• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stddef.h>
6 #include <stdint.h>
7 
8 #include <vector>
9 
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/compiler_specific.h"
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "base/memory/ref_counted.h"
16 #include "base/message_loop/message_loop.h"
17 #include "base/message_loop/message_loop_test.h"
18 #include "base/pending_task.h"
19 #include "base/posix/eintr_wrapper.h"
20 #include "base/run_loop.h"
21 #include "base/synchronization/waitable_event.h"
22 #include "base/test/test_simple_task_runner.h"
23 #include "base/thread_task_runner_handle.h"
24 #include "base/threading/platform_thread.h"
25 #include "base/threading/thread.h"
26 #include "build/build_config.h"
27 #include "testing/gtest/include/gtest/gtest.h"
28 
29 #if defined(OS_WIN)
30 #include "base/message_loop/message_pump_dispatcher.h"
31 #include "base/message_loop/message_pump_win.h"
32 #include "base/process/memory.h"
33 #include "base/strings/string16.h"
34 #include "base/win/scoped_handle.h"
35 #endif
36 
37 namespace base {
38 
39 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
40 // to avoid chopping this file up with so many #ifdefs.
41 
42 namespace {
43 
TypeDefaultMessagePumpFactory()44 scoped_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
45   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
46 }
47 
TypeIOMessagePumpFactory()48 scoped_ptr<MessagePump> TypeIOMessagePumpFactory() {
49   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
50 }
51 
TypeUIMessagePumpFactory()52 scoped_ptr<MessagePump> TypeUIMessagePumpFactory() {
53   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
54 }
55 
56 class Foo : public RefCounted<Foo> {
57  public:
Foo()58   Foo() : test_count_(0) {
59   }
60 
Test1ConstRef(const std::string & a)61   void Test1ConstRef(const std::string& a) {
62     ++test_count_;
63     result_.append(a);
64   }
65 
test_count() const66   int test_count() const { return test_count_; }
result() const67   const std::string& result() const { return result_; }
68 
69  private:
70   friend class RefCounted<Foo>;
71 
~Foo()72   ~Foo() {}
73 
74   int test_count_;
75   std::string result_;
76 };
77 
78 #if defined(OS_WIN)
79 
80 // This function runs slowly to simulate a large amount of work being done.
SlowFunc(TimeDelta pause,int * quit_counter)81 static void SlowFunc(TimeDelta pause, int* quit_counter) {
82     PlatformThread::Sleep(pause);
83     if (--(*quit_counter) == 0)
84       MessageLoop::current()->QuitWhenIdle();
85 }
86 
87 // This function records the time when Run was called in a Time object, which is
88 // useful for building a variety of MessageLoop tests.
RecordRunTimeFunc(Time * run_time,int * quit_counter)89 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
90   *run_time = Time::Now();
91 
92     // Cause our Run function to take some time to execute.  As a result we can
93     // count on subsequent RecordRunTimeFunc()s running at a future time,
94     // without worry about the resolution of our system clock being an issue.
95   SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
96 }
97 
SubPumpFunc()98 void SubPumpFunc() {
99   MessageLoop::current()->SetNestableTasksAllowed(true);
100   MSG msg;
101   while (GetMessage(&msg, NULL, 0, 0)) {
102     TranslateMessage(&msg);
103     DispatchMessage(&msg);
104   }
105   MessageLoop::current()->QuitWhenIdle();
106 }
107 
RunTest_PostDelayedTask_SharedTimer_SubPump()108 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
109   MessageLoop loop(MessageLoop::TYPE_UI);
110 
111   // Test that the interval of the timer, used to run the next delayed task, is
112   // set to a value corresponding to when the next delayed task should run.
113 
114   // By setting num_tasks to 1, we ensure that the first task to run causes the
115   // run loop to exit.
116   int num_tasks = 1;
117   Time run_time;
118 
119   loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
120 
121   // This very delayed task should never run.
122   loop.PostDelayedTask(
123       FROM_HERE,
124       Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
125       TimeDelta::FromSeconds(1000));
126 
127   // This slightly delayed task should run from within SubPumpFunc.
128   loop.PostDelayedTask(
129       FROM_HERE,
130       Bind(&PostQuitMessage, 0),
131       TimeDelta::FromMilliseconds(10));
132 
133   Time start_time = Time::Now();
134 
135   loop.Run();
136   EXPECT_EQ(1, num_tasks);
137 
138   // Ensure that we ran in far less time than the slower timer.
139   TimeDelta total_time = Time::Now() - start_time;
140   EXPECT_GT(5000, total_time.InMilliseconds());
141 
142   // In case both timers somehow run at nearly the same time, sleep a little
143   // and then run all pending to force them both to have run.  This is just
144   // encouraging flakiness if there is any.
145   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
146   RunLoop().RunUntilIdle();
147 
148   EXPECT_TRUE(run_time.is_null());
149 }
150 
151 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
152 
153 enum TaskType {
154   MESSAGEBOX,
155   ENDDIALOG,
156   RECURSIVE,
157   TIMEDMESSAGELOOP,
158   QUITMESSAGELOOP,
159   ORDERED,
160   PUMPS,
161   SLEEP,
162   RUNS,
163 };
164 
165 // Saves the order in which the tasks executed.
166 struct TaskItem {
TaskItembase::__anon3b1294e90111::TaskItem167   TaskItem(TaskType t, int c, bool s)
168       : type(t),
169         cookie(c),
170         start(s) {
171   }
172 
173   TaskType type;
174   int cookie;
175   bool start;
176 
operator ==base::__anon3b1294e90111::TaskItem177   bool operator == (const TaskItem& other) const {
178     return type == other.type && cookie == other.cookie && start == other.start;
179   }
180 };
181 
operator <<(std::ostream & os,TaskType type)182 std::ostream& operator <<(std::ostream& os, TaskType type) {
183   switch (type) {
184   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
185   case ENDDIALOG:         os << "ENDDIALOG"; break;
186   case RECURSIVE:         os << "RECURSIVE"; break;
187   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
188   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
189   case ORDERED:          os << "ORDERED"; break;
190   case PUMPS:             os << "PUMPS"; break;
191   case SLEEP:             os << "SLEEP"; break;
192   default:
193     NOTREACHED();
194     os << "Unknown TaskType";
195     break;
196   }
197   return os;
198 }
199 
operator <<(std::ostream & os,const TaskItem & item)200 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
201   if (item.start)
202     return os << item.type << " " << item.cookie << " starts";
203   else
204     return os << item.type << " " << item.cookie << " ends";
205 }
206 
207 class TaskList {
208  public:
RecordStart(TaskType type,int cookie)209   void RecordStart(TaskType type, int cookie) {
210     TaskItem item(type, cookie, true);
211     DVLOG(1) << item;
212     task_list_.push_back(item);
213   }
214 
RecordEnd(TaskType type,int cookie)215   void RecordEnd(TaskType type, int cookie) {
216     TaskItem item(type, cookie, false);
217     DVLOG(1) << item;
218     task_list_.push_back(item);
219   }
220 
Size()221   size_t Size() {
222     return task_list_.size();
223   }
224 
Get(int n)225   TaskItem Get(int n)  {
226     return task_list_[n];
227   }
228 
229  private:
230   std::vector<TaskItem> task_list_;
231 };
232 
233 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
234 // common controls (like OpenFile) and StartDoc printing function can cause
235 // implicit message loops.
MessageBoxFunc(TaskList * order,int cookie,bool is_reentrant)236 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
237   order->RecordStart(MESSAGEBOX, cookie);
238   if (is_reentrant)
239     MessageLoop::current()->SetNestableTasksAllowed(true);
240   MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
241   order->RecordEnd(MESSAGEBOX, cookie);
242 }
243 
244 // Will end the MessageBox.
EndDialogFunc(TaskList * order,int cookie)245 void EndDialogFunc(TaskList* order, int cookie) {
246   order->RecordStart(ENDDIALOG, cookie);
247   HWND window = GetActiveWindow();
248   if (window != NULL) {
249     EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
250     // Cheap way to signal that the window wasn't found if RunEnd() isn't
251     // called.
252     order->RecordEnd(ENDDIALOG, cookie);
253   }
254 }
255 
RecursiveFunc(TaskList * order,int cookie,int depth,bool is_reentrant)256 void RecursiveFunc(TaskList* order, int cookie, int depth,
257                    bool is_reentrant) {
258   order->RecordStart(RECURSIVE, cookie);
259   if (depth > 0) {
260     if (is_reentrant)
261       MessageLoop::current()->SetNestableTasksAllowed(true);
262     MessageLoop::current()->PostTask(
263         FROM_HERE,
264         Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
265   }
266   order->RecordEnd(RECURSIVE, cookie);
267 }
268 
QuitFunc(TaskList * order,int cookie)269 void QuitFunc(TaskList* order, int cookie) {
270   order->RecordStart(QUITMESSAGELOOP, cookie);
271   MessageLoop::current()->QuitWhenIdle();
272   order->RecordEnd(QUITMESSAGELOOP, cookie);
273 }
274 
RecursiveFuncWin(MessageLoop * target,HANDLE event,bool expect_window,TaskList * order,bool is_reentrant)275 void RecursiveFuncWin(MessageLoop* target,
276                       HANDLE event,
277                       bool expect_window,
278                       TaskList* order,
279                       bool is_reentrant) {
280   target->PostTask(FROM_HERE,
281                    Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
282   target->PostTask(FROM_HERE,
283                    Bind(&MessageBoxFunc, order, 2, is_reentrant));
284   target->PostTask(FROM_HERE,
285                    Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
286   // The trick here is that for recursive task processing, this task will be
287   // ran _inside_ the MessageBox message loop, dismissing the MessageBox
288   // without a chance.
289   // For non-recursive task processing, this will be executed _after_ the
290   // MessageBox will have been dismissed by the code below, where
291   // expect_window_ is true.
292   target->PostTask(FROM_HERE,
293                    Bind(&EndDialogFunc, order, 4));
294   target->PostTask(FROM_HERE,
295                    Bind(&QuitFunc, order, 5));
296 
297   // Enforce that every tasks are sent before starting to run the main thread
298   // message loop.
299   ASSERT_TRUE(SetEvent(event));
300 
301   // Poll for the MessageBox. Don't do this at home! At the speed we do it,
302   // you will never realize one MessageBox was shown.
303   for (; expect_window;) {
304     HWND window = FindWindow(L"#32770", kMessageBoxTitle);
305     if (window) {
306       // Dismiss it.
307       for (;;) {
308         HWND button = FindWindowEx(window, NULL, L"Button", NULL);
309         if (button != NULL) {
310           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
311           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
312           break;
313         }
314       }
315       break;
316     }
317   }
318 }
319 
320 // TODO(darin): These tests need to be ported since they test critical
321 // message loop functionality.
322 
323 // A side effect of this test is the generation a beep. Sorry.
RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type)324 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
325   MessageLoop loop(message_loop_type);
326 
327   Thread worker("RecursiveDenial2_worker");
328   Thread::Options options;
329   options.message_loop_type = message_loop_type;
330   ASSERT_EQ(true, worker.StartWithOptions(options));
331   TaskList order;
332   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
333   worker.message_loop()->PostTask(FROM_HERE,
334                                   Bind(&RecursiveFuncWin,
335                                              MessageLoop::current(),
336                                              event.Get(),
337                                              true,
338                                              &order,
339                                              false));
340   // Let the other thread execute.
341   WaitForSingleObject(event.Get(), INFINITE);
342   MessageLoop::current()->Run();
343 
344   ASSERT_EQ(17u, order.Size());
345   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
346   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
347   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
348   EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
349   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
350   EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
351   // When EndDialogFunc is processed, the window is already dismissed, hence no
352   // "end" entry.
353   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
354   EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
355   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
356   EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
357   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
358   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
359   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
360   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
361   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
362   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
363   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
364 }
365 
366 // A side effect of this test is the generation a beep. Sorry.  This test also
367 // needs to process windows messages on the current thread.
RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type)368 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
369   MessageLoop loop(message_loop_type);
370 
371   Thread worker("RecursiveSupport2_worker");
372   Thread::Options options;
373   options.message_loop_type = message_loop_type;
374   ASSERT_EQ(true, worker.StartWithOptions(options));
375   TaskList order;
376   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
377   worker.message_loop()->PostTask(FROM_HERE,
378                                   Bind(&RecursiveFuncWin,
379                                              MessageLoop::current(),
380                                              event.Get(),
381                                              false,
382                                              &order,
383                                              true));
384   // Let the other thread execute.
385   WaitForSingleObject(event.Get(), INFINITE);
386   MessageLoop::current()->Run();
387 
388   ASSERT_EQ(18u, order.Size());
389   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
390   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
391   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
392   // Note that this executes in the MessageBox modal loop.
393   EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
394   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
395   EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
396   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
397   EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
398   /* The order can subtly change here. The reason is that when RecursiveFunc(1)
399      is called in the main thread, if it is faster than getting to the
400      PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
401      execution can change. We don't care anyway that the order isn't correct.
402   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
403   EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
404   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
405   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
406   */
407   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
408   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
409   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
410   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
411   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
412   EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
413 }
414 
415 #endif  // defined(OS_WIN)
416 
PostNTasksThenQuit(int posts_remaining)417 void PostNTasksThenQuit(int posts_remaining) {
418   if (posts_remaining > 1) {
419     MessageLoop::current()->PostTask(
420         FROM_HERE,
421         Bind(&PostNTasksThenQuit, posts_remaining - 1));
422   } else {
423     MessageLoop::current()->QuitWhenIdle();
424   }
425 }
426 
427 #if defined(OS_WIN)
428 
429 class DispatcherImpl : public MessagePumpDispatcher {
430  public:
DispatcherImpl()431   DispatcherImpl() : dispatch_count_(0) {}
432 
Dispatch(const NativeEvent & msg)433   uint32_t Dispatch(const NativeEvent& msg) override {
434     ::TranslateMessage(&msg);
435     ::DispatchMessage(&msg);
436     // Do not count WM_TIMER since it is not what we post and it will cause
437     // flakiness.
438     if (msg.message != WM_TIMER)
439       ++dispatch_count_;
440     // We treat WM_LBUTTONUP as the last message.
441     return msg.message == WM_LBUTTONUP ? POST_DISPATCH_QUIT_LOOP
442                                        : POST_DISPATCH_NONE;
443   }
444 
445   int dispatch_count_;
446 };
447 
MouseDownUp()448 void MouseDownUp() {
449   PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
450   PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
451 }
452 
RunTest_Dispatcher(MessageLoop::Type message_loop_type)453 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
454   MessageLoop loop(message_loop_type);
455 
456   MessageLoop::current()->PostDelayedTask(
457       FROM_HERE,
458       Bind(&MouseDownUp),
459       TimeDelta::FromMilliseconds(100));
460   DispatcherImpl dispatcher;
461   RunLoop run_loop(&dispatcher);
462   run_loop.Run();
463   ASSERT_EQ(2, dispatcher.dispatch_count_);
464 }
465 
MsgFilterProc(int code,WPARAM wparam,LPARAM lparam)466 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
467   if (code == MessagePumpForUI::kMessageFilterCode) {
468     MSG* msg = reinterpret_cast<MSG*>(lparam);
469     if (msg->message == WM_LBUTTONDOWN)
470       return TRUE;
471   }
472   return FALSE;
473 }
474 
RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type)475 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
476   MessageLoop loop(message_loop_type);
477 
478   MessageLoop::current()->PostDelayedTask(
479       FROM_HERE,
480       Bind(&MouseDownUp),
481       TimeDelta::FromMilliseconds(100));
482   HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
483                                     MsgFilterProc,
484                                     NULL,
485                                     GetCurrentThreadId());
486   DispatcherImpl dispatcher;
487   RunLoop run_loop(&dispatcher);
488   run_loop.Run();
489   ASSERT_EQ(1, dispatcher.dispatch_count_);
490   UnhookWindowsHookEx(msg_hook);
491 }
492 
493 class TestIOHandler : public MessageLoopForIO::IOHandler {
494  public:
495   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
496 
497   void OnIOCompleted(MessageLoopForIO::IOContext* context,
498                      DWORD bytes_transfered,
499                      DWORD error) override;
500 
501   void Init();
502   void WaitForIO();
context()503   OVERLAPPED* context() { return &context_.overlapped; }
size()504   DWORD size() { return sizeof(buffer_); }
505 
506  private:
507   char buffer_[48];
508   MessageLoopForIO::IOContext context_;
509   HANDLE signal_;
510   win::ScopedHandle file_;
511   bool wait_;
512 };
513 
TestIOHandler(const wchar_t * name,HANDLE signal,bool wait)514 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
515     : signal_(signal), wait_(wait) {
516   memset(buffer_, 0, sizeof(buffer_));
517   memset(&context_, 0, sizeof(context_));
518   context_.handler = this;
519 
520   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
521                        FILE_FLAG_OVERLAPPED, NULL));
522   EXPECT_TRUE(file_.IsValid());
523 }
524 
Init()525 void TestIOHandler::Init() {
526   MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
527 
528   DWORD read;
529   EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
530   EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
531   if (wait_)
532     WaitForIO();
533 }
534 
OnIOCompleted(MessageLoopForIO::IOContext * context,DWORD bytes_transfered,DWORD error)535 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
536                                   DWORD bytes_transfered, DWORD error) {
537   ASSERT_TRUE(context == &context_);
538   ASSERT_TRUE(SetEvent(signal_));
539 }
540 
WaitForIO()541 void TestIOHandler::WaitForIO() {
542   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
543   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
544 }
545 
RunTest_IOHandler()546 void RunTest_IOHandler() {
547   win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
548   ASSERT_TRUE(callback_called.IsValid());
549 
550   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
551   win::ScopedHandle server(
552       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
553   ASSERT_TRUE(server.IsValid());
554 
555   Thread thread("IOHandler test");
556   Thread::Options options;
557   options.message_loop_type = MessageLoop::TYPE_IO;
558   ASSERT_TRUE(thread.StartWithOptions(options));
559 
560   MessageLoop* thread_loop = thread.message_loop();
561   ASSERT_TRUE(NULL != thread_loop);
562 
563   TestIOHandler handler(kPipeName, callback_called.Get(), false);
564   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
565                                               Unretained(&handler)));
566   // Make sure the thread runs and sleeps for lack of work.
567   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
568 
569   const char buffer[] = "Hello there!";
570   DWORD written;
571   EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
572 
573   DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
574   EXPECT_EQ(WAIT_OBJECT_0, result);
575 
576   thread.Stop();
577 }
578 
RunTest_WaitForIO()579 void RunTest_WaitForIO() {
580   win::ScopedHandle callback1_called(
581       CreateEvent(NULL, TRUE, FALSE, NULL));
582   win::ScopedHandle callback2_called(
583       CreateEvent(NULL, TRUE, FALSE, NULL));
584   ASSERT_TRUE(callback1_called.IsValid());
585   ASSERT_TRUE(callback2_called.IsValid());
586 
587   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
588   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
589   win::ScopedHandle server1(
590       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
591   win::ScopedHandle server2(
592       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
593   ASSERT_TRUE(server1.IsValid());
594   ASSERT_TRUE(server2.IsValid());
595 
596   Thread thread("IOHandler test");
597   Thread::Options options;
598   options.message_loop_type = MessageLoop::TYPE_IO;
599   ASSERT_TRUE(thread.StartWithOptions(options));
600 
601   MessageLoop* thread_loop = thread.message_loop();
602   ASSERT_TRUE(NULL != thread_loop);
603 
604   TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
605   TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
606   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
607                                               Unretained(&handler1)));
608   // TODO(ajwong): Do we really need such long Sleeps in this function?
609   // Make sure the thread runs and sleeps for lack of work.
610   TimeDelta delay = TimeDelta::FromMilliseconds(100);
611   PlatformThread::Sleep(delay);
612   thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
613                                               Unretained(&handler2)));
614   PlatformThread::Sleep(delay);
615 
616   // At this time handler1 is waiting to be called, and the thread is waiting
617   // on the Init method of handler2, filtering only handler2 callbacks.
618 
619   const char buffer[] = "Hello there!";
620   DWORD written;
621   EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
622   PlatformThread::Sleep(2 * delay);
623   EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
624             WaitForSingleObject(callback1_called.Get(), 0))
625       << "handler1 has not been called";
626 
627   EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
628 
629   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
630   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
631   EXPECT_EQ(WAIT_OBJECT_0, result);
632 
633   thread.Stop();
634 }
635 
636 #endif  // defined(OS_WIN)
637 
638 }  // namespace
639 
640 //-----------------------------------------------------------------------------
641 // Each test is run against each type of MessageLoop.  That way we are sure
642 // that message loops work properly in all configurations.  Of course, in some
643 // cases, a unit test may only be for a particular type of loop.
644 
645 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
646 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
647 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
648 
649 #if defined(OS_WIN)
TEST(MessageLoopTest,PostDelayedTask_SharedTimer_SubPump)650 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
651   RunTest_PostDelayedTask_SharedTimer_SubPump();
652 }
653 
654 // This test occasionally hangs. See http://crbug.com/44567.
TEST(MessageLoopTest,DISABLED_RecursiveDenial2)655 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
656   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
657   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
658   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
659 }
660 
TEST(MessageLoopTest,RecursiveSupport2)661 TEST(MessageLoopTest, RecursiveSupport2) {
662   // This test requires a UI loop.
663   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
664 }
665 #endif  // defined(OS_WIN)
666 
667 class DummyTaskObserver : public MessageLoop::TaskObserver {
668  public:
DummyTaskObserver(int num_tasks)669   explicit DummyTaskObserver(int num_tasks)
670       : num_tasks_started_(0),
671         num_tasks_processed_(0),
672         num_tasks_(num_tasks) {}
673 
~DummyTaskObserver()674   ~DummyTaskObserver() override {}
675 
WillProcessTask(const PendingTask & pending_task)676   void WillProcessTask(const PendingTask& pending_task) override {
677     num_tasks_started_++;
678     EXPECT_LE(num_tasks_started_, num_tasks_);
679     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
680   }
681 
DidProcessTask(const PendingTask & pending_task)682   void DidProcessTask(const PendingTask& pending_task) override {
683     num_tasks_processed_++;
684     EXPECT_LE(num_tasks_started_, num_tasks_);
685     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
686   }
687 
num_tasks_started() const688   int num_tasks_started() const { return num_tasks_started_; }
num_tasks_processed() const689   int num_tasks_processed() const { return num_tasks_processed_; }
690 
691  private:
692   int num_tasks_started_;
693   int num_tasks_processed_;
694   const int num_tasks_;
695 
696   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
697 };
698 
TEST(MessageLoopTest,TaskObserver)699 TEST(MessageLoopTest, TaskObserver) {
700   const int kNumPosts = 6;
701   DummyTaskObserver observer(kNumPosts);
702 
703   MessageLoop loop;
704   loop.AddTaskObserver(&observer);
705   loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
706   loop.Run();
707   loop.RemoveTaskObserver(&observer);
708 
709   EXPECT_EQ(kNumPosts, observer.num_tasks_started());
710   EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
711 }
712 
713 #if defined(OS_WIN)
TEST(MessageLoopTest,Dispatcher)714 TEST(MessageLoopTest, Dispatcher) {
715   // This test requires a UI loop
716   RunTest_Dispatcher(MessageLoop::TYPE_UI);
717 }
718 
TEST(MessageLoopTest,DispatcherWithMessageHook)719 TEST(MessageLoopTest, DispatcherWithMessageHook) {
720   // This test requires a UI loop
721   RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
722 }
723 
TEST(MessageLoopTest,IOHandler)724 TEST(MessageLoopTest, IOHandler) {
725   RunTest_IOHandler();
726 }
727 
TEST(MessageLoopTest,WaitForIO)728 TEST(MessageLoopTest, WaitForIO) {
729   RunTest_WaitForIO();
730 }
731 
TEST(MessageLoopTest,HighResolutionTimer)732 TEST(MessageLoopTest, HighResolutionTimer) {
733   MessageLoop loop;
734   Time::EnableHighResolutionTimer(true);
735 
736   const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
737   const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
738 
739   EXPECT_FALSE(loop.HasHighResolutionTasks());
740   // Post a fast task to enable the high resolution timers.
741   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
742                        kFastTimer);
743   EXPECT_TRUE(loop.HasHighResolutionTasks());
744   loop.Run();
745   EXPECT_FALSE(loop.HasHighResolutionTasks());
746   EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
747   // Check that a slow task does not trigger the high resolution logic.
748   loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
749                        kSlowTimer);
750   EXPECT_FALSE(loop.HasHighResolutionTasks());
751   loop.Run();
752   EXPECT_FALSE(loop.HasHighResolutionTasks());
753   Time::EnableHighResolutionTimer(false);
754 }
755 
756 #endif  // defined(OS_WIN)
757 
758 #if defined(OS_POSIX) && !defined(OS_NACL)
759 
760 namespace {
761 
762 class QuitDelegate : public MessageLoopForIO::Watcher {
763  public:
OnFileCanWriteWithoutBlocking(int fd)764   void OnFileCanWriteWithoutBlocking(int fd) override {
765     MessageLoop::current()->QuitWhenIdle();
766   }
OnFileCanReadWithoutBlocking(int fd)767   void OnFileCanReadWithoutBlocking(int fd) override {
768     MessageLoop::current()->QuitWhenIdle();
769   }
770 };
771 
TEST(MessageLoopTest,FileDescriptorWatcherOutlivesMessageLoop)772 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
773   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
774   // This could happen when people use the Singleton pattern or atexit.
775 
776   // Create a file descriptor.  Doesn't need to be readable or writable,
777   // as we don't need to actually get any notifications.
778   // pipe() is just the easiest way to do it.
779   int pipefds[2];
780   int err = pipe(pipefds);
781   ASSERT_EQ(0, err);
782   int fd = pipefds[1];
783   {
784     // Arrange for controller to live longer than message loop.
785     MessageLoopForIO::FileDescriptorWatcher controller;
786     {
787       MessageLoopForIO message_loop;
788 
789       QuitDelegate delegate;
790       message_loop.WatchFileDescriptor(fd,
791           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
792       // and don't run the message loop, just destroy it.
793     }
794   }
795   if (IGNORE_EINTR(close(pipefds[0])) < 0)
796     PLOG(ERROR) << "close";
797   if (IGNORE_EINTR(close(pipefds[1])) < 0)
798     PLOG(ERROR) << "close";
799 }
800 
TEST(MessageLoopTest,FileDescriptorWatcherDoubleStop)801 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
802   // Verify that it's ok to call StopWatchingFileDescriptor().
803   // (Errors only showed up in valgrind.)
804   int pipefds[2];
805   int err = pipe(pipefds);
806   ASSERT_EQ(0, err);
807   int fd = pipefds[1];
808   {
809     // Arrange for message loop to live longer than controller.
810     MessageLoopForIO message_loop;
811     {
812       MessageLoopForIO::FileDescriptorWatcher controller;
813 
814       QuitDelegate delegate;
815       message_loop.WatchFileDescriptor(fd,
816           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
817       controller.StopWatchingFileDescriptor();
818     }
819   }
820   if (IGNORE_EINTR(close(pipefds[0])) < 0)
821     PLOG(ERROR) << "close";
822   if (IGNORE_EINTR(close(pipefds[1])) < 0)
823     PLOG(ERROR) << "close";
824 }
825 
826 }  // namespace
827 
828 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
829 
830 namespace {
831 // Inject a test point for recording the destructor calls for Closure objects
832 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
833 // hook the actual destruction, which is not a common operation.
834 class DestructionObserverProbe :
835   public RefCounted<DestructionObserverProbe> {
836  public:
DestructionObserverProbe(bool * task_destroyed,bool * destruction_observer_called)837   DestructionObserverProbe(bool* task_destroyed,
838                            bool* destruction_observer_called)
839       : task_destroyed_(task_destroyed),
840         destruction_observer_called_(destruction_observer_called) {
841   }
Run()842   virtual void Run() {
843     // This task should never run.
844     ADD_FAILURE();
845   }
846  private:
847   friend class RefCounted<DestructionObserverProbe>;
848 
~DestructionObserverProbe()849   virtual ~DestructionObserverProbe() {
850     EXPECT_FALSE(*destruction_observer_called_);
851     *task_destroyed_ = true;
852   }
853 
854   bool* task_destroyed_;
855   bool* destruction_observer_called_;
856 };
857 
858 class MLDestructionObserver : public MessageLoop::DestructionObserver {
859  public:
MLDestructionObserver(bool * task_destroyed,bool * destruction_observer_called)860   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
861       : task_destroyed_(task_destroyed),
862         destruction_observer_called_(destruction_observer_called),
863         task_destroyed_before_message_loop_(false) {
864   }
WillDestroyCurrentMessageLoop()865   void WillDestroyCurrentMessageLoop() override {
866     task_destroyed_before_message_loop_ = *task_destroyed_;
867     *destruction_observer_called_ = true;
868   }
task_destroyed_before_message_loop() const869   bool task_destroyed_before_message_loop() const {
870     return task_destroyed_before_message_loop_;
871   }
872  private:
873   bool* task_destroyed_;
874   bool* destruction_observer_called_;
875   bool task_destroyed_before_message_loop_;
876 };
877 
878 }  // namespace
879 
TEST(MessageLoopTest,DestructionObserverTest)880 TEST(MessageLoopTest, DestructionObserverTest) {
881   // Verify that the destruction observer gets called at the very end (after
882   // all the pending tasks have been destroyed).
883   MessageLoop* loop = new MessageLoop;
884   const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
885 
886   bool task_destroyed = false;
887   bool destruction_observer_called = false;
888 
889   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
890   loop->AddDestructionObserver(&observer);
891   loop->PostDelayedTask(
892       FROM_HERE,
893       Bind(&DestructionObserverProbe::Run,
894                  new DestructionObserverProbe(&task_destroyed,
895                                               &destruction_observer_called)),
896       kDelay);
897   delete loop;
898   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
899   // The task should have been destroyed when we deleted the loop.
900   EXPECT_TRUE(task_destroyed);
901   EXPECT_TRUE(destruction_observer_called);
902 }
903 
904 
905 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
906 // posts tasks on that message loop.
TEST(MessageLoopTest,ThreadMainTaskRunner)907 TEST(MessageLoopTest, ThreadMainTaskRunner) {
908   MessageLoop loop;
909 
910   scoped_refptr<Foo> foo(new Foo());
911   std::string a("a");
912   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
913       &Foo::Test1ConstRef, foo.get(), a));
914 
915   // Post quit task;
916   MessageLoop::current()->PostTask(
917       FROM_HERE,
918       Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
919 
920   // Now kick things off
921   MessageLoop::current()->Run();
922 
923   EXPECT_EQ(foo->test_count(), 1);
924   EXPECT_EQ(foo->result(), "a");
925 }
926 
TEST(MessageLoopTest,IsType)927 TEST(MessageLoopTest, IsType) {
928   MessageLoop loop(MessageLoop::TYPE_UI);
929   EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
930   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
931   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
932 }
933 
934 #if defined(OS_WIN)
EmptyFunction()935 void EmptyFunction() {}
936 
PostMultipleTasks()937 void PostMultipleTasks() {
938   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
939   MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
940 }
941 
942 static const int kSignalMsg = WM_USER + 2;
943 
PostWindowsMessage(HWND message_hwnd)944 void PostWindowsMessage(HWND message_hwnd) {
945   PostMessage(message_hwnd, kSignalMsg, 0, 2);
946 }
947 
EndTest(bool * did_run,HWND hwnd)948 void EndTest(bool* did_run, HWND hwnd) {
949   *did_run = true;
950   PostMessage(hwnd, WM_CLOSE, 0, 0);
951 }
952 
953 int kMyMessageFilterCode = 0x5002;
954 
TestWndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)955 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
956                                   WPARAM wparam, LPARAM lparam) {
957   if (message == WM_CLOSE)
958     EXPECT_TRUE(DestroyWindow(hwnd));
959   if (message != kSignalMsg)
960     return DefWindowProc(hwnd, message, wparam, lparam);
961 
962   switch (lparam) {
963   case 1:
964     // First, we post a task that will post multiple no-op tasks to make sure
965     // that the pump's incoming task queue does not become empty during the
966     // test.
967     MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
968     // Next, we post a task that posts a windows message to trigger the second
969     // stage of the test.
970     MessageLoop::current()->PostTask(FROM_HERE,
971                                      base::Bind(&PostWindowsMessage, hwnd));
972     break;
973   case 2:
974     // Since we're about to enter a modal loop, tell the message loop that we
975     // intend to nest tasks.
976     MessageLoop::current()->SetNestableTasksAllowed(true);
977     bool did_run = false;
978     MessageLoop::current()->PostTask(FROM_HERE,
979                                      base::Bind(&EndTest, &did_run, hwnd));
980     // Run a nested windows-style message loop and verify that our task runs. If
981     // it doesn't, then we'll loop here until the test times out.
982     MSG msg;
983     while (GetMessage(&msg, 0, 0, 0)) {
984       if (!CallMsgFilter(&msg, kMyMessageFilterCode))
985         DispatchMessage(&msg);
986       // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
987       // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
988       // WM_QUIT messages even when running inside a modal loop.
989       if (msg.message == WM_CLOSE)
990         break;
991     }
992     EXPECT_TRUE(did_run);
993     MessageLoop::current()->QuitWhenIdle();
994     break;
995   }
996   return 0;
997 }
998 
TEST(MessageLoopTest,AlwaysHaveUserMessageWhenNesting)999 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
1000   MessageLoop loop(MessageLoop::TYPE_UI);
1001   HINSTANCE instance = GetModuleFromAddress(&TestWndProcThunk);
1002   WNDCLASSEX wc = {0};
1003   wc.cbSize = sizeof(wc);
1004   wc.lpfnWndProc = TestWndProcThunk;
1005   wc.hInstance = instance;
1006   wc.lpszClassName = L"MessageLoopTest_HWND";
1007   ATOM atom = RegisterClassEx(&wc);
1008   ASSERT_TRUE(atom);
1009 
1010   HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
1011                                    HWND_MESSAGE, 0, instance, 0);
1012   ASSERT_TRUE(message_hwnd) << GetLastError();
1013 
1014   ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
1015 
1016   loop.Run();
1017 
1018   ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
1019 }
1020 #endif  // defined(OS_WIN)
1021 
TEST(MessageLoopTest,SetTaskRunner)1022 TEST(MessageLoopTest, SetTaskRunner) {
1023   MessageLoop loop;
1024   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1025 
1026   loop.SetTaskRunner(new_runner);
1027   EXPECT_EQ(new_runner, loop.task_runner());
1028   EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
1029 }
1030 
TEST(MessageLoopTest,OriginalRunnerWorks)1031 TEST(MessageLoopTest, OriginalRunnerWorks) {
1032   MessageLoop loop;
1033   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1034   scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
1035   loop.SetTaskRunner(new_runner);
1036 
1037   scoped_refptr<Foo> foo(new Foo());
1038   original_runner->PostTask(FROM_HERE,
1039                             Bind(&Foo::Test1ConstRef, foo.get(), "a"));
1040   loop.RunUntilIdle();
1041   EXPECT_EQ(1, foo->test_count());
1042 }
1043 
TEST(MessageLoopTest,DeleteUnboundLoop)1044 TEST(MessageLoopTest, DeleteUnboundLoop) {
1045   // It should be possible to delete an unbound message loop on a thread which
1046   // already has another active loop. This happens when thread creation fails.
1047   MessageLoop loop;
1048   scoped_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
1049       MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
1050   unbound_loop.reset();
1051   EXPECT_EQ(&loop, MessageLoop::current());
1052   EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
1053 }
1054 
1055 }  // namespace base
1056