n].
1545 for (size_t i = 1; i < images.size(); ++i) {
1546 const std::string& image = images[i];
1547 CHECK_GT(image.length(), old_prefix_length);
1548 std::string suffix = image.substr(old_prefix_length);
1549 image_file_names->push_back(new_prefix + suffix);
1550 }
1551 }
1552
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1553 ImageSpace* ImageSpace::CreateFromAppImage(const char* image,
1554 const OatFile* oat_file,
1555 std::string* error_msg) {
1556 return gc::space::ImageSpace::Init(image,
1557 image,
1558 /*validate_oat_file*/false,
1559 oat_file,
1560 /*out*/error_msg);
1561 }
1562
DumpSections(std::ostream & os) const1563 void ImageSpace::DumpSections(std::ostream& os) const {
1564 const uint8_t* base = Begin();
1565 const ImageHeader& header = GetImageHeader();
1566 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1567 auto section_type = static_cast<ImageHeader::ImageSections>(i);
1568 const ImageSection& section = header.GetImageSection(section_type);
1569 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1570 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1571 }
1572 }
1573
1574 } // namespace space
1575 } // namespace gc
1576 } // namespace art
1577