• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_space.h"
18 
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24 
25 #include "art_method.h"
26 #include "base/macros.h"
27 #include "base/stl_util.h"
28 #include "base/scoped_flock.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "image-inl.h"
33 #include "image_space_fs.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/object-inl.h"
36 #include "oat_file.h"
37 #include "os.h"
38 #include "space-inl.h"
39 #include "utils.h"
40 
41 namespace art {
42 namespace gc {
43 namespace space {
44 
45 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
46 
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)47 ImageSpace::ImageSpace(const std::string& image_filename,
48                        const char* image_location,
49                        MemMap* mem_map,
50                        accounting::ContinuousSpaceBitmap* live_bitmap,
51                        uint8_t* end)
52     : MemMapSpace(image_filename,
53                   mem_map,
54                   mem_map->Begin(),
55                   end,
56                   end,
57                   kGcRetentionPolicyNeverCollect),
58       oat_file_non_owned_(nullptr),
59       image_location_(image_location) {
60   DCHECK(live_bitmap != nullptr);
61   live_bitmap_.reset(live_bitmap);
62 }
63 
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)64 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
65   CHECK_ALIGNED(min_delta, kPageSize);
66   CHECK_ALIGNED(max_delta, kPageSize);
67   CHECK_LT(min_delta, max_delta);
68 
69   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
70   if (r % 2 == 0) {
71     r = RoundUp(r, kPageSize);
72   } else {
73     r = RoundDown(r, kPageSize);
74   }
75   CHECK_LE(min_delta, r);
76   CHECK_GE(max_delta, r);
77   CHECK_ALIGNED(r, kPageSize);
78   return r;
79 }
80 
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)81 static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
82                           std::string* error_msg) {
83   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
84   std::vector<std::string> boot_class_path;
85   Split(boot_class_path_string, ':', &boot_class_path);
86   if (boot_class_path.empty()) {
87     *error_msg = "Failed to generate image because no boot class path specified";
88     return false;
89   }
90   // We should clean up so we are more likely to have room for the image.
91   if (Runtime::Current()->IsZygote()) {
92     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
93     PruneDalvikCache(image_isa);
94   }
95 
96   std::vector<std::string> arg_vector;
97 
98   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
99   arg_vector.push_back(dex2oat);
100 
101   std::string image_option_string("--image=");
102   image_option_string += image_filename;
103   arg_vector.push_back(image_option_string);
104 
105   for (size_t i = 0; i < boot_class_path.size(); i++) {
106     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
107   }
108 
109   std::string oat_file_option_string("--oat-file=");
110   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
111   arg_vector.push_back(oat_file_option_string);
112 
113   // Note: we do not generate a fully debuggable boot image so we do not pass the
114   // compiler flag --debuggable here.
115 
116   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
117   CHECK_EQ(image_isa, kRuntimeISA)
118       << "We should always be generating an image for the current isa.";
119 
120   int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
121                                                     ART_BASE_ADDRESS_MAX_DELTA);
122   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
123             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
124   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
125 
126   if (!kIsTargetBuild) {
127     arg_vector.push_back("--host");
128   }
129 
130   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
131   for (size_t i = 0; i < compiler_options.size(); ++i) {
132     arg_vector.push_back(compiler_options[i].c_str());
133   }
134 
135   std::string command_line(Join(arg_vector, ' '));
136   LOG(INFO) << "GenerateImage: " << command_line;
137   return Exec(arg_vector, error_msg);
138 }
139 
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)140 bool ImageSpace::FindImageFilename(const char* image_location,
141                                    const InstructionSet image_isa,
142                                    std::string* system_filename,
143                                    bool* has_system,
144                                    std::string* cache_filename,
145                                    bool* dalvik_cache_exists,
146                                    bool* has_cache,
147                                    bool* is_global_cache) {
148   *has_system = false;
149   *has_cache = false;
150   // image_location = /system/framework/boot.art
151   // system_image_location = /system/framework/<image_isa>/boot.art
152   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
153   if (OS::FileExists(system_image_filename.c_str())) {
154     *system_filename = system_image_filename;
155     *has_system = true;
156   }
157 
158   bool have_android_data = false;
159   *dalvik_cache_exists = false;
160   std::string dalvik_cache;
161   GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
162                  &have_android_data, dalvik_cache_exists, is_global_cache);
163 
164   if (have_android_data && *dalvik_cache_exists) {
165     // Always set output location even if it does not exist,
166     // so that the caller knows where to create the image.
167     //
168     // image_location = /system/framework/boot.art
169     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
170     std::string error_msg;
171     if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
172       LOG(WARNING) << error_msg;
173       return *has_system;
174     }
175     *has_cache = OS::FileExists(cache_filename->c_str());
176   }
177   return *has_system || *has_cache;
178 }
179 
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)180 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
181     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
182     if (image_file.get() == nullptr) {
183       return false;
184     }
185     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
186     if (!success || !image_header->IsValid()) {
187       return false;
188     }
189     return true;
190 }
191 
192 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)193 static bool RelocateImage(const char* image_location, const char* dest_filename,
194                                InstructionSet isa, std::string* error_msg) {
195   // We should clean up so we are more likely to have room for the image.
196   if (Runtime::Current()->IsZygote()) {
197     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
198     PruneDalvikCache(isa);
199   }
200 
201   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
202 
203   std::string input_image_location_arg("--input-image-location=");
204   input_image_location_arg += image_location;
205 
206   std::string output_image_filename_arg("--output-image-file=");
207   output_image_filename_arg += dest_filename;
208 
209   std::string instruction_set_arg("--instruction-set=");
210   instruction_set_arg += GetInstructionSetString(isa);
211 
212   std::string base_offset_arg("--base-offset-delta=");
213   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
214                                                                     ART_BASE_ADDRESS_MAX_DELTA));
215 
216   std::vector<std::string> argv;
217   argv.push_back(patchoat);
218 
219   argv.push_back(input_image_location_arg);
220   argv.push_back(output_image_filename_arg);
221 
222   argv.push_back(instruction_set_arg);
223   argv.push_back(base_offset_arg);
224 
225   std::string command_line(Join(argv, ' '));
226   LOG(INFO) << "RelocateImage: " << command_line;
227   return Exec(argv, error_msg);
228 }
229 
ReadSpecificImageHeader(const char * filename,std::string * error_msg)230 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
231   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
232   if (!ReadSpecificImageHeader(filename, hdr.get())) {
233     *error_msg = StringPrintf("Unable to read image header for %s", filename);
234     return nullptr;
235   }
236   return hdr.release();
237 }
238 
ReadImageHeaderOrDie(const char * image_location,const InstructionSet image_isa)239 ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
240                                               const InstructionSet image_isa) {
241   std::string error_msg;
242   ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
243   if (image_header == nullptr) {
244     LOG(FATAL) << error_msg;
245   }
246   return image_header;
247 }
248 
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)249 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
250                                          const InstructionSet image_isa,
251                                          std::string* error_msg) {
252   std::string system_filename;
253   bool has_system = false;
254   std::string cache_filename;
255   bool has_cache = false;
256   bool dalvik_cache_exists = false;
257   bool is_global_cache = false;
258   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
259                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
260     if (Runtime::Current()->ShouldRelocate()) {
261       if (has_system && has_cache) {
262         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
263         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
264         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
265           *error_msg = StringPrintf("Unable to read image header for %s at %s",
266                                     image_location, system_filename.c_str());
267           return nullptr;
268         }
269         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
270           *error_msg = StringPrintf("Unable to read image header for %s at %s",
271                                     image_location, cache_filename.c_str());
272           return nullptr;
273         }
274         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
275           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
276                                     image_location);
277           return nullptr;
278         }
279         return cache_hdr.release();
280       } else if (!has_cache) {
281         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
282                                   image_location);
283         return nullptr;
284       } else if (!has_system && has_cache) {
285         // This can probably just use the cache one.
286         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
287       }
288     } else {
289       // We don't want to relocate, Just pick the appropriate one if we have it and return.
290       if (has_system && has_cache) {
291         // We want the cache if the checksum matches, otherwise the system.
292         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
293                                                                     error_msg));
294         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
295                                                                    error_msg));
296         if (system.get() == nullptr ||
297             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
298           return cache.release();
299         } else {
300           return system.release();
301         }
302       } else if (has_system) {
303         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
304       } else if (has_cache) {
305         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
306       }
307     }
308   }
309 
310   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
311   return nullptr;
312 }
313 
ChecksumsMatch(const char * image_a,const char * image_b)314 static bool ChecksumsMatch(const char* image_a, const char* image_b) {
315   ImageHeader hdr_a;
316   ImageHeader hdr_b;
317   return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
318       && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
319 }
320 
ImageCreationAllowed(bool is_global_cache,std::string * error_msg)321 static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
322   // Anyone can write into a "local" cache.
323   if (!is_global_cache) {
324     return true;
325   }
326 
327   // Only the zygote is allowed to create the global boot image.
328   if (Runtime::Current()->IsZygote()) {
329     return true;
330   }
331 
332   *error_msg = "Only the zygote can create the global boot image.";
333   return false;
334 }
335 
336 static constexpr uint64_t kLowSpaceValue = 50 * MB;
337 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
338 
339 // Read the free space of the cache partition and make a decision whether to keep the generated
340 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)341 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
342   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
343   struct statvfs buf;
344 
345   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
346   if (res != 0) {
347     // Could not stat. Conservatively tell the system to delete the image.
348     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
349     return false;
350   }
351 
352   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
353   // Zygote is privileged, but other things are not. Use bavail.
354   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
355 
356   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
357   // environment. We do not want to fail quickening the boot image there, as it is beneficial
358   // for time-to-UI.
359   if (fs_overall_size > kTmpFsSentinelValue) {
360     if (fs_free_size < kLowSpaceValue) {
361       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image"
362                                 " generation, need at least %" PRIu64 ".",
363                                 static_cast<double>(fs_free_size) / MB,
364                                 kLowSpaceValue / MB);
365       return false;
366     }
367   }
368   return true;
369 }
370 
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)371 ImageSpace* ImageSpace::CreateBootImage(const char* image_location,
372                                         const InstructionSet image_isa,
373                                         bool secondary_image,
374                                         std::string* error_msg) {
375   ScopedTrace trace(__FUNCTION__);
376   std::string system_filename;
377   bool has_system = false;
378   std::string cache_filename;
379   bool has_cache = false;
380   bool dalvik_cache_exists = false;
381   bool is_global_cache = true;
382   bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
383                                        &has_system, &cache_filename, &dalvik_cache_exists,
384                                        &has_cache, &is_global_cache);
385 
386   const bool is_zygote = Runtime::Current()->IsZygote();
387   if (is_zygote && !secondary_image) {
388     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
389   }
390 
391   ImageSpace* space;
392   bool relocate = Runtime::Current()->ShouldRelocate();
393   bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
394   if (found_image) {
395     const std::string* image_filename;
396     bool is_system = false;
397     bool relocated_version_used = false;
398     if (relocate) {
399       if (!dalvik_cache_exists) {
400         *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
401                                   "any dalvik_cache to find/place it in.",
402                                   image_location, system_filename.c_str());
403         return nullptr;
404       }
405       if (has_system) {
406         if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
407           // We already have a relocated version
408           image_filename = &cache_filename;
409           relocated_version_used = true;
410         } else {
411           // We cannot have a relocated version, Relocate the system one and use it.
412 
413           std::string reason;
414           bool success;
415 
416           // Check whether we are allowed to relocate.
417           if (!can_compile) {
418             reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
419             success = false;
420           } else if (!ImageCreationAllowed(is_global_cache, &reason)) {
421             // Whether we can write to the cache.
422             success = false;
423           } else if (secondary_image) {
424             if (is_zygote) {
425               // Secondary image is out of date. Clear cache and exit to let it retry from scratch.
426               LOG(ERROR) << "Cannot patch secondary image '" << image_location
427                          << "', clearing dalvik_cache and restarting zygote.";
428               PruneDalvikCache(image_isa);
429               _exit(1);
430             } else {
431               reason = "Should not have to patch secondary image.";
432               success = false;
433             }
434           } else {
435             // Try to relocate.
436             success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
437           }
438 
439           if (success) {
440             relocated_version_used = true;
441             image_filename = &cache_filename;
442           } else {
443             *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
444                                       image_location, system_filename.c_str(),
445                                       cache_filename.c_str(), reason.c_str());
446             // We failed to create files, remove any possibly garbage output.
447             // Since ImageCreationAllowed was true above, we are the zygote
448             // and therefore the only process expected to generate these for
449             // the device.
450             PruneDalvikCache(image_isa);
451             return nullptr;
452           }
453         }
454       } else {
455         CHECK(has_cache);
456         // We can just use cache's since it should be fine. This might or might not be relocated.
457         image_filename = &cache_filename;
458       }
459     } else {
460       if (has_system && has_cache) {
461         // Check they have the same cksum. If they do use the cache. Otherwise system.
462         if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
463           image_filename = &cache_filename;
464           relocated_version_used = true;
465         } else {
466           image_filename = &system_filename;
467           is_system = true;
468         }
469       } else if (has_system) {
470         image_filename = &system_filename;
471         is_system = true;
472       } else {
473         CHECK(has_cache);
474         image_filename = &cache_filename;
475       }
476     }
477     {
478       // Note that we must not use the file descriptor associated with
479       // ScopedFlock::GetFile to Init the image file. We want the file
480       // descriptor (and the associated exclusive lock) to be released when
481       // we leave Create.
482       ScopedFlock image_lock;
483       // Should this be a RDWR lock? This is only a defensive measure, as at
484       // this point the image should exist.
485       // However, only the zygote can write into the global dalvik-cache, so
486       // restrict to zygote processes, or any process that isn't using
487       // /data/dalvik-cache (which we assume to be allowed to write there).
488       const bool rw_lock = is_zygote || !is_global_cache;
489       image_lock.Init(image_filename->c_str(),
490                       rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
491                       true /* block */,
492                       error_msg);
493       VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
494                     << image_location;
495       // If we are in /system we can assume the image is good. We can also
496       // assume this if we are using a relocated image (i.e. image checksum
497       // matches) since this is only different by the offset. We need this to
498       // make sure that host tests continue to work.
499       // Since we are the boot image, pass null since we load the oat file from the boot image oat
500       // file name.
501       space = ImageSpace::Init(image_filename->c_str(),
502                                image_location,
503                                !(is_system || relocated_version_used),
504                                /* oat_file */nullptr,
505                                error_msg);
506     }
507     if (space != nullptr) {
508       // Check whether there is enough space left over in the data partition. Even if we can load
509       // the image, we need to be conservative, as some parts of the platform are not very tolerant
510       // of space constraints.
511       // ImageSpace doesn't know about the data partition per se, it relies on the FindImageFilename
512       // helper (which relies on GetDalvikCache). So for now, if we load an image out of /system,
513       // ignore the check (as it would test for free space in /system instead).
514       if (!is_system && !CheckSpace(*image_filename, error_msg)) {
515         // No. Delete the generated image and try to run out of the dex files.
516         PruneDalvikCache(image_isa);
517         return nullptr;
518       }
519       return space;
520     }
521 
522     if (relocated_version_used) {
523       // Something is wrong with the relocated copy (even though checksums match). Cleanup.
524       // This can happen if the .oat is corrupt, since the above only checks the .art checksums.
525       // TODO: Check the oat file validity earlier.
526       *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s "
527                                 "but image failed to load: %s",
528                                 image_location, cache_filename.c_str(), system_filename.c_str(),
529                                 error_msg->c_str());
530       PruneDalvikCache(image_isa);
531       return nullptr;
532     } else if (is_system) {
533       // If the /system file exists, it should be up-to-date, don't try to generate it.
534       *error_msg = StringPrintf("Failed to load /system image '%s': %s",
535                                 image_filename->c_str(), error_msg->c_str());
536       return nullptr;
537     } else {
538       // Otherwise, log a warning and fall through to GenerateImage.
539       LOG(WARNING) << *error_msg;
540     }
541   }
542 
543   if (!can_compile) {
544     *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
545     return nullptr;
546   } else if (!dalvik_cache_exists) {
547     *error_msg = StringPrintf("No place to put generated image.");
548     return nullptr;
549   } else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
550     return nullptr;
551   } else if (secondary_image) {
552     *error_msg = "Cannot compile a secondary image.";
553     return nullptr;
554   } else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
555     *error_msg = StringPrintf("Failed to generate image '%s': %s",
556                               cache_filename.c_str(), error_msg->c_str());
557     // We failed to create files, remove any possibly garbage output.
558     // Since ImageCreationAllowed was true above, we are the zygote
559     // and therefore the only process expected to generate these for
560     // the device.
561     PruneDalvikCache(image_isa);
562     return nullptr;
563   } else {
564     // Check whether there is enough space left over after we have generated the image.
565     if (!CheckSpace(cache_filename, error_msg)) {
566       // No. Delete the generated image and try to run out of the dex files.
567       PruneDalvikCache(image_isa);
568       return nullptr;
569     }
570 
571     // Note that we must not use the file descriptor associated with
572     // ScopedFlock::GetFile to Init the image file. We want the file
573     // descriptor (and the associated exclusive lock) to be released when
574     // we leave Create.
575     ScopedFlock image_lock;
576     image_lock.Init(cache_filename.c_str(), error_msg);
577     space = ImageSpace::Init(cache_filename.c_str(), image_location, true, nullptr, error_msg);
578     if (space == nullptr) {
579       *error_msg = StringPrintf("Failed to load generated image '%s': %s",
580                                 cache_filename.c_str(), error_msg->c_str());
581     }
582     return space;
583   }
584 }
585 
VerifyImageAllocations()586 void ImageSpace::VerifyImageAllocations() {
587   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
588   while (current < End()) {
589     CHECK_ALIGNED(current, kObjectAlignment);
590     auto* obj = reinterpret_cast<mirror::Object*>(current);
591     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
592     CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
593     if (kUseBakerOrBrooksReadBarrier) {
594       obj->AssertReadBarrierPointer();
595     }
596     current += RoundUp(obj->SizeOf(), kObjectAlignment);
597   }
598 }
599 
600 // Helper class for relocating from one range of memory to another.
601 class RelocationRange {
602  public:
603   RelocationRange() = default;
604   RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)605   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
606       : source_(source),
607         dest_(dest),
608         length_(length) {}
609 
InSource(uintptr_t address) const610   bool InSource(uintptr_t address) const {
611     return address - source_ < length_;
612   }
613 
InDest(uintptr_t address) const614   bool InDest(uintptr_t address) const {
615     return address - dest_ < length_;
616   }
617 
618   // Translate a source address to the destination space.
ToDest(uintptr_t address) const619   uintptr_t ToDest(uintptr_t address) const {
620     DCHECK(InSource(address));
621     return address + Delta();
622   }
623 
624   // Returns the delta between the dest from the source.
Delta() const625   uintptr_t Delta() const {
626     return dest_ - source_;
627   }
628 
Source() const629   uintptr_t Source() const {
630     return source_;
631   }
632 
Dest() const633   uintptr_t Dest() const {
634     return dest_;
635   }
636 
Length() const637   uintptr_t Length() const {
638     return length_;
639   }
640 
641  private:
642   const uintptr_t source_;
643   const uintptr_t dest_;
644   const uintptr_t length_;
645 };
646 
operator <<(std::ostream & os,const RelocationRange & reloc)647 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
648   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
649             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
650             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
651             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
652 }
653 
654 class FixupVisitor : public ValueObject {
655  public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)656   FixupVisitor(const RelocationRange& boot_image,
657                const RelocationRange& boot_oat,
658                const RelocationRange& app_image,
659                const RelocationRange& app_oat)
660       : boot_image_(boot_image),
661         boot_oat_(boot_oat),
662         app_image_(app_image),
663         app_oat_(app_oat) {}
664 
665   // Return the relocated address of a heap object.
666   template <typename T>
ForwardObject(T * src) const667   ALWAYS_INLINE T* ForwardObject(T* src) const {
668     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
669     if (boot_image_.InSource(uint_src)) {
670       return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
671     }
672     if (app_image_.InSource(uint_src)) {
673       return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
674     }
675     // Since we are fixing up the app image, there should only be pointers to the app image and
676     // boot image.
677     DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
678     return src;
679   }
680 
681   // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const682   ALWAYS_INLINE const void* ForwardCode(const void* src) const {
683     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
684     if (boot_oat_.InSource(uint_src)) {
685       return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
686     }
687     if (app_oat_.InSource(uint_src)) {
688       return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
689     }
690     DCHECK(src == nullptr) << src;
691     return src;
692   }
693 
694   // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const695   ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
696     return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
697   }
698 
699  protected:
700   // Source section.
701   const RelocationRange boot_image_;
702   const RelocationRange boot_oat_;
703   const RelocationRange app_image_;
704   const RelocationRange app_oat_;
705 };
706 
707 // Adapt for mirror::Class::FixupNativePointers.
708 class FixupObjectAdapter : public FixupVisitor {
709  public:
710   template<typename... Args>
FixupObjectAdapter(Args...args)711   explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
712 
713   template <typename T>
operator ()(T * obj) const714   T* operator()(T* obj) const {
715     return ForwardObject(obj);
716   }
717 };
718 
719 class FixupRootVisitor : public FixupVisitor {
720  public:
721   template<typename... Args>
FixupRootVisitor(Args...args)722   explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
723 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const724   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
725       SHARED_REQUIRES(Locks::mutator_lock_) {
726     if (!root->IsNull()) {
727       VisitRoot(root);
728     }
729   }
730 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const731   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
732       SHARED_REQUIRES(Locks::mutator_lock_) {
733     mirror::Object* ref = root->AsMirrorPtr();
734     mirror::Object* new_ref = ForwardObject(ref);
735     if (ref != new_ref) {
736       root->Assign(new_ref);
737     }
738   }
739 };
740 
741 class FixupObjectVisitor : public FixupVisitor {
742  public:
743   template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const size_t pointer_size,Args...args)744   explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
745                               const size_t pointer_size,
746                               Args... args)
747       : FixupVisitor(args...),
748         pointer_size_(pointer_size),
749         visited_(visited) {}
750 
751   // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const752   ALWAYS_INLINE void VisitRootIfNonNull(
753       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
754 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const755   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
756       const {}
757 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const758   ALWAYS_INLINE void operator()(mirror::Object* obj,
759                                 MemberOffset offset,
760                                 bool is_static ATTRIBUTE_UNUSED) const
761       NO_THREAD_SAFETY_ANALYSIS {
762     // There could be overlap between ranges, we must avoid visiting the same reference twice.
763     // Avoid the class field since we already fixed it up in FixupClassVisitor.
764     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
765       // Space is not yet added to the heap, don't do a read barrier.
766       mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
767           offset);
768       // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
769       // image.
770       obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
771     }
772   }
773 
774   // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
775   // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
776   template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const777   void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
778       NO_THREAD_SAFETY_ANALYSIS {
779     DCHECK(array != nullptr);
780     DCHECK(visitor.IsInAppImage(array));
781     // The bit for the array contents is different than the bit for the array. Since we may have
782     // already visited the array as a long / int array from walking the bitmap without knowing it
783     // was a pointer array.
784     static_assert(kObjectAlignment == 8u, "array bit may be in another object");
785     mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
786         reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
787     // If the bit is not set then the contents have not yet been updated.
788     if (!visited_->Test(contents_bit)) {
789       array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
790       visited_->Set(contents_bit);
791     }
792   }
793 
794   // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const795   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
796       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
797     mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
798     ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
799         mirror::Reference::ReferentOffset(),
800         ForwardObject(obj));
801   }
802 
operator ()(mirror::Object * obj) const803   void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
804     if (visited_->Test(obj)) {
805       // Already visited.
806       return;
807     }
808     visited_->Set(obj);
809 
810     // Handle class specially first since we need it to be updated to properly visit the rest of
811     // the instance fields.
812     {
813       mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
814       DCHECK(klass != nullptr) << "Null class in image";
815       // No AsClass since our fields aren't quite fixed up yet.
816       mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
817       if (klass != new_klass) {
818         obj->SetClass<kVerifyNone>(new_klass);
819       }
820       if (new_klass != klass && IsInAppImage(new_klass)) {
821         // Make sure the klass contents are fixed up since we depend on it to walk the fields.
822         operator()(new_klass);
823       }
824     }
825 
826     obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
827         *this,
828         *this);
829     // Note that this code relies on no circular dependencies.
830     // We want to use our own class loader and not the one in the image.
831     if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
832       mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
833       FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
834       as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
835                                                                       pointer_size_,
836                                                                       visitor);
837       // Deal with the pointer arrays. Use the helper function since multiple classes can reference
838       // the same arrays.
839       mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
840       if (vtable != nullptr && IsInAppImage(vtable)) {
841         operator()(vtable);
842         UpdatePointerArrayContents(vtable, visitor);
843       }
844       mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
845       // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
846       // contents.
847       if (iftable != nullptr && IsInAppImage(iftable)) {
848         operator()(iftable);
849         for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
850           if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
851             mirror::PointerArray* methods =
852                 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
853             if (visitor.IsInAppImage(methods)) {
854               operator()(methods);
855               DCHECK(methods != nullptr);
856               UpdatePointerArrayContents(methods, visitor);
857             }
858           }
859         }
860       }
861     }
862   }
863 
864  private:
865   const size_t pointer_size_;
866   gc::accounting::ContinuousSpaceBitmap* const visited_;
867 };
868 
869 class ForwardObjectAdapter {
870  public:
ForwardObjectAdapter(const FixupVisitor * visitor)871   ALWAYS_INLINE ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
872 
873   template <typename T>
operator ()(T * src) const874   ALWAYS_INLINE T* operator()(T* src) const {
875     return visitor_->ForwardObject(src);
876   }
877 
878  private:
879   const FixupVisitor* const visitor_;
880 };
881 
882 class ForwardCodeAdapter {
883  public:
ForwardCodeAdapter(const FixupVisitor * visitor)884   ALWAYS_INLINE ForwardCodeAdapter(const FixupVisitor* visitor)
885       : visitor_(visitor) {}
886 
887   template <typename T>
operator ()(T * src) const888   ALWAYS_INLINE T* operator()(T* src) const {
889     return visitor_->ForwardCode(src);
890   }
891 
892  private:
893   const FixupVisitor* const visitor_;
894 };
895 
896 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
897  public:
898   template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,size_t pointer_size,Args...args)899   explicit FixupArtMethodVisitor(bool fixup_heap_objects, size_t pointer_size, Args... args)
900       : FixupVisitor(args...),
901         fixup_heap_objects_(fixup_heap_objects),
902         pointer_size_(pointer_size) {}
903 
Visit(ArtMethod * method)904   virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
905     // TODO: Separate visitor for runtime vs normal methods.
906     if (UNLIKELY(method->IsRuntimeMethod())) {
907       ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
908       if (table != nullptr) {
909         ImtConflictTable* new_table = ForwardObject(table);
910         if (table != new_table) {
911           method->SetImtConflictTable(new_table, pointer_size_);
912         }
913       }
914       const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
915       const void* new_code = ForwardCode(old_code);
916       if (old_code != new_code) {
917         method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
918       }
919     } else {
920       if (fixup_heap_objects_) {
921         method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
922       }
923       method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
924     }
925   }
926 
927  private:
928   const bool fixup_heap_objects_;
929   const size_t pointer_size_;
930 };
931 
932 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
933  public:
934   template<typename... Args>
FixupArtFieldVisitor(Args...args)935   explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
936 
Visit(ArtField * field)937   virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
938     field->UpdateObjects(ForwardObjectAdapter(this));
939   }
940 };
941 
942 // Relocate an image space mapped at target_base which possibly used to be at a different base
943 // address. Only needs a single image space, not one for both source and destination.
944 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
945 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)946 static bool RelocateInPlace(ImageHeader& image_header,
947                             uint8_t* target_base,
948                             accounting::ContinuousSpaceBitmap* bitmap,
949                             const OatFile* app_oat_file,
950                             std::string* error_msg) {
951   DCHECK(error_msg != nullptr);
952   if (!image_header.IsPic()) {
953     if (image_header.GetImageBegin() == target_base) {
954       return true;
955     }
956     *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
957                               (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
958     return false;
959   }
960   // Set up sections.
961   uint32_t boot_image_begin = 0;
962   uint32_t boot_image_end = 0;
963   uint32_t boot_oat_begin = 0;
964   uint32_t boot_oat_end = 0;
965   const size_t pointer_size = image_header.GetPointerSize();
966   gc::Heap* const heap = Runtime::Current()->GetHeap();
967   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
968   if (boot_image_begin == boot_image_end) {
969     *error_msg = "Can not relocate app image without boot image space";
970     return false;
971   }
972   if (boot_oat_begin == boot_oat_end) {
973     *error_msg = "Can not relocate app image without boot oat file";
974     return false;
975   }
976   const uint32_t boot_image_size = boot_image_end - boot_image_begin;
977   const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
978   const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
979   const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
980   if (boot_image_size != image_header_boot_image_size) {
981     *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
982                                   PRIu64,
983                               static_cast<uint64_t>(boot_image_size),
984                               static_cast<uint64_t>(image_header_boot_image_size));
985     return false;
986   }
987   if (boot_oat_size != image_header_boot_oat_size) {
988     *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
989                                   PRIu64,
990                               static_cast<uint64_t>(boot_oat_size),
991                               static_cast<uint64_t>(image_header_boot_oat_size));
992     return false;
993   }
994   TimingLogger logger(__FUNCTION__, true, false);
995   RelocationRange boot_image(image_header.GetBootImageBegin(),
996                              boot_image_begin,
997                              boot_image_size);
998   RelocationRange boot_oat(image_header.GetBootOatBegin(),
999                            boot_oat_begin,
1000                            boot_oat_size);
1001   RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1002                             reinterpret_cast<uintptr_t>(target_base),
1003                             image_header.GetImageSize());
1004   // Use the oat data section since this is where the OatFile::Begin is.
1005   RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1006                           // Not necessarily in low 4GB.
1007                           reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1008                           image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1009   VLOG(image) << "App image " << app_image;
1010   VLOG(image) << "App oat " << app_oat;
1011   VLOG(image) << "Boot image " << boot_image;
1012   VLOG(image) << "Boot oat " << boot_oat;
1013   // True if we need to fixup any heap pointers, otherwise only code pointers.
1014   const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1015   const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1016   if (!fixup_image && !fixup_code) {
1017     // Nothing to fix up.
1018     return true;
1019   }
1020   ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1021   // Need to update the image to be at the target base.
1022   const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1023   uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1024   uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1025   FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1026   if (fixup_image) {
1027     // Two pass approach, fix up all classes first, then fix up non class-objects.
1028     // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1029     std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1030         gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1031                                                       target_base,
1032                                                       image_header.GetImageSize()));
1033     FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1034                                             pointer_size,
1035                                             boot_image,
1036                                             boot_oat,
1037                                             app_image,
1038                                             app_oat);
1039     TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1040     // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1041     // its probably not required.
1042     ScopedObjectAccess soa(Thread::Current());
1043     timing.NewTiming("Fixup objects");
1044     bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1045     // Fixup image roots.
1046     CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1047         image_header.GetImageRoots<kWithoutReadBarrier>())));
1048     image_header.RelocateImageObjects(app_image.Delta());
1049     CHECK_EQ(image_header.GetImageBegin(), target_base);
1050     // Fix up dex cache DexFile pointers.
1051     auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1052         AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1053     for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1054       mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1055       // Fix up dex cache pointers.
1056       GcRoot<mirror::String>* strings = dex_cache->GetStrings();
1057       if (strings != nullptr) {
1058         GcRoot<mirror::String>* new_strings = fixup_adapter.ForwardObject(strings);
1059         if (strings != new_strings) {
1060           dex_cache->SetStrings(new_strings);
1061         }
1062         dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1063       }
1064       GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
1065       if (types != nullptr) {
1066         GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
1067         if (types != new_types) {
1068           dex_cache->SetResolvedTypes(new_types);
1069         }
1070         dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1071       }
1072       ArtMethod** methods = dex_cache->GetResolvedMethods();
1073       if (methods != nullptr) {
1074         ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
1075         if (methods != new_methods) {
1076           dex_cache->SetResolvedMethods(new_methods);
1077         }
1078         for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1079           ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
1080           ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1081           if (orig != copy) {
1082             mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
1083           }
1084         }
1085       }
1086       ArtField** fields = dex_cache->GetResolvedFields();
1087       if (fields != nullptr) {
1088         ArtField** new_fields = fixup_adapter.ForwardObject(fields);
1089         if (fields != new_fields) {
1090           dex_cache->SetResolvedFields(new_fields);
1091         }
1092         for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1093           ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
1094           ArtField* copy = fixup_adapter.ForwardObject(orig);
1095           if (orig != copy) {
1096             mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
1097           }
1098         }
1099       }
1100     }
1101   }
1102   {
1103     // Only touches objects in the app image, no need for mutator lock.
1104     TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1105     FixupArtMethodVisitor method_visitor(fixup_image,
1106                                          pointer_size,
1107                                          boot_image,
1108                                          boot_oat,
1109                                          app_image,
1110                                          app_oat);
1111     image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1112   }
1113   if (fixup_image) {
1114     {
1115       // Only touches objects in the app image, no need for mutator lock.
1116       TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1117       FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1118       image_header.VisitPackedArtFields(&field_visitor, target_base);
1119     }
1120     {
1121       TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1122       image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
1123     }
1124     {
1125       TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1126       image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1127     }
1128     // In the app image case, the image methods are actually in the boot image.
1129     image_header.RelocateImageMethods(boot_image.Delta());
1130     const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1131     if (class_table_section.Size() > 0u) {
1132       // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1133       // This also relies on visit roots not doing any verification which could fail after we update
1134       // the roots to be the image addresses.
1135       ScopedObjectAccess soa(Thread::Current());
1136       WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1137       ClassTable temp_table;
1138       temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1139       FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1140       temp_table.VisitRoots(root_visitor);
1141     }
1142   }
1143   if (VLOG_IS_ON(image)) {
1144     logger.Dump(LOG(INFO));
1145   }
1146   return true;
1147 }
1148 
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)1149 ImageSpace* ImageSpace::Init(const char* image_filename,
1150                              const char* image_location,
1151                              bool validate_oat_file,
1152                              const OatFile* oat_file,
1153                              std::string* error_msg) {
1154   CHECK(image_filename != nullptr);
1155   CHECK(image_location != nullptr);
1156 
1157   TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
1158   VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
1159 
1160   std::unique_ptr<File> file;
1161   {
1162     TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
1163     file.reset(OS::OpenFileForReading(image_filename));
1164     if (file == nullptr) {
1165       *error_msg = StringPrintf("Failed to open '%s'", image_filename);
1166       return nullptr;
1167     }
1168   }
1169   ImageHeader temp_image_header;
1170   ImageHeader* image_header = &temp_image_header;
1171   {
1172     TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
1173     bool success = file->ReadFully(image_header, sizeof(*image_header));
1174     if (!success || !image_header->IsValid()) {
1175       *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
1176       return nullptr;
1177     }
1178   }
1179   // Check that the file is larger or equal to the header size + data size.
1180   const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
1181   if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
1182     *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
1183                               image_file_size,
1184                               sizeof(ImageHeader) + image_header->GetDataSize());
1185     return nullptr;
1186   }
1187 
1188   if (oat_file != nullptr) {
1189     // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
1190     // app image case. Otherwise, we open the oat file after the image and check the checksum there.
1191     const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1192     const uint32_t image_oat_checksum = image_header->GetOatChecksum();
1193     if (oat_checksum != image_oat_checksum) {
1194       *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
1195                                 oat_checksum,
1196                                 image_oat_checksum,
1197                                 image_filename);
1198       return nullptr;
1199     }
1200   }
1201 
1202   if (VLOG_IS_ON(startup)) {
1203     LOG(INFO) << "Dumping image sections";
1204     for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1205       const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
1206       auto& section = image_header->GetImageSection(section_idx);
1207       LOG(INFO) << section_idx << " start="
1208                 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
1209                 << section;
1210     }
1211   }
1212 
1213   const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
1214   // The location we want to map from is the first aligned page after the end of the stored
1215   // (possibly compressed) data.
1216   const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
1217                                              kPageSize);
1218   const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
1219   if (end_of_bitmap != image_file_size) {
1220     *error_msg = StringPrintf(
1221         "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
1222         end_of_bitmap);
1223     return nullptr;
1224   }
1225 
1226   // The preferred address to map the image, null specifies any address. If we manage to map the
1227   // image at the image begin, the amount of fixup work required is minimized.
1228   std::vector<uint8_t*> addresses(1, image_header->GetImageBegin());
1229   if (image_header->IsPic()) {
1230     // Can also map at a random low_4gb address since we can relocate in-place.
1231     addresses.push_back(nullptr);
1232   }
1233 
1234   // Note: The image header is part of the image due to mmap page alignment required of offset.
1235   std::unique_ptr<MemMap> map;
1236   std::string temp_error_msg;
1237   for (uint8_t* address : addresses) {
1238     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
1239     // Only care about the error message for the last address in addresses. We want to avoid the
1240     // overhead of printing the process maps if we can relocate.
1241     std::string* out_error_msg = (address == addresses.back()) ? &temp_error_msg : nullptr;
1242     const ImageHeader::StorageMode storage_mode = image_header->GetStorageMode();
1243     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
1244       map.reset(MemMap::MapFileAtAddress(address,
1245                                          image_header->GetImageSize(),
1246                                          PROT_READ | PROT_WRITE,
1247                                          MAP_PRIVATE,
1248                                          file->Fd(),
1249                                          0,
1250                                          /*low_4gb*/true,
1251                                          /*reuse*/false,
1252                                          image_filename,
1253                                          /*out*/out_error_msg));
1254     } else {
1255       if (storage_mode != ImageHeader::kStorageModeLZ4 &&
1256           storage_mode != ImageHeader::kStorageModeLZ4HC) {
1257         *error_msg = StringPrintf("Invalid storage mode in image header %d",
1258                                   static_cast<int>(storage_mode));
1259         return nullptr;
1260       }
1261       // Reserve output and decompress into it.
1262       map.reset(MemMap::MapAnonymous(image_location,
1263                                      address,
1264                                      image_header->GetImageSize(),
1265                                      PROT_READ | PROT_WRITE,
1266                                      /*low_4gb*/true,
1267                                      /*reuse*/false,
1268                                      /*out*/out_error_msg));
1269       if (map != nullptr) {
1270         const size_t stored_size = image_header->GetDataSize();
1271         const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
1272         std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1273                                                          PROT_READ,
1274                                                          MAP_PRIVATE,
1275                                                          file->Fd(),
1276                                                          /*offset*/0,
1277                                                          /*low_4gb*/false,
1278                                                          image_filename,
1279                                                          out_error_msg));
1280         if (temp_map == nullptr) {
1281           DCHECK(!out_error_msg->empty());
1282           return nullptr;
1283         }
1284         memcpy(map->Begin(), image_header, sizeof(ImageHeader));
1285         const uint64_t start = NanoTime();
1286         // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
1287         TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
1288         const size_t decompressed_size = LZ4_decompress_safe(
1289             reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
1290             reinterpret_cast<char*>(map->Begin()) + decompress_offset,
1291             stored_size,
1292             map->Size() - decompress_offset);
1293         VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
1294         if (decompressed_size + sizeof(ImageHeader) != image_header->GetImageSize()) {
1295           *error_msg = StringPrintf(
1296               "Decompressed size does not match expected image size %zu vs %zu",
1297               decompressed_size + sizeof(ImageHeader),
1298               image_header->GetImageSize());
1299           return nullptr;
1300         }
1301       }
1302     }
1303     if (map != nullptr) {
1304       break;
1305     }
1306   }
1307 
1308   if (map == nullptr) {
1309     DCHECK(!temp_error_msg.empty());
1310     *error_msg = temp_error_msg;
1311     return nullptr;
1312   }
1313   DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
1314 
1315   std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
1316                                                                     bitmap_section.Size(),
1317                                                                     PROT_READ, MAP_PRIVATE,
1318                                                                     file->Fd(),
1319                                                                     image_bitmap_offset,
1320                                                                     /*low_4gb*/false,
1321                                                                     /*reuse*/false,
1322                                                                     image_filename,
1323                                                                     error_msg));
1324   if (image_bitmap_map == nullptr) {
1325     *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
1326     return nullptr;
1327   }
1328   // Loaded the map, use the image header from the file now in case we patch it with
1329   // RelocateInPlace.
1330   image_header = reinterpret_cast<ImageHeader*>(map->Begin());
1331   const uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
1332   std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
1333                                        image_filename,
1334                                        bitmap_index));
1335   // Bitmap only needs to cover until the end of the mirror objects section.
1336   const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
1337   // We only want the mirror object, not the ArtFields and ArtMethods.
1338   uint8_t* const image_end = map->Begin() + image_objects.End();
1339   std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
1340   {
1341     TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
1342     bitmap.reset(
1343       accounting::ContinuousSpaceBitmap::CreateFromMemMap(
1344           bitmap_name,
1345           image_bitmap_map.release(),
1346           reinterpret_cast<uint8_t*>(map->Begin()),
1347           image_objects.End()));
1348     if (bitmap == nullptr) {
1349       *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
1350       return nullptr;
1351     }
1352   }
1353   {
1354     TimingLogger::ScopedTiming timing("RelocateImage", &logger);
1355     if (!RelocateInPlace(*image_header,
1356                          map->Begin(),
1357                          bitmap.get(),
1358                          oat_file,
1359                          error_msg)) {
1360       return nullptr;
1361     }
1362   }
1363   // We only want the mirror object, not the ArtFields and ArtMethods.
1364   std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
1365                                                    image_location,
1366                                                    map.release(),
1367                                                    bitmap.release(),
1368                                                    image_end));
1369 
1370   // VerifyImageAllocations() will be called later in Runtime::Init()
1371   // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
1372   // and ArtField::java_lang_reflect_ArtField_, which are used from
1373   // Object::SizeOf() which VerifyImageAllocations() calls, are not
1374   // set yet at this point.
1375   if (oat_file == nullptr) {
1376     TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
1377     space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
1378     if (space->oat_file_ == nullptr) {
1379       DCHECK(!error_msg->empty());
1380       return nullptr;
1381     }
1382     space->oat_file_non_owned_ = space->oat_file_.get();
1383   } else {
1384     space->oat_file_non_owned_ = oat_file;
1385   }
1386 
1387   if (validate_oat_file) {
1388     TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
1389     if (!space->ValidateOatFile(error_msg)) {
1390      DCHECK(!error_msg->empty());
1391       return nullptr;
1392     }
1393   }
1394 
1395   Runtime* runtime = Runtime::Current();
1396 
1397   // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
1398   // to set the runtime methods.
1399   CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
1400   if (image_header->IsAppImage()) {
1401     CHECK_EQ(runtime->GetResolutionMethod(),
1402              image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1403     CHECK_EQ(runtime->GetImtConflictMethod(),
1404              image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1405     CHECK_EQ(runtime->GetImtUnimplementedMethod(),
1406              image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1407     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAll),
1408              image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod));
1409     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly),
1410              image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod));
1411     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs),
1412              image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod));
1413   } else if (!runtime->HasResolutionMethod()) {
1414     runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
1415     runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
1416     runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
1417     runtime->SetImtUnimplementedMethod(
1418         image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
1419     runtime->SetCalleeSaveMethod(
1420         image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod), Runtime::kSaveAll);
1421     runtime->SetCalleeSaveMethod(
1422         image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod), Runtime::kRefsOnly);
1423     runtime->SetCalleeSaveMethod(
1424         image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod), Runtime::kRefsAndArgs);
1425   }
1426 
1427   VLOG(image) << "ImageSpace::Init exiting " << *space.get();
1428   if (VLOG_IS_ON(image)) {
1429     logger.Dump(LOG(INFO));
1430   }
1431   return space.release();
1432 }
1433 
OpenOatFile(const char * image_path,std::string * error_msg) const1434 OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
1435   const ImageHeader& image_header = GetImageHeader();
1436   std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1437 
1438   CHECK(image_header.GetOatDataBegin() != nullptr);
1439 
1440   OatFile* oat_file = OatFile::Open(oat_filename,
1441                                     oat_filename,
1442                                     image_header.GetOatDataBegin(),
1443                                     image_header.GetOatFileBegin(),
1444                                     !Runtime::Current()->IsAotCompiler(),
1445                                     /*low_4gb*/false,
1446                                     nullptr,
1447                                     error_msg);
1448   if (oat_file == nullptr) {
1449     *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1450                               oat_filename.c_str(), GetName(), error_msg->c_str());
1451     return nullptr;
1452   }
1453   uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1454   uint32_t image_oat_checksum = image_header.GetOatChecksum();
1455   if (oat_checksum != image_oat_checksum) {
1456     *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1457                               " in image %s", oat_checksum, image_oat_checksum, GetName());
1458     return nullptr;
1459   }
1460   int32_t image_patch_delta = image_header.GetPatchDelta();
1461   int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1462   if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1463     // We should have already relocated by this point. Bail out.
1464     *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1465                               "in image %s", oat_patch_delta, image_patch_delta, GetName());
1466     return nullptr;
1467   }
1468 
1469   return oat_file;
1470 }
1471 
ValidateOatFile(std::string * error_msg) const1472 bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
1473   CHECK(oat_file_.get() != nullptr);
1474   for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
1475     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1476     uint32_t dex_file_location_checksum;
1477     if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
1478       *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
1479                                 "%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
1480       return false;
1481     }
1482     if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
1483       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
1484                                 "dex file '%s' (0x%x != 0x%x)",
1485                                 oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
1486                                 oat_dex_file->GetDexFileLocationChecksum(),
1487                                 dex_file_location_checksum);
1488       return false;
1489     }
1490   }
1491   return true;
1492 }
1493 
GetOatFile() const1494 const OatFile* ImageSpace::GetOatFile() const {
1495   return oat_file_non_owned_;
1496 }
1497 
ReleaseOatFile()1498 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1499   CHECK(oat_file_ != nullptr);
1500   return std::move(oat_file_);
1501 }
1502 
Dump(std::ostream & os) const1503 void ImageSpace::Dump(std::ostream& os) const {
1504   os << GetType()
1505       << " begin=" << reinterpret_cast<void*>(Begin())
1506       << ",end=" << reinterpret_cast<void*>(End())
1507       << ",size=" << PrettySize(Size())
1508       << ",name=\"" << GetName() << "\"]";
1509 }
1510 
CreateMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1511 void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
1512                                            const std::string& boot_classpath,
1513                                            std::vector<std::string>* image_file_names) {
1514   DCHECK(image_file_names != nullptr);
1515 
1516   std::vector<std::string> images;
1517   Split(boot_classpath, ':', &images);
1518 
1519   // Add the rest into the list. We have to adjust locations, possibly:
1520   //
1521   // For example, image_file_name is /a/b/c/d/e.art
1522   //              images[0] is          f/c/d/e.art
1523   // ----------------------------------------------
1524   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
1525   const std::string& first_image = images[0];
1526   // Length of common suffix.
1527   size_t common = 0;
1528   while (common < input_image_file_name.size() &&
1529          common < first_image.size() &&
1530          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1531     ++common;
1532   }
1533   // We want to replace the prefix of the input image with the prefix of the boot class path.
1534   // This handles the case where the image file contains @ separators.
1535   // Example image_file_name is oats/system@framework@boot.art
1536   // images[0] is .../arm/boot.art
1537   // means that the image name prefix will be oats/system@framework@
1538   // so that the other images are openable.
1539   const size_t old_prefix_length = first_image.size() - common;
1540   const std::string new_prefix = input_image_file_name.substr(
1541       0,
1542       input_image_file_name.size() - common);
1543 
1544   // Apply pattern to images[1] .. images[n].
1545   for (size_t i = 1; i < images.size(); ++i) {
1546     const std::string& image = images[i];
1547     CHECK_GT(image.length(), old_prefix_length);
1548     std::string suffix = image.substr(old_prefix_length);
1549     image_file_names->push_back(new_prefix + suffix);
1550   }
1551 }
1552 
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1553 ImageSpace* ImageSpace::CreateFromAppImage(const char* image,
1554                                            const OatFile* oat_file,
1555                                            std::string* error_msg) {
1556   return gc::space::ImageSpace::Init(image,
1557                                      image,
1558                                      /*validate_oat_file*/false,
1559                                      oat_file,
1560                                      /*out*/error_msg);
1561 }
1562 
DumpSections(std::ostream & os) const1563 void ImageSpace::DumpSections(std::ostream& os) const {
1564   const uint8_t* base = Begin();
1565   const ImageHeader& header = GetImageHeader();
1566   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1567     auto section_type = static_cast<ImageHeader::ImageSections>(i);
1568     const ImageSection& section = header.GetImageSection(section_type);
1569     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1570        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1571   }
1572 }
1573 
1574 }  // namespace space
1575 }  // namespace gc
1576 }  // namespace art
1577