1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35 QualType ET,
36 RValue Result);
37
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
getNullForVariable(Address addr)40 static llvm::Constant *getNullForVariable(Address addr) {
41 llvm::Type *type = addr.getElementType();
42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44
45 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47 {
48 llvm::Constant *C =
49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50 // FIXME: This bitcast should just be made an invariant on the Runtime.
51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
59 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)60 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61 // Generate the correct selector for this literal's concrete type.
62 // Get the method.
63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64 const Expr *SubExpr = E->getSubExpr();
65 assert(BoxingMethod && "BoxingMethod is null");
66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67 Selector Sel = BoxingMethod->getSelector();
68
69 // Generate a reference to the class pointer, which will be the receiver.
70 // Assumes that the method was introduced in the class that should be
71 // messaged (avoids pulling it out of the result type).
72 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75
76 CallArgList Args;
77 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79
80 // ObjCBoxedExpr supports boxing of structs and unions
81 // via [NSValue valueWithBytes:objCType:]
82 const QualType ValueType(SubExpr->getType().getCanonicalType());
83 if (ValueType->isObjCBoxableRecordType()) {
84 // Emit CodeGen for first parameter
85 // and cast value to correct type
86 Address Temporary = CreateMemTemp(SubExpr->getType());
87 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90
91 // Create char array to store type encoding
92 std::string Str;
93 getContext().getObjCEncodingForType(ValueType, Str);
94 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95
96 // Cast type encoding to correct type
97 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100
101 Args.add(RValue::get(Cast), EncodingQT);
102 } else {
103 Args.add(EmitAnyExpr(SubExpr), ArgQT);
104 }
105
106 RValue result = Runtime.GenerateMessageSend(
107 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108 Args, ClassDecl, BoxingMethod);
109 return Builder.CreateBitCast(result.getScalarVal(),
110 ConvertType(E->getType()));
111 }
112
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)113 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
114 const ObjCMethodDecl *MethodWithObjects) {
115 ASTContext &Context = CGM.getContext();
116 const ObjCDictionaryLiteral *DLE = nullptr;
117 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118 if (!ALE)
119 DLE = cast<ObjCDictionaryLiteral>(E);
120
121 // Compute the type of the array we're initializing.
122 uint64_t NumElements =
123 ALE ? ALE->getNumElements() : DLE->getNumElements();
124 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
125 NumElements);
126 QualType ElementType = Context.getObjCIdType().withConst();
127 QualType ElementArrayType
128 = Context.getConstantArrayType(ElementType, APNumElements,
129 ArrayType::Normal, /*IndexTypeQuals=*/0);
130
131 // Allocate the temporary array(s).
132 Address Objects = CreateMemTemp(ElementArrayType, "objects");
133 Address Keys = Address::invalid();
134 if (DLE)
135 Keys = CreateMemTemp(ElementArrayType, "keys");
136
137 // In ARC, we may need to do extra work to keep all the keys and
138 // values alive until after the call.
139 SmallVector<llvm::Value *, 16> NeededObjects;
140 bool TrackNeededObjects =
141 (getLangOpts().ObjCAutoRefCount &&
142 CGM.getCodeGenOpts().OptimizationLevel != 0);
143
144 // Perform the actual initialialization of the array(s).
145 for (uint64_t i = 0; i < NumElements; i++) {
146 if (ALE) {
147 // Emit the element and store it to the appropriate array slot.
148 const Expr *Rhs = ALE->getElement(i);
149 LValue LV = MakeAddrLValue(
150 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
151 ElementType, AlignmentSource::Decl);
152
153 llvm::Value *value = EmitScalarExpr(Rhs);
154 EmitStoreThroughLValue(RValue::get(value), LV, true);
155 if (TrackNeededObjects) {
156 NeededObjects.push_back(value);
157 }
158 } else {
159 // Emit the key and store it to the appropriate array slot.
160 const Expr *Key = DLE->getKeyValueElement(i).Key;
161 LValue KeyLV = MakeAddrLValue(
162 Builder.CreateConstArrayGEP(Keys, i, getPointerSize()),
163 ElementType, AlignmentSource::Decl);
164 llvm::Value *keyValue = EmitScalarExpr(Key);
165 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
166
167 // Emit the value and store it to the appropriate array slot.
168 const Expr *Value = DLE->getKeyValueElement(i).Value;
169 LValue ValueLV = MakeAddrLValue(
170 Builder.CreateConstArrayGEP(Objects, i, getPointerSize()),
171 ElementType, AlignmentSource::Decl);
172 llvm::Value *valueValue = EmitScalarExpr(Value);
173 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
174 if (TrackNeededObjects) {
175 NeededObjects.push_back(keyValue);
176 NeededObjects.push_back(valueValue);
177 }
178 }
179 }
180
181 // Generate the argument list.
182 CallArgList Args;
183 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
184 const ParmVarDecl *argDecl = *PI++;
185 QualType ArgQT = argDecl->getType().getUnqualifiedType();
186 Args.add(RValue::get(Objects.getPointer()), ArgQT);
187 if (DLE) {
188 argDecl = *PI++;
189 ArgQT = argDecl->getType().getUnqualifiedType();
190 Args.add(RValue::get(Keys.getPointer()), ArgQT);
191 }
192 argDecl = *PI;
193 ArgQT = argDecl->getType().getUnqualifiedType();
194 llvm::Value *Count =
195 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
196 Args.add(RValue::get(Count), ArgQT);
197
198 // Generate a reference to the class pointer, which will be the receiver.
199 Selector Sel = MethodWithObjects->getSelector();
200 QualType ResultType = E->getType();
201 const ObjCObjectPointerType *InterfacePointerType
202 = ResultType->getAsObjCInterfacePointerType();
203 ObjCInterfaceDecl *Class
204 = InterfacePointerType->getObjectType()->getInterface();
205 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
206 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
207
208 // Generate the message send.
209 RValue result = Runtime.GenerateMessageSend(
210 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
211 Receiver, Args, Class, MethodWithObjects);
212
213 // The above message send needs these objects, but in ARC they are
214 // passed in a buffer that is essentially __unsafe_unretained.
215 // Therefore we must prevent the optimizer from releasing them until
216 // after the call.
217 if (TrackNeededObjects) {
218 EmitARCIntrinsicUse(NeededObjects);
219 }
220
221 return Builder.CreateBitCast(result.getScalarVal(),
222 ConvertType(E->getType()));
223 }
224
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)225 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
226 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
227 }
228
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)229 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
230 const ObjCDictionaryLiteral *E) {
231 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
232 }
233
234 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)235 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
236 // Untyped selector.
237 // Note that this implementation allows for non-constant strings to be passed
238 // as arguments to @selector(). Currently, the only thing preventing this
239 // behaviour is the type checking in the front end.
240 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
241 }
242
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)243 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
244 // FIXME: This should pass the Decl not the name.
245 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
246 }
247
248 /// \brief Adjust the type of an Objective-C object that doesn't match up due
249 /// to type erasure at various points, e.g., related result types or the use
250 /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)251 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
252 RValue Result) {
253 if (!ExpT->isObjCRetainableType())
254 return Result;
255
256 // If the converted types are the same, we're done.
257 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
258 if (ExpLLVMTy == Result.getScalarVal()->getType())
259 return Result;
260
261 // We have applied a substitution. Cast the rvalue appropriately.
262 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
263 ExpLLVMTy));
264 }
265
266 /// Decide whether to extend the lifetime of the receiver of a
267 /// returns-inner-pointer message.
268 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)269 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
270 switch (message->getReceiverKind()) {
271
272 // For a normal instance message, we should extend unless the
273 // receiver is loaded from a variable with precise lifetime.
274 case ObjCMessageExpr::Instance: {
275 const Expr *receiver = message->getInstanceReceiver();
276
277 // Look through OVEs.
278 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
279 if (opaque->getSourceExpr())
280 receiver = opaque->getSourceExpr()->IgnoreParens();
281 }
282
283 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
284 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
285 receiver = ice->getSubExpr()->IgnoreParens();
286
287 // Look through OVEs.
288 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
289 if (opaque->getSourceExpr())
290 receiver = opaque->getSourceExpr()->IgnoreParens();
291 }
292
293 // Only __strong variables.
294 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
295 return true;
296
297 // All ivars and fields have precise lifetime.
298 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
299 return false;
300
301 // Otherwise, check for variables.
302 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
303 if (!declRef) return true;
304 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
305 if (!var) return true;
306
307 // All variables have precise lifetime except local variables with
308 // automatic storage duration that aren't specially marked.
309 return (var->hasLocalStorage() &&
310 !var->hasAttr<ObjCPreciseLifetimeAttr>());
311 }
312
313 case ObjCMessageExpr::Class:
314 case ObjCMessageExpr::SuperClass:
315 // It's never necessary for class objects.
316 return false;
317
318 case ObjCMessageExpr::SuperInstance:
319 // We generally assume that 'self' lives throughout a method call.
320 return false;
321 }
322
323 llvm_unreachable("invalid receiver kind");
324 }
325
326 /// Given an expression of ObjC pointer type, check whether it was
327 /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)328 static const Expr *findWeakLValue(const Expr *E) {
329 assert(E->getType()->isObjCRetainableType());
330 E = E->IgnoreParens();
331 if (auto CE = dyn_cast<CastExpr>(E)) {
332 if (CE->getCastKind() == CK_LValueToRValue) {
333 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
334 return CE->getSubExpr();
335 }
336 }
337
338 return nullptr;
339 }
340
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)341 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
342 ReturnValueSlot Return) {
343 // Only the lookup mechanism and first two arguments of the method
344 // implementation vary between runtimes. We can get the receiver and
345 // arguments in generic code.
346
347 bool isDelegateInit = E->isDelegateInitCall();
348
349 const ObjCMethodDecl *method = E->getMethodDecl();
350
351 // If the method is -retain, and the receiver's being loaded from
352 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
353 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
354 method->getMethodFamily() == OMF_retain) {
355 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
356 LValue lvalue = EmitLValue(lvalueExpr);
357 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
358 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
359 }
360 }
361
362 // We don't retain the receiver in delegate init calls, and this is
363 // safe because the receiver value is always loaded from 'self',
364 // which we zero out. We don't want to Block_copy block receivers,
365 // though.
366 bool retainSelf =
367 (!isDelegateInit &&
368 CGM.getLangOpts().ObjCAutoRefCount &&
369 method &&
370 method->hasAttr<NSConsumesSelfAttr>());
371
372 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
373 bool isSuperMessage = false;
374 bool isClassMessage = false;
375 ObjCInterfaceDecl *OID = nullptr;
376 // Find the receiver
377 QualType ReceiverType;
378 llvm::Value *Receiver = nullptr;
379 switch (E->getReceiverKind()) {
380 case ObjCMessageExpr::Instance:
381 ReceiverType = E->getInstanceReceiver()->getType();
382 if (retainSelf) {
383 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
384 E->getInstanceReceiver());
385 Receiver = ter.getPointer();
386 if (ter.getInt()) retainSelf = false;
387 } else
388 Receiver = EmitScalarExpr(E->getInstanceReceiver());
389 break;
390
391 case ObjCMessageExpr::Class: {
392 ReceiverType = E->getClassReceiver();
393 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
394 assert(ObjTy && "Invalid Objective-C class message send");
395 OID = ObjTy->getInterface();
396 assert(OID && "Invalid Objective-C class message send");
397 Receiver = Runtime.GetClass(*this, OID);
398 isClassMessage = true;
399 break;
400 }
401
402 case ObjCMessageExpr::SuperInstance:
403 ReceiverType = E->getSuperType();
404 Receiver = LoadObjCSelf();
405 isSuperMessage = true;
406 break;
407
408 case ObjCMessageExpr::SuperClass:
409 ReceiverType = E->getSuperType();
410 Receiver = LoadObjCSelf();
411 isSuperMessage = true;
412 isClassMessage = true;
413 break;
414 }
415
416 if (retainSelf)
417 Receiver = EmitARCRetainNonBlock(Receiver);
418
419 // In ARC, we sometimes want to "extend the lifetime"
420 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
421 // messages.
422 if (getLangOpts().ObjCAutoRefCount && method &&
423 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
424 shouldExtendReceiverForInnerPointerMessage(E))
425 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
426
427 QualType ResultType = method ? method->getReturnType() : E->getType();
428
429 CallArgList Args;
430 EmitCallArgs(Args, method, E->arguments());
431
432 // For delegate init calls in ARC, do an unsafe store of null into
433 // self. This represents the call taking direct ownership of that
434 // value. We have to do this after emitting the other call
435 // arguments because they might also reference self, but we don't
436 // have to worry about any of them modifying self because that would
437 // be an undefined read and write of an object in unordered
438 // expressions.
439 if (isDelegateInit) {
440 assert(getLangOpts().ObjCAutoRefCount &&
441 "delegate init calls should only be marked in ARC");
442
443 // Do an unsafe store of null into self.
444 Address selfAddr =
445 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
446 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
447 }
448
449 RValue result;
450 if (isSuperMessage) {
451 // super is only valid in an Objective-C method
452 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
453 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
454 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
455 E->getSelector(),
456 OMD->getClassInterface(),
457 isCategoryImpl,
458 Receiver,
459 isClassMessage,
460 Args,
461 method);
462 } else {
463 result = Runtime.GenerateMessageSend(*this, Return, ResultType,
464 E->getSelector(),
465 Receiver, Args, OID,
466 method);
467 }
468
469 // For delegate init calls in ARC, implicitly store the result of
470 // the call back into self. This takes ownership of the value.
471 if (isDelegateInit) {
472 Address selfAddr =
473 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
474 llvm::Value *newSelf = result.getScalarVal();
475
476 // The delegate return type isn't necessarily a matching type; in
477 // fact, it's quite likely to be 'id'.
478 llvm::Type *selfTy = selfAddr.getElementType();
479 newSelf = Builder.CreateBitCast(newSelf, selfTy);
480
481 Builder.CreateStore(newSelf, selfAddr);
482 }
483
484 return AdjustObjCObjectType(*this, E->getType(), result);
485 }
486
487 namespace {
488 struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anon677e44b40111::FinishARCDealloc489 void Emit(CodeGenFunction &CGF, Flags flags) override {
490 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
491
492 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
493 const ObjCInterfaceDecl *iface = impl->getClassInterface();
494 if (!iface->getSuperClass()) return;
495
496 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
497
498 // Call [super dealloc] if we have a superclass.
499 llvm::Value *self = CGF.LoadObjCSelf();
500
501 CallArgList args;
502 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
503 CGF.getContext().VoidTy,
504 method->getSelector(),
505 iface,
506 isCategory,
507 self,
508 /*is class msg*/ false,
509 args,
510 method);
511 }
512 };
513 }
514
515 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
516 /// the LLVM function and sets the other context used by
517 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)518 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
519 const ObjCContainerDecl *CD) {
520 SourceLocation StartLoc = OMD->getLocStart();
521 FunctionArgList args;
522 // Check if we should generate debug info for this method.
523 if (OMD->hasAttr<NoDebugAttr>())
524 DebugInfo = nullptr; // disable debug info indefinitely for this function
525
526 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
527
528 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
529 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
530
531 args.push_back(OMD->getSelfDecl());
532 args.push_back(OMD->getCmdDecl());
533
534 args.append(OMD->param_begin(), OMD->param_end());
535
536 CurGD = OMD;
537 CurEHLocation = OMD->getLocEnd();
538
539 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
540 OMD->getLocation(), StartLoc);
541
542 // In ARC, certain methods get an extra cleanup.
543 if (CGM.getLangOpts().ObjCAutoRefCount &&
544 OMD->isInstanceMethod() &&
545 OMD->getSelector().isUnarySelector()) {
546 const IdentifierInfo *ident =
547 OMD->getSelector().getIdentifierInfoForSlot(0);
548 if (ident->isStr("dealloc"))
549 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
550 }
551 }
552
553 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
554 LValue lvalue, QualType type);
555
556 /// Generate an Objective-C method. An Objective-C method is a C function with
557 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)558 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
559 StartObjCMethod(OMD, OMD->getClassInterface());
560 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
561 assert(isa<CompoundStmt>(OMD->getBody()));
562 incrementProfileCounter(OMD->getBody());
563 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
564 FinishFunction(OMD->getBodyRBrace());
565 }
566
567 /// emitStructGetterCall - Call the runtime function to load a property
568 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)569 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
570 bool isAtomic, bool hasStrong) {
571 ASTContext &Context = CGF.getContext();
572
573 Address src =
574 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
575 .getAddress();
576
577 // objc_copyStruct (ReturnValue, &structIvar,
578 // sizeof (Type of Ivar), isAtomic, false);
579 CallArgList args;
580
581 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
582 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
583
584 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
585 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
586
587 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
588 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
589 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
590 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
591
592 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
593 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
594 FunctionType::ExtInfo(),
595 RequiredArgs::All),
596 fn, ReturnValueSlot(), args);
597 }
598
599 /// Determine whether the given architecture supports unaligned atomic
600 /// accesses. They don't have to be fast, just faster than a function
601 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)602 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
603 // FIXME: Allow unaligned atomic load/store on x86. (It is not
604 // currently supported by the backend.)
605 return 0;
606 }
607
608 /// Return the maximum size that permits atomic accesses for the given
609 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)610 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
611 llvm::Triple::ArchType arch) {
612 // ARM has 8-byte atomic accesses, but it's not clear whether we
613 // want to rely on them here.
614
615 // In the default case, just assume that any size up to a pointer is
616 // fine given adequate alignment.
617 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
618 }
619
620 namespace {
621 class PropertyImplStrategy {
622 public:
623 enum StrategyKind {
624 /// The 'native' strategy is to use the architecture's provided
625 /// reads and writes.
626 Native,
627
628 /// Use objc_setProperty and objc_getProperty.
629 GetSetProperty,
630
631 /// Use objc_setProperty for the setter, but use expression
632 /// evaluation for the getter.
633 SetPropertyAndExpressionGet,
634
635 /// Use objc_copyStruct.
636 CopyStruct,
637
638 /// The 'expression' strategy is to emit normal assignment or
639 /// lvalue-to-rvalue expressions.
640 Expression
641 };
642
getKind() const643 StrategyKind getKind() const { return StrategyKind(Kind); }
644
hasStrongMember() const645 bool hasStrongMember() const { return HasStrong; }
isAtomic() const646 bool isAtomic() const { return IsAtomic; }
isCopy() const647 bool isCopy() const { return IsCopy; }
648
getIvarSize() const649 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const650 CharUnits getIvarAlignment() const { return IvarAlignment; }
651
652 PropertyImplStrategy(CodeGenModule &CGM,
653 const ObjCPropertyImplDecl *propImpl);
654
655 private:
656 unsigned Kind : 8;
657 unsigned IsAtomic : 1;
658 unsigned IsCopy : 1;
659 unsigned HasStrong : 1;
660
661 CharUnits IvarSize;
662 CharUnits IvarAlignment;
663 };
664 }
665
666 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)667 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
668 const ObjCPropertyImplDecl *propImpl) {
669 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
670 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
671
672 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
673 IsAtomic = prop->isAtomic();
674 HasStrong = false; // doesn't matter here.
675
676 // Evaluate the ivar's size and alignment.
677 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
678 QualType ivarType = ivar->getType();
679 std::tie(IvarSize, IvarAlignment) =
680 CGM.getContext().getTypeInfoInChars(ivarType);
681
682 // If we have a copy property, we always have to use getProperty/setProperty.
683 // TODO: we could actually use setProperty and an expression for non-atomics.
684 if (IsCopy) {
685 Kind = GetSetProperty;
686 return;
687 }
688
689 // Handle retain.
690 if (setterKind == ObjCPropertyDecl::Retain) {
691 // In GC-only, there's nothing special that needs to be done.
692 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
693 // fallthrough
694
695 // In ARC, if the property is non-atomic, use expression emission,
696 // which translates to objc_storeStrong. This isn't required, but
697 // it's slightly nicer.
698 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
699 // Using standard expression emission for the setter is only
700 // acceptable if the ivar is __strong, which won't be true if
701 // the property is annotated with __attribute__((NSObject)).
702 // TODO: falling all the way back to objc_setProperty here is
703 // just laziness, though; we could still use objc_storeStrong
704 // if we hacked it right.
705 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
706 Kind = Expression;
707 else
708 Kind = SetPropertyAndExpressionGet;
709 return;
710
711 // Otherwise, we need to at least use setProperty. However, if
712 // the property isn't atomic, we can use normal expression
713 // emission for the getter.
714 } else if (!IsAtomic) {
715 Kind = SetPropertyAndExpressionGet;
716 return;
717
718 // Otherwise, we have to use both setProperty and getProperty.
719 } else {
720 Kind = GetSetProperty;
721 return;
722 }
723 }
724
725 // If we're not atomic, just use expression accesses.
726 if (!IsAtomic) {
727 Kind = Expression;
728 return;
729 }
730
731 // Properties on bitfield ivars need to be emitted using expression
732 // accesses even if they're nominally atomic.
733 if (ivar->isBitField()) {
734 Kind = Expression;
735 return;
736 }
737
738 // GC-qualified or ARC-qualified ivars need to be emitted as
739 // expressions. This actually works out to being atomic anyway,
740 // except for ARC __strong, but that should trigger the above code.
741 if (ivarType.hasNonTrivialObjCLifetime() ||
742 (CGM.getLangOpts().getGC() &&
743 CGM.getContext().getObjCGCAttrKind(ivarType))) {
744 Kind = Expression;
745 return;
746 }
747
748 // Compute whether the ivar has strong members.
749 if (CGM.getLangOpts().getGC())
750 if (const RecordType *recordType = ivarType->getAs<RecordType>())
751 HasStrong = recordType->getDecl()->hasObjectMember();
752
753 // We can never access structs with object members with a native
754 // access, because we need to use write barriers. This is what
755 // objc_copyStruct is for.
756 if (HasStrong) {
757 Kind = CopyStruct;
758 return;
759 }
760
761 // Otherwise, this is target-dependent and based on the size and
762 // alignment of the ivar.
763
764 // If the size of the ivar is not a power of two, give up. We don't
765 // want to get into the business of doing compare-and-swaps.
766 if (!IvarSize.isPowerOfTwo()) {
767 Kind = CopyStruct;
768 return;
769 }
770
771 llvm::Triple::ArchType arch =
772 CGM.getTarget().getTriple().getArch();
773
774 // Most architectures require memory to fit within a single cache
775 // line, so the alignment has to be at least the size of the access.
776 // Otherwise we have to grab a lock.
777 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
778 Kind = CopyStruct;
779 return;
780 }
781
782 // If the ivar's size exceeds the architecture's maximum atomic
783 // access size, we have to use CopyStruct.
784 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
785 Kind = CopyStruct;
786 return;
787 }
788
789 // Otherwise, we can use native loads and stores.
790 Kind = Native;
791 }
792
793 /// \brief Generate an Objective-C property getter function.
794 ///
795 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
796 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)797 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
798 const ObjCPropertyImplDecl *PID) {
799 llvm::Constant *AtomicHelperFn =
800 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
801 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
802 ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
803 assert(OMD && "Invalid call to generate getter (empty method)");
804 StartObjCMethod(OMD, IMP->getClassInterface());
805
806 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
807
808 FinishFunction();
809 }
810
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)811 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
812 const Expr *getter = propImpl->getGetterCXXConstructor();
813 if (!getter) return true;
814
815 // Sema only makes only of these when the ivar has a C++ class type,
816 // so the form is pretty constrained.
817
818 // If the property has a reference type, we might just be binding a
819 // reference, in which case the result will be a gl-value. We should
820 // treat this as a non-trivial operation.
821 if (getter->isGLValue())
822 return false;
823
824 // If we selected a trivial copy-constructor, we're okay.
825 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
826 return (construct->getConstructor()->isTrivial());
827
828 // The constructor might require cleanups (in which case it's never
829 // trivial).
830 assert(isa<ExprWithCleanups>(getter));
831 return false;
832 }
833
834 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
835 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)836 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
837 llvm::Value *returnAddr,
838 ObjCIvarDecl *ivar,
839 llvm::Constant *AtomicHelperFn) {
840 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
841 // AtomicHelperFn);
842 CallArgList args;
843
844 // The 1st argument is the return Slot.
845 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
846
847 // The 2nd argument is the address of the ivar.
848 llvm::Value *ivarAddr =
849 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
850 CGF.LoadObjCSelf(), ivar, 0).getPointer();
851 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
852 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
853
854 // Third argument is the helper function.
855 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
856
857 llvm::Value *copyCppAtomicObjectFn =
858 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
859 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
860 args,
861 FunctionType::ExtInfo(),
862 RequiredArgs::All),
863 copyCppAtomicObjectFn, ReturnValueSlot(), args);
864 }
865
866 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)867 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
868 const ObjCPropertyImplDecl *propImpl,
869 const ObjCMethodDecl *GetterMethodDecl,
870 llvm::Constant *AtomicHelperFn) {
871 // If there's a non-trivial 'get' expression, we just have to emit that.
872 if (!hasTrivialGetExpr(propImpl)) {
873 if (!AtomicHelperFn) {
874 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
875 /*nrvo*/ nullptr);
876 EmitReturnStmt(ret);
877 }
878 else {
879 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
880 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
881 ivar, AtomicHelperFn);
882 }
883 return;
884 }
885
886 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
887 QualType propType = prop->getType();
888 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
889
890 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
891
892 // Pick an implementation strategy.
893 PropertyImplStrategy strategy(CGM, propImpl);
894 switch (strategy.getKind()) {
895 case PropertyImplStrategy::Native: {
896 // We don't need to do anything for a zero-size struct.
897 if (strategy.getIvarSize().isZero())
898 return;
899
900 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
901
902 // Currently, all atomic accesses have to be through integer
903 // types, so there's no point in trying to pick a prettier type.
904 llvm::Type *bitcastType =
905 llvm::Type::getIntNTy(getLLVMContext(),
906 getContext().toBits(strategy.getIvarSize()));
907 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
908
909 // Perform an atomic load. This does not impose ordering constraints.
910 Address ivarAddr = LV.getAddress();
911 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
912 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
913 load->setAtomic(llvm::Unordered);
914
915 // Store that value into the return address. Doing this with a
916 // bitcast is likely to produce some pretty ugly IR, but it's not
917 // the *most* terrible thing in the world.
918 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
919
920 // Make sure we don't do an autorelease.
921 AutoreleaseResult = false;
922 return;
923 }
924
925 case PropertyImplStrategy::GetSetProperty: {
926 llvm::Value *getPropertyFn =
927 CGM.getObjCRuntime().GetPropertyGetFunction();
928 if (!getPropertyFn) {
929 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
930 return;
931 }
932
933 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
934 // FIXME: Can't this be simpler? This might even be worse than the
935 // corresponding gcc code.
936 llvm::Value *cmd =
937 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
938 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
939 llvm::Value *ivarOffset =
940 EmitIvarOffset(classImpl->getClassInterface(), ivar);
941
942 CallArgList args;
943 args.add(RValue::get(self), getContext().getObjCIdType());
944 args.add(RValue::get(cmd), getContext().getObjCSelType());
945 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
946 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
947 getContext().BoolTy);
948
949 // FIXME: We shouldn't need to get the function info here, the
950 // runtime already should have computed it to build the function.
951 llvm::Instruction *CallInstruction;
952 RValue RV = EmitCall(
953 getTypes().arrangeFreeFunctionCall(
954 propType, args, FunctionType::ExtInfo(), RequiredArgs::All),
955 getPropertyFn, ReturnValueSlot(), args, CGCalleeInfo(),
956 &CallInstruction);
957 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
958 call->setTailCall();
959
960 // We need to fix the type here. Ivars with copy & retain are
961 // always objects so we don't need to worry about complex or
962 // aggregates.
963 RV = RValue::get(Builder.CreateBitCast(
964 RV.getScalarVal(),
965 getTypes().ConvertType(getterMethod->getReturnType())));
966
967 EmitReturnOfRValue(RV, propType);
968
969 // objc_getProperty does an autorelease, so we should suppress ours.
970 AutoreleaseResult = false;
971
972 return;
973 }
974
975 case PropertyImplStrategy::CopyStruct:
976 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
977 strategy.hasStrongMember());
978 return;
979
980 case PropertyImplStrategy::Expression:
981 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
982 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
983
984 QualType ivarType = ivar->getType();
985 switch (getEvaluationKind(ivarType)) {
986 case TEK_Complex: {
987 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
988 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
989 /*init*/ true);
990 return;
991 }
992 case TEK_Aggregate:
993 // The return value slot is guaranteed to not be aliased, but
994 // that's not necessarily the same as "on the stack", so
995 // we still potentially need objc_memmove_collectable.
996 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
997 return;
998 case TEK_Scalar: {
999 llvm::Value *value;
1000 if (propType->isReferenceType()) {
1001 value = LV.getAddress().getPointer();
1002 } else {
1003 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1004 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1005 if (getLangOpts().ObjCAutoRefCount) {
1006 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1007 } else {
1008 value = EmitARCLoadWeak(LV.getAddress());
1009 }
1010
1011 // Otherwise we want to do a simple load, suppressing the
1012 // final autorelease.
1013 } else {
1014 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1015 AutoreleaseResult = false;
1016 }
1017
1018 value = Builder.CreateBitCast(value, ConvertType(propType));
1019 value = Builder.CreateBitCast(
1020 value, ConvertType(GetterMethodDecl->getReturnType()));
1021 }
1022
1023 EmitReturnOfRValue(RValue::get(value), propType);
1024 return;
1025 }
1026 }
1027 llvm_unreachable("bad evaluation kind");
1028 }
1029
1030 }
1031 llvm_unreachable("bad @property implementation strategy!");
1032 }
1033
1034 /// emitStructSetterCall - Call the runtime function to store the value
1035 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1036 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1037 ObjCIvarDecl *ivar) {
1038 // objc_copyStruct (&structIvar, &Arg,
1039 // sizeof (struct something), true, false);
1040 CallArgList args;
1041
1042 // The first argument is the address of the ivar.
1043 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1044 CGF.LoadObjCSelf(), ivar, 0)
1045 .getPointer();
1046 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1047 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1048
1049 // The second argument is the address of the parameter variable.
1050 ParmVarDecl *argVar = *OMD->param_begin();
1051 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1052 VK_LValue, SourceLocation());
1053 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1054 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1055 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1056
1057 // The third argument is the sizeof the type.
1058 llvm::Value *size =
1059 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1060 args.add(RValue::get(size), CGF.getContext().getSizeType());
1061
1062 // The fourth argument is the 'isAtomic' flag.
1063 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1064
1065 // The fifth argument is the 'hasStrong' flag.
1066 // FIXME: should this really always be false?
1067 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1068
1069 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1070 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1071 args,
1072 FunctionType::ExtInfo(),
1073 RequiredArgs::All),
1074 copyStructFn, ReturnValueSlot(), args);
1075 }
1076
1077 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1078 /// the value from the first formal parameter into the given ivar, using
1079 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1080 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1081 ObjCMethodDecl *OMD,
1082 ObjCIvarDecl *ivar,
1083 llvm::Constant *AtomicHelperFn) {
1084 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1085 // AtomicHelperFn);
1086 CallArgList args;
1087
1088 // The first argument is the address of the ivar.
1089 llvm::Value *ivarAddr =
1090 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1091 CGF.LoadObjCSelf(), ivar, 0).getPointer();
1092 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1093 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1094
1095 // The second argument is the address of the parameter variable.
1096 ParmVarDecl *argVar = *OMD->param_begin();
1097 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1098 VK_LValue, SourceLocation());
1099 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1100 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1101 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1102
1103 // Third argument is the helper function.
1104 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1105
1106 llvm::Value *copyCppAtomicObjectFn =
1107 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1108 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1109 args,
1110 FunctionType::ExtInfo(),
1111 RequiredArgs::All),
1112 copyCppAtomicObjectFn, ReturnValueSlot(), args);
1113 }
1114
1115
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1116 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1117 Expr *setter = PID->getSetterCXXAssignment();
1118 if (!setter) return true;
1119
1120 // Sema only makes only of these when the ivar has a C++ class type,
1121 // so the form is pretty constrained.
1122
1123 // An operator call is trivial if the function it calls is trivial.
1124 // This also implies that there's nothing non-trivial going on with
1125 // the arguments, because operator= can only be trivial if it's a
1126 // synthesized assignment operator and therefore both parameters are
1127 // references.
1128 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1129 if (const FunctionDecl *callee
1130 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1131 if (callee->isTrivial())
1132 return true;
1133 return false;
1134 }
1135
1136 assert(isa<ExprWithCleanups>(setter));
1137 return false;
1138 }
1139
UseOptimizedSetter(CodeGenModule & CGM)1140 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1141 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1142 return false;
1143 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1144 }
1145
1146 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1147 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1148 const ObjCPropertyImplDecl *propImpl,
1149 llvm::Constant *AtomicHelperFn) {
1150 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1151 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1152 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1153
1154 // Just use the setter expression if Sema gave us one and it's
1155 // non-trivial.
1156 if (!hasTrivialSetExpr(propImpl)) {
1157 if (!AtomicHelperFn)
1158 // If non-atomic, assignment is called directly.
1159 EmitStmt(propImpl->getSetterCXXAssignment());
1160 else
1161 // If atomic, assignment is called via a locking api.
1162 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1163 AtomicHelperFn);
1164 return;
1165 }
1166
1167 PropertyImplStrategy strategy(CGM, propImpl);
1168 switch (strategy.getKind()) {
1169 case PropertyImplStrategy::Native: {
1170 // We don't need to do anything for a zero-size struct.
1171 if (strategy.getIvarSize().isZero())
1172 return;
1173
1174 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1175
1176 LValue ivarLValue =
1177 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1178 Address ivarAddr = ivarLValue.getAddress();
1179
1180 // Currently, all atomic accesses have to be through integer
1181 // types, so there's no point in trying to pick a prettier type.
1182 llvm::Type *bitcastType =
1183 llvm::Type::getIntNTy(getLLVMContext(),
1184 getContext().toBits(strategy.getIvarSize()));
1185
1186 // Cast both arguments to the chosen operation type.
1187 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1188 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1189
1190 // This bitcast load is likely to cause some nasty IR.
1191 llvm::Value *load = Builder.CreateLoad(argAddr);
1192
1193 // Perform an atomic store. There are no memory ordering requirements.
1194 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1195 store->setAtomic(llvm::Unordered);
1196 return;
1197 }
1198
1199 case PropertyImplStrategy::GetSetProperty:
1200 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1201
1202 llvm::Value *setOptimizedPropertyFn = nullptr;
1203 llvm::Value *setPropertyFn = nullptr;
1204 if (UseOptimizedSetter(CGM)) {
1205 // 10.8 and iOS 6.0 code and GC is off
1206 setOptimizedPropertyFn =
1207 CGM.getObjCRuntime()
1208 .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1209 strategy.isCopy());
1210 if (!setOptimizedPropertyFn) {
1211 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1212 return;
1213 }
1214 }
1215 else {
1216 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1217 if (!setPropertyFn) {
1218 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1219 return;
1220 }
1221 }
1222
1223 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1224 // <is-atomic>, <is-copy>).
1225 llvm::Value *cmd =
1226 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1227 llvm::Value *self =
1228 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1229 llvm::Value *ivarOffset =
1230 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1231 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1232 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1233 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1234
1235 CallArgList args;
1236 args.add(RValue::get(self), getContext().getObjCIdType());
1237 args.add(RValue::get(cmd), getContext().getObjCSelType());
1238 if (setOptimizedPropertyFn) {
1239 args.add(RValue::get(arg), getContext().getObjCIdType());
1240 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1241 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1242 FunctionType::ExtInfo(),
1243 RequiredArgs::All),
1244 setOptimizedPropertyFn, ReturnValueSlot(), args);
1245 } else {
1246 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1247 args.add(RValue::get(arg), getContext().getObjCIdType());
1248 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1249 getContext().BoolTy);
1250 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1251 getContext().BoolTy);
1252 // FIXME: We shouldn't need to get the function info here, the runtime
1253 // already should have computed it to build the function.
1254 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1255 FunctionType::ExtInfo(),
1256 RequiredArgs::All),
1257 setPropertyFn, ReturnValueSlot(), args);
1258 }
1259
1260 return;
1261 }
1262
1263 case PropertyImplStrategy::CopyStruct:
1264 emitStructSetterCall(*this, setterMethod, ivar);
1265 return;
1266
1267 case PropertyImplStrategy::Expression:
1268 break;
1269 }
1270
1271 // Otherwise, fake up some ASTs and emit a normal assignment.
1272 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1273 DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1274 VK_LValue, SourceLocation());
1275 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1276 selfDecl->getType(), CK_LValueToRValue, &self,
1277 VK_RValue);
1278 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1279 SourceLocation(), SourceLocation(),
1280 &selfLoad, true, true);
1281
1282 ParmVarDecl *argDecl = *setterMethod->param_begin();
1283 QualType argType = argDecl->getType().getNonReferenceType();
1284 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1285 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1286 argType.getUnqualifiedType(), CK_LValueToRValue,
1287 &arg, VK_RValue);
1288
1289 // The property type can differ from the ivar type in some situations with
1290 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1291 // The following absurdity is just to ensure well-formed IR.
1292 CastKind argCK = CK_NoOp;
1293 if (ivarRef.getType()->isObjCObjectPointerType()) {
1294 if (argLoad.getType()->isObjCObjectPointerType())
1295 argCK = CK_BitCast;
1296 else if (argLoad.getType()->isBlockPointerType())
1297 argCK = CK_BlockPointerToObjCPointerCast;
1298 else
1299 argCK = CK_CPointerToObjCPointerCast;
1300 } else if (ivarRef.getType()->isBlockPointerType()) {
1301 if (argLoad.getType()->isBlockPointerType())
1302 argCK = CK_BitCast;
1303 else
1304 argCK = CK_AnyPointerToBlockPointerCast;
1305 } else if (ivarRef.getType()->isPointerType()) {
1306 argCK = CK_BitCast;
1307 }
1308 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1309 ivarRef.getType(), argCK, &argLoad,
1310 VK_RValue);
1311 Expr *finalArg = &argLoad;
1312 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1313 argLoad.getType()))
1314 finalArg = &argCast;
1315
1316
1317 BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1318 ivarRef.getType(), VK_RValue, OK_Ordinary,
1319 SourceLocation(), false);
1320 EmitStmt(&assign);
1321 }
1322
1323 /// \brief Generate an Objective-C property setter function.
1324 ///
1325 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1326 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1327 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1328 const ObjCPropertyImplDecl *PID) {
1329 llvm::Constant *AtomicHelperFn =
1330 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1331 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1332 ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1333 assert(OMD && "Invalid call to generate setter (empty method)");
1334 StartObjCMethod(OMD, IMP->getClassInterface());
1335
1336 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1337
1338 FinishFunction();
1339 }
1340
1341 namespace {
1342 struct DestroyIvar final : EHScopeStack::Cleanup {
1343 private:
1344 llvm::Value *addr;
1345 const ObjCIvarDecl *ivar;
1346 CodeGenFunction::Destroyer *destroyer;
1347 bool useEHCleanupForArray;
1348 public:
DestroyIvar__anon677e44b40311::DestroyIvar1349 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1350 CodeGenFunction::Destroyer *destroyer,
1351 bool useEHCleanupForArray)
1352 : addr(addr), ivar(ivar), destroyer(destroyer),
1353 useEHCleanupForArray(useEHCleanupForArray) {}
1354
Emit__anon677e44b40311::DestroyIvar1355 void Emit(CodeGenFunction &CGF, Flags flags) override {
1356 LValue lvalue
1357 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1358 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1359 flags.isForNormalCleanup() && useEHCleanupForArray);
1360 }
1361 };
1362 }
1363
1364 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1365 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1366 Address addr,
1367 QualType type) {
1368 llvm::Value *null = getNullForVariable(addr);
1369 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1370 }
1371
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1372 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1373 ObjCImplementationDecl *impl) {
1374 CodeGenFunction::RunCleanupsScope scope(CGF);
1375
1376 llvm::Value *self = CGF.LoadObjCSelf();
1377
1378 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1379 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1380 ivar; ivar = ivar->getNextIvar()) {
1381 QualType type = ivar->getType();
1382
1383 // Check whether the ivar is a destructible type.
1384 QualType::DestructionKind dtorKind = type.isDestructedType();
1385 if (!dtorKind) continue;
1386
1387 CodeGenFunction::Destroyer *destroyer = nullptr;
1388
1389 // Use a call to objc_storeStrong to destroy strong ivars, for the
1390 // general benefit of the tools.
1391 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1392 destroyer = destroyARCStrongWithStore;
1393
1394 // Otherwise use the default for the destruction kind.
1395 } else {
1396 destroyer = CGF.getDestroyer(dtorKind);
1397 }
1398
1399 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1400
1401 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1402 cleanupKind & EHCleanup);
1403 }
1404
1405 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1406 }
1407
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1408 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1409 ObjCMethodDecl *MD,
1410 bool ctor) {
1411 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1412 StartObjCMethod(MD, IMP->getClassInterface());
1413
1414 // Emit .cxx_construct.
1415 if (ctor) {
1416 // Suppress the final autorelease in ARC.
1417 AutoreleaseResult = false;
1418
1419 for (const auto *IvarInit : IMP->inits()) {
1420 FieldDecl *Field = IvarInit->getAnyMember();
1421 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1422 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1423 LoadObjCSelf(), Ivar, 0);
1424 EmitAggExpr(IvarInit->getInit(),
1425 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1426 AggValueSlot::DoesNotNeedGCBarriers,
1427 AggValueSlot::IsNotAliased));
1428 }
1429 // constructor returns 'self'.
1430 CodeGenTypes &Types = CGM.getTypes();
1431 QualType IdTy(CGM.getContext().getObjCIdType());
1432 llvm::Value *SelfAsId =
1433 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1434 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1435
1436 // Emit .cxx_destruct.
1437 } else {
1438 emitCXXDestructMethod(*this, IMP);
1439 }
1440 FinishFunction();
1441 }
1442
LoadObjCSelf()1443 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1444 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1445 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1446 Self->getType(), VK_LValue, SourceLocation());
1447 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1448 }
1449
TypeOfSelfObject()1450 QualType CodeGenFunction::TypeOfSelfObject() {
1451 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1452 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1453 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1454 getContext().getCanonicalType(selfDecl->getType()));
1455 return PTy->getPointeeType();
1456 }
1457
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1458 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1459 llvm::Constant *EnumerationMutationFn =
1460 CGM.getObjCRuntime().EnumerationMutationFunction();
1461
1462 if (!EnumerationMutationFn) {
1463 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1464 return;
1465 }
1466
1467 CGDebugInfo *DI = getDebugInfo();
1468 if (DI)
1469 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1470
1471 // The local variable comes into scope immediately.
1472 AutoVarEmission variable = AutoVarEmission::invalid();
1473 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1474 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1475
1476 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1477
1478 // Fast enumeration state.
1479 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1480 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1481 EmitNullInitialization(StatePtr, StateTy);
1482
1483 // Number of elements in the items array.
1484 static const unsigned NumItems = 16;
1485
1486 // Fetch the countByEnumeratingWithState:objects:count: selector.
1487 IdentifierInfo *II[] = {
1488 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1489 &CGM.getContext().Idents.get("objects"),
1490 &CGM.getContext().Idents.get("count")
1491 };
1492 Selector FastEnumSel =
1493 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1494
1495 QualType ItemsTy =
1496 getContext().getConstantArrayType(getContext().getObjCIdType(),
1497 llvm::APInt(32, NumItems),
1498 ArrayType::Normal, 0);
1499 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1500
1501 // Emit the collection pointer. In ARC, we do a retain.
1502 llvm::Value *Collection;
1503 if (getLangOpts().ObjCAutoRefCount) {
1504 Collection = EmitARCRetainScalarExpr(S.getCollection());
1505
1506 // Enter a cleanup to do the release.
1507 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1508 } else {
1509 Collection = EmitScalarExpr(S.getCollection());
1510 }
1511
1512 // The 'continue' label needs to appear within the cleanup for the
1513 // collection object.
1514 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1515
1516 // Send it our message:
1517 CallArgList Args;
1518
1519 // The first argument is a temporary of the enumeration-state type.
1520 Args.add(RValue::get(StatePtr.getPointer()),
1521 getContext().getPointerType(StateTy));
1522
1523 // The second argument is a temporary array with space for NumItems
1524 // pointers. We'll actually be loading elements from the array
1525 // pointer written into the control state; this buffer is so that
1526 // collections that *aren't* backed by arrays can still queue up
1527 // batches of elements.
1528 Args.add(RValue::get(ItemsPtr.getPointer()),
1529 getContext().getPointerType(ItemsTy));
1530
1531 // The third argument is the capacity of that temporary array.
1532 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1533 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1534 Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1535
1536 // Start the enumeration.
1537 RValue CountRV =
1538 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1539 getContext().UnsignedLongTy,
1540 FastEnumSel,
1541 Collection, Args);
1542
1543 // The initial number of objects that were returned in the buffer.
1544 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1545
1546 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1547 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1548
1549 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1550
1551 // If the limit pointer was zero to begin with, the collection is
1552 // empty; skip all this. Set the branch weight assuming this has the same
1553 // probability of exiting the loop as any other loop exit.
1554 uint64_t EntryCount = getCurrentProfileCount();
1555 Builder.CreateCondBr(
1556 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1557 LoopInitBB,
1558 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1559
1560 // Otherwise, initialize the loop.
1561 EmitBlock(LoopInitBB);
1562
1563 // Save the initial mutations value. This is the value at an
1564 // address that was written into the state object by
1565 // countByEnumeratingWithState:objects:count:.
1566 Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1567 StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1568 llvm::Value *StateMutationsPtr
1569 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1570
1571 llvm::Value *initialMutations =
1572 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1573 "forcoll.initial-mutations");
1574
1575 // Start looping. This is the point we return to whenever we have a
1576 // fresh, non-empty batch of objects.
1577 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1578 EmitBlock(LoopBodyBB);
1579
1580 // The current index into the buffer.
1581 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1582 index->addIncoming(zero, LoopInitBB);
1583
1584 // The current buffer size.
1585 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1586 count->addIncoming(initialBufferLimit, LoopInitBB);
1587
1588 incrementProfileCounter(&S);
1589
1590 // Check whether the mutations value has changed from where it was
1591 // at start. StateMutationsPtr should actually be invariant between
1592 // refreshes.
1593 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1594 llvm::Value *currentMutations
1595 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1596 "statemutations");
1597
1598 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1599 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1600
1601 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1602 WasNotMutatedBB, WasMutatedBB);
1603
1604 // If so, call the enumeration-mutation function.
1605 EmitBlock(WasMutatedBB);
1606 llvm::Value *V =
1607 Builder.CreateBitCast(Collection,
1608 ConvertType(getContext().getObjCIdType()));
1609 CallArgList Args2;
1610 Args2.add(RValue::get(V), getContext().getObjCIdType());
1611 // FIXME: We shouldn't need to get the function info here, the runtime already
1612 // should have computed it to build the function.
1613 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1614 FunctionType::ExtInfo(),
1615 RequiredArgs::All),
1616 EnumerationMutationFn, ReturnValueSlot(), Args2);
1617
1618 // Otherwise, or if the mutation function returns, just continue.
1619 EmitBlock(WasNotMutatedBB);
1620
1621 // Initialize the element variable.
1622 RunCleanupsScope elementVariableScope(*this);
1623 bool elementIsVariable;
1624 LValue elementLValue;
1625 QualType elementType;
1626 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1627 // Initialize the variable, in case it's a __block variable or something.
1628 EmitAutoVarInit(variable);
1629
1630 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1631 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1632 VK_LValue, SourceLocation());
1633 elementLValue = EmitLValue(&tempDRE);
1634 elementType = D->getType();
1635 elementIsVariable = true;
1636
1637 if (D->isARCPseudoStrong())
1638 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1639 } else {
1640 elementLValue = LValue(); // suppress warning
1641 elementType = cast<Expr>(S.getElement())->getType();
1642 elementIsVariable = false;
1643 }
1644 llvm::Type *convertedElementType = ConvertType(elementType);
1645
1646 // Fetch the buffer out of the enumeration state.
1647 // TODO: this pointer should actually be invariant between
1648 // refreshes, which would help us do certain loop optimizations.
1649 Address StateItemsPtr = Builder.CreateStructGEP(
1650 StatePtr, 1, getPointerSize(), "stateitems.ptr");
1651 llvm::Value *EnumStateItems =
1652 Builder.CreateLoad(StateItemsPtr, "stateitems");
1653
1654 // Fetch the value at the current index from the buffer.
1655 llvm::Value *CurrentItemPtr =
1656 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1657 llvm::Value *CurrentItem =
1658 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1659
1660 // Cast that value to the right type.
1661 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1662 "currentitem");
1663
1664 // Make sure we have an l-value. Yes, this gets evaluated every
1665 // time through the loop.
1666 if (!elementIsVariable) {
1667 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1668 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1669 } else {
1670 EmitScalarInit(CurrentItem, elementLValue);
1671 }
1672
1673 // If we do have an element variable, this assignment is the end of
1674 // its initialization.
1675 if (elementIsVariable)
1676 EmitAutoVarCleanups(variable);
1677
1678 // Perform the loop body, setting up break and continue labels.
1679 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1680 {
1681 RunCleanupsScope Scope(*this);
1682 EmitStmt(S.getBody());
1683 }
1684 BreakContinueStack.pop_back();
1685
1686 // Destroy the element variable now.
1687 elementVariableScope.ForceCleanup();
1688
1689 // Check whether there are more elements.
1690 EmitBlock(AfterBody.getBlock());
1691
1692 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1693
1694 // First we check in the local buffer.
1695 llvm::Value *indexPlusOne
1696 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1697
1698 // If we haven't overrun the buffer yet, we can continue.
1699 // Set the branch weights based on the simplifying assumption that this is
1700 // like a while-loop, i.e., ignoring that the false branch fetches more
1701 // elements and then returns to the loop.
1702 Builder.CreateCondBr(
1703 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1704 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1705
1706 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1707 count->addIncoming(count, AfterBody.getBlock());
1708
1709 // Otherwise, we have to fetch more elements.
1710 EmitBlock(FetchMoreBB);
1711
1712 CountRV =
1713 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1714 getContext().UnsignedLongTy,
1715 FastEnumSel,
1716 Collection, Args);
1717
1718 // If we got a zero count, we're done.
1719 llvm::Value *refetchCount = CountRV.getScalarVal();
1720
1721 // (note that the message send might split FetchMoreBB)
1722 index->addIncoming(zero, Builder.GetInsertBlock());
1723 count->addIncoming(refetchCount, Builder.GetInsertBlock());
1724
1725 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1726 EmptyBB, LoopBodyBB);
1727
1728 // No more elements.
1729 EmitBlock(EmptyBB);
1730
1731 if (!elementIsVariable) {
1732 // If the element was not a declaration, set it to be null.
1733
1734 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1735 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1736 EmitStoreThroughLValue(RValue::get(null), elementLValue);
1737 }
1738
1739 if (DI)
1740 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1741
1742 // Leave the cleanup we entered in ARC.
1743 if (getLangOpts().ObjCAutoRefCount)
1744 PopCleanupBlock();
1745
1746 EmitBlock(LoopEnd.getBlock());
1747 }
1748
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1749 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1750 CGM.getObjCRuntime().EmitTryStmt(*this, S);
1751 }
1752
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1753 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1754 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1755 }
1756
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1757 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1758 const ObjCAtSynchronizedStmt &S) {
1759 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1760 }
1761
1762 namespace {
1763 struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anon677e44b40411::CallObjCRelease1764 CallObjCRelease(llvm::Value *object) : object(object) {}
1765 llvm::Value *object;
1766
Emit__anon677e44b40411::CallObjCRelease1767 void Emit(CodeGenFunction &CGF, Flags flags) override {
1768 // Releases at the end of the full-expression are imprecise.
1769 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1770 }
1771 };
1772 }
1773
1774 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1775 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1776 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1777 llvm::Value *object) {
1778 // If we're in a conditional branch, we need to make the cleanup
1779 // conditional.
1780 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1781 return object;
1782 }
1783
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1784 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1785 llvm::Value *value) {
1786 return EmitARCRetainAutorelease(type, value);
1787 }
1788
1789 /// Given a number of pointers, inform the optimizer that they're
1790 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)1791 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1792 llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1793 if (!fn) {
1794 llvm::FunctionType *fnType =
1795 llvm::FunctionType::get(CGM.VoidTy, None, true);
1796 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1797 }
1798
1799 // This isn't really a "runtime" function, but as an intrinsic it
1800 // doesn't really matter as long as we align things up.
1801 EmitNounwindRuntimeCall(fn, values);
1802 }
1803
1804
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1805 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1806 llvm::FunctionType *type,
1807 StringRef fnName) {
1808 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1809
1810 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1811 // If the target runtime doesn't naturally support ARC, emit weak
1812 // references to the runtime support library. We don't really
1813 // permit this to fail, but we need a particular relocation style.
1814 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1815 f->setLinkage(llvm::Function::ExternalWeakLinkage);
1816 } else if (fnName == "objc_retain" || fnName == "objc_release") {
1817 // If we have Native ARC, set nonlazybind attribute for these APIs for
1818 // performance.
1819 f->addFnAttr(llvm::Attribute::NonLazyBind);
1820 }
1821 }
1822
1823 return fn;
1824 }
1825
1826 /// Perform an operation having the signature
1827 /// i8* (i8*)
1828 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool isTailCall=false)1829 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1830 llvm::Value *value,
1831 llvm::Constant *&fn,
1832 StringRef fnName,
1833 bool isTailCall = false) {
1834 if (isa<llvm::ConstantPointerNull>(value)) return value;
1835
1836 if (!fn) {
1837 llvm::FunctionType *fnType =
1838 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1839 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1840 }
1841
1842 // Cast the argument to 'id'.
1843 llvm::Type *origType = value->getType();
1844 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1845
1846 // Call the function.
1847 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1848 if (isTailCall)
1849 call->setTailCall();
1850
1851 // Cast the result back to the original type.
1852 return CGF.Builder.CreateBitCast(call, origType);
1853 }
1854
1855 /// Perform an operation having the following signature:
1856 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Constant * & fn,StringRef fnName)1857 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1858 Address addr,
1859 llvm::Constant *&fn,
1860 StringRef fnName) {
1861 if (!fn) {
1862 llvm::FunctionType *fnType =
1863 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1864 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1865 }
1866
1867 // Cast the argument to 'id*'.
1868 llvm::Type *origType = addr.getElementType();
1869 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1870
1871 // Call the function.
1872 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1873
1874 // Cast the result back to a dereference of the original type.
1875 if (origType != CGF.Int8PtrTy)
1876 result = CGF.Builder.CreateBitCast(result, origType);
1877
1878 return result;
1879 }
1880
1881 /// Perform an operation having the following signature:
1882 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1883 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1884 Address addr,
1885 llvm::Value *value,
1886 llvm::Constant *&fn,
1887 StringRef fnName,
1888 bool ignored) {
1889 assert(addr.getElementType() == value->getType());
1890
1891 if (!fn) {
1892 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1893
1894 llvm::FunctionType *fnType
1895 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1896 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1897 }
1898
1899 llvm::Type *origType = value->getType();
1900
1901 llvm::Value *args[] = {
1902 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1903 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1904 };
1905 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1906
1907 if (ignored) return nullptr;
1908
1909 return CGF.Builder.CreateBitCast(result, origType);
1910 }
1911
1912 /// Perform an operation having the following signature:
1913 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Constant * & fn,StringRef fnName)1914 static void emitARCCopyOperation(CodeGenFunction &CGF,
1915 Address dst,
1916 Address src,
1917 llvm::Constant *&fn,
1918 StringRef fnName) {
1919 assert(dst.getType() == src.getType());
1920
1921 if (!fn) {
1922 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1923
1924 llvm::FunctionType *fnType
1925 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1926 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1927 }
1928
1929 llvm::Value *args[] = {
1930 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1931 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
1932 };
1933 CGF.EmitNounwindRuntimeCall(fn, args);
1934 }
1935
1936 /// Produce the code to do a retain. Based on the type, calls one of:
1937 /// call i8* \@objc_retain(i8* %value)
1938 /// call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1939 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1940 if (type->isBlockPointerType())
1941 return EmitARCRetainBlock(value, /*mandatory*/ false);
1942 else
1943 return EmitARCRetainNonBlock(value);
1944 }
1945
1946 /// Retain the given object, with normal retain semantics.
1947 /// call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1948 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1949 return emitARCValueOperation(*this, value,
1950 CGM.getObjCEntrypoints().objc_retain,
1951 "objc_retain");
1952 }
1953
1954 /// Retain the given block, with _Block_copy semantics.
1955 /// call i8* \@objc_retainBlock(i8* %value)
1956 ///
1957 /// \param mandatory - If false, emit the call with metadata
1958 /// indicating that it's okay for the optimizer to eliminate this call
1959 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1960 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1961 bool mandatory) {
1962 llvm::Value *result
1963 = emitARCValueOperation(*this, value,
1964 CGM.getObjCEntrypoints().objc_retainBlock,
1965 "objc_retainBlock");
1966
1967 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1968 // tell the optimizer that it doesn't need to do this copy if the
1969 // block doesn't escape, where being passed as an argument doesn't
1970 // count as escaping.
1971 if (!mandatory && isa<llvm::Instruction>(result)) {
1972 llvm::CallInst *call
1973 = cast<llvm::CallInst>(result->stripPointerCasts());
1974 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1975
1976 call->setMetadata("clang.arc.copy_on_escape",
1977 llvm::MDNode::get(Builder.getContext(), None));
1978 }
1979
1980 return result;
1981 }
1982
1983 /// Retain the given object which is the result of a function call.
1984 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1985 ///
1986 /// Yes, this function name is one character away from a different
1987 /// call with completely different semantics.
1988 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)1989 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1990 // Fetch the void(void) inline asm which marks that we're going to
1991 // retain the autoreleased return value.
1992 llvm::InlineAsm *&marker
1993 = CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
1994 if (!marker) {
1995 StringRef assembly
1996 = CGM.getTargetCodeGenInfo()
1997 .getARCRetainAutoreleasedReturnValueMarker();
1998
1999 // If we have an empty assembly string, there's nothing to do.
2000 if (assembly.empty()) {
2001
2002 // Otherwise, at -O0, build an inline asm that we're going to call
2003 // in a moment.
2004 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2005 llvm::FunctionType *type =
2006 llvm::FunctionType::get(VoidTy, /*variadic*/false);
2007
2008 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2009
2010 // If we're at -O1 and above, we don't want to litter the code
2011 // with this marker yet, so leave a breadcrumb for the ARC
2012 // optimizer to pick up.
2013 } else {
2014 llvm::NamedMDNode *metadata =
2015 CGM.getModule().getOrInsertNamedMetadata(
2016 "clang.arc.retainAutoreleasedReturnValueMarker");
2017 assert(metadata->getNumOperands() <= 1);
2018 if (metadata->getNumOperands() == 0) {
2019 metadata->addOperand(llvm::MDNode::get(
2020 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
2021 }
2022 }
2023 }
2024
2025 // Call the marker asm if we made one, which we do only at -O0.
2026 if (marker)
2027 Builder.CreateCall(marker);
2028
2029 return emitARCValueOperation(*this, value,
2030 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2031 "objc_retainAutoreleasedReturnValue");
2032 }
2033
2034 /// Release the given object.
2035 /// call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2036 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2037 ARCPreciseLifetime_t precise) {
2038 if (isa<llvm::ConstantPointerNull>(value)) return;
2039
2040 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2041 if (!fn) {
2042 llvm::FunctionType *fnType =
2043 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2044 fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2045 }
2046
2047 // Cast the argument to 'id'.
2048 value = Builder.CreateBitCast(value, Int8PtrTy);
2049
2050 // Call objc_release.
2051 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2052
2053 if (precise == ARCImpreciseLifetime) {
2054 call->setMetadata("clang.imprecise_release",
2055 llvm::MDNode::get(Builder.getContext(), None));
2056 }
2057 }
2058
2059 /// Destroy a __strong variable.
2060 ///
2061 /// At -O0, emit a call to store 'null' into the address;
2062 /// instrumenting tools prefer this because the address is exposed,
2063 /// but it's relatively cumbersome to optimize.
2064 ///
2065 /// At -O1 and above, just load and call objc_release.
2066 ///
2067 /// call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2068 void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2069 ARCPreciseLifetime_t precise) {
2070 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2071 llvm::Value *null = getNullForVariable(addr);
2072 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2073 return;
2074 }
2075
2076 llvm::Value *value = Builder.CreateLoad(addr);
2077 EmitARCRelease(value, precise);
2078 }
2079
2080 /// Store into a strong object. Always calls this:
2081 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2082 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2083 llvm::Value *value,
2084 bool ignored) {
2085 assert(addr.getElementType() == value->getType());
2086
2087 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2088 if (!fn) {
2089 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2090 llvm::FunctionType *fnType
2091 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2092 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2093 }
2094
2095 llvm::Value *args[] = {
2096 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2097 Builder.CreateBitCast(value, Int8PtrTy)
2098 };
2099 EmitNounwindRuntimeCall(fn, args);
2100
2101 if (ignored) return nullptr;
2102 return value;
2103 }
2104
2105 /// Store into a strong object. Sometimes calls this:
2106 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2107 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2108 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2109 llvm::Value *newValue,
2110 bool ignored) {
2111 QualType type = dst.getType();
2112 bool isBlock = type->isBlockPointerType();
2113
2114 // Use a store barrier at -O0 unless this is a block type or the
2115 // lvalue is inadequately aligned.
2116 if (shouldUseFusedARCCalls() &&
2117 !isBlock &&
2118 (dst.getAlignment().isZero() ||
2119 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2120 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2121 }
2122
2123 // Otherwise, split it out.
2124
2125 // Retain the new value.
2126 newValue = EmitARCRetain(type, newValue);
2127
2128 // Read the old value.
2129 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2130
2131 // Store. We do this before the release so that any deallocs won't
2132 // see the old value.
2133 EmitStoreOfScalar(newValue, dst);
2134
2135 // Finally, release the old value.
2136 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2137
2138 return newValue;
2139 }
2140
2141 /// Autorelease the given object.
2142 /// call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2143 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2144 return emitARCValueOperation(*this, value,
2145 CGM.getObjCEntrypoints().objc_autorelease,
2146 "objc_autorelease");
2147 }
2148
2149 /// Autorelease the given object.
2150 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2151 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2152 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2153 return emitARCValueOperation(*this, value,
2154 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2155 "objc_autoreleaseReturnValue",
2156 /*isTailCall*/ true);
2157 }
2158
2159 /// Do a fused retain/autorelease of the given object.
2160 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2161 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2162 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2163 return emitARCValueOperation(*this, value,
2164 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2165 "objc_retainAutoreleaseReturnValue",
2166 /*isTailCall*/ true);
2167 }
2168
2169 /// Do a fused retain/autorelease of the given object.
2170 /// call i8* \@objc_retainAutorelease(i8* %value)
2171 /// or
2172 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2173 /// call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2174 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2175 llvm::Value *value) {
2176 if (!type->isBlockPointerType())
2177 return EmitARCRetainAutoreleaseNonBlock(value);
2178
2179 if (isa<llvm::ConstantPointerNull>(value)) return value;
2180
2181 llvm::Type *origType = value->getType();
2182 value = Builder.CreateBitCast(value, Int8PtrTy);
2183 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2184 value = EmitARCAutorelease(value);
2185 return Builder.CreateBitCast(value, origType);
2186 }
2187
2188 /// Do a fused retain/autorelease of the given object.
2189 /// call i8* \@objc_retainAutorelease(i8* %value)
2190 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2191 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2192 return emitARCValueOperation(*this, value,
2193 CGM.getObjCEntrypoints().objc_retainAutorelease,
2194 "objc_retainAutorelease");
2195 }
2196
2197 /// i8* \@objc_loadWeak(i8** %addr)
2198 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2199 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2200 return emitARCLoadOperation(*this, addr,
2201 CGM.getObjCEntrypoints().objc_loadWeak,
2202 "objc_loadWeak");
2203 }
2204
2205 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2206 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2207 return emitARCLoadOperation(*this, addr,
2208 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2209 "objc_loadWeakRetained");
2210 }
2211
2212 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2213 /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2214 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2215 llvm::Value *value,
2216 bool ignored) {
2217 return emitARCStoreOperation(*this, addr, value,
2218 CGM.getObjCEntrypoints().objc_storeWeak,
2219 "objc_storeWeak", ignored);
2220 }
2221
2222 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2223 /// Returns %value. %addr is known to not have a current weak entry.
2224 /// Essentially equivalent to:
2225 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2226 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2227 // If we're initializing to null, just write null to memory; no need
2228 // to get the runtime involved. But don't do this if optimization
2229 // is enabled, because accounting for this would make the optimizer
2230 // much more complicated.
2231 if (isa<llvm::ConstantPointerNull>(value) &&
2232 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2233 Builder.CreateStore(value, addr);
2234 return;
2235 }
2236
2237 emitARCStoreOperation(*this, addr, value,
2238 CGM.getObjCEntrypoints().objc_initWeak,
2239 "objc_initWeak", /*ignored*/ true);
2240 }
2241
2242 /// void \@objc_destroyWeak(i8** %addr)
2243 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2244 void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2245 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2246 if (!fn) {
2247 llvm::FunctionType *fnType =
2248 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2249 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2250 }
2251
2252 // Cast the argument to 'id*'.
2253 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2254
2255 EmitNounwindRuntimeCall(fn, addr.getPointer());
2256 }
2257
2258 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2259 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2260 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2261 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2262 emitARCCopyOperation(*this, dst, src,
2263 CGM.getObjCEntrypoints().objc_moveWeak,
2264 "objc_moveWeak");
2265 }
2266
2267 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2268 /// Disregards the current value in %dest. Essentially
2269 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2270 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2271 emitARCCopyOperation(*this, dst, src,
2272 CGM.getObjCEntrypoints().objc_copyWeak,
2273 "objc_copyWeak");
2274 }
2275
2276 /// Produce the code to do a objc_autoreleasepool_push.
2277 /// call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2278 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2279 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2280 if (!fn) {
2281 llvm::FunctionType *fnType =
2282 llvm::FunctionType::get(Int8PtrTy, false);
2283 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2284 }
2285
2286 return EmitNounwindRuntimeCall(fn);
2287 }
2288
2289 /// Produce the code to do a primitive release.
2290 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2291 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2292 assert(value->getType() == Int8PtrTy);
2293
2294 llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2295 if (!fn) {
2296 llvm::FunctionType *fnType =
2297 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2298
2299 // We don't want to use a weak import here; instead we should not
2300 // fall into this path.
2301 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2302 }
2303
2304 // objc_autoreleasePoolPop can throw.
2305 EmitRuntimeCallOrInvoke(fn, value);
2306 }
2307
2308 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2309 /// Which is: [[NSAutoreleasePool alloc] init];
2310 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2311 /// init is declared as: - (id) init; in its NSObject super class.
2312 ///
EmitObjCMRRAutoreleasePoolPush()2313 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2314 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2315 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2316 // [NSAutoreleasePool alloc]
2317 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2318 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2319 CallArgList Args;
2320 RValue AllocRV =
2321 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2322 getContext().getObjCIdType(),
2323 AllocSel, Receiver, Args);
2324
2325 // [Receiver init]
2326 Receiver = AllocRV.getScalarVal();
2327 II = &CGM.getContext().Idents.get("init");
2328 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2329 RValue InitRV =
2330 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2331 getContext().getObjCIdType(),
2332 InitSel, Receiver, Args);
2333 return InitRV.getScalarVal();
2334 }
2335
2336 /// Produce the code to do a primitive release.
2337 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2338 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2339 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2340 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2341 CallArgList Args;
2342 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2343 getContext().VoidTy, DrainSel, Arg, Args);
2344 }
2345
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2346 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2347 Address addr,
2348 QualType type) {
2349 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2350 }
2351
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2352 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2353 Address addr,
2354 QualType type) {
2355 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2356 }
2357
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2358 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2359 Address addr,
2360 QualType type) {
2361 CGF.EmitARCDestroyWeak(addr);
2362 }
2363
2364 namespace {
2365 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2366 llvm::Value *Token;
2367
CallObjCAutoreleasePoolObject__anon677e44b40511::CallObjCAutoreleasePoolObject2368 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2369
Emit__anon677e44b40511::CallObjCAutoreleasePoolObject2370 void Emit(CodeGenFunction &CGF, Flags flags) override {
2371 CGF.EmitObjCAutoreleasePoolPop(Token);
2372 }
2373 };
2374 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2375 llvm::Value *Token;
2376
CallObjCMRRAutoreleasePoolObject__anon677e44b40511::CallObjCMRRAutoreleasePoolObject2377 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2378
Emit__anon677e44b40511::CallObjCMRRAutoreleasePoolObject2379 void Emit(CodeGenFunction &CGF, Flags flags) override {
2380 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2381 }
2382 };
2383 }
2384
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2385 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2386 if (CGM.getLangOpts().ObjCAutoRefCount)
2387 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2388 else
2389 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2390 }
2391
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2392 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2393 LValue lvalue,
2394 QualType type) {
2395 switch (type.getObjCLifetime()) {
2396 case Qualifiers::OCL_None:
2397 case Qualifiers::OCL_ExplicitNone:
2398 case Qualifiers::OCL_Strong:
2399 case Qualifiers::OCL_Autoreleasing:
2400 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2401 SourceLocation()).getScalarVal(),
2402 false);
2403
2404 case Qualifiers::OCL_Weak:
2405 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2406 true);
2407 }
2408
2409 llvm_unreachable("impossible lifetime!");
2410 }
2411
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2412 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2413 const Expr *e) {
2414 e = e->IgnoreParens();
2415 QualType type = e->getType();
2416
2417 // If we're loading retained from a __strong xvalue, we can avoid
2418 // an extra retain/release pair by zeroing out the source of this
2419 // "move" operation.
2420 if (e->isXValue() &&
2421 !type.isConstQualified() &&
2422 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2423 // Emit the lvalue.
2424 LValue lv = CGF.EmitLValue(e);
2425
2426 // Load the object pointer.
2427 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2428 SourceLocation()).getScalarVal();
2429
2430 // Set the source pointer to NULL.
2431 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2432
2433 return TryEmitResult(result, true);
2434 }
2435
2436 // As a very special optimization, in ARC++, if the l-value is the
2437 // result of a non-volatile assignment, do a simple retain of the
2438 // result of the call to objc_storeWeak instead of reloading.
2439 if (CGF.getLangOpts().CPlusPlus &&
2440 !type.isVolatileQualified() &&
2441 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2442 isa<BinaryOperator>(e) &&
2443 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2444 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2445
2446 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2447 }
2448
2449 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2450 llvm::Value *value);
2451
2452 /// Given that the given expression is some sort of call (which does
2453 /// not return retained), emit a retain following it.
emitARCRetainCall(CodeGenFunction & CGF,const Expr * e)2454 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2455 llvm::Value *value = CGF.EmitScalarExpr(e);
2456 return emitARCRetainAfterCall(CGF, value);
2457 }
2458
emitARCRetainAfterCall(CodeGenFunction & CGF,llvm::Value * value)2459 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2460 llvm::Value *value) {
2461 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2462 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2463
2464 // Place the retain immediately following the call.
2465 CGF.Builder.SetInsertPoint(call->getParent(),
2466 ++llvm::BasicBlock::iterator(call));
2467 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2468
2469 CGF.Builder.restoreIP(ip);
2470 return value;
2471 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2472 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2473
2474 // Place the retain at the beginning of the normal destination block.
2475 llvm::BasicBlock *BB = invoke->getNormalDest();
2476 CGF.Builder.SetInsertPoint(BB, BB->begin());
2477 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2478
2479 CGF.Builder.restoreIP(ip);
2480 return value;
2481
2482 // Bitcasts can arise because of related-result returns. Rewrite
2483 // the operand.
2484 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2485 llvm::Value *operand = bitcast->getOperand(0);
2486 operand = emitARCRetainAfterCall(CGF, operand);
2487 bitcast->setOperand(0, operand);
2488 return bitcast;
2489
2490 // Generic fall-back case.
2491 } else {
2492 // Retain using the non-block variant: we never need to do a copy
2493 // of a block that's been returned to us.
2494 return CGF.EmitARCRetainNonBlock(value);
2495 }
2496 }
2497
2498 /// Determine whether it might be important to emit a separate
2499 /// objc_retain_block on the result of the given expression, or
2500 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2501 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2502 assert(e->getType()->isBlockPointerType());
2503 e = e->IgnoreParens();
2504
2505 // For future goodness, emit block expressions directly in +1
2506 // contexts if we can.
2507 if (isa<BlockExpr>(e))
2508 return false;
2509
2510 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2511 switch (cast->getCastKind()) {
2512 // Emitting these operations in +1 contexts is goodness.
2513 case CK_LValueToRValue:
2514 case CK_ARCReclaimReturnedObject:
2515 case CK_ARCConsumeObject:
2516 case CK_ARCProduceObject:
2517 return false;
2518
2519 // These operations preserve a block type.
2520 case CK_NoOp:
2521 case CK_BitCast:
2522 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2523
2524 // These operations are known to be bad (or haven't been considered).
2525 case CK_AnyPointerToBlockPointerCast:
2526 default:
2527 return true;
2528 }
2529 }
2530
2531 return true;
2532 }
2533
2534 /// Try to emit a PseudoObjectExpr at +1.
2535 ///
2536 /// This massively duplicates emitPseudoObjectRValue.
tryEmitARCRetainPseudoObject(CodeGenFunction & CGF,const PseudoObjectExpr * E)2537 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2538 const PseudoObjectExpr *E) {
2539 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2540
2541 // Find the result expression.
2542 const Expr *resultExpr = E->getResultExpr();
2543 assert(resultExpr);
2544 TryEmitResult result;
2545
2546 for (PseudoObjectExpr::const_semantics_iterator
2547 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2548 const Expr *semantic = *i;
2549
2550 // If this semantic expression is an opaque value, bind it
2551 // to the result of its source expression.
2552 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2553 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2554 OVMA opaqueData;
2555
2556 // If this semantic is the result of the pseudo-object
2557 // expression, try to evaluate the source as +1.
2558 if (ov == resultExpr) {
2559 assert(!OVMA::shouldBindAsLValue(ov));
2560 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2561 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2562
2563 // Otherwise, just bind it.
2564 } else {
2565 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2566 }
2567 opaques.push_back(opaqueData);
2568
2569 // Otherwise, if the expression is the result, evaluate it
2570 // and remember the result.
2571 } else if (semantic == resultExpr) {
2572 result = tryEmitARCRetainScalarExpr(CGF, semantic);
2573
2574 // Otherwise, evaluate the expression in an ignored context.
2575 } else {
2576 CGF.EmitIgnoredExpr(semantic);
2577 }
2578 }
2579
2580 // Unbind all the opaques now.
2581 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2582 opaques[i].unbind(CGF);
2583
2584 return result;
2585 }
2586
2587 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2588 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2589 // We should *never* see a nested full-expression here, because if
2590 // we fail to emit at +1, our caller must not retain after we close
2591 // out the full-expression.
2592 assert(!isa<ExprWithCleanups>(e));
2593
2594 // The desired result type, if it differs from the type of the
2595 // ultimate opaque expression.
2596 llvm::Type *resultType = nullptr;
2597
2598 while (true) {
2599 e = e->IgnoreParens();
2600
2601 // There's a break at the end of this if-chain; anything
2602 // that wants to keep looping has to explicitly continue.
2603 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2604 switch (ce->getCastKind()) {
2605 // No-op casts don't change the type, so we just ignore them.
2606 case CK_NoOp:
2607 e = ce->getSubExpr();
2608 continue;
2609
2610 case CK_LValueToRValue: {
2611 TryEmitResult loadResult
2612 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2613 if (resultType) {
2614 llvm::Value *value = loadResult.getPointer();
2615 value = CGF.Builder.CreateBitCast(value, resultType);
2616 loadResult.setPointer(value);
2617 }
2618 return loadResult;
2619 }
2620
2621 // These casts can change the type, so remember that and
2622 // soldier on. We only need to remember the outermost such
2623 // cast, though.
2624 case CK_CPointerToObjCPointerCast:
2625 case CK_BlockPointerToObjCPointerCast:
2626 case CK_AnyPointerToBlockPointerCast:
2627 case CK_BitCast:
2628 if (!resultType)
2629 resultType = CGF.ConvertType(ce->getType());
2630 e = ce->getSubExpr();
2631 assert(e->getType()->hasPointerRepresentation());
2632 continue;
2633
2634 // For consumptions, just emit the subexpression and thus elide
2635 // the retain/release pair.
2636 case CK_ARCConsumeObject: {
2637 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2638 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2639 return TryEmitResult(result, true);
2640 }
2641
2642 // Block extends are net +0. Naively, we could just recurse on
2643 // the subexpression, but actually we need to ensure that the
2644 // value is copied as a block, so there's a little filter here.
2645 case CK_ARCExtendBlockObject: {
2646 llvm::Value *result; // will be a +0 value
2647
2648 // If we can't safely assume the sub-expression will produce a
2649 // block-copied value, emit the sub-expression at +0.
2650 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2651 result = CGF.EmitScalarExpr(ce->getSubExpr());
2652
2653 // Otherwise, try to emit the sub-expression at +1 recursively.
2654 } else {
2655 TryEmitResult subresult
2656 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2657 result = subresult.getPointer();
2658
2659 // If that produced a retained value, just use that,
2660 // possibly casting down.
2661 if (subresult.getInt()) {
2662 if (resultType)
2663 result = CGF.Builder.CreateBitCast(result, resultType);
2664 return TryEmitResult(result, true);
2665 }
2666
2667 // Otherwise it's +0.
2668 }
2669
2670 // Retain the object as a block, then cast down.
2671 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2672 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2673 return TryEmitResult(result, true);
2674 }
2675
2676 // For reclaims, emit the subexpression as a retained call and
2677 // skip the consumption.
2678 case CK_ARCReclaimReturnedObject: {
2679 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2680 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2681 return TryEmitResult(result, true);
2682 }
2683
2684 default:
2685 break;
2686 }
2687
2688 // Skip __extension__.
2689 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2690 if (op->getOpcode() == UO_Extension) {
2691 e = op->getSubExpr();
2692 continue;
2693 }
2694
2695 // For calls and message sends, use the retained-call logic.
2696 // Delegate inits are a special case in that they're the only
2697 // returns-retained expression that *isn't* surrounded by
2698 // a consume.
2699 } else if (isa<CallExpr>(e) ||
2700 (isa<ObjCMessageExpr>(e) &&
2701 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2702 llvm::Value *result = emitARCRetainCall(CGF, e);
2703 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2704 return TryEmitResult(result, true);
2705
2706 // Look through pseudo-object expressions.
2707 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2708 TryEmitResult result
2709 = tryEmitARCRetainPseudoObject(CGF, pseudo);
2710 if (resultType) {
2711 llvm::Value *value = result.getPointer();
2712 value = CGF.Builder.CreateBitCast(value, resultType);
2713 result.setPointer(value);
2714 }
2715 return result;
2716 }
2717
2718 // Conservatively halt the search at any other expression kind.
2719 break;
2720 }
2721
2722 // We didn't find an obvious production, so emit what we've got and
2723 // tell the caller that we didn't manage to retain.
2724 llvm::Value *result = CGF.EmitScalarExpr(e);
2725 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2726 return TryEmitResult(result, false);
2727 }
2728
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2729 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2730 LValue lvalue,
2731 QualType type) {
2732 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2733 llvm::Value *value = result.getPointer();
2734 if (!result.getInt())
2735 value = CGF.EmitARCRetain(type, value);
2736 return value;
2737 }
2738
2739 /// EmitARCRetainScalarExpr - Semantically equivalent to
2740 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2741 /// best-effort attempt to peephole expressions that naturally produce
2742 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2743 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2744 // The retain needs to happen within the full-expression.
2745 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2746 enterFullExpression(cleanups);
2747 RunCleanupsScope scope(*this);
2748 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2749 }
2750
2751 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2752 llvm::Value *value = result.getPointer();
2753 if (!result.getInt())
2754 value = EmitARCRetain(e->getType(), value);
2755 return value;
2756 }
2757
2758 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2759 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2760 // The retain needs to happen within the full-expression.
2761 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2762 enterFullExpression(cleanups);
2763 RunCleanupsScope scope(*this);
2764 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2765 }
2766
2767 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2768 llvm::Value *value = result.getPointer();
2769 if (result.getInt())
2770 value = EmitARCAutorelease(value);
2771 else
2772 value = EmitARCRetainAutorelease(e->getType(), value);
2773 return value;
2774 }
2775
EmitARCExtendBlockObject(const Expr * e)2776 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2777 llvm::Value *result;
2778 bool doRetain;
2779
2780 if (shouldEmitSeparateBlockRetain(e)) {
2781 result = EmitScalarExpr(e);
2782 doRetain = true;
2783 } else {
2784 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2785 result = subresult.getPointer();
2786 doRetain = !subresult.getInt();
2787 }
2788
2789 if (doRetain)
2790 result = EmitARCRetainBlock(result, /*mandatory*/ true);
2791 return EmitObjCConsumeObject(e->getType(), result);
2792 }
2793
EmitObjCThrowOperand(const Expr * expr)2794 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2795 // In ARC, retain and autorelease the expression.
2796 if (getLangOpts().ObjCAutoRefCount) {
2797 // Do so before running any cleanups for the full-expression.
2798 // EmitARCRetainAutoreleaseScalarExpr does this for us.
2799 return EmitARCRetainAutoreleaseScalarExpr(expr);
2800 }
2801
2802 // Otherwise, use the normal scalar-expression emission. The
2803 // exception machinery doesn't do anything special with the
2804 // exception like retaining it, so there's no safety associated with
2805 // only running cleanups after the throw has started, and when it
2806 // matters it tends to be substantially inferior code.
2807 return EmitScalarExpr(expr);
2808 }
2809
2810 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)2811 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2812 bool ignored) {
2813 // Evaluate the RHS first.
2814 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2815 llvm::Value *value = result.getPointer();
2816
2817 bool hasImmediateRetain = result.getInt();
2818
2819 // If we didn't emit a retained object, and the l-value is of block
2820 // type, then we need to emit the block-retain immediately in case
2821 // it invalidates the l-value.
2822 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2823 value = EmitARCRetainBlock(value, /*mandatory*/ false);
2824 hasImmediateRetain = true;
2825 }
2826
2827 LValue lvalue = EmitLValue(e->getLHS());
2828
2829 // If the RHS was emitted retained, expand this.
2830 if (hasImmediateRetain) {
2831 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2832 EmitStoreOfScalar(value, lvalue);
2833 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2834 } else {
2835 value = EmitARCStoreStrong(lvalue, value, ignored);
2836 }
2837
2838 return std::pair<LValue,llvm::Value*>(lvalue, value);
2839 }
2840
2841 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)2842 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2843 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2844 LValue lvalue = EmitLValue(e->getLHS());
2845
2846 EmitStoreOfScalar(value, lvalue);
2847
2848 return std::pair<LValue,llvm::Value*>(lvalue, value);
2849 }
2850
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)2851 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2852 const ObjCAutoreleasePoolStmt &ARPS) {
2853 const Stmt *subStmt = ARPS.getSubStmt();
2854 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2855
2856 CGDebugInfo *DI = getDebugInfo();
2857 if (DI)
2858 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2859
2860 // Keep track of the current cleanup stack depth.
2861 RunCleanupsScope Scope(*this);
2862 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2863 llvm::Value *token = EmitObjCAutoreleasePoolPush();
2864 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2865 } else {
2866 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2867 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2868 }
2869
2870 for (const auto *I : S.body())
2871 EmitStmt(I);
2872
2873 if (DI)
2874 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2875 }
2876
2877 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2878 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)2879 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2880 // We just use an inline assembly.
2881 llvm::FunctionType *extenderType
2882 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2883 llvm::Value *extender
2884 = llvm::InlineAsm::get(extenderType,
2885 /* assembly */ "",
2886 /* constraints */ "r",
2887 /* side effects */ true);
2888
2889 object = Builder.CreateBitCast(object, VoidPtrTy);
2890 EmitNounwindRuntimeCall(extender, object);
2891 }
2892
2893 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2894 /// non-trivial copy assignment function, produce following helper function.
2895 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2896 ///
2897 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2898 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2899 const ObjCPropertyImplDecl *PID) {
2900 if (!getLangOpts().CPlusPlus ||
2901 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2902 return nullptr;
2903 QualType Ty = PID->getPropertyIvarDecl()->getType();
2904 if (!Ty->isRecordType())
2905 return nullptr;
2906 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2907 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2908 return nullptr;
2909 llvm::Constant *HelperFn = nullptr;
2910 if (hasTrivialSetExpr(PID))
2911 return nullptr;
2912 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2913 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2914 return HelperFn;
2915
2916 ASTContext &C = getContext();
2917 IdentifierInfo *II
2918 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2919 FunctionDecl *FD = FunctionDecl::Create(C,
2920 C.getTranslationUnitDecl(),
2921 SourceLocation(),
2922 SourceLocation(), II, C.VoidTy,
2923 nullptr, SC_Static,
2924 false,
2925 false);
2926
2927 QualType DestTy = C.getPointerType(Ty);
2928 QualType SrcTy = Ty;
2929 SrcTy.addConst();
2930 SrcTy = C.getPointerType(SrcTy);
2931
2932 FunctionArgList args;
2933 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2934 args.push_back(&dstDecl);
2935 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2936 args.push_back(&srcDecl);
2937
2938 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2939 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2940
2941 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2942
2943 llvm::Function *Fn =
2944 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2945 "__assign_helper_atomic_property_",
2946 &CGM.getModule());
2947
2948 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
2949
2950 StartFunction(FD, C.VoidTy, Fn, FI, args);
2951
2952 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2953 VK_RValue, SourceLocation());
2954 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2955 VK_LValue, OK_Ordinary, SourceLocation());
2956
2957 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2958 VK_RValue, SourceLocation());
2959 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2960 VK_LValue, OK_Ordinary, SourceLocation());
2961
2962 Expr *Args[2] = { &DST, &SRC };
2963 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2964 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2965 Args, DestTy->getPointeeType(),
2966 VK_LValue, SourceLocation(), false);
2967
2968 EmitStmt(&TheCall);
2969
2970 FinishFunction();
2971 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2972 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2973 return HelperFn;
2974 }
2975
2976 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2977 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2978 const ObjCPropertyImplDecl *PID) {
2979 if (!getLangOpts().CPlusPlus ||
2980 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2981 return nullptr;
2982 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2983 QualType Ty = PD->getType();
2984 if (!Ty->isRecordType())
2985 return nullptr;
2986 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2987 return nullptr;
2988 llvm::Constant *HelperFn = nullptr;
2989
2990 if (hasTrivialGetExpr(PID))
2991 return nullptr;
2992 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2993 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2994 return HelperFn;
2995
2996
2997 ASTContext &C = getContext();
2998 IdentifierInfo *II
2999 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3000 FunctionDecl *FD = FunctionDecl::Create(C,
3001 C.getTranslationUnitDecl(),
3002 SourceLocation(),
3003 SourceLocation(), II, C.VoidTy,
3004 nullptr, SC_Static,
3005 false,
3006 false);
3007
3008 QualType DestTy = C.getPointerType(Ty);
3009 QualType SrcTy = Ty;
3010 SrcTy.addConst();
3011 SrcTy = C.getPointerType(SrcTy);
3012
3013 FunctionArgList args;
3014 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
3015 args.push_back(&dstDecl);
3016 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
3017 args.push_back(&srcDecl);
3018
3019 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
3020 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
3021
3022 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3023
3024 llvm::Function *Fn =
3025 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3026 "__copy_helper_atomic_property_", &CGM.getModule());
3027
3028 CGM.SetInternalFunctionAttributes(nullptr, Fn, FI);
3029
3030 StartFunction(FD, C.VoidTy, Fn, FI, args);
3031
3032 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
3033 VK_RValue, SourceLocation());
3034
3035 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3036 VK_LValue, OK_Ordinary, SourceLocation());
3037
3038 CXXConstructExpr *CXXConstExpr =
3039 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3040
3041 SmallVector<Expr*, 4> ConstructorArgs;
3042 ConstructorArgs.push_back(&SRC);
3043 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3044 CXXConstExpr->arg_end());
3045
3046 CXXConstructExpr *TheCXXConstructExpr =
3047 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3048 CXXConstExpr->getConstructor(),
3049 CXXConstExpr->isElidable(),
3050 ConstructorArgs,
3051 CXXConstExpr->hadMultipleCandidates(),
3052 CXXConstExpr->isListInitialization(),
3053 CXXConstExpr->isStdInitListInitialization(),
3054 CXXConstExpr->requiresZeroInitialization(),
3055 CXXConstExpr->getConstructionKind(),
3056 SourceRange());
3057
3058 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3059 VK_RValue, SourceLocation());
3060
3061 RValue DV = EmitAnyExpr(&DstExpr);
3062 CharUnits Alignment
3063 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3064 EmitAggExpr(TheCXXConstructExpr,
3065 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3066 Qualifiers(),
3067 AggValueSlot::IsDestructed,
3068 AggValueSlot::DoesNotNeedGCBarriers,
3069 AggValueSlot::IsNotAliased));
3070
3071 FinishFunction();
3072 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3073 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3074 return HelperFn;
3075 }
3076
3077 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3078 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3079 // Get selectors for retain/autorelease.
3080 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3081 Selector CopySelector =
3082 getContext().Selectors.getNullarySelector(CopyID);
3083 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3084 Selector AutoreleaseSelector =
3085 getContext().Selectors.getNullarySelector(AutoreleaseID);
3086
3087 // Emit calls to retain/autorelease.
3088 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3089 llvm::Value *Val = Block;
3090 RValue Result;
3091 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3092 Ty, CopySelector,
3093 Val, CallArgList(), nullptr, nullptr);
3094 Val = Result.getScalarVal();
3095 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3096 Ty, AutoreleaseSelector,
3097 Val, CallArgList(), nullptr, nullptr);
3098 Val = Result.getScalarVal();
3099 return Val;
3100 }
3101
3102
~CGObjCRuntime()3103 CGObjCRuntime::~CGObjCRuntime() {}
3104