• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/arm64/lithium-codegen-arm64.h"
6 
7 #include "src/arm64/frames-arm64.h"
8 #include "src/base/bits.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/profiler/cpu-profiler.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 
21 class SafepointGenerator final : public CallWrapper {
22  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)23   SafepointGenerator(LCodeGen* codegen,
24                      LPointerMap* pointers,
25                      Safepoint::DeoptMode mode)
26       : codegen_(codegen),
27         pointers_(pointers),
28         deopt_mode_(mode) { }
~SafepointGenerator()29   virtual ~SafepointGenerator() { }
30 
BeforeCall(int call_size) const31   virtual void BeforeCall(int call_size) const { }
32 
AfterCall() const33   virtual void AfterCall() const {
34     codegen_->RecordSafepoint(pointers_, deopt_mode_);
35   }
36 
37  private:
38   LCodeGen* codegen_;
39   LPointerMap* pointers_;
40   Safepoint::DeoptMode deopt_mode_;
41 };
42 
43 
44 #define __ masm()->
45 
46 // Emit code to branch if the given condition holds.
47 // The code generated here doesn't modify the flags and they must have
48 // been set by some prior instructions.
49 //
50 // The EmitInverted function simply inverts the condition.
51 class BranchOnCondition : public BranchGenerator {
52  public:
BranchOnCondition(LCodeGen * codegen,Condition cond)53   BranchOnCondition(LCodeGen* codegen, Condition cond)
54     : BranchGenerator(codegen),
55       cond_(cond) { }
56 
Emit(Label * label) const57   virtual void Emit(Label* label) const {
58     __ B(cond_, label);
59   }
60 
EmitInverted(Label * label) const61   virtual void EmitInverted(Label* label) const {
62     if (cond_ != al) {
63       __ B(NegateCondition(cond_), label);
64     }
65   }
66 
67  private:
68   Condition cond_;
69 };
70 
71 
72 // Emit code to compare lhs and rhs and branch if the condition holds.
73 // This uses MacroAssembler's CompareAndBranch function so it will handle
74 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
75 //
76 // EmitInverted still compares the two operands but inverts the condition.
77 class CompareAndBranch : public BranchGenerator {
78  public:
CompareAndBranch(LCodeGen * codegen,Condition cond,const Register & lhs,const Operand & rhs)79   CompareAndBranch(LCodeGen* codegen,
80                    Condition cond,
81                    const Register& lhs,
82                    const Operand& rhs)
83     : BranchGenerator(codegen),
84       cond_(cond),
85       lhs_(lhs),
86       rhs_(rhs) { }
87 
Emit(Label * label) const88   virtual void Emit(Label* label) const {
89     __ CompareAndBranch(lhs_, rhs_, cond_, label);
90   }
91 
EmitInverted(Label * label) const92   virtual void EmitInverted(Label* label) const {
93     __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
94   }
95 
96  private:
97   Condition cond_;
98   const Register& lhs_;
99   const Operand& rhs_;
100 };
101 
102 
103 // Test the input with the given mask and branch if the condition holds.
104 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
105 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
106 // conversion to Tbz/Tbnz when possible.
107 class TestAndBranch : public BranchGenerator {
108  public:
TestAndBranch(LCodeGen * codegen,Condition cond,const Register & value,uint64_t mask)109   TestAndBranch(LCodeGen* codegen,
110                 Condition cond,
111                 const Register& value,
112                 uint64_t mask)
113     : BranchGenerator(codegen),
114       cond_(cond),
115       value_(value),
116       mask_(mask) { }
117 
Emit(Label * label) const118   virtual void Emit(Label* label) const {
119     switch (cond_) {
120       case eq:
121         __ TestAndBranchIfAllClear(value_, mask_, label);
122         break;
123       case ne:
124         __ TestAndBranchIfAnySet(value_, mask_, label);
125         break;
126       default:
127         __ Tst(value_, mask_);
128         __ B(cond_, label);
129     }
130   }
131 
EmitInverted(Label * label) const132   virtual void EmitInverted(Label* label) const {
133     // The inverse of "all clear" is "any set" and vice versa.
134     switch (cond_) {
135       case eq:
136         __ TestAndBranchIfAnySet(value_, mask_, label);
137         break;
138       case ne:
139         __ TestAndBranchIfAllClear(value_, mask_, label);
140         break;
141       default:
142         __ Tst(value_, mask_);
143         __ B(NegateCondition(cond_), label);
144     }
145   }
146 
147  private:
148   Condition cond_;
149   const Register& value_;
150   uint64_t mask_;
151 };
152 
153 
154 // Test the input and branch if it is non-zero and not a NaN.
155 class BranchIfNonZeroNumber : public BranchGenerator {
156  public:
BranchIfNonZeroNumber(LCodeGen * codegen,const FPRegister & value,const FPRegister & scratch)157   BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
158                         const FPRegister& scratch)
159     : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
160 
Emit(Label * label) const161   virtual void Emit(Label* label) const {
162     __ Fabs(scratch_, value_);
163     // Compare with 0.0. Because scratch_ is positive, the result can be one of
164     // nZCv (equal), nzCv (greater) or nzCV (unordered).
165     __ Fcmp(scratch_, 0.0);
166     __ B(gt, label);
167   }
168 
EmitInverted(Label * label) const169   virtual void EmitInverted(Label* label) const {
170     __ Fabs(scratch_, value_);
171     __ Fcmp(scratch_, 0.0);
172     __ B(le, label);
173   }
174 
175  private:
176   const FPRegister& value_;
177   const FPRegister& scratch_;
178 };
179 
180 
181 // Test the input and branch if it is a heap number.
182 class BranchIfHeapNumber : public BranchGenerator {
183  public:
BranchIfHeapNumber(LCodeGen * codegen,const Register & value)184   BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
185       : BranchGenerator(codegen), value_(value) { }
186 
Emit(Label * label) const187   virtual void Emit(Label* label) const {
188     __ JumpIfHeapNumber(value_, label);
189   }
190 
EmitInverted(Label * label) const191   virtual void EmitInverted(Label* label) const {
192     __ JumpIfNotHeapNumber(value_, label);
193   }
194 
195  private:
196   const Register& value_;
197 };
198 
199 
200 // Test the input and branch if it is the specified root value.
201 class BranchIfRoot : public BranchGenerator {
202  public:
BranchIfRoot(LCodeGen * codegen,const Register & value,Heap::RootListIndex index)203   BranchIfRoot(LCodeGen* codegen, const Register& value,
204                Heap::RootListIndex index)
205       : BranchGenerator(codegen), value_(value), index_(index) { }
206 
Emit(Label * label) const207   virtual void Emit(Label* label) const {
208     __ JumpIfRoot(value_, index_, label);
209   }
210 
EmitInverted(Label * label) const211   virtual void EmitInverted(Label* label) const {
212     __ JumpIfNotRoot(value_, index_, label);
213   }
214 
215  private:
216   const Register& value_;
217   const Heap::RootListIndex index_;
218 };
219 
220 
WriteTranslation(LEnvironment * environment,Translation * translation)221 void LCodeGen::WriteTranslation(LEnvironment* environment,
222                                 Translation* translation) {
223   if (environment == NULL) return;
224 
225   // The translation includes one command per value in the environment.
226   int translation_size = environment->translation_size();
227 
228   WriteTranslation(environment->outer(), translation);
229   WriteTranslationFrame(environment, translation);
230 
231   int object_index = 0;
232   int dematerialized_index = 0;
233   for (int i = 0; i < translation_size; ++i) {
234     LOperand* value = environment->values()->at(i);
235     AddToTranslation(
236         environment, translation, value, environment->HasTaggedValueAt(i),
237         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
238   }
239 }
240 
241 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)242 void LCodeGen::AddToTranslation(LEnvironment* environment,
243                                 Translation* translation,
244                                 LOperand* op,
245                                 bool is_tagged,
246                                 bool is_uint32,
247                                 int* object_index_pointer,
248                                 int* dematerialized_index_pointer) {
249   if (op == LEnvironment::materialization_marker()) {
250     int object_index = (*object_index_pointer)++;
251     if (environment->ObjectIsDuplicateAt(object_index)) {
252       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
253       translation->DuplicateObject(dupe_of);
254       return;
255     }
256     int object_length = environment->ObjectLengthAt(object_index);
257     if (environment->ObjectIsArgumentsAt(object_index)) {
258       translation->BeginArgumentsObject(object_length);
259     } else {
260       translation->BeginCapturedObject(object_length);
261     }
262     int dematerialized_index = *dematerialized_index_pointer;
263     int env_offset = environment->translation_size() + dematerialized_index;
264     *dematerialized_index_pointer += object_length;
265     for (int i = 0; i < object_length; ++i) {
266       LOperand* value = environment->values()->at(env_offset + i);
267       AddToTranslation(environment,
268                        translation,
269                        value,
270                        environment->HasTaggedValueAt(env_offset + i),
271                        environment->HasUint32ValueAt(env_offset + i),
272                        object_index_pointer,
273                        dematerialized_index_pointer);
274     }
275     return;
276   }
277 
278   if (op->IsStackSlot()) {
279     int index = op->index();
280     if (index >= 0) {
281       index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
282     }
283     if (is_tagged) {
284       translation->StoreStackSlot(index);
285     } else if (is_uint32) {
286       translation->StoreUint32StackSlot(index);
287     } else {
288       translation->StoreInt32StackSlot(index);
289     }
290   } else if (op->IsDoubleStackSlot()) {
291     int index = op->index();
292     if (index >= 0) {
293       index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
294     }
295     translation->StoreDoubleStackSlot(index);
296   } else if (op->IsRegister()) {
297     Register reg = ToRegister(op);
298     if (is_tagged) {
299       translation->StoreRegister(reg);
300     } else if (is_uint32) {
301       translation->StoreUint32Register(reg);
302     } else {
303       translation->StoreInt32Register(reg);
304     }
305   } else if (op->IsDoubleRegister()) {
306     DoubleRegister reg = ToDoubleRegister(op);
307     translation->StoreDoubleRegister(reg);
308   } else if (op->IsConstantOperand()) {
309     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
310     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
311     translation->StoreLiteral(src_index);
312   } else {
313     UNREACHABLE();
314   }
315 }
316 
317 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)318 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
319                                                     Safepoint::DeoptMode mode) {
320   environment->set_has_been_used();
321   if (!environment->HasBeenRegistered()) {
322     int frame_count = 0;
323     int jsframe_count = 0;
324     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
325       ++frame_count;
326       if (e->frame_type() == JS_FUNCTION) {
327         ++jsframe_count;
328       }
329     }
330     Translation translation(&translations_, frame_count, jsframe_count, zone());
331     WriteTranslation(environment, &translation);
332     int deoptimization_index = deoptimizations_.length();
333     int pc_offset = masm()->pc_offset();
334     environment->Register(deoptimization_index,
335                           translation.index(),
336                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
337     deoptimizations_.Add(environment, zone());
338   }
339 }
340 
341 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)342 void LCodeGen::CallCode(Handle<Code> code,
343                         RelocInfo::Mode mode,
344                         LInstruction* instr) {
345   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
346 }
347 
348 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)349 void LCodeGen::CallCodeGeneric(Handle<Code> code,
350                                RelocInfo::Mode mode,
351                                LInstruction* instr,
352                                SafepointMode safepoint_mode) {
353   DCHECK(instr != NULL);
354 
355   Assembler::BlockPoolsScope scope(masm_);
356   __ Call(code, mode);
357   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
358 
359   if ((code->kind() == Code::BINARY_OP_IC) ||
360       (code->kind() == Code::COMPARE_IC)) {
361     // Signal that we don't inline smi code before these stubs in the
362     // optimizing code generator.
363     InlineSmiCheckInfo::EmitNotInlined(masm());
364   }
365 }
366 
367 
DoCallFunction(LCallFunction * instr)368 void LCodeGen::DoCallFunction(LCallFunction* instr) {
369   DCHECK(ToRegister(instr->context()).is(cp));
370   DCHECK(ToRegister(instr->function()).Is(x1));
371   DCHECK(ToRegister(instr->result()).Is(x0));
372 
373   int arity = instr->arity();
374   ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
375   if (instr->hydrogen()->HasVectorAndSlot()) {
376     Register slot_register = ToRegister(instr->temp_slot());
377     Register vector_register = ToRegister(instr->temp_vector());
378     DCHECK(slot_register.is(x3));
379     DCHECK(vector_register.is(x2));
380 
381     AllowDeferredHandleDereference vector_structure_check;
382     Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
383     int index = vector->GetIndex(instr->hydrogen()->slot());
384 
385     __ Mov(vector_register, vector);
386     __ Mov(slot_register, Operand(Smi::FromInt(index)));
387 
388     Handle<Code> ic =
389         CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
390     CallCode(ic, RelocInfo::CODE_TARGET, instr);
391   } else {
392     __ Mov(x0, arity);
393     CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
394   }
395   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
396 }
397 
398 
DoCallNewArray(LCallNewArray * instr)399 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
400   DCHECK(instr->IsMarkedAsCall());
401   DCHECK(ToRegister(instr->context()).is(cp));
402   DCHECK(ToRegister(instr->constructor()).is(x1));
403 
404   __ Mov(x0, Operand(instr->arity()));
405   if (instr->arity() == 1) {
406     // We only need the allocation site for the case we have a length argument.
407     // The case may bail out to the runtime, which will determine the correct
408     // elements kind with the site.
409     __ Mov(x2, instr->hydrogen()->site());
410   } else {
411     __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
412   }
413 
414 
415   ElementsKind kind = instr->hydrogen()->elements_kind();
416   AllocationSiteOverrideMode override_mode =
417       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
418           ? DISABLE_ALLOCATION_SITES
419           : DONT_OVERRIDE;
420 
421   if (instr->arity() == 0) {
422     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
423     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
424   } else if (instr->arity() == 1) {
425     Label done;
426     if (IsFastPackedElementsKind(kind)) {
427       Label packed_case;
428 
429       // We might need to create a holey array; look at the first argument.
430       __ Peek(x10, 0);
431       __ Cbz(x10, &packed_case);
432 
433       ElementsKind holey_kind = GetHoleyElementsKind(kind);
434       ArraySingleArgumentConstructorStub stub(isolate(),
435                                               holey_kind,
436                                               override_mode);
437       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
438       __ B(&done);
439       __ Bind(&packed_case);
440     }
441 
442     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
443     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
444     __ Bind(&done);
445   } else {
446     ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
447     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
448   }
449   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
450 
451   DCHECK(ToRegister(instr->result()).is(x0));
452 }
453 
454 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)455 void LCodeGen::CallRuntime(const Runtime::Function* function,
456                            int num_arguments,
457                            LInstruction* instr,
458                            SaveFPRegsMode save_doubles) {
459   DCHECK(instr != NULL);
460 
461   __ CallRuntime(function, num_arguments, save_doubles);
462 
463   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
464 }
465 
466 
LoadContextFromDeferred(LOperand * context)467 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
468   if (context->IsRegister()) {
469     __ Mov(cp, ToRegister(context));
470   } else if (context->IsStackSlot()) {
471     __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
472   } else if (context->IsConstantOperand()) {
473     HConstant* constant =
474         chunk_->LookupConstant(LConstantOperand::cast(context));
475     __ LoadHeapObject(cp,
476                       Handle<HeapObject>::cast(constant->handle(isolate())));
477   } else {
478     UNREACHABLE();
479   }
480 }
481 
482 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)483 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
484                                        int argc,
485                                        LInstruction* instr,
486                                        LOperand* context) {
487   LoadContextFromDeferred(context);
488   __ CallRuntimeSaveDoubles(id);
489   RecordSafepointWithRegisters(
490       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
491 }
492 
493 
RecordAndWritePosition(int position)494 void LCodeGen::RecordAndWritePosition(int position) {
495   if (position == RelocInfo::kNoPosition) return;
496   masm()->positions_recorder()->RecordPosition(position);
497   masm()->positions_recorder()->WriteRecordedPositions();
498 }
499 
500 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)501 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
502                                             SafepointMode safepoint_mode) {
503   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
504     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
505   } else {
506     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
507     RecordSafepointWithRegisters(
508         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
509   }
510 }
511 
512 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)513 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
514                                Safepoint::Kind kind,
515                                int arguments,
516                                Safepoint::DeoptMode deopt_mode) {
517   DCHECK(expected_safepoint_kind_ == kind);
518 
519   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
520   Safepoint safepoint = safepoints_.DefineSafepoint(
521       masm(), kind, arguments, deopt_mode);
522 
523   for (int i = 0; i < operands->length(); i++) {
524     LOperand* pointer = operands->at(i);
525     if (pointer->IsStackSlot()) {
526       safepoint.DefinePointerSlot(pointer->index(), zone());
527     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
528       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
529     }
530   }
531 }
532 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)533 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
534                                Safepoint::DeoptMode deopt_mode) {
535   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
536 }
537 
538 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)539 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
540   LPointerMap empty_pointers(zone());
541   RecordSafepoint(&empty_pointers, deopt_mode);
542 }
543 
544 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)545 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
546                                             int arguments,
547                                             Safepoint::DeoptMode deopt_mode) {
548   RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
549 }
550 
551 
GenerateCode()552 bool LCodeGen::GenerateCode() {
553   LPhase phase("Z_Code generation", chunk());
554   DCHECK(is_unused());
555   status_ = GENERATING;
556 
557   // Open a frame scope to indicate that there is a frame on the stack.  The
558   // NONE indicates that the scope shouldn't actually generate code to set up
559   // the frame (that is done in GeneratePrologue).
560   FrameScope frame_scope(masm_, StackFrame::NONE);
561 
562   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
563          GenerateJumpTable() && GenerateSafepointTable();
564 }
565 
566 
SaveCallerDoubles()567 void LCodeGen::SaveCallerDoubles() {
568   DCHECK(info()->saves_caller_doubles());
569   DCHECK(NeedsEagerFrame());
570   Comment(";;; Save clobbered callee double registers");
571   BitVector* doubles = chunk()->allocated_double_registers();
572   BitVector::Iterator iterator(doubles);
573   int count = 0;
574   while (!iterator.Done()) {
575     // TODO(all): Is this supposed to save just the callee-saved doubles? It
576     // looks like it's saving all of them.
577     FPRegister value = FPRegister::from_code(iterator.Current());
578     __ Poke(value, count * kDoubleSize);
579     iterator.Advance();
580     count++;
581   }
582 }
583 
584 
RestoreCallerDoubles()585 void LCodeGen::RestoreCallerDoubles() {
586   DCHECK(info()->saves_caller_doubles());
587   DCHECK(NeedsEagerFrame());
588   Comment(";;; Restore clobbered callee double registers");
589   BitVector* doubles = chunk()->allocated_double_registers();
590   BitVector::Iterator iterator(doubles);
591   int count = 0;
592   while (!iterator.Done()) {
593     // TODO(all): Is this supposed to restore just the callee-saved doubles? It
594     // looks like it's restoring all of them.
595     FPRegister value = FPRegister::from_code(iterator.Current());
596     __ Peek(value, count * kDoubleSize);
597     iterator.Advance();
598     count++;
599   }
600 }
601 
602 
GeneratePrologue()603 bool LCodeGen::GeneratePrologue() {
604   DCHECK(is_generating());
605 
606   if (info()->IsOptimizing()) {
607     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
608 
609 #ifdef DEBUG
610     if (strlen(FLAG_stop_at) > 0 &&
611         info()->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
612       __ Debug("stop-at", __LINE__, BREAK);
613     }
614 #endif
615   }
616 
617   DCHECK(__ StackPointer().Is(jssp));
618   info()->set_prologue_offset(masm_->pc_offset());
619   if (NeedsEagerFrame()) {
620     if (info()->IsStub()) {
621       __ StubPrologue();
622     } else {
623       __ Prologue(info()->GeneratePreagedPrologue());
624     }
625     frame_is_built_ = true;
626   }
627 
628   // Reserve space for the stack slots needed by the code.
629   int slots = GetStackSlotCount();
630   if (slots > 0) {
631     __ Claim(slots, kPointerSize);
632   }
633 
634   if (info()->saves_caller_doubles()) {
635     SaveCallerDoubles();
636   }
637   return !is_aborted();
638 }
639 
640 
DoPrologue(LPrologue * instr)641 void LCodeGen::DoPrologue(LPrologue* instr) {
642   Comment(";;; Prologue begin");
643 
644   // Allocate a local context if needed.
645   if (info()->num_heap_slots() > 0) {
646     Comment(";;; Allocate local context");
647     bool need_write_barrier = true;
648     // Argument to NewContext is the function, which is in x1.
649     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
650     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
651     if (info()->scope()->is_script_scope()) {
652       __ Mov(x10, Operand(info()->scope()->GetScopeInfo(info()->isolate())));
653       __ Push(x1, x10);
654       __ CallRuntime(Runtime::kNewScriptContext);
655       deopt_mode = Safepoint::kLazyDeopt;
656     } else if (slots <= FastNewContextStub::kMaximumSlots) {
657       FastNewContextStub stub(isolate(), slots);
658       __ CallStub(&stub);
659       // Result of FastNewContextStub is always in new space.
660       need_write_barrier = false;
661     } else {
662       __ Push(x1);
663       __ CallRuntime(Runtime::kNewFunctionContext);
664     }
665     RecordSafepoint(deopt_mode);
666     // Context is returned in x0. It replaces the context passed to us. It's
667     // saved in the stack and kept live in cp.
668     __ Mov(cp, x0);
669     __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
670     // Copy any necessary parameters into the context.
671     int num_parameters = scope()->num_parameters();
672     int first_parameter = scope()->has_this_declaration() ? -1 : 0;
673     for (int i = first_parameter; i < num_parameters; i++) {
674       Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
675       if (var->IsContextSlot()) {
676         Register value = x0;
677         Register scratch = x3;
678 
679         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
680             (num_parameters - 1 - i) * kPointerSize;
681         // Load parameter from stack.
682         __ Ldr(value, MemOperand(fp, parameter_offset));
683         // Store it in the context.
684         MemOperand target = ContextMemOperand(cp, var->index());
685         __ Str(value, target);
686         // Update the write barrier. This clobbers value and scratch.
687         if (need_write_barrier) {
688           __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()),
689                                     value, scratch, GetLinkRegisterState(),
690                                     kSaveFPRegs);
691         } else if (FLAG_debug_code) {
692           Label done;
693           __ JumpIfInNewSpace(cp, &done);
694           __ Abort(kExpectedNewSpaceObject);
695           __ bind(&done);
696         }
697       }
698     }
699     Comment(";;; End allocate local context");
700   }
701 
702   Comment(";;; Prologue end");
703 }
704 
705 
GenerateOsrPrologue()706 void LCodeGen::GenerateOsrPrologue() {
707   // Generate the OSR entry prologue at the first unknown OSR value, or if there
708   // are none, at the OSR entrypoint instruction.
709   if (osr_pc_offset_ >= 0) return;
710 
711   osr_pc_offset_ = masm()->pc_offset();
712 
713   // Adjust the frame size, subsuming the unoptimized frame into the
714   // optimized frame.
715   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
716   DCHECK(slots >= 0);
717   __ Claim(slots);
718 }
719 
720 
GenerateBodyInstructionPre(LInstruction * instr)721 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
722   if (instr->IsCall()) {
723     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
724   }
725   if (!instr->IsLazyBailout() && !instr->IsGap()) {
726     safepoints_.BumpLastLazySafepointIndex();
727   }
728 }
729 
730 
GenerateDeferredCode()731 bool LCodeGen::GenerateDeferredCode() {
732   DCHECK(is_generating());
733   if (deferred_.length() > 0) {
734     for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
735       LDeferredCode* code = deferred_[i];
736 
737       HValue* value =
738           instructions_->at(code->instruction_index())->hydrogen_value();
739       RecordAndWritePosition(
740           chunk()->graph()->SourcePositionToScriptPosition(value->position()));
741 
742       Comment(";;; <@%d,#%d> "
743               "-------------------- Deferred %s --------------------",
744               code->instruction_index(),
745               code->instr()->hydrogen_value()->id(),
746               code->instr()->Mnemonic());
747 
748       __ Bind(code->entry());
749 
750       if (NeedsDeferredFrame()) {
751         Comment(";;; Build frame");
752         DCHECK(!frame_is_built_);
753         DCHECK(info()->IsStub());
754         frame_is_built_ = true;
755         __ Push(lr, fp, cp);
756         __ Mov(fp, Smi::FromInt(StackFrame::STUB));
757         __ Push(fp);
758         __ Add(fp, __ StackPointer(),
759                StandardFrameConstants::kFixedFrameSizeFromFp);
760         Comment(";;; Deferred code");
761       }
762 
763       code->Generate();
764 
765       if (NeedsDeferredFrame()) {
766         Comment(";;; Destroy frame");
767         DCHECK(frame_is_built_);
768         __ Pop(xzr, cp, fp, lr);
769         frame_is_built_ = false;
770       }
771 
772       __ B(code->exit());
773     }
774   }
775 
776   // Force constant pool emission at the end of the deferred code to make
777   // sure that no constant pools are emitted after deferred code because
778   // deferred code generation is the last step which generates code. The two
779   // following steps will only output data used by crakshaft.
780   masm()->CheckConstPool(true, false);
781 
782   return !is_aborted();
783 }
784 
785 
GenerateJumpTable()786 bool LCodeGen::GenerateJumpTable() {
787   Label needs_frame, call_deopt_entry;
788 
789   if (jump_table_.length() > 0) {
790     Comment(";;; -------------------- Jump table --------------------");
791     Address base = jump_table_[0]->address;
792 
793     UseScratchRegisterScope temps(masm());
794     Register entry_offset = temps.AcquireX();
795 
796     int length = jump_table_.length();
797     for (int i = 0; i < length; i++) {
798       Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
799       __ Bind(&table_entry->label);
800 
801       Address entry = table_entry->address;
802       DeoptComment(table_entry->deopt_info);
803 
804       // Second-level deopt table entries are contiguous and small, so instead
805       // of loading the full, absolute address of each one, load the base
806       // address and add an immediate offset.
807       __ Mov(entry_offset, entry - base);
808 
809       if (table_entry->needs_frame) {
810         DCHECK(!info()->saves_caller_doubles());
811         Comment(";;; call deopt with frame");
812         // Save lr before Bl, fp will be adjusted in the needs_frame code.
813         __ Push(lr, fp);
814         // Reuse the existing needs_frame code.
815         __ Bl(&needs_frame);
816       } else {
817         // There is nothing special to do, so just continue to the second-level
818         // table.
819         __ Bl(&call_deopt_entry);
820       }
821       info()->LogDeoptCallPosition(masm()->pc_offset(),
822                                    table_entry->deopt_info.inlining_id);
823 
824       masm()->CheckConstPool(false, false);
825     }
826 
827     if (needs_frame.is_linked()) {
828       // This variant of deopt can only be used with stubs. Since we don't
829       // have a function pointer to install in the stack frame that we're
830       // building, install a special marker there instead.
831       DCHECK(info()->IsStub());
832 
833       Comment(";;; needs_frame common code");
834       UseScratchRegisterScope temps(masm());
835       Register stub_marker = temps.AcquireX();
836       __ Bind(&needs_frame);
837       __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
838       __ Push(cp, stub_marker);
839       __ Add(fp, __ StackPointer(), 2 * kPointerSize);
840     }
841 
842     // Generate common code for calling the second-level deopt table.
843     __ Bind(&call_deopt_entry);
844 
845     if (info()->saves_caller_doubles()) {
846       DCHECK(info()->IsStub());
847       RestoreCallerDoubles();
848     }
849 
850     Register deopt_entry = temps.AcquireX();
851     __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
852                                 RelocInfo::RUNTIME_ENTRY));
853     __ Add(deopt_entry, deopt_entry, entry_offset);
854     __ Br(deopt_entry);
855   }
856 
857   // Force constant pool emission at the end of the deopt jump table to make
858   // sure that no constant pools are emitted after.
859   masm()->CheckConstPool(true, false);
860 
861   // The deoptimization jump table is the last part of the instruction
862   // sequence. Mark the generated code as done unless we bailed out.
863   if (!is_aborted()) status_ = DONE;
864   return !is_aborted();
865 }
866 
867 
GenerateSafepointTable()868 bool LCodeGen::GenerateSafepointTable() {
869   DCHECK(is_done());
870   // We do not know how much data will be emitted for the safepoint table, so
871   // force emission of the veneer pool.
872   masm()->CheckVeneerPool(true, true);
873   safepoints_.Emit(masm(), GetStackSlotCount());
874   return !is_aborted();
875 }
876 
877 
FinishCode(Handle<Code> code)878 void LCodeGen::FinishCode(Handle<Code> code) {
879   DCHECK(is_done());
880   code->set_stack_slots(GetStackSlotCount());
881   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
882   PopulateDeoptimizationData(code);
883 }
884 
885 
DeoptimizeBranch(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,BranchType branch_type,Register reg,int bit,Deoptimizer::BailoutType * override_bailout_type)886 void LCodeGen::DeoptimizeBranch(
887     LInstruction* instr, Deoptimizer::DeoptReason deopt_reason,
888     BranchType branch_type, Register reg, int bit,
889     Deoptimizer::BailoutType* override_bailout_type) {
890   LEnvironment* environment = instr->environment();
891   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
892   Deoptimizer::BailoutType bailout_type =
893     info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
894 
895   if (override_bailout_type != NULL) {
896     bailout_type = *override_bailout_type;
897   }
898 
899   DCHECK(environment->HasBeenRegistered());
900   int id = environment->deoptimization_index();
901   Address entry =
902       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
903 
904   if (entry == NULL) {
905     Abort(kBailoutWasNotPrepared);
906   }
907 
908   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
909     Label not_zero;
910     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
911 
912     __ Push(x0, x1, x2);
913     __ Mrs(x2, NZCV);
914     __ Mov(x0, count);
915     __ Ldr(w1, MemOperand(x0));
916     __ Subs(x1, x1, 1);
917     __ B(gt, &not_zero);
918     __ Mov(w1, FLAG_deopt_every_n_times);
919     __ Str(w1, MemOperand(x0));
920     __ Pop(x2, x1, x0);
921     DCHECK(frame_is_built_);
922     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
923     __ Unreachable();
924 
925     __ Bind(&not_zero);
926     __ Str(w1, MemOperand(x0));
927     __ Msr(NZCV, x2);
928     __ Pop(x2, x1, x0);
929   }
930 
931   if (info()->ShouldTrapOnDeopt()) {
932     Label dont_trap;
933     __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
934     __ Debug("trap_on_deopt", __LINE__, BREAK);
935     __ Bind(&dont_trap);
936   }
937 
938   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
939 
940   DCHECK(info()->IsStub() || frame_is_built_);
941   // Go through jump table if we need to build frame, or restore caller doubles.
942   if (branch_type == always &&
943       frame_is_built_ && !info()->saves_caller_doubles()) {
944     DeoptComment(deopt_info);
945     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
946     info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
947   } else {
948     Deoptimizer::JumpTableEntry* table_entry =
949         new (zone()) Deoptimizer::JumpTableEntry(
950             entry, deopt_info, bailout_type, !frame_is_built_);
951     // We often have several deopts to the same entry, reuse the last
952     // jump entry if this is the case.
953     if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
954         jump_table_.is_empty() ||
955         !table_entry->IsEquivalentTo(*jump_table_.last())) {
956       jump_table_.Add(table_entry, zone());
957     }
958     __ B(&jump_table_.last()->label, branch_type, reg, bit);
959   }
960 }
961 
962 
Deoptimize(LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,Deoptimizer::BailoutType * override_bailout_type)963 void LCodeGen::Deoptimize(LInstruction* instr,
964                           Deoptimizer::DeoptReason deopt_reason,
965                           Deoptimizer::BailoutType* override_bailout_type) {
966   DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1,
967                    override_bailout_type);
968 }
969 
970 
DeoptimizeIf(Condition cond,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)971 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
972                             Deoptimizer::DeoptReason deopt_reason) {
973   DeoptimizeBranch(instr, deopt_reason, static_cast<BranchType>(cond));
974 }
975 
976 
DeoptimizeIfZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)977 void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
978                                 Deoptimizer::DeoptReason deopt_reason) {
979   DeoptimizeBranch(instr, deopt_reason, reg_zero, rt);
980 }
981 
982 
DeoptimizeIfNotZero(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)983 void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
984                                    Deoptimizer::DeoptReason deopt_reason) {
985   DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt);
986 }
987 
988 
DeoptimizeIfNegative(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)989 void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
990                                     Deoptimizer::DeoptReason deopt_reason) {
991   int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
992   DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason);
993 }
994 
995 
DeoptimizeIfSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)996 void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
997                                Deoptimizer::DeoptReason deopt_reason) {
998   DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
999 }
1000 
1001 
DeoptimizeIfNotSmi(Register rt,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1002 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
1003                                   Deoptimizer::DeoptReason deopt_reason) {
1004   DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason);
1005 }
1006 
1007 
DeoptimizeIfRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1008 void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
1009                                 LInstruction* instr,
1010                                 Deoptimizer::DeoptReason deopt_reason) {
1011   __ CompareRoot(rt, index);
1012   DeoptimizeIf(eq, instr, deopt_reason);
1013 }
1014 
1015 
DeoptimizeIfNotRoot(Register rt,Heap::RootListIndex index,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1016 void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
1017                                    LInstruction* instr,
1018                                    Deoptimizer::DeoptReason deopt_reason) {
1019   __ CompareRoot(rt, index);
1020   DeoptimizeIf(ne, instr, deopt_reason);
1021 }
1022 
1023 
DeoptimizeIfMinusZero(DoubleRegister input,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1024 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
1025                                      Deoptimizer::DeoptReason deopt_reason) {
1026   __ TestForMinusZero(input);
1027   DeoptimizeIf(vs, instr, deopt_reason);
1028 }
1029 
1030 
DeoptimizeIfNotHeapNumber(Register object,LInstruction * instr)1031 void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
1032   __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
1033   DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
1034 }
1035 
1036 
DeoptimizeIfBitSet(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1037 void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
1038                                   Deoptimizer::DeoptReason deopt_reason) {
1039   DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit);
1040 }
1041 
1042 
DeoptimizeIfBitClear(Register rt,int bit,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason)1043 void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
1044                                     Deoptimizer::DeoptReason deopt_reason) {
1045   DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit);
1046 }
1047 
1048 
EnsureSpaceForLazyDeopt(int space_needed)1049 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
1050   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
1051     // Ensure that we have enough space after the previous lazy-bailout
1052     // instruction for patching the code here.
1053     intptr_t current_pc = masm()->pc_offset();
1054 
1055     if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1056       ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1057       DCHECK((padding_size % kInstructionSize) == 0);
1058       InstructionAccurateScope instruction_accurate(
1059           masm(), padding_size / kInstructionSize);
1060 
1061       while (padding_size > 0) {
1062         __ nop();
1063         padding_size -= kInstructionSize;
1064       }
1065     }
1066   }
1067   last_lazy_deopt_pc_ = masm()->pc_offset();
1068 }
1069 
1070 
ToRegister(LOperand * op) const1071 Register LCodeGen::ToRegister(LOperand* op) const {
1072   // TODO(all): support zero register results, as ToRegister32.
1073   DCHECK((op != NULL) && op->IsRegister());
1074   return Register::from_code(op->index());
1075 }
1076 
1077 
ToRegister32(LOperand * op) const1078 Register LCodeGen::ToRegister32(LOperand* op) const {
1079   DCHECK(op != NULL);
1080   if (op->IsConstantOperand()) {
1081     // If this is a constant operand, the result must be the zero register.
1082     DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1083     return wzr;
1084   } else {
1085     return ToRegister(op).W();
1086   }
1087 }
1088 
1089 
ToSmi(LConstantOperand * op) const1090 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1091   HConstant* constant = chunk_->LookupConstant(op);
1092   return Smi::FromInt(constant->Integer32Value());
1093 }
1094 
1095 
ToDoubleRegister(LOperand * op) const1096 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1097   DCHECK((op != NULL) && op->IsDoubleRegister());
1098   return DoubleRegister::from_code(op->index());
1099 }
1100 
1101 
ToOperand(LOperand * op)1102 Operand LCodeGen::ToOperand(LOperand* op) {
1103   DCHECK(op != NULL);
1104   if (op->IsConstantOperand()) {
1105     LConstantOperand* const_op = LConstantOperand::cast(op);
1106     HConstant* constant = chunk()->LookupConstant(const_op);
1107     Representation r = chunk_->LookupLiteralRepresentation(const_op);
1108     if (r.IsSmi()) {
1109       DCHECK(constant->HasSmiValue());
1110       return Operand(Smi::FromInt(constant->Integer32Value()));
1111     } else if (r.IsInteger32()) {
1112       DCHECK(constant->HasInteger32Value());
1113       return Operand(constant->Integer32Value());
1114     } else if (r.IsDouble()) {
1115       Abort(kToOperandUnsupportedDoubleImmediate);
1116     }
1117     DCHECK(r.IsTagged());
1118     return Operand(constant->handle(isolate()));
1119   } else if (op->IsRegister()) {
1120     return Operand(ToRegister(op));
1121   } else if (op->IsDoubleRegister()) {
1122     Abort(kToOperandIsDoubleRegisterUnimplemented);
1123     return Operand(0);
1124   }
1125   // Stack slots not implemented, use ToMemOperand instead.
1126   UNREACHABLE();
1127   return Operand(0);
1128 }
1129 
1130 
ToOperand32(LOperand * op)1131 Operand LCodeGen::ToOperand32(LOperand* op) {
1132   DCHECK(op != NULL);
1133   if (op->IsRegister()) {
1134     return Operand(ToRegister32(op));
1135   } else if (op->IsConstantOperand()) {
1136     LConstantOperand* const_op = LConstantOperand::cast(op);
1137     HConstant* constant = chunk()->LookupConstant(const_op);
1138     Representation r = chunk_->LookupLiteralRepresentation(const_op);
1139     if (r.IsInteger32()) {
1140       return Operand(constant->Integer32Value());
1141     } else {
1142       // Other constants not implemented.
1143       Abort(kToOperand32UnsupportedImmediate);
1144     }
1145   }
1146   // Other cases are not implemented.
1147   UNREACHABLE();
1148   return Operand(0);
1149 }
1150 
1151 
ArgumentsOffsetWithoutFrame(int index)1152 static int64_t ArgumentsOffsetWithoutFrame(int index) {
1153   DCHECK(index < 0);
1154   return -(index + 1) * kPointerSize;
1155 }
1156 
1157 
ToMemOperand(LOperand * op,StackMode stack_mode) const1158 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1159   DCHECK(op != NULL);
1160   DCHECK(!op->IsRegister());
1161   DCHECK(!op->IsDoubleRegister());
1162   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1163   if (NeedsEagerFrame()) {
1164     int fp_offset = StackSlotOffset(op->index());
1165     // Loads and stores have a bigger reach in positive offset than negative.
1166     // We try to access using jssp (positive offset) first, then fall back to
1167     // fp (negative offset) if that fails.
1168     //
1169     // We can reference a stack slot from jssp only if we know how much we've
1170     // put on the stack. We don't know this in the following cases:
1171     // - stack_mode != kCanUseStackPointer: this is the case when deferred
1172     //   code has saved the registers.
1173     // - saves_caller_doubles(): some double registers have been pushed, jssp
1174     //   references the end of the double registers and not the end of the stack
1175     //   slots.
1176     // In both of the cases above, we _could_ add the tracking information
1177     // required so that we can use jssp here, but in practice it isn't worth it.
1178     if ((stack_mode == kCanUseStackPointer) &&
1179         !info()->saves_caller_doubles()) {
1180       int jssp_offset_to_fp =
1181           StandardFrameConstants::kFixedFrameSizeFromFp +
1182           (pushed_arguments_ + GetStackSlotCount()) * kPointerSize;
1183       int jssp_offset = fp_offset + jssp_offset_to_fp;
1184       if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) {
1185         return MemOperand(masm()->StackPointer(), jssp_offset);
1186       }
1187     }
1188     return MemOperand(fp, fp_offset);
1189   } else {
1190     // Retrieve parameter without eager stack-frame relative to the
1191     // stack-pointer.
1192     return MemOperand(masm()->StackPointer(),
1193                       ArgumentsOffsetWithoutFrame(op->index()));
1194   }
1195 }
1196 
1197 
ToHandle(LConstantOperand * op) const1198 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1199   HConstant* constant = chunk_->LookupConstant(op);
1200   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1201   return constant->handle(isolate());
1202 }
1203 
1204 
1205 template <class LI>
ToShiftedRightOperand32(LOperand * right,LI * shift_info)1206 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1207   if (shift_info->shift() == NO_SHIFT) {
1208     return ToOperand32(right);
1209   } else {
1210     return Operand(
1211         ToRegister32(right),
1212         shift_info->shift(),
1213         JSShiftAmountFromLConstant(shift_info->shift_amount()));
1214   }
1215 }
1216 
1217 
IsSmi(LConstantOperand * op) const1218 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1219   return chunk_->LookupLiteralRepresentation(op).IsSmi();
1220 }
1221 
1222 
IsInteger32Constant(LConstantOperand * op) const1223 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1224   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1225 }
1226 
1227 
ToInteger32(LConstantOperand * op) const1228 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1229   HConstant* constant = chunk_->LookupConstant(op);
1230   return constant->Integer32Value();
1231 }
1232 
1233 
ToDouble(LConstantOperand * op) const1234 double LCodeGen::ToDouble(LConstantOperand* op) const {
1235   HConstant* constant = chunk_->LookupConstant(op);
1236   DCHECK(constant->HasDoubleValue());
1237   return constant->DoubleValue();
1238 }
1239 
1240 
TokenToCondition(Token::Value op,bool is_unsigned)1241 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1242   Condition cond = nv;
1243   switch (op) {
1244     case Token::EQ:
1245     case Token::EQ_STRICT:
1246       cond = eq;
1247       break;
1248     case Token::NE:
1249     case Token::NE_STRICT:
1250       cond = ne;
1251       break;
1252     case Token::LT:
1253       cond = is_unsigned ? lo : lt;
1254       break;
1255     case Token::GT:
1256       cond = is_unsigned ? hi : gt;
1257       break;
1258     case Token::LTE:
1259       cond = is_unsigned ? ls : le;
1260       break;
1261     case Token::GTE:
1262       cond = is_unsigned ? hs : ge;
1263       break;
1264     case Token::IN:
1265     case Token::INSTANCEOF:
1266     default:
1267       UNREACHABLE();
1268   }
1269   return cond;
1270 }
1271 
1272 
1273 template<class InstrType>
EmitBranchGeneric(InstrType instr,const BranchGenerator & branch)1274 void LCodeGen::EmitBranchGeneric(InstrType instr,
1275                                  const BranchGenerator& branch) {
1276   int left_block = instr->TrueDestination(chunk_);
1277   int right_block = instr->FalseDestination(chunk_);
1278 
1279   int next_block = GetNextEmittedBlock();
1280 
1281   if (right_block == left_block) {
1282     EmitGoto(left_block);
1283   } else if (left_block == next_block) {
1284     branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1285   } else {
1286     branch.Emit(chunk_->GetAssemblyLabel(left_block));
1287     if (right_block != next_block) {
1288       __ B(chunk_->GetAssemblyLabel(right_block));
1289     }
1290   }
1291 }
1292 
1293 
1294 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1295 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1296   DCHECK((condition != al) && (condition != nv));
1297   BranchOnCondition branch(this, condition);
1298   EmitBranchGeneric(instr, branch);
1299 }
1300 
1301 
1302 template<class InstrType>
EmitCompareAndBranch(InstrType instr,Condition condition,const Register & lhs,const Operand & rhs)1303 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1304                                     Condition condition,
1305                                     const Register& lhs,
1306                                     const Operand& rhs) {
1307   DCHECK((condition != al) && (condition != nv));
1308   CompareAndBranch branch(this, condition, lhs, rhs);
1309   EmitBranchGeneric(instr, branch);
1310 }
1311 
1312 
1313 template<class InstrType>
EmitTestAndBranch(InstrType instr,Condition condition,const Register & value,uint64_t mask)1314 void LCodeGen::EmitTestAndBranch(InstrType instr,
1315                                  Condition condition,
1316                                  const Register& value,
1317                                  uint64_t mask) {
1318   DCHECK((condition != al) && (condition != nv));
1319   TestAndBranch branch(this, condition, value, mask);
1320   EmitBranchGeneric(instr, branch);
1321 }
1322 
1323 
1324 template<class InstrType>
EmitBranchIfNonZeroNumber(InstrType instr,const FPRegister & value,const FPRegister & scratch)1325 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1326                                          const FPRegister& value,
1327                                          const FPRegister& scratch) {
1328   BranchIfNonZeroNumber branch(this, value, scratch);
1329   EmitBranchGeneric(instr, branch);
1330 }
1331 
1332 
1333 template<class InstrType>
EmitBranchIfHeapNumber(InstrType instr,const Register & value)1334 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1335                                       const Register& value) {
1336   BranchIfHeapNumber branch(this, value);
1337   EmitBranchGeneric(instr, branch);
1338 }
1339 
1340 
1341 template<class InstrType>
EmitBranchIfRoot(InstrType instr,const Register & value,Heap::RootListIndex index)1342 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1343                                 const Register& value,
1344                                 Heap::RootListIndex index) {
1345   BranchIfRoot branch(this, value, index);
1346   EmitBranchGeneric(instr, branch);
1347 }
1348 
1349 
DoGap(LGap * gap)1350 void LCodeGen::DoGap(LGap* gap) {
1351   for (int i = LGap::FIRST_INNER_POSITION;
1352        i <= LGap::LAST_INNER_POSITION;
1353        i++) {
1354     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1355     LParallelMove* move = gap->GetParallelMove(inner_pos);
1356     if (move != NULL) {
1357       resolver_.Resolve(move);
1358     }
1359   }
1360 }
1361 
1362 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)1363 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1364   Register arguments = ToRegister(instr->arguments());
1365   Register result = ToRegister(instr->result());
1366 
1367   // The pointer to the arguments array come from DoArgumentsElements.
1368   // It does not point directly to the arguments and there is an offest of
1369   // two words that we must take into account when accessing an argument.
1370   // Subtracting the index from length accounts for one, so we add one more.
1371 
1372   if (instr->length()->IsConstantOperand() &&
1373       instr->index()->IsConstantOperand()) {
1374     int index = ToInteger32(LConstantOperand::cast(instr->index()));
1375     int length = ToInteger32(LConstantOperand::cast(instr->length()));
1376     int offset = ((length - index) + 1) * kPointerSize;
1377     __ Ldr(result, MemOperand(arguments, offset));
1378   } else if (instr->index()->IsConstantOperand()) {
1379     Register length = ToRegister32(instr->length());
1380     int index = ToInteger32(LConstantOperand::cast(instr->index()));
1381     int loc = index - 1;
1382     if (loc != 0) {
1383       __ Sub(result.W(), length, loc);
1384       __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1385     } else {
1386       __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1387     }
1388   } else {
1389     Register length = ToRegister32(instr->length());
1390     Operand index = ToOperand32(instr->index());
1391     __ Sub(result.W(), length, index);
1392     __ Add(result.W(), result.W(), 1);
1393     __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1394   }
1395 }
1396 
1397 
DoAddE(LAddE * instr)1398 void LCodeGen::DoAddE(LAddE* instr) {
1399   Register result = ToRegister(instr->result());
1400   Register left = ToRegister(instr->left());
1401   Operand right = Operand(x0);  // Dummy initialization.
1402   if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) {
1403     right = Operand(ToRegister(instr->right()));
1404   } else if (instr->right()->IsConstantOperand()) {
1405     right = ToInteger32(LConstantOperand::cast(instr->right()));
1406   } else {
1407     right = Operand(ToRegister32(instr->right()), SXTW);
1408   }
1409 
1410   DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1411   __ Add(result, left, right);
1412 }
1413 
1414 
DoAddI(LAddI * instr)1415 void LCodeGen::DoAddI(LAddI* instr) {
1416   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1417   Register result = ToRegister32(instr->result());
1418   Register left = ToRegister32(instr->left());
1419   Operand right = ToShiftedRightOperand32(instr->right(), instr);
1420 
1421   if (can_overflow) {
1422     __ Adds(result, left, right);
1423     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1424   } else {
1425     __ Add(result, left, right);
1426   }
1427 }
1428 
1429 
DoAddS(LAddS * instr)1430 void LCodeGen::DoAddS(LAddS* instr) {
1431   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1432   Register result = ToRegister(instr->result());
1433   Register left = ToRegister(instr->left());
1434   Operand right = ToOperand(instr->right());
1435   if (can_overflow) {
1436     __ Adds(result, left, right);
1437     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
1438   } else {
1439     __ Add(result, left, right);
1440   }
1441 }
1442 
1443 
DoAllocate(LAllocate * instr)1444 void LCodeGen::DoAllocate(LAllocate* instr) {
1445   class DeferredAllocate: public LDeferredCode {
1446    public:
1447     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1448         : LDeferredCode(codegen), instr_(instr) { }
1449     virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1450     virtual LInstruction* instr() { return instr_; }
1451    private:
1452     LAllocate* instr_;
1453   };
1454 
1455   DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1456 
1457   Register result = ToRegister(instr->result());
1458   Register temp1 = ToRegister(instr->temp1());
1459   Register temp2 = ToRegister(instr->temp2());
1460 
1461   // Allocate memory for the object.
1462   AllocationFlags flags = TAG_OBJECT;
1463   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1464     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1465   }
1466 
1467   if (instr->hydrogen()->IsOldSpaceAllocation()) {
1468     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1469     flags = static_cast<AllocationFlags>(flags | PRETENURE);
1470   }
1471 
1472   if (instr->size()->IsConstantOperand()) {
1473     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1474     CHECK(size <= Page::kMaxRegularHeapObjectSize);
1475     __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1476   } else {
1477     Register size = ToRegister32(instr->size());
1478     __ Sxtw(size.X(), size);
1479     __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1480   }
1481 
1482   __ Bind(deferred->exit());
1483 
1484   if (instr->hydrogen()->MustPrefillWithFiller()) {
1485     Register start = temp1;
1486     Register end = temp2;
1487     Register filler = ToRegister(instr->temp3());
1488 
1489     __ Sub(start, result, kHeapObjectTag);
1490 
1491     if (instr->size()->IsConstantOperand()) {
1492       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1493       __ Add(end, start, size);
1494     } else {
1495       __ Add(end, start, ToRegister(instr->size()));
1496     }
1497     __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
1498     __ InitializeFieldsWithFiller(start, end, filler);
1499   } else {
1500     DCHECK(instr->temp3() == NULL);
1501   }
1502 }
1503 
1504 
DoDeferredAllocate(LAllocate * instr)1505 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1506   // TODO(3095996): Get rid of this. For now, we need to make the
1507   // result register contain a valid pointer because it is already
1508   // contained in the register pointer map.
1509   __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1510 
1511   PushSafepointRegistersScope scope(this);
1512   // We're in a SafepointRegistersScope so we can use any scratch registers.
1513   Register size = x0;
1514   if (instr->size()->IsConstantOperand()) {
1515     __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1516   } else {
1517     __ SmiTag(size, ToRegister32(instr->size()).X());
1518   }
1519   int flags = AllocateDoubleAlignFlag::encode(
1520       instr->hydrogen()->MustAllocateDoubleAligned());
1521   if (instr->hydrogen()->IsOldSpaceAllocation()) {
1522     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1523     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
1524   } else {
1525     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1526   }
1527   __ Mov(x10, Smi::FromInt(flags));
1528   __ Push(size, x10);
1529 
1530   CallRuntimeFromDeferred(
1531       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1532   __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1533 }
1534 
1535 
DoApplyArguments(LApplyArguments * instr)1536 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1537   Register receiver = ToRegister(instr->receiver());
1538   Register function = ToRegister(instr->function());
1539   Register length = ToRegister32(instr->length());
1540 
1541   Register elements = ToRegister(instr->elements());
1542   Register scratch = x5;
1543   DCHECK(receiver.Is(x0));  // Used for parameter count.
1544   DCHECK(function.Is(x1));  // Required by InvokeFunction.
1545   DCHECK(ToRegister(instr->result()).Is(x0));
1546   DCHECK(instr->IsMarkedAsCall());
1547 
1548   // Copy the arguments to this function possibly from the
1549   // adaptor frame below it.
1550   const uint32_t kArgumentsLimit = 1 * KB;
1551   __ Cmp(length, kArgumentsLimit);
1552   DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments);
1553 
1554   // Push the receiver and use the register to keep the original
1555   // number of arguments.
1556   __ Push(receiver);
1557   Register argc = receiver;
1558   receiver = NoReg;
1559   __ Sxtw(argc, length);
1560   // The arguments are at a one pointer size offset from elements.
1561   __ Add(elements, elements, 1 * kPointerSize);
1562 
1563   // Loop through the arguments pushing them onto the execution
1564   // stack.
1565   Label invoke, loop;
1566   // length is a small non-negative integer, due to the test above.
1567   __ Cbz(length, &invoke);
1568   __ Bind(&loop);
1569   __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1570   __ Push(scratch);
1571   __ Subs(length, length, 1);
1572   __ B(ne, &loop);
1573 
1574   __ Bind(&invoke);
1575   DCHECK(instr->HasPointerMap());
1576   LPointerMap* pointers = instr->pointer_map();
1577   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1578   // The number of arguments is stored in argc (receiver) which is x0, as
1579   // expected by InvokeFunction.
1580   ParameterCount actual(argc);
1581   __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
1582                     safepoint_generator);
1583 }
1584 
1585 
DoArgumentsElements(LArgumentsElements * instr)1586 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1587   Register result = ToRegister(instr->result());
1588 
1589   if (instr->hydrogen()->from_inlined()) {
1590     // When we are inside an inlined function, the arguments are the last things
1591     // that have been pushed on the stack. Therefore the arguments array can be
1592     // accessed directly from jssp.
1593     // However in the normal case, it is accessed via fp but there are two words
1594     // on the stack between fp and the arguments (the saved lr and fp) and the
1595     // LAccessArgumentsAt implementation take that into account.
1596     // In the inlined case we need to subtract the size of 2 words to jssp to
1597     // get a pointer which will work well with LAccessArgumentsAt.
1598     DCHECK(masm()->StackPointer().Is(jssp));
1599     __ Sub(result, jssp, 2 * kPointerSize);
1600   } else {
1601     DCHECK(instr->temp() != NULL);
1602     Register previous_fp = ToRegister(instr->temp());
1603 
1604     __ Ldr(previous_fp,
1605            MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1606     __ Ldr(result,
1607            MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
1608     __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1609     __ Csel(result, fp, previous_fp, ne);
1610   }
1611 }
1612 
1613 
DoArgumentsLength(LArgumentsLength * instr)1614 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1615   Register elements = ToRegister(instr->elements());
1616   Register result = ToRegister32(instr->result());
1617   Label done;
1618 
1619   // If no arguments adaptor frame the number of arguments is fixed.
1620   __ Cmp(fp, elements);
1621   __ Mov(result, scope()->num_parameters());
1622   __ B(eq, &done);
1623 
1624   // Arguments adaptor frame present. Get argument length from there.
1625   __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1626   __ Ldr(result,
1627          UntagSmiMemOperand(result.X(),
1628                             ArgumentsAdaptorFrameConstants::kLengthOffset));
1629 
1630   // Argument length is in result register.
1631   __ Bind(&done);
1632 }
1633 
1634 
DoArithmeticD(LArithmeticD * instr)1635 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1636   DoubleRegister left = ToDoubleRegister(instr->left());
1637   DoubleRegister right = ToDoubleRegister(instr->right());
1638   DoubleRegister result = ToDoubleRegister(instr->result());
1639 
1640   switch (instr->op()) {
1641     case Token::ADD: __ Fadd(result, left, right); break;
1642     case Token::SUB: __ Fsub(result, left, right); break;
1643     case Token::MUL: __ Fmul(result, left, right); break;
1644     case Token::DIV: __ Fdiv(result, left, right); break;
1645     case Token::MOD: {
1646       // The ECMA-262 remainder operator is the remainder from a truncating
1647       // (round-towards-zero) division. Note that this differs from IEEE-754.
1648       //
1649       // TODO(jbramley): See if it's possible to do this inline, rather than by
1650       // calling a helper function. With frintz (to produce the intermediate
1651       // quotient) and fmsub (to calculate the remainder without loss of
1652       // precision), it should be possible. However, we would need support for
1653       // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1654       // support that yet.
1655       DCHECK(left.Is(d0));
1656       DCHECK(right.Is(d1));
1657       __ CallCFunction(
1658           ExternalReference::mod_two_doubles_operation(isolate()),
1659           0, 2);
1660       DCHECK(result.Is(d0));
1661       break;
1662     }
1663     default:
1664       UNREACHABLE();
1665       break;
1666   }
1667 }
1668 
1669 
DoArithmeticT(LArithmeticT * instr)1670 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1671   DCHECK(ToRegister(instr->context()).is(cp));
1672   DCHECK(ToRegister(instr->left()).is(x1));
1673   DCHECK(ToRegister(instr->right()).is(x0));
1674   DCHECK(ToRegister(instr->result()).is(x0));
1675 
1676   Handle<Code> code =
1677       CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
1678   CallCode(code, RelocInfo::CODE_TARGET, instr);
1679 }
1680 
1681 
DoBitI(LBitI * instr)1682 void LCodeGen::DoBitI(LBitI* instr) {
1683   Register result = ToRegister32(instr->result());
1684   Register left = ToRegister32(instr->left());
1685   Operand right = ToShiftedRightOperand32(instr->right(), instr);
1686 
1687   switch (instr->op()) {
1688     case Token::BIT_AND: __ And(result, left, right); break;
1689     case Token::BIT_OR:  __ Orr(result, left, right); break;
1690     case Token::BIT_XOR: __ Eor(result, left, right); break;
1691     default:
1692       UNREACHABLE();
1693       break;
1694   }
1695 }
1696 
1697 
DoBitS(LBitS * instr)1698 void LCodeGen::DoBitS(LBitS* instr) {
1699   Register result = ToRegister(instr->result());
1700   Register left = ToRegister(instr->left());
1701   Operand right = ToOperand(instr->right());
1702 
1703   switch (instr->op()) {
1704     case Token::BIT_AND: __ And(result, left, right); break;
1705     case Token::BIT_OR:  __ Orr(result, left, right); break;
1706     case Token::BIT_XOR: __ Eor(result, left, right); break;
1707     default:
1708       UNREACHABLE();
1709       break;
1710   }
1711 }
1712 
1713 
DoBoundsCheck(LBoundsCheck * instr)1714 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1715   Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1716   DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1717   DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1718   if (instr->index()->IsConstantOperand()) {
1719     Operand index = ToOperand32(instr->index());
1720     Register length = ToRegister32(instr->length());
1721     __ Cmp(length, index);
1722     cond = CommuteCondition(cond);
1723   } else {
1724     Register index = ToRegister32(instr->index());
1725     Operand length = ToOperand32(instr->length());
1726     __ Cmp(index, length);
1727   }
1728   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1729     __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1730   } else {
1731     DeoptimizeIf(cond, instr, Deoptimizer::kOutOfBounds);
1732   }
1733 }
1734 
1735 
DoBranch(LBranch * instr)1736 void LCodeGen::DoBranch(LBranch* instr) {
1737   Representation r = instr->hydrogen()->value()->representation();
1738   Label* true_label = instr->TrueLabel(chunk_);
1739   Label* false_label = instr->FalseLabel(chunk_);
1740 
1741   if (r.IsInteger32()) {
1742     DCHECK(!info()->IsStub());
1743     EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1744   } else if (r.IsSmi()) {
1745     DCHECK(!info()->IsStub());
1746     STATIC_ASSERT(kSmiTag == 0);
1747     EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1748   } else if (r.IsDouble()) {
1749     DoubleRegister value = ToDoubleRegister(instr->value());
1750     // Test the double value. Zero and NaN are false.
1751     EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1752   } else {
1753     DCHECK(r.IsTagged());
1754     Register value = ToRegister(instr->value());
1755     HType type = instr->hydrogen()->value()->type();
1756 
1757     if (type.IsBoolean()) {
1758       DCHECK(!info()->IsStub());
1759       __ CompareRoot(value, Heap::kTrueValueRootIndex);
1760       EmitBranch(instr, eq);
1761     } else if (type.IsSmi()) {
1762       DCHECK(!info()->IsStub());
1763       EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1764     } else if (type.IsJSArray()) {
1765       DCHECK(!info()->IsStub());
1766       EmitGoto(instr->TrueDestination(chunk()));
1767     } else if (type.IsHeapNumber()) {
1768       DCHECK(!info()->IsStub());
1769       __ Ldr(double_scratch(), FieldMemOperand(value,
1770                                                HeapNumber::kValueOffset));
1771       // Test the double value. Zero and NaN are false.
1772       EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1773     } else if (type.IsString()) {
1774       DCHECK(!info()->IsStub());
1775       Register temp = ToRegister(instr->temp1());
1776       __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1777       EmitCompareAndBranch(instr, ne, temp, 0);
1778     } else {
1779       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1780       // Avoid deopts in the case where we've never executed this path before.
1781       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
1782 
1783       if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1784         // undefined -> false.
1785         __ JumpIfRoot(
1786             value, Heap::kUndefinedValueRootIndex, false_label);
1787       }
1788 
1789       if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1790         // Boolean -> its value.
1791         __ JumpIfRoot(
1792             value, Heap::kTrueValueRootIndex, true_label);
1793         __ JumpIfRoot(
1794             value, Heap::kFalseValueRootIndex, false_label);
1795       }
1796 
1797       if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1798         // 'null' -> false.
1799         __ JumpIfRoot(
1800             value, Heap::kNullValueRootIndex, false_label);
1801       }
1802 
1803       if (expected.Contains(ToBooleanStub::SMI)) {
1804         // Smis: 0 -> false, all other -> true.
1805         DCHECK(Smi::FromInt(0) == 0);
1806         __ Cbz(value, false_label);
1807         __ JumpIfSmi(value, true_label);
1808       } else if (expected.NeedsMap()) {
1809         // If we need a map later and have a smi, deopt.
1810         DeoptimizeIfSmi(value, instr, Deoptimizer::kSmi);
1811       }
1812 
1813       Register map = NoReg;
1814       Register scratch = NoReg;
1815 
1816       if (expected.NeedsMap()) {
1817         DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1818         map = ToRegister(instr->temp1());
1819         scratch = ToRegister(instr->temp2());
1820 
1821         __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1822 
1823         if (expected.CanBeUndetectable()) {
1824           // Undetectable -> false.
1825           __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1826           __ TestAndBranchIfAnySet(
1827               scratch, 1 << Map::kIsUndetectable, false_label);
1828         }
1829       }
1830 
1831       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1832         // spec object -> true.
1833         __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE);
1834         __ B(ge, true_label);
1835       }
1836 
1837       if (expected.Contains(ToBooleanStub::STRING)) {
1838         // String value -> false iff empty.
1839         Label not_string;
1840         __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1841         __ B(ge, &not_string);
1842         __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1843         __ Cbz(scratch, false_label);
1844         __ B(true_label);
1845         __ Bind(&not_string);
1846       }
1847 
1848       if (expected.Contains(ToBooleanStub::SYMBOL)) {
1849         // Symbol value -> true.
1850         __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1851         __ B(eq, true_label);
1852       }
1853 
1854       if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
1855         // SIMD value -> true.
1856         __ CompareInstanceType(map, scratch, SIMD128_VALUE_TYPE);
1857         __ B(eq, true_label);
1858       }
1859 
1860       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1861         Label not_heap_number;
1862         __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
1863 
1864         __ Ldr(double_scratch(),
1865                FieldMemOperand(value, HeapNumber::kValueOffset));
1866         __ Fcmp(double_scratch(), 0.0);
1867         // If we got a NaN (overflow bit is set), jump to the false branch.
1868         __ B(vs, false_label);
1869         __ B(eq, false_label);
1870         __ B(true_label);
1871         __ Bind(&not_heap_number);
1872       }
1873 
1874       if (!expected.IsGeneric()) {
1875         // We've seen something for the first time -> deopt.
1876         // This can only happen if we are not generic already.
1877         Deoptimize(instr, Deoptimizer::kUnexpectedObject);
1878       }
1879     }
1880   }
1881 }
1882 
1883 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,LInstruction * instr)1884 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1885                                  int formal_parameter_count, int arity,
1886                                  LInstruction* instr) {
1887   bool dont_adapt_arguments =
1888       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1889   bool can_invoke_directly =
1890       dont_adapt_arguments || formal_parameter_count == arity;
1891 
1892   // The function interface relies on the following register assignments.
1893   Register function_reg = x1;
1894   Register arity_reg = x0;
1895 
1896   LPointerMap* pointers = instr->pointer_map();
1897 
1898   if (FLAG_debug_code) {
1899     Label is_not_smi;
1900     // Try to confirm that function_reg (x1) is a tagged pointer.
1901     __ JumpIfNotSmi(function_reg, &is_not_smi);
1902     __ Abort(kExpectedFunctionObject);
1903     __ Bind(&is_not_smi);
1904   }
1905 
1906   if (can_invoke_directly) {
1907     // Change context.
1908     __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
1909 
1910     // Always initialize new target and number of actual arguments.
1911     __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
1912     __ Mov(arity_reg, arity);
1913 
1914     // Invoke function.
1915     __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
1916     __ Call(x10);
1917 
1918     // Set up deoptimization.
1919     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1920   } else {
1921     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1922     ParameterCount count(arity);
1923     ParameterCount expected(formal_parameter_count);
1924     __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
1925   }
1926 }
1927 
1928 
DoCallWithDescriptor(LCallWithDescriptor * instr)1929 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
1930   DCHECK(instr->IsMarkedAsCall());
1931   DCHECK(ToRegister(instr->result()).Is(x0));
1932 
1933   if (instr->hydrogen()->IsTailCall()) {
1934     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
1935 
1936     if (instr->target()->IsConstantOperand()) {
1937       LConstantOperand* target = LConstantOperand::cast(instr->target());
1938       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1939       // TODO(all): on ARM we use a call descriptor to specify a storage mode
1940       // but on ARM64 we only have one storage mode so it isn't necessary. Check
1941       // this understanding is correct.
1942       __ Jump(code, RelocInfo::CODE_TARGET);
1943     } else {
1944       DCHECK(instr->target()->IsRegister());
1945       Register target = ToRegister(instr->target());
1946       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1947       __ Br(target);
1948     }
1949   } else {
1950     LPointerMap* pointers = instr->pointer_map();
1951     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
1952 
1953     if (instr->target()->IsConstantOperand()) {
1954       LConstantOperand* target = LConstantOperand::cast(instr->target());
1955       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
1956       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
1957       // TODO(all): on ARM we use a call descriptor to specify a storage mode
1958       // but on ARM64 we only have one storage mode so it isn't necessary. Check
1959       // this understanding is correct.
1960       __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
1961     } else {
1962       DCHECK(instr->target()->IsRegister());
1963       Register target = ToRegister(instr->target());
1964       generator.BeforeCall(__ CallSize(target));
1965       __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
1966       __ Call(target);
1967     }
1968     generator.AfterCall();
1969   }
1970 
1971   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
1972 }
1973 
1974 
DoCallJSFunction(LCallJSFunction * instr)1975 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
1976   DCHECK(instr->IsMarkedAsCall());
1977   DCHECK(ToRegister(instr->function()).is(x1));
1978 
1979   // Change context.
1980   __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
1981 
1982   // Always initialize new target and number of actual arguments.
1983   __ LoadRoot(x3, Heap::kUndefinedValueRootIndex);
1984   __ Mov(x0, instr->arity());
1985 
1986   // Load the code entry address
1987   __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
1988   __ Call(x10);
1989 
1990   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
1991   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
1992 }
1993 
1994 
DoCallRuntime(LCallRuntime * instr)1995 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
1996   CallRuntime(instr->function(), instr->arity(), instr);
1997   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
1998 }
1999 
2000 
DoCallStub(LCallStub * instr)2001 void LCodeGen::DoCallStub(LCallStub* instr) {
2002   DCHECK(ToRegister(instr->context()).is(cp));
2003   DCHECK(ToRegister(instr->result()).is(x0));
2004   switch (instr->hydrogen()->major_key()) {
2005     case CodeStub::RegExpExec: {
2006       RegExpExecStub stub(isolate());
2007       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2008       break;
2009     }
2010     case CodeStub::SubString: {
2011       SubStringStub stub(isolate());
2012       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2013       break;
2014     }
2015     default:
2016       UNREACHABLE();
2017   }
2018   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2019 }
2020 
2021 
DoUnknownOSRValue(LUnknownOSRValue * instr)2022 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2023   GenerateOsrPrologue();
2024 }
2025 
2026 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)2027 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2028   Register temp = ToRegister(instr->temp());
2029   {
2030     PushSafepointRegistersScope scope(this);
2031     __ Push(object);
2032     __ Mov(cp, 0);
2033     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2034     RecordSafepointWithRegisters(
2035         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2036     __ StoreToSafepointRegisterSlot(x0, temp);
2037   }
2038   DeoptimizeIfSmi(temp, instr, Deoptimizer::kInstanceMigrationFailed);
2039 }
2040 
2041 
DoCheckMaps(LCheckMaps * instr)2042 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2043   class DeferredCheckMaps: public LDeferredCode {
2044    public:
2045     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2046         : LDeferredCode(codegen), instr_(instr), object_(object) {
2047       SetExit(check_maps());
2048     }
2049     virtual void Generate() {
2050       codegen()->DoDeferredInstanceMigration(instr_, object_);
2051     }
2052     Label* check_maps() { return &check_maps_; }
2053     virtual LInstruction* instr() { return instr_; }
2054    private:
2055     LCheckMaps* instr_;
2056     Label check_maps_;
2057     Register object_;
2058   };
2059 
2060   if (instr->hydrogen()->IsStabilityCheck()) {
2061     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2062     for (int i = 0; i < maps->size(); ++i) {
2063       AddStabilityDependency(maps->at(i).handle());
2064     }
2065     return;
2066   }
2067 
2068   Register object = ToRegister(instr->value());
2069   Register map_reg = ToRegister(instr->temp());
2070 
2071   __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2072 
2073   DeferredCheckMaps* deferred = NULL;
2074   if (instr->hydrogen()->HasMigrationTarget()) {
2075     deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2076     __ Bind(deferred->check_maps());
2077   }
2078 
2079   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2080   Label success;
2081   for (int i = 0; i < maps->size() - 1; i++) {
2082     Handle<Map> map = maps->at(i).handle();
2083     __ CompareMap(map_reg, map);
2084     __ B(eq, &success);
2085   }
2086   Handle<Map> map = maps->at(maps->size() - 1).handle();
2087   __ CompareMap(map_reg, map);
2088 
2089   // We didn't match a map.
2090   if (instr->hydrogen()->HasMigrationTarget()) {
2091     __ B(ne, deferred->entry());
2092   } else {
2093     DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
2094   }
2095 
2096   __ Bind(&success);
2097 }
2098 
2099 
DoCheckNonSmi(LCheckNonSmi * instr)2100 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2101   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2102     DeoptimizeIfSmi(ToRegister(instr->value()), instr, Deoptimizer::kSmi);
2103   }
2104 }
2105 
2106 
DoCheckSmi(LCheckSmi * instr)2107 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2108   Register value = ToRegister(instr->value());
2109   DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
2110   DeoptimizeIfNotSmi(value, instr, Deoptimizer::kNotASmi);
2111 }
2112 
2113 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)2114 void LCodeGen::DoCheckArrayBufferNotNeutered(
2115     LCheckArrayBufferNotNeutered* instr) {
2116   UseScratchRegisterScope temps(masm());
2117   Register view = ToRegister(instr->view());
2118   Register scratch = temps.AcquireX();
2119 
2120   __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
2121   __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
2122   __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
2123   DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds);
2124 }
2125 
2126 
DoCheckInstanceType(LCheckInstanceType * instr)2127 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2128   Register input = ToRegister(instr->value());
2129   Register scratch = ToRegister(instr->temp());
2130 
2131   __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2132   __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2133 
2134   if (instr->hydrogen()->is_interval_check()) {
2135     InstanceType first, last;
2136     instr->hydrogen()->GetCheckInterval(&first, &last);
2137 
2138     __ Cmp(scratch, first);
2139     if (first == last) {
2140       // If there is only one type in the interval check for equality.
2141       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2142     } else if (last == LAST_TYPE) {
2143       // We don't need to compare with the higher bound of the interval.
2144       DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType);
2145     } else {
2146       // If we are below the lower bound, set the C flag and clear the Z flag
2147       // to force a deopt.
2148       __ Ccmp(scratch, last, CFlag, hs);
2149       DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType);
2150     }
2151   } else {
2152     uint8_t mask;
2153     uint8_t tag;
2154     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2155 
2156     if (base::bits::IsPowerOfTwo32(mask)) {
2157       DCHECK((tag == 0) || (tag == mask));
2158       if (tag == 0) {
2159         DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2160                            Deoptimizer::kWrongInstanceType);
2161       } else {
2162         DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2163                              Deoptimizer::kWrongInstanceType);
2164       }
2165     } else {
2166       if (tag == 0) {
2167         __ Tst(scratch, mask);
2168       } else {
2169         __ And(scratch, scratch, mask);
2170         __ Cmp(scratch, tag);
2171       }
2172       DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
2173     }
2174   }
2175 }
2176 
2177 
DoClampDToUint8(LClampDToUint8 * instr)2178 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2179   DoubleRegister input = ToDoubleRegister(instr->unclamped());
2180   Register result = ToRegister32(instr->result());
2181   __ ClampDoubleToUint8(result, input, double_scratch());
2182 }
2183 
2184 
DoClampIToUint8(LClampIToUint8 * instr)2185 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2186   Register input = ToRegister32(instr->unclamped());
2187   Register result = ToRegister32(instr->result());
2188   __ ClampInt32ToUint8(result, input);
2189 }
2190 
2191 
DoClampTToUint8(LClampTToUint8 * instr)2192 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2193   Register input = ToRegister(instr->unclamped());
2194   Register result = ToRegister32(instr->result());
2195   Label done;
2196 
2197   // Both smi and heap number cases are handled.
2198   Label is_not_smi;
2199   __ JumpIfNotSmi(input, &is_not_smi);
2200   __ SmiUntag(result.X(), input);
2201   __ ClampInt32ToUint8(result);
2202   __ B(&done);
2203 
2204   __ Bind(&is_not_smi);
2205 
2206   // Check for heap number.
2207   Label is_heap_number;
2208   __ JumpIfHeapNumber(input, &is_heap_number);
2209 
2210   // Check for undefined. Undefined is coverted to zero for clamping conversion.
2211   DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2212                       Deoptimizer::kNotAHeapNumberUndefined);
2213   __ Mov(result, 0);
2214   __ B(&done);
2215 
2216   // Heap number case.
2217   __ Bind(&is_heap_number);
2218   DoubleRegister dbl_scratch = double_scratch();
2219   DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2220   __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2221   __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2222 
2223   __ Bind(&done);
2224 }
2225 
2226 
DoDoubleBits(LDoubleBits * instr)2227 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2228   DoubleRegister value_reg = ToDoubleRegister(instr->value());
2229   Register result_reg = ToRegister(instr->result());
2230   if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2231     __ Fmov(result_reg, value_reg);
2232     __ Lsr(result_reg, result_reg, 32);
2233   } else {
2234     __ Fmov(result_reg.W(), value_reg.S());
2235   }
2236 }
2237 
2238 
DoConstructDouble(LConstructDouble * instr)2239 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
2240   Register hi_reg = ToRegister(instr->hi());
2241   Register lo_reg = ToRegister(instr->lo());
2242   DoubleRegister result_reg = ToDoubleRegister(instr->result());
2243 
2244   // Insert the least significant 32 bits of hi_reg into the most significant
2245   // 32 bits of lo_reg, and move to a floating point register.
2246   __ Bfi(lo_reg, hi_reg, 32, 32);
2247   __ Fmov(result_reg, lo_reg);
2248 }
2249 
2250 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2251 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2252   Handle<String> class_name = instr->hydrogen()->class_name();
2253   Label* true_label = instr->TrueLabel(chunk_);
2254   Label* false_label = instr->FalseLabel(chunk_);
2255   Register input = ToRegister(instr->value());
2256   Register scratch1 = ToRegister(instr->temp1());
2257   Register scratch2 = ToRegister(instr->temp2());
2258 
2259   __ JumpIfSmi(input, false_label);
2260 
2261   Register map = scratch2;
2262   __ CompareObjectType(input, map, scratch1, JS_FUNCTION_TYPE);
2263   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2264     __ B(eq, true_label);
2265   } else {
2266     __ B(eq, false_label);
2267   }
2268 
2269   // Check if the constructor in the map is a function.
2270   {
2271     UseScratchRegisterScope temps(masm());
2272     Register instance_type = temps.AcquireX();
2273     __ GetMapConstructor(scratch1, map, scratch2, instance_type);
2274     __ Cmp(instance_type, JS_FUNCTION_TYPE);
2275   }
2276   // Objects with a non-function constructor have class 'Object'.
2277   if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2278     __ B(ne, true_label);
2279   } else {
2280     __ B(ne, false_label);
2281   }
2282 
2283   // The constructor function is in scratch1. Get its instance class name.
2284   __ Ldr(scratch1,
2285          FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2286   __ Ldr(scratch1,
2287          FieldMemOperand(scratch1,
2288                          SharedFunctionInfo::kInstanceClassNameOffset));
2289 
2290   // The class name we are testing against is internalized since it's a literal.
2291   // The name in the constructor is internalized because of the way the context
2292   // is booted. This routine isn't expected to work for random API-created
2293   // classes and it doesn't have to because you can't access it with natives
2294   // syntax. Since both sides are internalized it is sufficient to use an
2295   // identity comparison.
2296   EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2297 }
2298 
2299 
DoCmpHoleAndBranchD(LCmpHoleAndBranchD * instr)2300 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2301   DCHECK(instr->hydrogen()->representation().IsDouble());
2302   FPRegister object = ToDoubleRegister(instr->object());
2303   Register temp = ToRegister(instr->temp());
2304 
2305   // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2306   // (relatively expensive) hole-NaN check.
2307   __ Fcmp(object, object);
2308   __ B(vc, instr->FalseLabel(chunk_));
2309 
2310   // We have a NaN, but is it the hole?
2311   __ Fmov(temp, object);
2312   EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2313 }
2314 
2315 
DoCmpHoleAndBranchT(LCmpHoleAndBranchT * instr)2316 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2317   DCHECK(instr->hydrogen()->representation().IsTagged());
2318   Register object = ToRegister(instr->object());
2319 
2320   EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2321 }
2322 
2323 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2324 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2325   Register value = ToRegister(instr->value());
2326   Register map = ToRegister(instr->temp());
2327 
2328   __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2329   EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2330 }
2331 
2332 
DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch * instr)2333 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2334   Representation rep = instr->hydrogen()->value()->representation();
2335   DCHECK(!rep.IsInteger32());
2336   Register scratch = ToRegister(instr->temp());
2337 
2338   if (rep.IsDouble()) {
2339     __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
2340                        instr->TrueLabel(chunk()));
2341   } else {
2342     Register value = ToRegister(instr->value());
2343     __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2344     __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2345     __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
2346   }
2347   EmitGoto(instr->FalseDestination(chunk()));
2348 }
2349 
2350 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2351 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2352   LOperand* left = instr->left();
2353   LOperand* right = instr->right();
2354   bool is_unsigned =
2355       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2356       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2357   Condition cond = TokenToCondition(instr->op(), is_unsigned);
2358 
2359   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2360     // We can statically evaluate the comparison.
2361     double left_val = ToDouble(LConstantOperand::cast(left));
2362     double right_val = ToDouble(LConstantOperand::cast(right));
2363     int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2364         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2365     EmitGoto(next_block);
2366   } else {
2367     if (instr->is_double()) {
2368       __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2369 
2370       // If a NaN is involved, i.e. the result is unordered (V set),
2371       // jump to false block label.
2372       __ B(vs, instr->FalseLabel(chunk_));
2373       EmitBranch(instr, cond);
2374     } else {
2375       if (instr->hydrogen_value()->representation().IsInteger32()) {
2376         if (right->IsConstantOperand()) {
2377           EmitCompareAndBranch(instr, cond, ToRegister32(left),
2378                                ToOperand32(right));
2379         } else {
2380           // Commute the operands and the condition.
2381           EmitCompareAndBranch(instr, CommuteCondition(cond),
2382                                ToRegister32(right), ToOperand32(left));
2383         }
2384       } else {
2385         DCHECK(instr->hydrogen_value()->representation().IsSmi());
2386         if (right->IsConstantOperand()) {
2387           int32_t value = ToInteger32(LConstantOperand::cast(right));
2388           EmitCompareAndBranch(instr,
2389                                cond,
2390                                ToRegister(left),
2391                                Operand(Smi::FromInt(value)));
2392         } else if (left->IsConstantOperand()) {
2393           // Commute the operands and the condition.
2394           int32_t value = ToInteger32(LConstantOperand::cast(left));
2395           EmitCompareAndBranch(instr,
2396                                CommuteCondition(cond),
2397                                ToRegister(right),
2398                                Operand(Smi::FromInt(value)));
2399         } else {
2400           EmitCompareAndBranch(instr,
2401                                cond,
2402                                ToRegister(left),
2403                                ToRegister(right));
2404         }
2405       }
2406     }
2407   }
2408 }
2409 
2410 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2411 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2412   Register left = ToRegister(instr->left());
2413   Register right = ToRegister(instr->right());
2414   EmitCompareAndBranch(instr, eq, left, right);
2415 }
2416 
2417 
DoCmpT(LCmpT * instr)2418 void LCodeGen::DoCmpT(LCmpT* instr) {
2419   DCHECK(ToRegister(instr->context()).is(cp));
2420   Token::Value op = instr->op();
2421   Condition cond = TokenToCondition(op, false);
2422 
2423   DCHECK(ToRegister(instr->left()).Is(x1));
2424   DCHECK(ToRegister(instr->right()).Is(x0));
2425   Handle<Code> ic =
2426       CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2427   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2428   // Signal that we don't inline smi code before this stub.
2429   InlineSmiCheckInfo::EmitNotInlined(masm());
2430 
2431   // Return true or false depending on CompareIC result.
2432   // This instruction is marked as call. We can clobber any register.
2433   DCHECK(instr->IsMarkedAsCall());
2434   __ LoadTrueFalseRoots(x1, x2);
2435   __ Cmp(x0, 0);
2436   __ Csel(ToRegister(instr->result()), x1, x2, cond);
2437 }
2438 
2439 
DoConstantD(LConstantD * instr)2440 void LCodeGen::DoConstantD(LConstantD* instr) {
2441   DCHECK(instr->result()->IsDoubleRegister());
2442   DoubleRegister result = ToDoubleRegister(instr->result());
2443   if (instr->value() == 0) {
2444     if (copysign(1.0, instr->value()) == 1.0) {
2445       __ Fmov(result, fp_zero);
2446     } else {
2447       __ Fneg(result, fp_zero);
2448     }
2449   } else {
2450     __ Fmov(result, instr->value());
2451   }
2452 }
2453 
2454 
DoConstantE(LConstantE * instr)2455 void LCodeGen::DoConstantE(LConstantE* instr) {
2456   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2457 }
2458 
2459 
DoConstantI(LConstantI * instr)2460 void LCodeGen::DoConstantI(LConstantI* instr) {
2461   DCHECK(is_int32(instr->value()));
2462   // Cast the value here to ensure that the value isn't sign extended by the
2463   // implicit Operand constructor.
2464   __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2465 }
2466 
2467 
DoConstantS(LConstantS * instr)2468 void LCodeGen::DoConstantS(LConstantS* instr) {
2469   __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2470 }
2471 
2472 
DoConstantT(LConstantT * instr)2473 void LCodeGen::DoConstantT(LConstantT* instr) {
2474   Handle<Object> object = instr->value(isolate());
2475   AllowDeferredHandleDereference smi_check;
2476   __ LoadObject(ToRegister(instr->result()), object);
2477 }
2478 
2479 
DoContext(LContext * instr)2480 void LCodeGen::DoContext(LContext* instr) {
2481   // If there is a non-return use, the context must be moved to a register.
2482   Register result = ToRegister(instr->result());
2483   if (info()->IsOptimizing()) {
2484     __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2485   } else {
2486     // If there is no frame, the context must be in cp.
2487     DCHECK(result.is(cp));
2488   }
2489 }
2490 
2491 
DoCheckValue(LCheckValue * instr)2492 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2493   Register reg = ToRegister(instr->value());
2494   Handle<HeapObject> object = instr->hydrogen()->object().handle();
2495   AllowDeferredHandleDereference smi_check;
2496   if (isolate()->heap()->InNewSpace(*object)) {
2497     UseScratchRegisterScope temps(masm());
2498     Register temp = temps.AcquireX();
2499     Handle<Cell> cell = isolate()->factory()->NewCell(object);
2500     __ Mov(temp, Operand(cell));
2501     __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2502     __ Cmp(reg, temp);
2503   } else {
2504     __ Cmp(reg, Operand(object));
2505   }
2506   DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
2507 }
2508 
2509 
DoLazyBailout(LLazyBailout * instr)2510 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2511   last_lazy_deopt_pc_ = masm()->pc_offset();
2512   DCHECK(instr->HasEnvironment());
2513   LEnvironment* env = instr->environment();
2514   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2515   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2516 }
2517 
2518 
DoDeoptimize(LDeoptimize * instr)2519 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2520   Deoptimizer::BailoutType type = instr->hydrogen()->type();
2521   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2522   // needed return address), even though the implementation of LAZY and EAGER is
2523   // now identical. When LAZY is eventually completely folded into EAGER, remove
2524   // the special case below.
2525   if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2526     type = Deoptimizer::LAZY;
2527   }
2528 
2529   Deoptimize(instr, instr->hydrogen()->reason(), &type);
2530 }
2531 
2532 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)2533 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2534   Register dividend = ToRegister32(instr->dividend());
2535   int32_t divisor = instr->divisor();
2536   Register result = ToRegister32(instr->result());
2537   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2538   DCHECK(!result.is(dividend));
2539 
2540   // Check for (0 / -x) that will produce negative zero.
2541   HDiv* hdiv = instr->hydrogen();
2542   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2543     DeoptimizeIfZero(dividend, instr, Deoptimizer::kDivisionByZero);
2544   }
2545   // Check for (kMinInt / -1).
2546   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2547     // Test dividend for kMinInt by subtracting one (cmp) and checking for
2548     // overflow.
2549     __ Cmp(dividend, 1);
2550     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
2551   }
2552   // Deoptimize if remainder will not be 0.
2553   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2554       divisor != 1 && divisor != -1) {
2555     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2556     __ Tst(dividend, mask);
2557     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
2558   }
2559 
2560   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
2561     __ Neg(result, dividend);
2562     return;
2563   }
2564   int32_t shift = WhichPowerOf2Abs(divisor);
2565   if (shift == 0) {
2566     __ Mov(result, dividend);
2567   } else if (shift == 1) {
2568     __ Add(result, dividend, Operand(dividend, LSR, 31));
2569   } else {
2570     __ Mov(result, Operand(dividend, ASR, 31));
2571     __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2572   }
2573   if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2574   if (divisor < 0) __ Neg(result, result);
2575 }
2576 
2577 
DoDivByConstI(LDivByConstI * instr)2578 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2579   Register dividend = ToRegister32(instr->dividend());
2580   int32_t divisor = instr->divisor();
2581   Register result = ToRegister32(instr->result());
2582   DCHECK(!AreAliased(dividend, result));
2583 
2584   if (divisor == 0) {
2585     Deoptimize(instr, Deoptimizer::kDivisionByZero);
2586     return;
2587   }
2588 
2589   // Check for (0 / -x) that will produce negative zero.
2590   HDiv* hdiv = instr->hydrogen();
2591   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2592     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
2593   }
2594 
2595   __ TruncatingDiv(result, dividend, Abs(divisor));
2596   if (divisor < 0) __ Neg(result, result);
2597 
2598   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2599     Register temp = ToRegister32(instr->temp());
2600     DCHECK(!AreAliased(dividend, result, temp));
2601     __ Sxtw(dividend.X(), dividend);
2602     __ Mov(temp, divisor);
2603     __ Smsubl(temp.X(), result, temp, dividend.X());
2604     DeoptimizeIfNotZero(temp, instr, Deoptimizer::kLostPrecision);
2605   }
2606 }
2607 
2608 
2609 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)2610 void LCodeGen::DoDivI(LDivI* instr) {
2611   HBinaryOperation* hdiv = instr->hydrogen();
2612   Register dividend = ToRegister32(instr->dividend());
2613   Register divisor = ToRegister32(instr->divisor());
2614   Register result = ToRegister32(instr->result());
2615 
2616   // Issue the division first, and then check for any deopt cases whilst the
2617   // result is computed.
2618   __ Sdiv(result, dividend, divisor);
2619 
2620   if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2621     DCHECK(!instr->temp());
2622     return;
2623   }
2624 
2625   // Check for x / 0.
2626   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2627     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
2628   }
2629 
2630   // Check for (0 / -x) as that will produce negative zero.
2631   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2632     __ Cmp(divisor, 0);
2633 
2634     // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2635     // zero, ie. zero dividend with negative divisor deopts.
2636     // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2637     // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2638     __ Ccmp(dividend, 0, NoFlag, mi);
2639     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
2640   }
2641 
2642   // Check for (kMinInt / -1).
2643   if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2644     // Test dividend for kMinInt by subtracting one (cmp) and checking for
2645     // overflow.
2646     __ Cmp(dividend, 1);
2647     // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2648     // -1. If overflow is clear, set the flags for condition ne, as the
2649     // dividend isn't -1, and thus we shouldn't deopt.
2650     __ Ccmp(divisor, -1, NoFlag, vs);
2651     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
2652   }
2653 
2654   // Compute remainder and deopt if it's not zero.
2655   Register remainder = ToRegister32(instr->temp());
2656   __ Msub(remainder, result, divisor, dividend);
2657   DeoptimizeIfNotZero(remainder, instr, Deoptimizer::kLostPrecision);
2658 }
2659 
2660 
DoDoubleToIntOrSmi(LDoubleToIntOrSmi * instr)2661 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2662   DoubleRegister input = ToDoubleRegister(instr->value());
2663   Register result = ToRegister32(instr->result());
2664 
2665   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2666     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
2667   }
2668 
2669   __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2670   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
2671 
2672   if (instr->tag_result()) {
2673     __ SmiTag(result.X());
2674   }
2675 }
2676 
2677 
DoDrop(LDrop * instr)2678 void LCodeGen::DoDrop(LDrop* instr) {
2679   __ Drop(instr->count());
2680 
2681   RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta());
2682 }
2683 
2684 
DoDummy(LDummy * instr)2685 void LCodeGen::DoDummy(LDummy* instr) {
2686   // Nothing to see here, move on!
2687 }
2688 
2689 
DoDummyUse(LDummyUse * instr)2690 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2691   // Nothing to see here, move on!
2692 }
2693 
2694 
DoForInCacheArray(LForInCacheArray * instr)2695 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2696   Register map = ToRegister(instr->map());
2697   Register result = ToRegister(instr->result());
2698   Label load_cache, done;
2699 
2700   __ EnumLengthUntagged(result, map);
2701   __ Cbnz(result, &load_cache);
2702 
2703   __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2704   __ B(&done);
2705 
2706   __ Bind(&load_cache);
2707   __ LoadInstanceDescriptors(map, result);
2708   __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2709   __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2710   DeoptimizeIfZero(result, instr, Deoptimizer::kNoCache);
2711 
2712   __ Bind(&done);
2713 }
2714 
2715 
DoForInPrepareMap(LForInPrepareMap * instr)2716 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2717   Register object = ToRegister(instr->object());
2718   Register null_value = x5;
2719 
2720   DCHECK(instr->IsMarkedAsCall());
2721   DCHECK(object.Is(x0));
2722 
2723   DeoptimizeIfSmi(object, instr, Deoptimizer::kSmi);
2724 
2725   STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
2726   __ CompareObjectType(object, x1, x1, JS_PROXY_TYPE);
2727   DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject);
2728 
2729   Label use_cache, call_runtime;
2730   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
2731   __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
2732 
2733   __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2734   __ B(&use_cache);
2735 
2736   // Get the set of properties to enumerate.
2737   __ Bind(&call_runtime);
2738   __ Push(object);
2739   CallRuntime(Runtime::kGetPropertyNamesFast, instr);
2740 
2741   __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
2742   DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr,
2743                       Deoptimizer::kWrongMap);
2744 
2745   __ Bind(&use_cache);
2746 }
2747 
2748 
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2749 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2750   Register input = ToRegister(instr->value());
2751   Register result = ToRegister(instr->result());
2752 
2753   __ AssertString(input);
2754 
2755   // Assert that we can use a W register load to get the hash.
2756   DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2757   __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2758   __ IndexFromHash(result, result);
2759 }
2760 
2761 
EmitGoto(int block)2762 void LCodeGen::EmitGoto(int block) {
2763   // Do not emit jump if we are emitting a goto to the next block.
2764   if (!IsNextEmittedBlock(block)) {
2765     __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2766   }
2767 }
2768 
2769 
DoGoto(LGoto * instr)2770 void LCodeGen::DoGoto(LGoto* instr) {
2771   EmitGoto(instr->block_id());
2772 }
2773 
2774 
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2775 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2776     LHasCachedArrayIndexAndBranch* instr) {
2777   Register input = ToRegister(instr->value());
2778   Register temp = ToRegister32(instr->temp());
2779 
2780   // Assert that the cache status bits fit in a W register.
2781   DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
2782   __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2783   __ Tst(temp, String::kContainsCachedArrayIndexMask);
2784   EmitBranch(instr, eq);
2785 }
2786 
2787 
2788 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2789 // to test but is only used in very restricted ways. The only possible kinds
2790 // of intervals are:
2791 //  - [ FIRST_TYPE, instr->to() ]
2792 //  - [ instr->form(), LAST_TYPE ]
2793 //  - instr->from() == instr->to()
2794 //
2795 // These kinds of intervals can be check with only one compare instruction
2796 // providing the correct value and test condition are used.
2797 //
2798 // TestType() will return the value to use in the compare instruction and
2799 // BranchCondition() will return the condition to use depending on the kind
2800 // of interval actually specified in the instruction.
TestType(HHasInstanceTypeAndBranch * instr)2801 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2802   InstanceType from = instr->from();
2803   InstanceType to = instr->to();
2804   if (from == FIRST_TYPE) return to;
2805   DCHECK((from == to) || (to == LAST_TYPE));
2806   return from;
2807 }
2808 
2809 
2810 // See comment above TestType function for what this function does.
BranchCondition(HHasInstanceTypeAndBranch * instr)2811 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2812   InstanceType from = instr->from();
2813   InstanceType to = instr->to();
2814   if (from == to) return eq;
2815   if (to == LAST_TYPE) return hs;
2816   if (from == FIRST_TYPE) return ls;
2817   UNREACHABLE();
2818   return eq;
2819 }
2820 
2821 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2822 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2823   Register input = ToRegister(instr->value());
2824   Register scratch = ToRegister(instr->temp());
2825 
2826   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2827     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2828   }
2829   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2830   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2831 }
2832 
2833 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)2834 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
2835   Register result = ToRegister(instr->result());
2836   Register base = ToRegister(instr->base_object());
2837   if (instr->offset()->IsConstantOperand()) {
2838     __ Add(result, base, ToOperand32(instr->offset()));
2839   } else {
2840     __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
2841   }
2842 }
2843 
2844 
DoInstanceOf(LInstanceOf * instr)2845 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2846   DCHECK(ToRegister(instr->context()).is(cp));
2847   DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2848   DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2849   DCHECK(ToRegister(instr->result()).is(x0));
2850   InstanceOfStub stub(isolate());
2851   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2852 }
2853 
2854 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2855 void LCodeGen::DoHasInPrototypeChainAndBranch(
2856     LHasInPrototypeChainAndBranch* instr) {
2857   Register const object = ToRegister(instr->object());
2858   Register const object_map = ToRegister(instr->scratch1());
2859   Register const object_instance_type = ToRegister(instr->scratch2());
2860   Register const object_prototype = object_map;
2861   Register const prototype = ToRegister(instr->prototype());
2862 
2863   // The {object} must be a spec object.  It's sufficient to know that {object}
2864   // is not a smi, since all other non-spec objects have {null} prototypes and
2865   // will be ruled out below.
2866   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2867     __ JumpIfSmi(object, instr->FalseLabel(chunk_));
2868   }
2869 
2870   // Loop through the {object}s prototype chain looking for the {prototype}.
2871   __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2872   Label loop;
2873   __ Bind(&loop);
2874 
2875   // Deoptimize if the object needs to be access checked.
2876   __ Ldrb(object_instance_type,
2877           FieldMemOperand(object_map, Map::kBitFieldOffset));
2878   __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2879   DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck);
2880   // Deoptimize for proxies.
2881   __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2882   DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2883 
2884   __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2885   __ Cmp(object_prototype, prototype);
2886   __ B(eq, instr->TrueLabel(chunk_));
2887   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2888   __ B(eq, instr->FalseLabel(chunk_));
2889   __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2890   __ B(&loop);
2891 }
2892 
2893 
DoInstructionGap(LInstructionGap * instr)2894 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
2895   DoGap(instr);
2896 }
2897 
2898 
DoInteger32ToDouble(LInteger32ToDouble * instr)2899 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
2900   Register value = ToRegister32(instr->value());
2901   DoubleRegister result = ToDoubleRegister(instr->result());
2902   __ Scvtf(result, value);
2903 }
2904 
2905 
DoInvokeFunction(LInvokeFunction * instr)2906 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
2907   DCHECK(ToRegister(instr->context()).is(cp));
2908   // The function is required to be in x1.
2909   DCHECK(ToRegister(instr->function()).is(x1));
2910   DCHECK(instr->HasPointerMap());
2911 
2912   Handle<JSFunction> known_function = instr->hydrogen()->known_function();
2913   if (known_function.is_null()) {
2914     LPointerMap* pointers = instr->pointer_map();
2915     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2916     ParameterCount count(instr->arity());
2917     __ InvokeFunction(x1, no_reg, count, CALL_FUNCTION, generator);
2918   } else {
2919     CallKnownFunction(known_function,
2920                       instr->hydrogen()->formal_parameter_count(),
2921                       instr->arity(), instr);
2922   }
2923   RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta());
2924 }
2925 
2926 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2927 Condition LCodeGen::EmitIsString(Register input,
2928                                  Register temp1,
2929                                  Label* is_not_string,
2930                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2931   if (check_needed == INLINE_SMI_CHECK) {
2932     __ JumpIfSmi(input, is_not_string);
2933   }
2934   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2935 
2936   return lt;
2937 }
2938 
2939 
DoIsStringAndBranch(LIsStringAndBranch * instr)2940 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2941   Register val = ToRegister(instr->value());
2942   Register scratch = ToRegister(instr->temp());
2943 
2944   SmiCheck check_needed =
2945       instr->hydrogen()->value()->type().IsHeapObject()
2946           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2947   Condition true_cond =
2948       EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
2949 
2950   EmitBranch(instr, true_cond);
2951 }
2952 
2953 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2954 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2955   Register value = ToRegister(instr->value());
2956   STATIC_ASSERT(kSmiTag == 0);
2957   EmitTestAndBranch(instr, eq, value, kSmiTagMask);
2958 }
2959 
2960 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2961 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2962   Register input = ToRegister(instr->value());
2963   Register temp = ToRegister(instr->temp());
2964 
2965   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2966     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2967   }
2968   __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2969   __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2970 
2971   EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
2972 }
2973 
2974 
LabelType(LLabel * label)2975 static const char* LabelType(LLabel* label) {
2976   if (label->is_loop_header()) return " (loop header)";
2977   if (label->is_osr_entry()) return " (OSR entry)";
2978   return "";
2979 }
2980 
2981 
DoLabel(LLabel * label)2982 void LCodeGen::DoLabel(LLabel* label) {
2983   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
2984           current_instruction_,
2985           label->hydrogen_value()->id(),
2986           label->block_id(),
2987           LabelType(label));
2988 
2989   // Inherit pushed_arguments_ from the predecessor's argument count.
2990   if (label->block()->HasPredecessor()) {
2991     pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count();
2992 #ifdef DEBUG
2993     for (auto p : *label->block()->predecessors()) {
2994       DCHECK_EQ(p->argument_count(), pushed_arguments_);
2995     }
2996 #endif
2997   }
2998 
2999   __ Bind(label->label());
3000   current_block_ = label->block_id();
3001   DoGap(label);
3002 }
3003 
3004 
DoLoadContextSlot(LLoadContextSlot * instr)3005 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3006   Register context = ToRegister(instr->context());
3007   Register result = ToRegister(instr->result());
3008   __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
3009   if (instr->hydrogen()->RequiresHoleCheck()) {
3010     if (instr->hydrogen()->DeoptimizesOnHole()) {
3011       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3012                        Deoptimizer::kHole);
3013     } else {
3014       Label not_the_hole;
3015       __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
3016       __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3017       __ Bind(&not_the_hole);
3018     }
3019   }
3020 }
3021 
3022 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3023 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3024   Register function = ToRegister(instr->function());
3025   Register result = ToRegister(instr->result());
3026   Register temp = ToRegister(instr->temp());
3027 
3028   // Get the prototype or initial map from the function.
3029   __ Ldr(result, FieldMemOperand(function,
3030                                  JSFunction::kPrototypeOrInitialMapOffset));
3031 
3032   // Check that the function has a prototype or an initial map.
3033   DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3034                    Deoptimizer::kHole);
3035 
3036   // If the function does not have an initial map, we're done.
3037   Label done;
3038   __ CompareObjectType(result, temp, temp, MAP_TYPE);
3039   __ B(ne, &done);
3040 
3041   // Get the prototype from the initial map.
3042   __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3043 
3044   // All done.
3045   __ Bind(&done);
3046 }
3047 
3048 
3049 template <class T>
EmitVectorLoadICRegisters(T * instr)3050 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
3051   Register vector_register = ToRegister(instr->temp_vector());
3052   Register slot_register = LoadWithVectorDescriptor::SlotRegister();
3053   DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
3054   DCHECK(slot_register.is(x0));
3055 
3056   AllowDeferredHandleDereference vector_structure_check;
3057   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3058   __ Mov(vector_register, vector);
3059   // No need to allocate this register.
3060   FeedbackVectorSlot slot = instr->hydrogen()->slot();
3061   int index = vector->GetIndex(slot);
3062   __ Mov(slot_register, Smi::FromInt(index));
3063 }
3064 
3065 
3066 template <class T>
EmitVectorStoreICRegisters(T * instr)3067 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
3068   Register vector_register = ToRegister(instr->temp_vector());
3069   Register slot_register = ToRegister(instr->temp_slot());
3070 
3071   AllowDeferredHandleDereference vector_structure_check;
3072   Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3073   __ Mov(vector_register, vector);
3074   FeedbackVectorSlot slot = instr->hydrogen()->slot();
3075   int index = vector->GetIndex(slot);
3076   __ Mov(slot_register, Smi::FromInt(index));
3077 }
3078 
3079 
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)3080 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3081   DCHECK(ToRegister(instr->context()).is(cp));
3082   DCHECK(ToRegister(instr->global_object())
3083              .is(LoadDescriptor::ReceiverRegister()));
3084   DCHECK(ToRegister(instr->result()).Is(x0));
3085   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3086   EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
3087   Handle<Code> ic =
3088       CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
3089                                          SLOPPY, PREMONOMORPHIC).code();
3090   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3091 }
3092 
3093 
PrepareKeyedExternalArrayOperand(Register key,Register base,Register scratch,bool key_is_smi,bool key_is_constant,int constant_key,ElementsKind elements_kind,int base_offset)3094 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3095     Register key,
3096     Register base,
3097     Register scratch,
3098     bool key_is_smi,
3099     bool key_is_constant,
3100     int constant_key,
3101     ElementsKind elements_kind,
3102     int base_offset) {
3103   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3104 
3105   if (key_is_constant) {
3106     int key_offset = constant_key << element_size_shift;
3107     return MemOperand(base, key_offset + base_offset);
3108   }
3109 
3110   if (key_is_smi) {
3111     __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3112     return MemOperand(scratch, base_offset);
3113   }
3114 
3115   if (base_offset == 0) {
3116     return MemOperand(base, key, SXTW, element_size_shift);
3117   }
3118 
3119   DCHECK(!AreAliased(scratch, key));
3120   __ Add(scratch, base, base_offset);
3121   return MemOperand(scratch, key, SXTW, element_size_shift);
3122 }
3123 
3124 
DoLoadKeyedExternal(LLoadKeyedExternal * instr)3125 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3126   Register ext_ptr = ToRegister(instr->elements());
3127   Register scratch;
3128   ElementsKind elements_kind = instr->elements_kind();
3129 
3130   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3131   bool key_is_constant = instr->key()->IsConstantOperand();
3132   Register key = no_reg;
3133   int constant_key = 0;
3134   if (key_is_constant) {
3135     DCHECK(instr->temp() == NULL);
3136     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3137     if (constant_key & 0xf0000000) {
3138       Abort(kArrayIndexConstantValueTooBig);
3139     }
3140   } else {
3141     scratch = ToRegister(instr->temp());
3142     key = ToRegister(instr->key());
3143   }
3144 
3145   MemOperand mem_op =
3146       PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3147                                        key_is_constant, constant_key,
3148                                        elements_kind,
3149                                        instr->base_offset());
3150 
3151   if (elements_kind == FLOAT32_ELEMENTS) {
3152     DoubleRegister result = ToDoubleRegister(instr->result());
3153     __ Ldr(result.S(), mem_op);
3154     __ Fcvt(result, result.S());
3155   } else if (elements_kind == FLOAT64_ELEMENTS) {
3156     DoubleRegister result = ToDoubleRegister(instr->result());
3157     __ Ldr(result, mem_op);
3158   } else {
3159     Register result = ToRegister(instr->result());
3160 
3161     switch (elements_kind) {
3162       case INT8_ELEMENTS:
3163         __ Ldrsb(result, mem_op);
3164         break;
3165       case UINT8_ELEMENTS:
3166       case UINT8_CLAMPED_ELEMENTS:
3167         __ Ldrb(result, mem_op);
3168         break;
3169       case INT16_ELEMENTS:
3170         __ Ldrsh(result, mem_op);
3171         break;
3172       case UINT16_ELEMENTS:
3173         __ Ldrh(result, mem_op);
3174         break;
3175       case INT32_ELEMENTS:
3176         __ Ldrsw(result, mem_op);
3177         break;
3178       case UINT32_ELEMENTS:
3179         __ Ldr(result.W(), mem_op);
3180         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3181           // Deopt if value > 0x80000000.
3182           __ Tst(result, 0xFFFFFFFF80000000);
3183           DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue);
3184         }
3185         break;
3186       case FLOAT32_ELEMENTS:
3187       case FLOAT64_ELEMENTS:
3188       case FAST_HOLEY_DOUBLE_ELEMENTS:
3189       case FAST_HOLEY_ELEMENTS:
3190       case FAST_HOLEY_SMI_ELEMENTS:
3191       case FAST_DOUBLE_ELEMENTS:
3192       case FAST_ELEMENTS:
3193       case FAST_SMI_ELEMENTS:
3194       case DICTIONARY_ELEMENTS:
3195       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3196       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3197         UNREACHABLE();
3198         break;
3199     }
3200   }
3201 }
3202 
3203 
PrepareKeyedArrayOperand(Register base,Register elements,Register key,bool key_is_tagged,ElementsKind elements_kind,Representation representation,int base_offset)3204 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3205                                               Register elements,
3206                                               Register key,
3207                                               bool key_is_tagged,
3208                                               ElementsKind elements_kind,
3209                                               Representation representation,
3210                                               int base_offset) {
3211   STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3212   STATIC_ASSERT(kSmiTag == 0);
3213   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3214 
3215   // Even though the HLoad/StoreKeyed instructions force the input
3216   // representation for the key to be an integer, the input gets replaced during
3217   // bounds check elimination with the index argument to the bounds check, which
3218   // can be tagged, so that case must be handled here, too.
3219   if (key_is_tagged) {
3220     __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3221     if (representation.IsInteger32()) {
3222       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3223       // Read or write only the smi payload in the case of fast smi arrays.
3224       return UntagSmiMemOperand(base, base_offset);
3225     } else {
3226       return MemOperand(base, base_offset);
3227     }
3228   } else {
3229     // Sign extend key because it could be a 32-bit negative value or contain
3230     // garbage in the top 32-bits. The address computation happens in 64-bit.
3231     DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3232     if (representation.IsInteger32()) {
3233       DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3234       // Read or write only the smi payload in the case of fast smi arrays.
3235       __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3236       return UntagSmiMemOperand(base, base_offset);
3237     } else {
3238       __ Add(base, elements, base_offset);
3239       return MemOperand(base, key, SXTW, element_size_shift);
3240     }
3241   }
3242 }
3243 
3244 
DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble * instr)3245 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3246   Register elements = ToRegister(instr->elements());
3247   DoubleRegister result = ToDoubleRegister(instr->result());
3248   MemOperand mem_op;
3249 
3250   if (instr->key()->IsConstantOperand()) {
3251     DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3252            (instr->temp() == NULL));
3253 
3254     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3255     if (constant_key & 0xf0000000) {
3256       Abort(kArrayIndexConstantValueTooBig);
3257     }
3258     int offset = instr->base_offset() + constant_key * kDoubleSize;
3259     mem_op = MemOperand(elements, offset);
3260   } else {
3261     Register load_base = ToRegister(instr->temp());
3262     Register key = ToRegister(instr->key());
3263     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3264     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3265                                       instr->hydrogen()->elements_kind(),
3266                                       instr->hydrogen()->representation(),
3267                                       instr->base_offset());
3268   }
3269 
3270   __ Ldr(result, mem_op);
3271 
3272   if (instr->hydrogen()->RequiresHoleCheck()) {
3273     Register scratch = ToRegister(instr->temp());
3274     __ Fmov(scratch, result);
3275     __ Eor(scratch, scratch, kHoleNanInt64);
3276     DeoptimizeIfZero(scratch, instr, Deoptimizer::kHole);
3277   }
3278 }
3279 
3280 
DoLoadKeyedFixed(LLoadKeyedFixed * instr)3281 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3282   Register elements = ToRegister(instr->elements());
3283   Register result = ToRegister(instr->result());
3284   MemOperand mem_op;
3285 
3286   Representation representation = instr->hydrogen()->representation();
3287   if (instr->key()->IsConstantOperand()) {
3288     DCHECK(instr->temp() == NULL);
3289     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3290     int offset = instr->base_offset() +
3291         ToInteger32(const_operand) * kPointerSize;
3292     if (representation.IsInteger32()) {
3293       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3294       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3295       STATIC_ASSERT(kSmiTag == 0);
3296       mem_op = UntagSmiMemOperand(elements, offset);
3297     } else {
3298       mem_op = MemOperand(elements, offset);
3299     }
3300   } else {
3301     Register load_base = ToRegister(instr->temp());
3302     Register key = ToRegister(instr->key());
3303     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3304 
3305     mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3306                                       instr->hydrogen()->elements_kind(),
3307                                       representation, instr->base_offset());
3308   }
3309 
3310   __ Load(result, mem_op, representation);
3311 
3312   if (instr->hydrogen()->RequiresHoleCheck()) {
3313     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3314       DeoptimizeIfNotSmi(result, instr, Deoptimizer::kNotASmi);
3315     } else {
3316       DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr,
3317                        Deoptimizer::kHole);
3318     }
3319   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3320     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3321     Label done;
3322     __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
3323     __ B(ne, &done);
3324     if (info()->IsStub()) {
3325       // A stub can safely convert the hole to undefined only if the array
3326       // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3327       // it needs to bail out.
3328       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3329       __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3330       __ Cmp(result, Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
3331       DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3332     }
3333     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3334     __ Bind(&done);
3335   }
3336 }
3337 
3338 
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3339 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3340   DCHECK(ToRegister(instr->context()).is(cp));
3341   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3342   DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3343 
3344   if (instr->hydrogen()->HasVectorAndSlot()) {
3345     EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3346   }
3347 
3348   Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3349                         isolate(), instr->hydrogen()->language_mode(),
3350                         instr->hydrogen()->initialization_state()).code();
3351   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3352 
3353   DCHECK(ToRegister(instr->result()).Is(x0));
3354 }
3355 
3356 
DoLoadNamedField(LLoadNamedField * instr)3357 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3358   HObjectAccess access = instr->hydrogen()->access();
3359   int offset = access.offset();
3360   Register object = ToRegister(instr->object());
3361 
3362   if (access.IsExternalMemory()) {
3363     Register result = ToRegister(instr->result());
3364     __ Load(result, MemOperand(object, offset), access.representation());
3365     return;
3366   }
3367 
3368   if (instr->hydrogen()->representation().IsDouble()) {
3369     DCHECK(access.IsInobject());
3370     FPRegister result = ToDoubleRegister(instr->result());
3371     __ Ldr(result, FieldMemOperand(object, offset));
3372     return;
3373   }
3374 
3375   Register result = ToRegister(instr->result());
3376   Register source;
3377   if (access.IsInobject()) {
3378     source = object;
3379   } else {
3380     // Load the properties array, using result as a scratch register.
3381     __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3382     source = result;
3383   }
3384 
3385   if (access.representation().IsSmi() &&
3386       instr->hydrogen()->representation().IsInteger32()) {
3387     // Read int value directly from upper half of the smi.
3388     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3389     STATIC_ASSERT(kSmiTag == 0);
3390     __ Load(result, UntagSmiFieldMemOperand(source, offset),
3391             Representation::Integer32());
3392   } else {
3393     __ Load(result, FieldMemOperand(source, offset), access.representation());
3394   }
3395 }
3396 
3397 
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3398 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3399   DCHECK(ToRegister(instr->context()).is(cp));
3400   // LoadIC expects name and receiver in registers.
3401   DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3402   __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3403   EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3404   Handle<Code> ic =
3405       CodeFactory::LoadICInOptimizedCode(
3406           isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
3407           instr->hydrogen()->initialization_state()).code();
3408   CallCode(ic, RelocInfo::CODE_TARGET, instr);
3409 
3410   DCHECK(ToRegister(instr->result()).is(x0));
3411 }
3412 
3413 
DoLoadRoot(LLoadRoot * instr)3414 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3415   Register result = ToRegister(instr->result());
3416   __ LoadRoot(result, instr->index());
3417 }
3418 
3419 
DoMapEnumLength(LMapEnumLength * instr)3420 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
3421   Register result = ToRegister(instr->result());
3422   Register map = ToRegister(instr->value());
3423   __ EnumLengthSmi(result, map);
3424 }
3425 
3426 
DoMathAbs(LMathAbs * instr)3427 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3428   Representation r = instr->hydrogen()->value()->representation();
3429   if (r.IsDouble()) {
3430     DoubleRegister input = ToDoubleRegister(instr->value());
3431     DoubleRegister result = ToDoubleRegister(instr->result());
3432     __ Fabs(result, input);
3433   } else if (r.IsSmi() || r.IsInteger32()) {
3434     Register input = r.IsSmi() ? ToRegister(instr->value())
3435                                : ToRegister32(instr->value());
3436     Register result = r.IsSmi() ? ToRegister(instr->result())
3437                                 : ToRegister32(instr->result());
3438     __ Abs(result, input);
3439     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3440   }
3441 }
3442 
3443 
DoDeferredMathAbsTagged(LMathAbsTagged * instr,Label * exit,Label * allocation_entry)3444 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3445                                        Label* exit,
3446                                        Label* allocation_entry) {
3447   // Handle the tricky cases of MathAbsTagged:
3448   //  - HeapNumber inputs.
3449   //    - Negative inputs produce a positive result, so a new HeapNumber is
3450   //      allocated to hold it.
3451   //    - Positive inputs are returned as-is, since there is no need to allocate
3452   //      a new HeapNumber for the result.
3453   //  - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3454   //    a smi. In this case, the inline code sets the result and jumps directly
3455   //    to the allocation_entry label.
3456   DCHECK(instr->context() != NULL);
3457   DCHECK(ToRegister(instr->context()).is(cp));
3458   Register input = ToRegister(instr->value());
3459   Register temp1 = ToRegister(instr->temp1());
3460   Register temp2 = ToRegister(instr->temp2());
3461   Register result_bits = ToRegister(instr->temp3());
3462   Register result = ToRegister(instr->result());
3463 
3464   Label runtime_allocation;
3465 
3466   // Deoptimize if the input is not a HeapNumber.
3467   DeoptimizeIfNotHeapNumber(input, instr);
3468 
3469   // If the argument is positive, we can return it as-is, without any need to
3470   // allocate a new HeapNumber for the result. We have to do this in integer
3471   // registers (rather than with fabs) because we need to be able to distinguish
3472   // the two zeroes.
3473   __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3474   __ Mov(result, input);
3475   __ Tbz(result_bits, kXSignBit, exit);
3476 
3477   // Calculate abs(input) by clearing the sign bit.
3478   __ Bic(result_bits, result_bits, kXSignMask);
3479 
3480   // Allocate a new HeapNumber to hold the result.
3481   //  result_bits   The bit representation of the (double) result.
3482   __ Bind(allocation_entry);
3483   __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3484   // The inline (non-deferred) code will store result_bits into result.
3485   __ B(exit);
3486 
3487   __ Bind(&runtime_allocation);
3488   if (FLAG_debug_code) {
3489     // Because result is in the pointer map, we need to make sure it has a valid
3490     // tagged value before we call the runtime. We speculatively set it to the
3491     // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3492     // be valid.
3493     Label result_ok;
3494     Register input = ToRegister(instr->value());
3495     __ JumpIfSmi(result, &result_ok);
3496     __ Cmp(input, result);
3497     __ Assert(eq, kUnexpectedValue);
3498     __ Bind(&result_ok);
3499   }
3500 
3501   { PushSafepointRegistersScope scope(this);
3502     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3503                             instr->context());
3504     __ StoreToSafepointRegisterSlot(x0, result);
3505   }
3506   // The inline (non-deferred) code will store result_bits into result.
3507 }
3508 
3509 
DoMathAbsTagged(LMathAbsTagged * instr)3510 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3511   // Class for deferred case.
3512   class DeferredMathAbsTagged: public LDeferredCode {
3513    public:
3514     DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3515         : LDeferredCode(codegen), instr_(instr) { }
3516     virtual void Generate() {
3517       codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3518                                          allocation_entry());
3519     }
3520     virtual LInstruction* instr() { return instr_; }
3521     Label* allocation_entry() { return &allocation; }
3522    private:
3523     LMathAbsTagged* instr_;
3524     Label allocation;
3525   };
3526 
3527   // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3528   // in GenerateDeferredCode. Tidy this up.
3529   DCHECK(!NeedsDeferredFrame());
3530 
3531   DeferredMathAbsTagged* deferred =
3532       new(zone()) DeferredMathAbsTagged(this, instr);
3533 
3534   DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3535          instr->hydrogen()->value()->representation().IsSmi());
3536   Register input = ToRegister(instr->value());
3537   Register result_bits = ToRegister(instr->temp3());
3538   Register result = ToRegister(instr->result());
3539   Label done;
3540 
3541   // Handle smis inline.
3542   // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3543   // never get set by the negation. This is therefore the same as the Integer32
3544   // case in DoMathAbs, except that it operates on 64-bit values.
3545   STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3546 
3547   __ JumpIfNotSmi(input, deferred->entry());
3548 
3549   __ Abs(result, input, NULL, &done);
3550 
3551   // The result is the magnitude (abs) of the smallest value a smi can
3552   // represent, encoded as a double.
3553   __ Mov(result_bits, double_to_rawbits(0x80000000));
3554   __ B(deferred->allocation_entry());
3555 
3556   __ Bind(deferred->exit());
3557   __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3558 
3559   __ Bind(&done);
3560 }
3561 
3562 
DoMathExp(LMathExp * instr)3563 void LCodeGen::DoMathExp(LMathExp* instr) {
3564   DoubleRegister input = ToDoubleRegister(instr->value());
3565   DoubleRegister result = ToDoubleRegister(instr->result());
3566   DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
3567   DoubleRegister double_temp2 = double_scratch();
3568   Register temp1 = ToRegister(instr->temp1());
3569   Register temp2 = ToRegister(instr->temp2());
3570   Register temp3 = ToRegister(instr->temp3());
3571 
3572   MathExpGenerator::EmitMathExp(masm(), input, result,
3573                                 double_temp1, double_temp2,
3574                                 temp1, temp2, temp3);
3575 }
3576 
3577 
DoMathFloorD(LMathFloorD * instr)3578 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3579   DoubleRegister input = ToDoubleRegister(instr->value());
3580   DoubleRegister result = ToDoubleRegister(instr->result());
3581 
3582   __ Frintm(result, input);
3583 }
3584 
3585 
DoMathFloorI(LMathFloorI * instr)3586 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3587   DoubleRegister input = ToDoubleRegister(instr->value());
3588   Register result = ToRegister(instr->result());
3589 
3590   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3591     DeoptimizeIfMinusZero(input, instr, Deoptimizer::kMinusZero);
3592   }
3593 
3594   __ Fcvtms(result, input);
3595 
3596   // Check that the result fits into a 32-bit integer.
3597   //  - The result did not overflow.
3598   __ Cmp(result, Operand(result, SXTW));
3599   //  - The input was not NaN.
3600   __ Fccmp(input, input, NoFlag, eq);
3601   DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
3602 }
3603 
3604 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)3605 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3606   Register dividend = ToRegister32(instr->dividend());
3607   Register result = ToRegister32(instr->result());
3608   int32_t divisor = instr->divisor();
3609 
3610   // If the divisor is 1, return the dividend.
3611   if (divisor == 1) {
3612     __ Mov(result, dividend, kDiscardForSameWReg);
3613     return;
3614   }
3615 
3616   // If the divisor is positive, things are easy: There can be no deopts and we
3617   // can simply do an arithmetic right shift.
3618   int32_t shift = WhichPowerOf2Abs(divisor);
3619   if (divisor > 1) {
3620     __ Mov(result, Operand(dividend, ASR, shift));
3621     return;
3622   }
3623 
3624   // If the divisor is negative, we have to negate and handle edge cases.
3625   __ Negs(result, dividend);
3626   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3627     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3628   }
3629 
3630   // Dividing by -1 is basically negation, unless we overflow.
3631   if (divisor == -1) {
3632     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3633       DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
3634     }
3635     return;
3636   }
3637 
3638   // If the negation could not overflow, simply shifting is OK.
3639   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3640     __ Mov(result, Operand(dividend, ASR, shift));
3641     return;
3642   }
3643 
3644   __ Asr(result, result, shift);
3645   __ Csel(result, result, kMinInt / divisor, vc);
3646 }
3647 
3648 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)3649 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3650   Register dividend = ToRegister32(instr->dividend());
3651   int32_t divisor = instr->divisor();
3652   Register result = ToRegister32(instr->result());
3653   DCHECK(!AreAliased(dividend, result));
3654 
3655   if (divisor == 0) {
3656     Deoptimize(instr, Deoptimizer::kDivisionByZero);
3657     return;
3658   }
3659 
3660   // Check for (0 / -x) that will produce negative zero.
3661   HMathFloorOfDiv* hdiv = instr->hydrogen();
3662   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3663     DeoptimizeIfZero(dividend, instr, Deoptimizer::kMinusZero);
3664   }
3665 
3666   // Easy case: We need no dynamic check for the dividend and the flooring
3667   // division is the same as the truncating division.
3668   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3669       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3670     __ TruncatingDiv(result, dividend, Abs(divisor));
3671     if (divisor < 0) __ Neg(result, result);
3672     return;
3673   }
3674 
3675   // In the general case we may need to adjust before and after the truncating
3676   // division to get a flooring division.
3677   Register temp = ToRegister32(instr->temp());
3678   DCHECK(!AreAliased(temp, dividend, result));
3679   Label needs_adjustment, done;
3680   __ Cmp(dividend, 0);
3681   __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3682   __ TruncatingDiv(result, dividend, Abs(divisor));
3683   if (divisor < 0) __ Neg(result, result);
3684   __ B(&done);
3685   __ Bind(&needs_adjustment);
3686   __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3687   __ TruncatingDiv(result, temp, Abs(divisor));
3688   if (divisor < 0) __ Neg(result, result);
3689   __ Sub(result, result, Operand(1));
3690   __ Bind(&done);
3691 }
3692 
3693 
3694 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)3695 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
3696   Register dividend = ToRegister32(instr->dividend());
3697   Register divisor = ToRegister32(instr->divisor());
3698   Register remainder = ToRegister32(instr->temp());
3699   Register result = ToRegister32(instr->result());
3700 
3701   // This can't cause an exception on ARM, so we can speculatively
3702   // execute it already now.
3703   __ Sdiv(result, dividend, divisor);
3704 
3705   // Check for x / 0.
3706   DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
3707 
3708   // Check for (kMinInt / -1).
3709   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
3710     // The V flag will be set iff dividend == kMinInt.
3711     __ Cmp(dividend, 1);
3712     __ Ccmp(divisor, -1, NoFlag, vs);
3713     DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3714   }
3715 
3716   // Check for (0 / -x) that will produce negative zero.
3717   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3718     __ Cmp(divisor, 0);
3719     __ Ccmp(dividend, 0, ZFlag, mi);
3720     // "divisor" can't be null because the code would have already been
3721     // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
3722     // In this case we need to deoptimize to produce a -0.
3723     DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3724   }
3725 
3726   Label done;
3727   // If both operands have the same sign then we are done.
3728   __ Eor(remainder, dividend, divisor);
3729   __ Tbz(remainder, kWSignBit, &done);
3730 
3731   // Check if the result needs to be corrected.
3732   __ Msub(remainder, result, divisor, dividend);
3733   __ Cbz(remainder, &done);
3734   __ Sub(result, result, 1);
3735 
3736   __ Bind(&done);
3737 }
3738 
3739 
DoMathLog(LMathLog * instr)3740 void LCodeGen::DoMathLog(LMathLog* instr) {
3741   DCHECK(instr->IsMarkedAsCall());
3742   DCHECK(ToDoubleRegister(instr->value()).is(d0));
3743   __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3744                    0, 1);
3745   DCHECK(ToDoubleRegister(instr->result()).Is(d0));
3746 }
3747 
3748 
DoMathClz32(LMathClz32 * instr)3749 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3750   Register input = ToRegister32(instr->value());
3751   Register result = ToRegister32(instr->result());
3752   __ Clz(result, input);
3753 }
3754 
3755 
DoMathPowHalf(LMathPowHalf * instr)3756 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3757   DoubleRegister input = ToDoubleRegister(instr->value());
3758   DoubleRegister result = ToDoubleRegister(instr->result());
3759   Label done;
3760 
3761   // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
3762   //  Math.pow(-Infinity, 0.5) == +Infinity
3763   //  Math.pow(-0.0, 0.5) == +0.0
3764 
3765   // Catch -infinity inputs first.
3766   // TODO(jbramley): A constant infinity register would be helpful here.
3767   __ Fmov(double_scratch(), kFP64NegativeInfinity);
3768   __ Fcmp(double_scratch(), input);
3769   __ Fabs(result, input);
3770   __ B(&done, eq);
3771 
3772   // Add +0.0 to convert -0.0 to +0.0.
3773   __ Fadd(double_scratch(), input, fp_zero);
3774   __ Fsqrt(result, double_scratch());
3775 
3776   __ Bind(&done);
3777 }
3778 
3779 
DoPower(LPower * instr)3780 void LCodeGen::DoPower(LPower* instr) {
3781   Representation exponent_type = instr->hydrogen()->right()->representation();
3782   // Having marked this as a call, we can use any registers.
3783   // Just make sure that the input/output registers are the expected ones.
3784   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3785   Register integer_exponent = MathPowIntegerDescriptor::exponent();
3786   DCHECK(!instr->right()->IsDoubleRegister() ||
3787          ToDoubleRegister(instr->right()).is(d1));
3788   DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
3789          ToRegister(instr->right()).is(tagged_exponent));
3790   DCHECK(!exponent_type.IsInteger32() ||
3791          ToRegister(instr->right()).is(integer_exponent));
3792   DCHECK(ToDoubleRegister(instr->left()).is(d0));
3793   DCHECK(ToDoubleRegister(instr->result()).is(d0));
3794 
3795   if (exponent_type.IsSmi()) {
3796     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3797     __ CallStub(&stub);
3798   } else if (exponent_type.IsTagged()) {
3799     Label no_deopt;
3800     __ JumpIfSmi(tagged_exponent, &no_deopt);
3801     DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
3802     __ Bind(&no_deopt);
3803     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3804     __ CallStub(&stub);
3805   } else if (exponent_type.IsInteger32()) {
3806     // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
3807     // supports large integer exponents.
3808     __ Sxtw(integer_exponent, integer_exponent);
3809     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3810     __ CallStub(&stub);
3811   } else {
3812     DCHECK(exponent_type.IsDouble());
3813     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3814     __ CallStub(&stub);
3815   }
3816 }
3817 
3818 
DoMathRoundD(LMathRoundD * instr)3819 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
3820   DoubleRegister input = ToDoubleRegister(instr->value());
3821   DoubleRegister result = ToDoubleRegister(instr->result());
3822   DoubleRegister scratch_d = double_scratch();
3823 
3824   DCHECK(!AreAliased(input, result, scratch_d));
3825 
3826   Label done;
3827 
3828   __ Frinta(result, input);
3829   __ Fcmp(input, 0.0);
3830   __ Fccmp(result, input, ZFlag, lt);
3831   // The result is correct if the input was in [-0, +infinity], or was a
3832   // negative integral value.
3833   __ B(eq, &done);
3834 
3835   // Here the input is negative, non integral, with an exponent lower than 52.
3836   // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
3837   // case. So we can safely add 0.5.
3838   __ Fmov(scratch_d, 0.5);
3839   __ Fadd(result, input, scratch_d);
3840   __ Frintm(result, result);
3841   // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
3842   __ Fabs(result, result);
3843   __ Fneg(result, result);
3844 
3845   __ Bind(&done);
3846 }
3847 
3848 
DoMathRoundI(LMathRoundI * instr)3849 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
3850   DoubleRegister input = ToDoubleRegister(instr->value());
3851   DoubleRegister temp = ToDoubleRegister(instr->temp1());
3852   DoubleRegister dot_five = double_scratch();
3853   Register result = ToRegister(instr->result());
3854   Label done;
3855 
3856   // Math.round() rounds to the nearest integer, with ties going towards
3857   // +infinity. This does not match any IEEE-754 rounding mode.
3858   //  - Infinities and NaNs are propagated unchanged, but cause deopts because
3859   //    they can't be represented as integers.
3860   //  - The sign of the result is the same as the sign of the input. This means
3861   //    that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
3862   //    result of -0.0.
3863 
3864   // Add 0.5 and round towards -infinity.
3865   __ Fmov(dot_five, 0.5);
3866   __ Fadd(temp, input, dot_five);
3867   __ Fcvtms(result, temp);
3868 
3869   // The result is correct if:
3870   //  result is not 0, as the input could be NaN or [-0.5, -0.0].
3871   //  result is not 1, as 0.499...94 will wrongly map to 1.
3872   //  result fits in 32 bits.
3873   __ Cmp(result, Operand(result.W(), SXTW));
3874   __ Ccmp(result, 1, ZFlag, eq);
3875   __ B(hi, &done);
3876 
3877   // At this point, we have to handle possible inputs of NaN or numbers in the
3878   // range [-0.5, 1.5[, or numbers larger than 32 bits.
3879 
3880   // Deoptimize if the result > 1, as it must be larger than 32 bits.
3881   __ Cmp(result, 1);
3882   DeoptimizeIf(hi, instr, Deoptimizer::kOverflow);
3883 
3884   // Deoptimize for negative inputs, which at this point are only numbers in
3885   // the range [-0.5, -0.0]
3886   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3887     __ Fmov(result, input);
3888     DeoptimizeIfNegative(result, instr, Deoptimizer::kMinusZero);
3889   }
3890 
3891   // Deoptimize if the input was NaN.
3892   __ Fcmp(input, dot_five);
3893   DeoptimizeIf(vs, instr, Deoptimizer::kNaN);
3894 
3895   // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
3896   // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
3897   // else 0; we avoid dealing with 0.499...94 directly.
3898   __ Cset(result, ge);
3899   __ Bind(&done);
3900 }
3901 
3902 
DoMathFround(LMathFround * instr)3903 void LCodeGen::DoMathFround(LMathFround* instr) {
3904   DoubleRegister input = ToDoubleRegister(instr->value());
3905   DoubleRegister result = ToDoubleRegister(instr->result());
3906   __ Fcvt(result.S(), input);
3907   __ Fcvt(result, result.S());
3908 }
3909 
3910 
DoMathSqrt(LMathSqrt * instr)3911 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3912   DoubleRegister input = ToDoubleRegister(instr->value());
3913   DoubleRegister result = ToDoubleRegister(instr->result());
3914   __ Fsqrt(result, input);
3915 }
3916 
3917 
DoMathMinMax(LMathMinMax * instr)3918 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
3919   HMathMinMax::Operation op = instr->hydrogen()->operation();
3920   if (instr->hydrogen()->representation().IsInteger32()) {
3921     Register result = ToRegister32(instr->result());
3922     Register left = ToRegister32(instr->left());
3923     Operand right = ToOperand32(instr->right());
3924 
3925     __ Cmp(left, right);
3926     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3927   } else if (instr->hydrogen()->representation().IsSmi()) {
3928     Register result = ToRegister(instr->result());
3929     Register left = ToRegister(instr->left());
3930     Operand right = ToOperand(instr->right());
3931 
3932     __ Cmp(left, right);
3933     __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
3934   } else {
3935     DCHECK(instr->hydrogen()->representation().IsDouble());
3936     DoubleRegister result = ToDoubleRegister(instr->result());
3937     DoubleRegister left = ToDoubleRegister(instr->left());
3938     DoubleRegister right = ToDoubleRegister(instr->right());
3939 
3940     if (op == HMathMinMax::kMathMax) {
3941       __ Fmax(result, left, right);
3942     } else {
3943       DCHECK(op == HMathMinMax::kMathMin);
3944       __ Fmin(result, left, right);
3945     }
3946   }
3947 }
3948 
3949 
DoModByPowerOf2I(LModByPowerOf2I * instr)3950 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
3951   Register dividend = ToRegister32(instr->dividend());
3952   int32_t divisor = instr->divisor();
3953   DCHECK(dividend.is(ToRegister32(instr->result())));
3954 
3955   // Theoretically, a variation of the branch-free code for integer division by
3956   // a power of 2 (calculating the remainder via an additional multiplication
3957   // (which gets simplified to an 'and') and subtraction) should be faster, and
3958   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
3959   // indicate that positive dividends are heavily favored, so the branching
3960   // version performs better.
3961   HMod* hmod = instr->hydrogen();
3962   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
3963   Label dividend_is_not_negative, done;
3964   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
3965     __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
3966     // Note that this is correct even for kMinInt operands.
3967     __ Neg(dividend, dividend);
3968     __ And(dividend, dividend, mask);
3969     __ Negs(dividend, dividend);
3970     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
3971       DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
3972     }
3973     __ B(&done);
3974   }
3975 
3976   __ bind(&dividend_is_not_negative);
3977   __ And(dividend, dividend, mask);
3978   __ bind(&done);
3979 }
3980 
3981 
DoModByConstI(LModByConstI * instr)3982 void LCodeGen::DoModByConstI(LModByConstI* instr) {
3983   Register dividend = ToRegister32(instr->dividend());
3984   int32_t divisor = instr->divisor();
3985   Register result = ToRegister32(instr->result());
3986   Register temp = ToRegister32(instr->temp());
3987   DCHECK(!AreAliased(dividend, result, temp));
3988 
3989   if (divisor == 0) {
3990     Deoptimize(instr, Deoptimizer::kDivisionByZero);
3991     return;
3992   }
3993 
3994   __ TruncatingDiv(result, dividend, Abs(divisor));
3995   __ Sxtw(dividend.X(), dividend);
3996   __ Mov(temp, Abs(divisor));
3997   __ Smsubl(result.X(), result, temp, dividend.X());
3998 
3999   // Check for negative zero.
4000   HMod* hmod = instr->hydrogen();
4001   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4002     Label remainder_not_zero;
4003     __ Cbnz(result, &remainder_not_zero);
4004     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4005     __ bind(&remainder_not_zero);
4006   }
4007 }
4008 
4009 
DoModI(LModI * instr)4010 void LCodeGen::DoModI(LModI* instr) {
4011   Register dividend = ToRegister32(instr->left());
4012   Register divisor = ToRegister32(instr->right());
4013   Register result = ToRegister32(instr->result());
4014 
4015   Label done;
4016   // modulo = dividend - quotient * divisor
4017   __ Sdiv(result, dividend, divisor);
4018   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
4019     DeoptimizeIfZero(divisor, instr, Deoptimizer::kDivisionByZero);
4020   }
4021   __ Msub(result, result, divisor, dividend);
4022   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4023     __ Cbnz(result, &done);
4024     DeoptimizeIfNegative(dividend, instr, Deoptimizer::kMinusZero);
4025   }
4026   __ Bind(&done);
4027 }
4028 
4029 
DoMulConstIS(LMulConstIS * instr)4030 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4031   DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
4032   bool is_smi = instr->hydrogen()->representation().IsSmi();
4033   Register result =
4034       is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4035   Register left =
4036       is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left());
4037   int32_t right = ToInteger32(instr->right());
4038   DCHECK((right > -kMaxInt) && (right < kMaxInt));
4039 
4040   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4041   bool bailout_on_minus_zero =
4042     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4043 
4044   if (bailout_on_minus_zero) {
4045     if (right < 0) {
4046       // The result is -0 if right is negative and left is zero.
4047       DeoptimizeIfZero(left, instr, Deoptimizer::kMinusZero);
4048     } else if (right == 0) {
4049       // The result is -0 if the right is zero and the left is negative.
4050       DeoptimizeIfNegative(left, instr, Deoptimizer::kMinusZero);
4051     }
4052   }
4053 
4054   switch (right) {
4055     // Cases which can detect overflow.
4056     case -1:
4057       if (can_overflow) {
4058         // Only 0x80000000 can overflow here.
4059         __ Negs(result, left);
4060         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4061       } else {
4062         __ Neg(result, left);
4063       }
4064       break;
4065     case 0:
4066       // This case can never overflow.
4067       __ Mov(result, 0);
4068       break;
4069     case 1:
4070       // This case can never overflow.
4071       __ Mov(result, left, kDiscardForSameWReg);
4072       break;
4073     case 2:
4074       if (can_overflow) {
4075         __ Adds(result, left, left);
4076         DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4077       } else {
4078         __ Add(result, left, left);
4079       }
4080       break;
4081 
4082     default:
4083       // Multiplication by constant powers of two (and some related values)
4084       // can be done efficiently with shifted operands.
4085       int32_t right_abs = Abs(right);
4086 
4087       if (base::bits::IsPowerOfTwo32(right_abs)) {
4088         int right_log2 = WhichPowerOf2(right_abs);
4089 
4090         if (can_overflow) {
4091           Register scratch = result;
4092           DCHECK(!AreAliased(scratch, left));
4093           __ Cls(scratch, left);
4094           __ Cmp(scratch, right_log2);
4095           DeoptimizeIf(lt, instr, Deoptimizer::kOverflow);
4096         }
4097 
4098         if (right >= 0) {
4099           // result = left << log2(right)
4100           __ Lsl(result, left, right_log2);
4101         } else {
4102           // result = -left << log2(-right)
4103           if (can_overflow) {
4104             __ Negs(result, Operand(left, LSL, right_log2));
4105             DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
4106           } else {
4107             __ Neg(result, Operand(left, LSL, right_log2));
4108           }
4109         }
4110         return;
4111       }
4112 
4113 
4114       // For the following cases, we could perform a conservative overflow check
4115       // with CLS as above. However the few cycles saved are likely not worth
4116       // the risk of deoptimizing more often than required.
4117       DCHECK(!can_overflow);
4118 
4119       if (right >= 0) {
4120         if (base::bits::IsPowerOfTwo32(right - 1)) {
4121           // result = left + left << log2(right - 1)
4122           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4123         } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4124           // result = -left + left << log2(right + 1)
4125           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4126           __ Neg(result, result);
4127         } else {
4128           UNREACHABLE();
4129         }
4130       } else {
4131         if (base::bits::IsPowerOfTwo32(-right + 1)) {
4132           // result = left - left << log2(-right + 1)
4133           __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4134         } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4135           // result = -left - left << log2(-right - 1)
4136           __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4137           __ Neg(result, result);
4138         } else {
4139           UNREACHABLE();
4140         }
4141       }
4142   }
4143 }
4144 
4145 
DoMulI(LMulI * instr)4146 void LCodeGen::DoMulI(LMulI* instr) {
4147   Register result = ToRegister32(instr->result());
4148   Register left = ToRegister32(instr->left());
4149   Register right = ToRegister32(instr->right());
4150 
4151   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4152   bool bailout_on_minus_zero =
4153     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4154 
4155   if (bailout_on_minus_zero && !left.Is(right)) {
4156     // If one operand is zero and the other is negative, the result is -0.
4157     //  - Set Z (eq) if either left or right, or both, are 0.
4158     __ Cmp(left, 0);
4159     __ Ccmp(right, 0, ZFlag, ne);
4160     //  - If so (eq), set N (mi) if left + right is negative.
4161     //  - Otherwise, clear N.
4162     __ Ccmn(left, right, NoFlag, eq);
4163     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4164   }
4165 
4166   if (can_overflow) {
4167     __ Smull(result.X(), left, right);
4168     __ Cmp(result.X(), Operand(result, SXTW));
4169     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4170   } else {
4171     __ Mul(result, left, right);
4172   }
4173 }
4174 
4175 
DoMulS(LMulS * instr)4176 void LCodeGen::DoMulS(LMulS* instr) {
4177   Register result = ToRegister(instr->result());
4178   Register left = ToRegister(instr->left());
4179   Register right = ToRegister(instr->right());
4180 
4181   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4182   bool bailout_on_minus_zero =
4183     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4184 
4185   if (bailout_on_minus_zero && !left.Is(right)) {
4186     // If one operand is zero and the other is negative, the result is -0.
4187     //  - Set Z (eq) if either left or right, or both, are 0.
4188     __ Cmp(left, 0);
4189     __ Ccmp(right, 0, ZFlag, ne);
4190     //  - If so (eq), set N (mi) if left + right is negative.
4191     //  - Otherwise, clear N.
4192     __ Ccmn(left, right, NoFlag, eq);
4193     DeoptimizeIf(mi, instr, Deoptimizer::kMinusZero);
4194   }
4195 
4196   STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4197   if (can_overflow) {
4198     __ Smulh(result, left, right);
4199     __ Cmp(result, Operand(result.W(), SXTW));
4200     __ SmiTag(result);
4201     DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
4202   } else {
4203     if (AreAliased(result, left, right)) {
4204       // All three registers are the same: half untag the input and then
4205       // multiply, giving a tagged result.
4206       STATIC_ASSERT((kSmiShift % 2) == 0);
4207       __ Asr(result, left, kSmiShift / 2);
4208       __ Mul(result, result, result);
4209     } else if (result.Is(left) && !left.Is(right)) {
4210       // Registers result and left alias, right is distinct: untag left into
4211       // result, and then multiply by right, giving a tagged result.
4212       __ SmiUntag(result, left);
4213       __ Mul(result, result, right);
4214     } else {
4215       DCHECK(!left.Is(result));
4216       // Registers result and right alias, left is distinct, or all registers
4217       // are distinct: untag right into result, and then multiply by left,
4218       // giving a tagged result.
4219       __ SmiUntag(result, right);
4220       __ Mul(result, left, result);
4221     }
4222   }
4223 }
4224 
4225 
DoDeferredNumberTagD(LNumberTagD * instr)4226 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4227   // TODO(3095996): Get rid of this. For now, we need to make the
4228   // result register contain a valid pointer because it is already
4229   // contained in the register pointer map.
4230   Register result = ToRegister(instr->result());
4231   __ Mov(result, 0);
4232 
4233   PushSafepointRegistersScope scope(this);
4234   // NumberTagU and NumberTagD use the context from the frame, rather than
4235   // the environment's HContext or HInlinedContext value.
4236   // They only call Runtime::kAllocateHeapNumber.
4237   // The corresponding HChange instructions are added in a phase that does
4238   // not have easy access to the local context.
4239   __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4240   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4241   RecordSafepointWithRegisters(
4242       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4243   __ StoreToSafepointRegisterSlot(x0, result);
4244 }
4245 
4246 
DoNumberTagD(LNumberTagD * instr)4247 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4248   class DeferredNumberTagD: public LDeferredCode {
4249    public:
4250     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4251         : LDeferredCode(codegen), instr_(instr) { }
4252     virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4253     virtual LInstruction* instr() { return instr_; }
4254    private:
4255     LNumberTagD* instr_;
4256   };
4257 
4258   DoubleRegister input = ToDoubleRegister(instr->value());
4259   Register result = ToRegister(instr->result());
4260   Register temp1 = ToRegister(instr->temp1());
4261   Register temp2 = ToRegister(instr->temp2());
4262 
4263   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4264   if (FLAG_inline_new) {
4265     __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4266   } else {
4267     __ B(deferred->entry());
4268   }
4269 
4270   __ Bind(deferred->exit());
4271   __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4272 }
4273 
4274 
DoDeferredNumberTagU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2)4275 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4276                                     LOperand* value,
4277                                     LOperand* temp1,
4278                                     LOperand* temp2) {
4279   Label slow, convert_and_store;
4280   Register src = ToRegister32(value);
4281   Register dst = ToRegister(instr->result());
4282   Register scratch1 = ToRegister(temp1);
4283 
4284   if (FLAG_inline_new) {
4285     Register scratch2 = ToRegister(temp2);
4286     __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4287     __ B(&convert_and_store);
4288   }
4289 
4290   // Slow case: call the runtime system to do the number allocation.
4291   __ Bind(&slow);
4292   // TODO(3095996): Put a valid pointer value in the stack slot where the result
4293   // register is stored, as this register is in the pointer map, but contains an
4294   // integer value.
4295   __ Mov(dst, 0);
4296   {
4297     // Preserve the value of all registers.
4298     PushSafepointRegistersScope scope(this);
4299 
4300     // NumberTagU and NumberTagD use the context from the frame, rather than
4301     // the environment's HContext or HInlinedContext value.
4302     // They only call Runtime::kAllocateHeapNumber.
4303     // The corresponding HChange instructions are added in a phase that does
4304     // not have easy access to the local context.
4305     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4306     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4307     RecordSafepointWithRegisters(
4308       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4309     __ StoreToSafepointRegisterSlot(x0, dst);
4310   }
4311 
4312   // Convert number to floating point and store in the newly allocated heap
4313   // number.
4314   __ Bind(&convert_and_store);
4315   DoubleRegister dbl_scratch = double_scratch();
4316   __ Ucvtf(dbl_scratch, src);
4317   __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4318 }
4319 
4320 
DoNumberTagU(LNumberTagU * instr)4321 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4322   class DeferredNumberTagU: public LDeferredCode {
4323    public:
4324     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4325         : LDeferredCode(codegen), instr_(instr) { }
4326     virtual void Generate() {
4327       codegen()->DoDeferredNumberTagU(instr_,
4328                                       instr_->value(),
4329                                       instr_->temp1(),
4330                                       instr_->temp2());
4331     }
4332     virtual LInstruction* instr() { return instr_; }
4333    private:
4334     LNumberTagU* instr_;
4335   };
4336 
4337   Register value = ToRegister32(instr->value());
4338   Register result = ToRegister(instr->result());
4339 
4340   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4341   __ Cmp(value, Smi::kMaxValue);
4342   __ B(hi, deferred->entry());
4343   __ SmiTag(result, value.X());
4344   __ Bind(deferred->exit());
4345 }
4346 
4347 
DoNumberUntagD(LNumberUntagD * instr)4348 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4349   Register input = ToRegister(instr->value());
4350   Register scratch = ToRegister(instr->temp());
4351   DoubleRegister result = ToDoubleRegister(instr->result());
4352   bool can_convert_undefined_to_nan =
4353       instr->hydrogen()->can_convert_undefined_to_nan();
4354 
4355   Label done, load_smi;
4356 
4357   // Work out what untag mode we're working with.
4358   HValue* value = instr->hydrogen()->value();
4359   NumberUntagDMode mode = value->representation().IsSmi()
4360       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4361 
4362   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4363     __ JumpIfSmi(input, &load_smi);
4364 
4365     Label convert_undefined;
4366 
4367     // Heap number map check.
4368     if (can_convert_undefined_to_nan) {
4369       __ JumpIfNotHeapNumber(input, &convert_undefined);
4370     } else {
4371       DeoptimizeIfNotHeapNumber(input, instr);
4372     }
4373 
4374     // Load heap number.
4375     __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4376     if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4377       DeoptimizeIfMinusZero(result, instr, Deoptimizer::kMinusZero);
4378     }
4379     __ B(&done);
4380 
4381     if (can_convert_undefined_to_nan) {
4382       __ Bind(&convert_undefined);
4383       DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4384                           Deoptimizer::kNotAHeapNumberUndefined);
4385 
4386       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4387       __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4388       __ B(&done);
4389     }
4390 
4391   } else {
4392     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4393     // Fall through to load_smi.
4394   }
4395 
4396   // Smi to double register conversion.
4397   __ Bind(&load_smi);
4398   __ SmiUntagToDouble(result, input);
4399 
4400   __ Bind(&done);
4401 }
4402 
4403 
DoOsrEntry(LOsrEntry * instr)4404 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4405   // This is a pseudo-instruction that ensures that the environment here is
4406   // properly registered for deoptimization and records the assembler's PC
4407   // offset.
4408   LEnvironment* environment = instr->environment();
4409 
4410   // If the environment were already registered, we would have no way of
4411   // backpatching it with the spill slot operands.
4412   DCHECK(!environment->HasBeenRegistered());
4413   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4414 
4415   GenerateOsrPrologue();
4416 }
4417 
4418 
DoParameter(LParameter * instr)4419 void LCodeGen::DoParameter(LParameter* instr) {
4420   // Nothing to do.
4421 }
4422 
4423 
DoPreparePushArguments(LPreparePushArguments * instr)4424 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4425   __ PushPreamble(instr->argc(), kPointerSize);
4426 }
4427 
4428 
DoPushArguments(LPushArguments * instr)4429 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4430   MacroAssembler::PushPopQueue args(masm());
4431 
4432   for (int i = 0; i < instr->ArgumentCount(); ++i) {
4433     LOperand* arg = instr->argument(i);
4434     if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4435       Abort(kDoPushArgumentNotImplementedForDoubleType);
4436       return;
4437     }
4438     args.Queue(ToRegister(arg));
4439   }
4440 
4441   // The preamble was done by LPreparePushArguments.
4442   args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4443 
4444   RecordPushedArgumentsDelta(instr->ArgumentCount());
4445 }
4446 
4447 
DoReturn(LReturn * instr)4448 void LCodeGen::DoReturn(LReturn* instr) {
4449   if (FLAG_trace && info()->IsOptimizing()) {
4450     // Push the return value on the stack as the parameter.
4451     // Runtime::TraceExit returns its parameter in x0.  We're leaving the code
4452     // managed by the register allocator and tearing down the frame, it's
4453     // safe to write to the context register.
4454     __ Push(x0);
4455     __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4456     __ CallRuntime(Runtime::kTraceExit);
4457   }
4458 
4459   if (info()->saves_caller_doubles()) {
4460     RestoreCallerDoubles();
4461   }
4462 
4463   if (NeedsEagerFrame()) {
4464     Register stack_pointer = masm()->StackPointer();
4465     __ Mov(stack_pointer, fp);
4466     __ Pop(fp, lr);
4467   }
4468 
4469   if (instr->has_constant_parameter_count()) {
4470     int parameter_count = ToInteger32(instr->constant_parameter_count());
4471     __ Drop(parameter_count + 1);
4472   } else {
4473     DCHECK(info()->IsStub());  // Functions would need to drop one more value.
4474     Register parameter_count = ToRegister(instr->parameter_count());
4475     __ DropBySMI(parameter_count);
4476   }
4477   __ Ret();
4478 }
4479 
4480 
BuildSeqStringOperand(Register string,Register temp,LOperand * index,String::Encoding encoding)4481 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4482                                            Register temp,
4483                                            LOperand* index,
4484                                            String::Encoding encoding) {
4485   if (index->IsConstantOperand()) {
4486     int offset = ToInteger32(LConstantOperand::cast(index));
4487     if (encoding == String::TWO_BYTE_ENCODING) {
4488       offset *= kUC16Size;
4489     }
4490     STATIC_ASSERT(kCharSize == 1);
4491     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4492   }
4493 
4494   __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4495   if (encoding == String::ONE_BYTE_ENCODING) {
4496     return MemOperand(temp, ToRegister32(index), SXTW);
4497   } else {
4498     STATIC_ASSERT(kUC16Size == 2);
4499     return MemOperand(temp, ToRegister32(index), SXTW, 1);
4500   }
4501 }
4502 
4503 
DoSeqStringGetChar(LSeqStringGetChar * instr)4504 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4505   String::Encoding encoding = instr->hydrogen()->encoding();
4506   Register string = ToRegister(instr->string());
4507   Register result = ToRegister(instr->result());
4508   Register temp = ToRegister(instr->temp());
4509 
4510   if (FLAG_debug_code) {
4511     // Even though this lithium instruction comes with a temp register, we
4512     // can't use it here because we want to use "AtStart" constraints on the
4513     // inputs and the debug code here needs a scratch register.
4514     UseScratchRegisterScope temps(masm());
4515     Register dbg_temp = temps.AcquireX();
4516 
4517     __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4518     __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4519 
4520     __ And(dbg_temp, dbg_temp,
4521            Operand(kStringRepresentationMask | kStringEncodingMask));
4522     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4523     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4524     __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4525                              ? one_byte_seq_type : two_byte_seq_type));
4526     __ Check(eq, kUnexpectedStringType);
4527   }
4528 
4529   MemOperand operand =
4530       BuildSeqStringOperand(string, temp, instr->index(), encoding);
4531   if (encoding == String::ONE_BYTE_ENCODING) {
4532     __ Ldrb(result, operand);
4533   } else {
4534     __ Ldrh(result, operand);
4535   }
4536 }
4537 
4538 
DoSeqStringSetChar(LSeqStringSetChar * instr)4539 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4540   String::Encoding encoding = instr->hydrogen()->encoding();
4541   Register string = ToRegister(instr->string());
4542   Register value = ToRegister(instr->value());
4543   Register temp = ToRegister(instr->temp());
4544 
4545   if (FLAG_debug_code) {
4546     DCHECK(ToRegister(instr->context()).is(cp));
4547     Register index = ToRegister(instr->index());
4548     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4549     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4550     int encoding_mask =
4551         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4552         ? one_byte_seq_type : two_byte_seq_type;
4553     __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4554                                  encoding_mask);
4555   }
4556   MemOperand operand =
4557       BuildSeqStringOperand(string, temp, instr->index(), encoding);
4558   if (encoding == String::ONE_BYTE_ENCODING) {
4559     __ Strb(value, operand);
4560   } else {
4561     __ Strh(value, operand);
4562   }
4563 }
4564 
4565 
DoSmiTag(LSmiTag * instr)4566 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4567   HChange* hchange = instr->hydrogen();
4568   Register input = ToRegister(instr->value());
4569   Register output = ToRegister(instr->result());
4570   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4571       hchange->value()->CheckFlag(HValue::kUint32)) {
4572     DeoptimizeIfNegative(input.W(), instr, Deoptimizer::kOverflow);
4573   }
4574   __ SmiTag(output, input);
4575 }
4576 
4577 
DoSmiUntag(LSmiUntag * instr)4578 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4579   Register input = ToRegister(instr->value());
4580   Register result = ToRegister(instr->result());
4581   Label done, untag;
4582 
4583   if (instr->needs_check()) {
4584     DeoptimizeIfNotSmi(input, instr, Deoptimizer::kNotASmi);
4585   }
4586 
4587   __ Bind(&untag);
4588   __ SmiUntag(result, input);
4589   __ Bind(&done);
4590 }
4591 
4592 
DoShiftI(LShiftI * instr)4593 void LCodeGen::DoShiftI(LShiftI* instr) {
4594   LOperand* right_op = instr->right();
4595   Register left = ToRegister32(instr->left());
4596   Register result = ToRegister32(instr->result());
4597 
4598   if (right_op->IsRegister()) {
4599     Register right = ToRegister32(instr->right());
4600     switch (instr->op()) {
4601       case Token::ROR: __ Ror(result, left, right); break;
4602       case Token::SAR: __ Asr(result, left, right); break;
4603       case Token::SHL: __ Lsl(result, left, right); break;
4604       case Token::SHR:
4605         __ Lsr(result, left, right);
4606         if (instr->can_deopt()) {
4607           // If `left >>> right` >= 0x80000000, the result is not representable
4608           // in a signed 32-bit smi.
4609           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4610         }
4611         break;
4612       default: UNREACHABLE();
4613     }
4614   } else {
4615     DCHECK(right_op->IsConstantOperand());
4616     int shift_count = JSShiftAmountFromLConstant(right_op);
4617     if (shift_count == 0) {
4618       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4619         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4620       }
4621       __ Mov(result, left, kDiscardForSameWReg);
4622     } else {
4623       switch (instr->op()) {
4624         case Token::ROR: __ Ror(result, left, shift_count); break;
4625         case Token::SAR: __ Asr(result, left, shift_count); break;
4626         case Token::SHL: __ Lsl(result, left, shift_count); break;
4627         case Token::SHR: __ Lsr(result, left, shift_count); break;
4628         default: UNREACHABLE();
4629       }
4630     }
4631   }
4632 }
4633 
4634 
DoShiftS(LShiftS * instr)4635 void LCodeGen::DoShiftS(LShiftS* instr) {
4636   LOperand* right_op = instr->right();
4637   Register left = ToRegister(instr->left());
4638   Register result = ToRegister(instr->result());
4639 
4640   if (right_op->IsRegister()) {
4641     Register right = ToRegister(instr->right());
4642 
4643     // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4644     // Since we're handling smis in X registers, we have to extract these bits
4645     // explicitly.
4646     __ Ubfx(result, right, kSmiShift, 5);
4647 
4648     switch (instr->op()) {
4649       case Token::ROR: {
4650         // This is the only case that needs a scratch register. To keep things
4651         // simple for the other cases, borrow a MacroAssembler scratch register.
4652         UseScratchRegisterScope temps(masm());
4653         Register temp = temps.AcquireW();
4654         __ SmiUntag(temp, left);
4655         __ Ror(result.W(), temp.W(), result.W());
4656         __ SmiTag(result);
4657         break;
4658       }
4659       case Token::SAR:
4660         __ Asr(result, left, result);
4661         __ Bic(result, result, kSmiShiftMask);
4662         break;
4663       case Token::SHL:
4664         __ Lsl(result, left, result);
4665         break;
4666       case Token::SHR:
4667         __ Lsr(result, left, result);
4668         __ Bic(result, result, kSmiShiftMask);
4669         if (instr->can_deopt()) {
4670           // If `left >>> right` >= 0x80000000, the result is not representable
4671           // in a signed 32-bit smi.
4672           DeoptimizeIfNegative(result, instr, Deoptimizer::kNegativeValue);
4673         }
4674         break;
4675       default: UNREACHABLE();
4676     }
4677   } else {
4678     DCHECK(right_op->IsConstantOperand());
4679     int shift_count = JSShiftAmountFromLConstant(right_op);
4680     if (shift_count == 0) {
4681       if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4682         DeoptimizeIfNegative(left, instr, Deoptimizer::kNegativeValue);
4683       }
4684       __ Mov(result, left);
4685     } else {
4686       switch (instr->op()) {
4687         case Token::ROR:
4688           __ SmiUntag(result, left);
4689           __ Ror(result.W(), result.W(), shift_count);
4690           __ SmiTag(result);
4691           break;
4692         case Token::SAR:
4693           __ Asr(result, left, shift_count);
4694           __ Bic(result, result, kSmiShiftMask);
4695           break;
4696         case Token::SHL:
4697           __ Lsl(result, left, shift_count);
4698           break;
4699         case Token::SHR:
4700           __ Lsr(result, left, shift_count);
4701           __ Bic(result, result, kSmiShiftMask);
4702           break;
4703         default: UNREACHABLE();
4704       }
4705     }
4706   }
4707 }
4708 
4709 
DoDebugBreak(LDebugBreak * instr)4710 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
4711   __ Debug("LDebugBreak", 0, BREAK);
4712 }
4713 
4714 
DoDeclareGlobals(LDeclareGlobals * instr)4715 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
4716   DCHECK(ToRegister(instr->context()).is(cp));
4717   Register scratch1 = x5;
4718   Register scratch2 = x6;
4719   DCHECK(instr->IsMarkedAsCall());
4720 
4721   // TODO(all): if Mov could handle object in new space then it could be used
4722   // here.
4723   __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
4724   __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
4725   __ Push(scratch1, scratch2);
4726   CallRuntime(Runtime::kDeclareGlobals, instr);
4727 }
4728 
4729 
DoDeferredStackCheck(LStackCheck * instr)4730 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4731   PushSafepointRegistersScope scope(this);
4732   LoadContextFromDeferred(instr->context());
4733   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4734   RecordSafepointWithLazyDeopt(
4735       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4736   DCHECK(instr->HasEnvironment());
4737   LEnvironment* env = instr->environment();
4738   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4739 }
4740 
4741 
DoStackCheck(LStackCheck * instr)4742 void LCodeGen::DoStackCheck(LStackCheck* instr) {
4743   class DeferredStackCheck: public LDeferredCode {
4744    public:
4745     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4746         : LDeferredCode(codegen), instr_(instr) { }
4747     virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4748     virtual LInstruction* instr() { return instr_; }
4749    private:
4750     LStackCheck* instr_;
4751   };
4752 
4753   DCHECK(instr->HasEnvironment());
4754   LEnvironment* env = instr->environment();
4755   // There is no LLazyBailout instruction for stack-checks. We have to
4756   // prepare for lazy deoptimization explicitly here.
4757   if (instr->hydrogen()->is_function_entry()) {
4758     // Perform stack overflow check.
4759     Label done;
4760     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4761     __ B(hs, &done);
4762 
4763     PredictableCodeSizeScope predictable(masm_,
4764                                          Assembler::kCallSizeWithRelocation);
4765     DCHECK(instr->context()->IsRegister());
4766     DCHECK(ToRegister(instr->context()).is(cp));
4767     CallCode(isolate()->builtins()->StackCheck(),
4768              RelocInfo::CODE_TARGET,
4769              instr);
4770     __ Bind(&done);
4771   } else {
4772     DCHECK(instr->hydrogen()->is_backwards_branch());
4773     // Perform stack overflow check if this goto needs it before jumping.
4774     DeferredStackCheck* deferred_stack_check =
4775         new(zone()) DeferredStackCheck(this, instr);
4776     __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
4777     __ B(lo, deferred_stack_check->entry());
4778 
4779     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
4780     __ Bind(instr->done_label());
4781     deferred_stack_check->SetExit(instr->done_label());
4782     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4783     // Don't record a deoptimization index for the safepoint here.
4784     // This will be done explicitly when emitting call and the safepoint in
4785     // the deferred code.
4786   }
4787 }
4788 
4789 
DoStoreCodeEntry(LStoreCodeEntry * instr)4790 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4791   Register function = ToRegister(instr->function());
4792   Register code_object = ToRegister(instr->code_object());
4793   Register temp = ToRegister(instr->temp());
4794   __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
4795   __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4796 }
4797 
4798 
DoStoreContextSlot(LStoreContextSlot * instr)4799 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
4800   Register context = ToRegister(instr->context());
4801   Register value = ToRegister(instr->value());
4802   Register scratch = ToRegister(instr->temp());
4803   MemOperand target = ContextMemOperand(context, instr->slot_index());
4804 
4805   Label skip_assignment;
4806 
4807   if (instr->hydrogen()->RequiresHoleCheck()) {
4808     __ Ldr(scratch, target);
4809     if (instr->hydrogen()->DeoptimizesOnHole()) {
4810       DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr,
4811                        Deoptimizer::kHole);
4812     } else {
4813       __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
4814     }
4815   }
4816 
4817   __ Str(value, target);
4818   if (instr->hydrogen()->NeedsWriteBarrier()) {
4819     SmiCheck check_needed =
4820         instr->hydrogen()->value()->type().IsHeapObject()
4821             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4822     __ RecordWriteContextSlot(context, static_cast<int>(target.offset()), value,
4823                               scratch, GetLinkRegisterState(), kSaveFPRegs,
4824                               EMIT_REMEMBERED_SET, check_needed);
4825   }
4826   __ Bind(&skip_assignment);
4827 }
4828 
4829 
DoStoreKeyedExternal(LStoreKeyedExternal * instr)4830 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
4831   Register ext_ptr = ToRegister(instr->elements());
4832   Register key = no_reg;
4833   Register scratch;
4834   ElementsKind elements_kind = instr->elements_kind();
4835 
4836   bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4837   bool key_is_constant = instr->key()->IsConstantOperand();
4838   int constant_key = 0;
4839   if (key_is_constant) {
4840     DCHECK(instr->temp() == NULL);
4841     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4842     if (constant_key & 0xf0000000) {
4843       Abort(kArrayIndexConstantValueTooBig);
4844     }
4845   } else {
4846     key = ToRegister(instr->key());
4847     scratch = ToRegister(instr->temp());
4848   }
4849 
4850   MemOperand dst =
4851     PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
4852                                      key_is_constant, constant_key,
4853                                      elements_kind,
4854                                      instr->base_offset());
4855 
4856   if (elements_kind == FLOAT32_ELEMENTS) {
4857     DoubleRegister value = ToDoubleRegister(instr->value());
4858     DoubleRegister dbl_scratch = double_scratch();
4859     __ Fcvt(dbl_scratch.S(), value);
4860     __ Str(dbl_scratch.S(), dst);
4861   } else if (elements_kind == FLOAT64_ELEMENTS) {
4862     DoubleRegister value = ToDoubleRegister(instr->value());
4863     __ Str(value, dst);
4864   } else {
4865     Register value = ToRegister(instr->value());
4866 
4867     switch (elements_kind) {
4868       case UINT8_ELEMENTS:
4869       case UINT8_CLAMPED_ELEMENTS:
4870       case INT8_ELEMENTS:
4871         __ Strb(value, dst);
4872         break;
4873       case INT16_ELEMENTS:
4874       case UINT16_ELEMENTS:
4875         __ Strh(value, dst);
4876         break;
4877       case INT32_ELEMENTS:
4878       case UINT32_ELEMENTS:
4879         __ Str(value.W(), dst);
4880         break;
4881       case FLOAT32_ELEMENTS:
4882       case FLOAT64_ELEMENTS:
4883       case FAST_DOUBLE_ELEMENTS:
4884       case FAST_ELEMENTS:
4885       case FAST_SMI_ELEMENTS:
4886       case FAST_HOLEY_DOUBLE_ELEMENTS:
4887       case FAST_HOLEY_ELEMENTS:
4888       case FAST_HOLEY_SMI_ELEMENTS:
4889       case DICTIONARY_ELEMENTS:
4890       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4891       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4892         UNREACHABLE();
4893         break;
4894     }
4895   }
4896 }
4897 
4898 
DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble * instr)4899 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
4900   Register elements = ToRegister(instr->elements());
4901   DoubleRegister value = ToDoubleRegister(instr->value());
4902   MemOperand mem_op;
4903 
4904   if (instr->key()->IsConstantOperand()) {
4905     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4906     if (constant_key & 0xf0000000) {
4907       Abort(kArrayIndexConstantValueTooBig);
4908     }
4909     int offset = instr->base_offset() + constant_key * kDoubleSize;
4910     mem_op = MemOperand(elements, offset);
4911   } else {
4912     Register store_base = ToRegister(instr->temp());
4913     Register key = ToRegister(instr->key());
4914     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4915     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4916                                       instr->hydrogen()->elements_kind(),
4917                                       instr->hydrogen()->representation(),
4918                                       instr->base_offset());
4919   }
4920 
4921   if (instr->NeedsCanonicalization()) {
4922     __ CanonicalizeNaN(double_scratch(), value);
4923     __ Str(double_scratch(), mem_op);
4924   } else {
4925     __ Str(value, mem_op);
4926   }
4927 }
4928 
4929 
DoStoreKeyedFixed(LStoreKeyedFixed * instr)4930 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
4931   Register value = ToRegister(instr->value());
4932   Register elements = ToRegister(instr->elements());
4933   Register scratch = no_reg;
4934   Register store_base = no_reg;
4935   Register key = no_reg;
4936   MemOperand mem_op;
4937 
4938   if (!instr->key()->IsConstantOperand() ||
4939       instr->hydrogen()->NeedsWriteBarrier()) {
4940     scratch = ToRegister(instr->temp());
4941   }
4942 
4943   Representation representation = instr->hydrogen()->value()->representation();
4944   if (instr->key()->IsConstantOperand()) {
4945     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4946     int offset = instr->base_offset() +
4947         ToInteger32(const_operand) * kPointerSize;
4948     store_base = elements;
4949     if (representation.IsInteger32()) {
4950       DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4951       DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
4952       STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
4953       STATIC_ASSERT(kSmiTag == 0);
4954       mem_op = UntagSmiMemOperand(store_base, offset);
4955     } else {
4956       mem_op = MemOperand(store_base, offset);
4957     }
4958   } else {
4959     store_base = scratch;
4960     key = ToRegister(instr->key());
4961     bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
4962 
4963     mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
4964                                       instr->hydrogen()->elements_kind(),
4965                                       representation, instr->base_offset());
4966   }
4967 
4968   __ Store(value, mem_op, representation);
4969 
4970   if (instr->hydrogen()->NeedsWriteBarrier()) {
4971     DCHECK(representation.IsTagged());
4972     // This assignment may cause element_addr to alias store_base.
4973     Register element_addr = scratch;
4974     SmiCheck check_needed =
4975         instr->hydrogen()->value()->type().IsHeapObject()
4976             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4977     // Compute address of modified element and store it into key register.
4978     __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
4979     __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
4980                    kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
4981                    instr->hydrogen()->PointersToHereCheckForValue());
4982   }
4983 }
4984 
4985 
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)4986 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4987   DCHECK(ToRegister(instr->context()).is(cp));
4988   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4989   DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4990   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4991 
4992   if (instr->hydrogen()->HasVectorAndSlot()) {
4993     EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4994   }
4995 
4996   Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4997                         isolate(), instr->language_mode(),
4998                         instr->hydrogen()->initialization_state()).code();
4999   CallCode(ic, RelocInfo::CODE_TARGET, instr);
5000 }
5001 
5002 
DoMaybeGrowElements(LMaybeGrowElements * instr)5003 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
5004   class DeferredMaybeGrowElements final : public LDeferredCode {
5005    public:
5006     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
5007         : LDeferredCode(codegen), instr_(instr) {}
5008     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
5009     LInstruction* instr() override { return instr_; }
5010 
5011    private:
5012     LMaybeGrowElements* instr_;
5013   };
5014 
5015   Register result = x0;
5016   DeferredMaybeGrowElements* deferred =
5017       new (zone()) DeferredMaybeGrowElements(this, instr);
5018   LOperand* key = instr->key();
5019   LOperand* current_capacity = instr->current_capacity();
5020 
5021   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
5022   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
5023   DCHECK(key->IsConstantOperand() || key->IsRegister());
5024   DCHECK(current_capacity->IsConstantOperand() ||
5025          current_capacity->IsRegister());
5026 
5027   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
5028     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5029     int32_t constant_capacity =
5030         ToInteger32(LConstantOperand::cast(current_capacity));
5031     if (constant_key >= constant_capacity) {
5032       // Deferred case.
5033       __ B(deferred->entry());
5034     }
5035   } else if (key->IsConstantOperand()) {
5036     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
5037     __ Cmp(ToRegister(current_capacity), Operand(constant_key));
5038     __ B(le, deferred->entry());
5039   } else if (current_capacity->IsConstantOperand()) {
5040     int32_t constant_capacity =
5041         ToInteger32(LConstantOperand::cast(current_capacity));
5042     __ Cmp(ToRegister(key), Operand(constant_capacity));
5043     __ B(ge, deferred->entry());
5044   } else {
5045     __ Cmp(ToRegister(key), ToRegister(current_capacity));
5046     __ B(ge, deferred->entry());
5047   }
5048 
5049   __ Mov(result, ToRegister(instr->elements()));
5050 
5051   __ Bind(deferred->exit());
5052 }
5053 
5054 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)5055 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
5056   // TODO(3095996): Get rid of this. For now, we need to make the
5057   // result register contain a valid pointer because it is already
5058   // contained in the register pointer map.
5059   Register result = x0;
5060   __ Mov(result, 0);
5061 
5062   // We have to call a stub.
5063   {
5064     PushSafepointRegistersScope scope(this);
5065     __ Move(result, ToRegister(instr->object()));
5066 
5067     LOperand* key = instr->key();
5068     if (key->IsConstantOperand()) {
5069       __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key))));
5070     } else {
5071       __ Mov(x3, ToRegister(key));
5072       __ SmiTag(x3);
5073     }
5074 
5075     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
5076                                instr->hydrogen()->kind());
5077     __ CallStub(&stub);
5078     RecordSafepointWithLazyDeopt(
5079         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5080     __ StoreToSafepointRegisterSlot(result, result);
5081   }
5082 
5083   // Deopt on smi, which means the elements array changed to dictionary mode.
5084   DeoptimizeIfSmi(result, instr, Deoptimizer::kSmi);
5085 }
5086 
5087 
DoStoreNamedField(LStoreNamedField * instr)5088 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5089   Representation representation = instr->representation();
5090 
5091   Register object = ToRegister(instr->object());
5092   HObjectAccess access = instr->hydrogen()->access();
5093   int offset = access.offset();
5094 
5095   if (access.IsExternalMemory()) {
5096     DCHECK(!instr->hydrogen()->has_transition());
5097     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5098     Register value = ToRegister(instr->value());
5099     __ Store(value, MemOperand(object, offset), representation);
5100     return;
5101   }
5102 
5103   __ AssertNotSmi(object);
5104 
5105   if (!FLAG_unbox_double_fields && representation.IsDouble()) {
5106     DCHECK(access.IsInobject());
5107     DCHECK(!instr->hydrogen()->has_transition());
5108     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5109     FPRegister value = ToDoubleRegister(instr->value());
5110     __ Str(value, FieldMemOperand(object, offset));
5111     return;
5112   }
5113 
5114   DCHECK(!representation.IsSmi() ||
5115          !instr->value()->IsConstantOperand() ||
5116          IsInteger32Constant(LConstantOperand::cast(instr->value())));
5117 
5118   if (instr->hydrogen()->has_transition()) {
5119     Handle<Map> transition = instr->hydrogen()->transition_map();
5120     AddDeprecationDependency(transition);
5121     // Store the new map value.
5122     Register new_map_value = ToRegister(instr->temp0());
5123     __ Mov(new_map_value, Operand(transition));
5124     __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5125     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5126       // Update the write barrier for the map field.
5127       __ RecordWriteForMap(object,
5128                            new_map_value,
5129                            ToRegister(instr->temp1()),
5130                            GetLinkRegisterState(),
5131                            kSaveFPRegs);
5132     }
5133   }
5134 
5135   // Do the store.
5136   Register destination;
5137   if (access.IsInobject()) {
5138     destination = object;
5139   } else {
5140     Register temp0 = ToRegister(instr->temp0());
5141     __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5142     destination = temp0;
5143   }
5144 
5145   if (FLAG_unbox_double_fields && representation.IsDouble()) {
5146     DCHECK(access.IsInobject());
5147     FPRegister value = ToDoubleRegister(instr->value());
5148     __ Str(value, FieldMemOperand(object, offset));
5149   } else if (representation.IsSmi() &&
5150              instr->hydrogen()->value()->representation().IsInteger32()) {
5151     DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5152 #ifdef DEBUG
5153     Register temp0 = ToRegister(instr->temp0());
5154     __ Ldr(temp0, FieldMemOperand(destination, offset));
5155     __ AssertSmi(temp0);
5156     // If destination aliased temp0, restore it to the address calculated
5157     // earlier.
5158     if (destination.Is(temp0)) {
5159       DCHECK(!access.IsInobject());
5160       __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5161     }
5162 #endif
5163     STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5164     STATIC_ASSERT(kSmiTag == 0);
5165     Register value = ToRegister(instr->value());
5166     __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5167              Representation::Integer32());
5168   } else {
5169     Register value = ToRegister(instr->value());
5170     __ Store(value, FieldMemOperand(destination, offset), representation);
5171   }
5172   if (instr->hydrogen()->NeedsWriteBarrier()) {
5173     Register value = ToRegister(instr->value());
5174     __ RecordWriteField(destination,
5175                         offset,
5176                         value,                        // Clobbered.
5177                         ToRegister(instr->temp1()),   // Clobbered.
5178                         GetLinkRegisterState(),
5179                         kSaveFPRegs,
5180                         EMIT_REMEMBERED_SET,
5181                         instr->hydrogen()->SmiCheckForWriteBarrier(),
5182                         instr->hydrogen()->PointersToHereCheckForValue());
5183   }
5184 }
5185 
5186 
DoStoreNamedGeneric(LStoreNamedGeneric * instr)5187 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5188   DCHECK(ToRegister(instr->context()).is(cp));
5189   DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5190   DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5191 
5192   if (instr->hydrogen()->HasVectorAndSlot()) {
5193     EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
5194   }
5195 
5196   __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
5197   Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
5198                         isolate(), instr->language_mode(),
5199                         instr->hydrogen()->initialization_state()).code();
5200   CallCode(ic, RelocInfo::CODE_TARGET, instr);
5201 }
5202 
5203 
DoStringAdd(LStringAdd * instr)5204 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5205   DCHECK(ToRegister(instr->context()).is(cp));
5206   DCHECK(ToRegister(instr->left()).Is(x1));
5207   DCHECK(ToRegister(instr->right()).Is(x0));
5208   StringAddStub stub(isolate(),
5209                      instr->hydrogen()->flags(),
5210                      instr->hydrogen()->pretenure_flag());
5211   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5212 }
5213 
5214 
DoStringCharCodeAt(LStringCharCodeAt * instr)5215 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5216   class DeferredStringCharCodeAt: public LDeferredCode {
5217    public:
5218     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5219         : LDeferredCode(codegen), instr_(instr) { }
5220     virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5221     virtual LInstruction* instr() { return instr_; }
5222    private:
5223     LStringCharCodeAt* instr_;
5224   };
5225 
5226   DeferredStringCharCodeAt* deferred =
5227       new(zone()) DeferredStringCharCodeAt(this, instr);
5228 
5229   StringCharLoadGenerator::Generate(masm(),
5230                                     ToRegister(instr->string()),
5231                                     ToRegister32(instr->index()),
5232                                     ToRegister(instr->result()),
5233                                     deferred->entry());
5234   __ Bind(deferred->exit());
5235 }
5236 
5237 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)5238 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5239   Register string = ToRegister(instr->string());
5240   Register result = ToRegister(instr->result());
5241 
5242   // TODO(3095996): Get rid of this. For now, we need to make the
5243   // result register contain a valid pointer because it is already
5244   // contained in the register pointer map.
5245   __ Mov(result, 0);
5246 
5247   PushSafepointRegistersScope scope(this);
5248   __ Push(string);
5249   // Push the index as a smi. This is safe because of the checks in
5250   // DoStringCharCodeAt above.
5251   Register index = ToRegister(instr->index());
5252   __ SmiTagAndPush(index);
5253 
5254   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5255                           instr->context());
5256   __ AssertSmi(x0);
5257   __ SmiUntag(x0);
5258   __ StoreToSafepointRegisterSlot(x0, result);
5259 }
5260 
5261 
DoStringCharFromCode(LStringCharFromCode * instr)5262 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5263   class DeferredStringCharFromCode: public LDeferredCode {
5264    public:
5265     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5266         : LDeferredCode(codegen), instr_(instr) { }
5267     virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5268     virtual LInstruction* instr() { return instr_; }
5269    private:
5270     LStringCharFromCode* instr_;
5271   };
5272 
5273   DeferredStringCharFromCode* deferred =
5274       new(zone()) DeferredStringCharFromCode(this, instr);
5275 
5276   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5277   Register char_code = ToRegister32(instr->char_code());
5278   Register result = ToRegister(instr->result());
5279 
5280   __ Cmp(char_code, String::kMaxOneByteCharCode);
5281   __ B(hi, deferred->entry());
5282   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5283   __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5284   __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5285   __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5286   __ B(eq, deferred->entry());
5287   __ Bind(deferred->exit());
5288 }
5289 
5290 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)5291 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5292   Register char_code = ToRegister(instr->char_code());
5293   Register result = ToRegister(instr->result());
5294 
5295   // TODO(3095996): Get rid of this. For now, we need to make the
5296   // result register contain a valid pointer because it is already
5297   // contained in the register pointer map.
5298   __ Mov(result, 0);
5299 
5300   PushSafepointRegistersScope scope(this);
5301   __ SmiTagAndPush(char_code);
5302   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
5303                           instr->context());
5304   __ StoreToSafepointRegisterSlot(x0, result);
5305 }
5306 
5307 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)5308 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5309   DCHECK(ToRegister(instr->context()).is(cp));
5310   DCHECK(ToRegister(instr->left()).is(x1));
5311   DCHECK(ToRegister(instr->right()).is(x0));
5312 
5313   Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
5314   CallCode(code, RelocInfo::CODE_TARGET, instr);
5315 
5316   EmitCompareAndBranch(instr, TokenToCondition(instr->op(), false), x0, 0);
5317 }
5318 
5319 
DoSubI(LSubI * instr)5320 void LCodeGen::DoSubI(LSubI* instr) {
5321   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5322   Register result = ToRegister32(instr->result());
5323   Register left = ToRegister32(instr->left());
5324   Operand right = ToShiftedRightOperand32(instr->right(), instr);
5325 
5326   if (can_overflow) {
5327     __ Subs(result, left, right);
5328     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5329   } else {
5330     __ Sub(result, left, right);
5331   }
5332 }
5333 
5334 
DoSubS(LSubS * instr)5335 void LCodeGen::DoSubS(LSubS* instr) {
5336   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5337   Register result = ToRegister(instr->result());
5338   Register left = ToRegister(instr->left());
5339   Operand right = ToOperand(instr->right());
5340   if (can_overflow) {
5341     __ Subs(result, left, right);
5342     DeoptimizeIf(vs, instr, Deoptimizer::kOverflow);
5343   } else {
5344     __ Sub(result, left, right);
5345   }
5346 }
5347 
5348 
DoDeferredTaggedToI(LTaggedToI * instr,LOperand * value,LOperand * temp1,LOperand * temp2)5349 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5350                                    LOperand* value,
5351                                    LOperand* temp1,
5352                                    LOperand* temp2) {
5353   Register input = ToRegister(value);
5354   Register scratch1 = ToRegister(temp1);
5355   DoubleRegister dbl_scratch1 = double_scratch();
5356 
5357   Label done;
5358 
5359   if (instr->truncating()) {
5360     Register output = ToRegister(instr->result());
5361     Label check_bools;
5362 
5363     // If it's not a heap number, jump to undefined check.
5364     __ JumpIfNotHeapNumber(input, &check_bools);
5365 
5366     // A heap number: load value and convert to int32 using truncating function.
5367     __ TruncateHeapNumberToI(output, input);
5368     __ B(&done);
5369 
5370     __ Bind(&check_bools);
5371 
5372     Register true_root = output;
5373     Register false_root = scratch1;
5374     __ LoadTrueFalseRoots(true_root, false_root);
5375     __ Cmp(input, true_root);
5376     __ Cset(output, eq);
5377     __ Ccmp(input, false_root, ZFlag, ne);
5378     __ B(eq, &done);
5379 
5380     // Output contains zero, undefined is converted to zero for truncating
5381     // conversions.
5382     DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
5383                         Deoptimizer::kNotAHeapNumberUndefinedBoolean);
5384   } else {
5385     Register output = ToRegister32(instr->result());
5386     DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5387 
5388     DeoptimizeIfNotHeapNumber(input, instr);
5389 
5390     // A heap number: load value and convert to int32 using non-truncating
5391     // function. If the result is out of range, branch to deoptimize.
5392     __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5393     __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5394     DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5395 
5396     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5397       __ Cmp(output, 0);
5398       __ B(ne, &done);
5399       __ Fmov(scratch1, dbl_scratch1);
5400       DeoptimizeIfNegative(scratch1, instr, Deoptimizer::kMinusZero);
5401     }
5402   }
5403   __ Bind(&done);
5404 }
5405 
5406 
DoTaggedToI(LTaggedToI * instr)5407 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5408   class DeferredTaggedToI: public LDeferredCode {
5409    public:
5410     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5411         : LDeferredCode(codegen), instr_(instr) { }
5412     virtual void Generate() {
5413       codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5414                                      instr_->temp2());
5415     }
5416 
5417     virtual LInstruction* instr() { return instr_; }
5418    private:
5419     LTaggedToI* instr_;
5420   };
5421 
5422   Register input = ToRegister(instr->value());
5423   Register output = ToRegister(instr->result());
5424 
5425   if (instr->hydrogen()->value()->representation().IsSmi()) {
5426     __ SmiUntag(output, input);
5427   } else {
5428     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5429 
5430     __ JumpIfNotSmi(input, deferred->entry());
5431     __ SmiUntag(output, input);
5432     __ Bind(deferred->exit());
5433   }
5434 }
5435 
5436 
DoThisFunction(LThisFunction * instr)5437 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5438   Register result = ToRegister(instr->result());
5439   __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5440 }
5441 
5442 
DoToFastProperties(LToFastProperties * instr)5443 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5444   DCHECK(ToRegister(instr->value()).Is(x0));
5445   DCHECK(ToRegister(instr->result()).Is(x0));
5446   __ Push(x0);
5447   CallRuntime(Runtime::kToFastProperties, 1, instr);
5448 }
5449 
5450 
DoTransitionElementsKind(LTransitionElementsKind * instr)5451 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5452   Register object = ToRegister(instr->object());
5453 
5454   Handle<Map> from_map = instr->original_map();
5455   Handle<Map> to_map = instr->transitioned_map();
5456   ElementsKind from_kind = instr->from_kind();
5457   ElementsKind to_kind = instr->to_kind();
5458 
5459   Label not_applicable;
5460 
5461   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5462     Register temp1 = ToRegister(instr->temp1());
5463     Register new_map = ToRegister(instr->temp2());
5464     __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
5465     __ Mov(new_map, Operand(to_map));
5466     __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5467     // Write barrier.
5468     __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5469                          kDontSaveFPRegs);
5470   } else {
5471     {
5472       UseScratchRegisterScope temps(masm());
5473       // Use the temp register only in a restricted scope - the codegen checks
5474       // that we do not use any register across a call.
5475       __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
5476                   DONT_DO_SMI_CHECK);
5477     }
5478     DCHECK(object.is(x0));
5479     DCHECK(ToRegister(instr->context()).is(cp));
5480     PushSafepointRegistersScope scope(this);
5481     __ Mov(x1, Operand(to_map));
5482     bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
5483     TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
5484     __ CallStub(&stub);
5485     RecordSafepointWithRegisters(
5486         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5487   }
5488   __ Bind(&not_applicable);
5489 }
5490 
5491 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)5492 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5493   Register object = ToRegister(instr->object());
5494   Register temp1 = ToRegister(instr->temp1());
5495   Register temp2 = ToRegister(instr->temp2());
5496 
5497   Label no_memento_found;
5498   __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5499   DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
5500   __ Bind(&no_memento_found);
5501 }
5502 
5503 
DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi * instr)5504 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5505   DoubleRegister input = ToDoubleRegister(instr->value());
5506   Register result = ToRegister(instr->result());
5507   __ TruncateDoubleToI(result, input);
5508   if (instr->tag_result()) {
5509     __ SmiTag(result, result);
5510   }
5511 }
5512 
5513 
DoTypeof(LTypeof * instr)5514 void LCodeGen::DoTypeof(LTypeof* instr) {
5515   DCHECK(ToRegister(instr->value()).is(x3));
5516   DCHECK(ToRegister(instr->result()).is(x0));
5517   Label end, do_call;
5518   Register value_register = ToRegister(instr->value());
5519   __ JumpIfNotSmi(value_register, &do_call);
5520   __ Mov(x0, Immediate(isolate()->factory()->number_string()));
5521   __ B(&end);
5522   __ Bind(&do_call);
5523   TypeofStub stub(isolate());
5524   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5525   __ Bind(&end);
5526 }
5527 
5528 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5529 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5530   Handle<String> type_name = instr->type_literal();
5531   Label* true_label = instr->TrueLabel(chunk_);
5532   Label* false_label = instr->FalseLabel(chunk_);
5533   Register value = ToRegister(instr->value());
5534 
5535   Factory* factory = isolate()->factory();
5536   if (String::Equals(type_name, factory->number_string())) {
5537     __ JumpIfSmi(value, true_label);
5538 
5539     int true_block = instr->TrueDestination(chunk_);
5540     int false_block = instr->FalseDestination(chunk_);
5541     int next_block = GetNextEmittedBlock();
5542 
5543     if (true_block == false_block) {
5544       EmitGoto(true_block);
5545     } else if (true_block == next_block) {
5546       __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5547     } else {
5548       __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5549       if (false_block != next_block) {
5550         __ B(chunk_->GetAssemblyLabel(false_block));
5551       }
5552     }
5553 
5554   } else if (String::Equals(type_name, factory->string_string())) {
5555     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5556     Register map = ToRegister(instr->temp1());
5557     Register scratch = ToRegister(instr->temp2());
5558 
5559     __ JumpIfSmi(value, false_label);
5560     __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE);
5561     EmitBranch(instr, lt);
5562 
5563   } else if (String::Equals(type_name, factory->symbol_string())) {
5564     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5565     Register map = ToRegister(instr->temp1());
5566     Register scratch = ToRegister(instr->temp2());
5567 
5568     __ JumpIfSmi(value, false_label);
5569     __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5570     EmitBranch(instr, eq);
5571 
5572   } else if (String::Equals(type_name, factory->boolean_string())) {
5573     __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5574     __ CompareRoot(value, Heap::kFalseValueRootIndex);
5575     EmitBranch(instr, eq);
5576 
5577   } else if (String::Equals(type_name, factory->undefined_string())) {
5578     DCHECK(instr->temp1() != NULL);
5579     Register scratch = ToRegister(instr->temp1());
5580 
5581     __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
5582     __ JumpIfSmi(value, false_label);
5583     // Check for undetectable objects and jump to the true branch in this case.
5584     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5585     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5586     EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5587 
5588   } else if (String::Equals(type_name, factory->function_string())) {
5589     DCHECK(instr->temp1() != NULL);
5590     Register scratch = ToRegister(instr->temp1());
5591 
5592     __ JumpIfSmi(value, false_label);
5593     __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5594     __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5595     __ And(scratch, scratch,
5596            (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5597     EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable);
5598 
5599   } else if (String::Equals(type_name, factory->object_string())) {
5600     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5601     Register map = ToRegister(instr->temp1());
5602     Register scratch = ToRegister(instr->temp2());
5603 
5604     __ JumpIfSmi(value, false_label);
5605     __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5606     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5607     __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE,
5608                         false_label, lt);
5609     // Check for callable or undetectable objects => false.
5610     __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5611     EmitTestAndBranch(instr, eq, scratch,
5612                       (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
5613 
5614 // clang-format off
5615 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type)       \
5616   } else if (String::Equals(type_name, factory->type##_string())) { \
5617     DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));   \
5618     Register map = ToRegister(instr->temp1());                      \
5619                                                                     \
5620     __ JumpIfSmi(value, false_label);                               \
5621     __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));    \
5622     __ CompareRoot(map, Heap::k##Type##MapRootIndex);               \
5623     EmitBranch(instr, eq);
5624   SIMD128_TYPES(SIMD128_TYPE)
5625 #undef SIMD128_TYPE
5626     // clang-format on
5627 
5628   } else {
5629     __ B(false_label);
5630   }
5631 }
5632 
5633 
DoUint32ToDouble(LUint32ToDouble * instr)5634 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5635   __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5636 }
5637 
5638 
DoCheckMapValue(LCheckMapValue * instr)5639 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5640   Register object = ToRegister(instr->value());
5641   Register map = ToRegister(instr->map());
5642   Register temp = ToRegister(instr->temp());
5643   __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5644   __ Cmp(map, temp);
5645   DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5646 }
5647 
5648 
DoWrapReceiver(LWrapReceiver * instr)5649 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5650   Register receiver = ToRegister(instr->receiver());
5651   Register function = ToRegister(instr->function());
5652   Register result = ToRegister(instr->result());
5653 
5654   // If the receiver is null or undefined, we have to pass the global object as
5655   // a receiver to normal functions. Values have to be passed unchanged to
5656   // builtins and strict-mode functions.
5657   Label global_object, done, copy_receiver;
5658 
5659   if (!instr->hydrogen()->known_function()) {
5660     __ Ldr(result, FieldMemOperand(function,
5661                                    JSFunction::kSharedFunctionInfoOffset));
5662 
5663     // CompilerHints is an int32 field. See objects.h.
5664     __ Ldr(result.W(),
5665            FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5666 
5667     // Do not transform the receiver to object for strict mode functions.
5668     __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
5669 
5670     // Do not transform the receiver to object for builtins.
5671     __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
5672   }
5673 
5674   // Normal function. Replace undefined or null with global receiver.
5675   __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5676   __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5677 
5678   // Deoptimize if the receiver is not a JS object.
5679   DeoptimizeIfSmi(receiver, instr, Deoptimizer::kSmi);
5680   __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE);
5681   __ B(ge, &copy_receiver);
5682   Deoptimize(instr, Deoptimizer::kNotAJavaScriptObject);
5683 
5684   __ Bind(&global_object);
5685   __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5686   __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
5687   __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
5688   __ B(&done);
5689 
5690   __ Bind(&copy_receiver);
5691   __ Mov(result, receiver);
5692   __ Bind(&done);
5693 }
5694 
5695 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5696 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5697                                            Register result,
5698                                            Register object,
5699                                            Register index) {
5700   PushSafepointRegistersScope scope(this);
5701   __ Push(object);
5702   __ Push(index);
5703   __ Mov(cp, 0);
5704   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5705   RecordSafepointWithRegisters(
5706       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5707   __ StoreToSafepointRegisterSlot(x0, result);
5708 }
5709 
5710 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5711 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5712   class DeferredLoadMutableDouble final : public LDeferredCode {
5713    public:
5714     DeferredLoadMutableDouble(LCodeGen* codegen,
5715                               LLoadFieldByIndex* instr,
5716                               Register result,
5717                               Register object,
5718                               Register index)
5719         : LDeferredCode(codegen),
5720           instr_(instr),
5721           result_(result),
5722           object_(object),
5723           index_(index) {
5724     }
5725     void Generate() override {
5726       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5727     }
5728     LInstruction* instr() override { return instr_; }
5729 
5730    private:
5731     LLoadFieldByIndex* instr_;
5732     Register result_;
5733     Register object_;
5734     Register index_;
5735   };
5736   Register object = ToRegister(instr->object());
5737   Register index = ToRegister(instr->index());
5738   Register result = ToRegister(instr->result());
5739 
5740   __ AssertSmi(index);
5741 
5742   DeferredLoadMutableDouble* deferred;
5743   deferred = new(zone()) DeferredLoadMutableDouble(
5744       this, instr, result, object, index);
5745 
5746   Label out_of_object, done;
5747 
5748   __ TestAndBranchIfAnySet(
5749       index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
5750   __ Mov(index, Operand(index, ASR, 1));
5751 
5752   __ Cmp(index, Smi::FromInt(0));
5753   __ B(lt, &out_of_object);
5754 
5755   STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5756   __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5757   __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
5758 
5759   __ B(&done);
5760 
5761   __ Bind(&out_of_object);
5762   __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5763   // Index is equal to negated out of object property index plus 1.
5764   __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
5765   __ Ldr(result, FieldMemOperand(result,
5766                                  FixedArray::kHeaderSize - kPointerSize));
5767   __ Bind(deferred->exit());
5768   __ Bind(&done);
5769 }
5770 
5771 
DoStoreFrameContext(LStoreFrameContext * instr)5772 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5773   Register context = ToRegister(instr->context());
5774   __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
5775 }
5776 
5777 
DoAllocateBlockContext(LAllocateBlockContext * instr)5778 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5779   Handle<ScopeInfo> scope_info = instr->scope_info();
5780   __ Push(scope_info);
5781   __ Push(ToRegister(instr->function()));
5782   CallRuntime(Runtime::kPushBlockContext, instr);
5783   RecordSafepoint(Safepoint::kNoLazyDeopt);
5784 }
5785 
5786 
5787 }  // namespace internal
5788 }  // namespace v8
5789