• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.SetFastMathFlags(FMF);
83 }
84 
~CodeGenFunction()85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
getNaturalPointeeTypeAlignment(QualType T,AlignmentSource * Source)99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
getNaturalTypeAlignment(QualType T,AlignmentSource * Source,bool forPointeeType)105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
ConvertTypeForMem(QualType T)162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
ConvertType(QualType T)166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
getEvaluationKind(QualType type)170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198       return TEK_Scalar;
199 
200     // Complexes.
201     case Type::Complex:
202       return TEK_Complex;
203 
204     // Arrays, records, and Objective-C objects.
205     case Type::ConstantArray:
206     case Type::IncompleteArray:
207     case Type::VariableArray:
208     case Type::Record:
209     case Type::ObjCObject:
210     case Type::ObjCInterface:
211       return TEK_Aggregate;
212 
213     // We operate on atomic values according to their underlying type.
214     case Type::Atomic:
215       type = cast<AtomicType>(type)->getValueType();
216       continue;
217     }
218     llvm_unreachable("unknown type kind!");
219   }
220 }
221 
EmitReturnBlock()222 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
223   // For cleanliness, we try to avoid emitting the return block for
224   // simple cases.
225   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
226 
227   if (CurBB) {
228     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
229 
230     // We have a valid insert point, reuse it if it is empty or there are no
231     // explicit jumps to the return block.
232     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
233       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
234       delete ReturnBlock.getBlock();
235     } else
236       EmitBlock(ReturnBlock.getBlock());
237     return llvm::DebugLoc();
238   }
239 
240   // Otherwise, if the return block is the target of a single direct
241   // branch then we can just put the code in that block instead. This
242   // cleans up functions which started with a unified return block.
243   if (ReturnBlock.getBlock()->hasOneUse()) {
244     llvm::BranchInst *BI =
245       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
246     if (BI && BI->isUnconditional() &&
247         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
248       // Record/return the DebugLoc of the simple 'return' expression to be used
249       // later by the actual 'ret' instruction.
250       llvm::DebugLoc Loc = BI->getDebugLoc();
251       Builder.SetInsertPoint(BI->getParent());
252       BI->eraseFromParent();
253       delete ReturnBlock.getBlock();
254       return Loc;
255     }
256   }
257 
258   // FIXME: We are at an unreachable point, there is no reason to emit the block
259   // unless it has uses. However, we still need a place to put the debug
260   // region.end for now.
261 
262   EmitBlock(ReturnBlock.getBlock());
263   return llvm::DebugLoc();
264 }
265 
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)266 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
267   if (!BB) return;
268   if (!BB->use_empty())
269     return CGF.CurFn->getBasicBlockList().push_back(BB);
270   delete BB;
271 }
272 
FinishFunction(SourceLocation EndLoc)273 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
274   assert(BreakContinueStack.empty() &&
275          "mismatched push/pop in break/continue stack!");
276 
277   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
278     && NumSimpleReturnExprs == NumReturnExprs
279     && ReturnBlock.getBlock()->use_empty();
280   // Usually the return expression is evaluated before the cleanup
281   // code.  If the function contains only a simple return statement,
282   // such as a constant, the location before the cleanup code becomes
283   // the last useful breakpoint in the function, because the simple
284   // return expression will be evaluated after the cleanup code. To be
285   // safe, set the debug location for cleanup code to the location of
286   // the return statement.  Otherwise the cleanup code should be at the
287   // end of the function's lexical scope.
288   //
289   // If there are multiple branches to the return block, the branch
290   // instructions will get the location of the return statements and
291   // all will be fine.
292   if (CGDebugInfo *DI = getDebugInfo()) {
293     if (OnlySimpleReturnStmts)
294       DI->EmitLocation(Builder, LastStopPoint);
295     else
296       DI->EmitLocation(Builder, EndLoc);
297   }
298 
299   // Pop any cleanups that might have been associated with the
300   // parameters.  Do this in whatever block we're currently in; it's
301   // important to do this before we enter the return block or return
302   // edges will be *really* confused.
303   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
304   bool HasOnlyLifetimeMarkers =
305       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
306   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
307   if (HasCleanups) {
308     // Make sure the line table doesn't jump back into the body for
309     // the ret after it's been at EndLoc.
310     if (CGDebugInfo *DI = getDebugInfo())
311       if (OnlySimpleReturnStmts)
312         DI->EmitLocation(Builder, EndLoc);
313 
314     PopCleanupBlocks(PrologueCleanupDepth);
315   }
316 
317   // Emit function epilog (to return).
318   llvm::DebugLoc Loc = EmitReturnBlock();
319 
320   if (ShouldInstrumentFunction())
321     EmitFunctionInstrumentation("__cyg_profile_func_exit");
322 
323   // Emit debug descriptor for function end.
324   if (CGDebugInfo *DI = getDebugInfo())
325     DI->EmitFunctionEnd(Builder);
326 
327   // Reset the debug location to that of the simple 'return' expression, if any
328   // rather than that of the end of the function's scope '}'.
329   ApplyDebugLocation AL(*this, Loc);
330   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
331   EmitEndEHSpec(CurCodeDecl);
332 
333   assert(EHStack.empty() &&
334          "did not remove all scopes from cleanup stack!");
335 
336   // If someone did an indirect goto, emit the indirect goto block at the end of
337   // the function.
338   if (IndirectBranch) {
339     EmitBlock(IndirectBranch->getParent());
340     Builder.ClearInsertionPoint();
341   }
342 
343   // If some of our locals escaped, insert a call to llvm.localescape in the
344   // entry block.
345   if (!EscapedLocals.empty()) {
346     // Invert the map from local to index into a simple vector. There should be
347     // no holes.
348     SmallVector<llvm::Value *, 4> EscapeArgs;
349     EscapeArgs.resize(EscapedLocals.size());
350     for (auto &Pair : EscapedLocals)
351       EscapeArgs[Pair.second] = Pair.first;
352     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
353         &CGM.getModule(), llvm::Intrinsic::localescape);
354     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
355   }
356 
357   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
358   llvm::Instruction *Ptr = AllocaInsertPt;
359   AllocaInsertPt = nullptr;
360   Ptr->eraseFromParent();
361 
362   // If someone took the address of a label but never did an indirect goto, we
363   // made a zero entry PHI node, which is illegal, zap it now.
364   if (IndirectBranch) {
365     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
366     if (PN->getNumIncomingValues() == 0) {
367       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
368       PN->eraseFromParent();
369     }
370   }
371 
372   EmitIfUsed(*this, EHResumeBlock);
373   EmitIfUsed(*this, TerminateLandingPad);
374   EmitIfUsed(*this, TerminateHandler);
375   EmitIfUsed(*this, UnreachableBlock);
376 
377   if (CGM.getCodeGenOpts().EmitDeclMetadata)
378     EmitDeclMetadata();
379 
380   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
381            I = DeferredReplacements.begin(),
382            E = DeferredReplacements.end();
383        I != E; ++I) {
384     I->first->replaceAllUsesWith(I->second);
385     I->first->eraseFromParent();
386   }
387 }
388 
389 /// ShouldInstrumentFunction - Return true if the current function should be
390 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()391 bool CodeGenFunction::ShouldInstrumentFunction() {
392   if (!CGM.getCodeGenOpts().InstrumentFunctions)
393     return false;
394   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
395     return false;
396   return true;
397 }
398 
399 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
400 /// instrumentation function with the current function and the call site, if
401 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)402 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
403   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
404   llvm::PointerType *PointerTy = Int8PtrTy;
405   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
406   llvm::FunctionType *FunctionTy =
407     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
408 
409   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
410   llvm::CallInst *CallSite = Builder.CreateCall(
411     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
412     llvm::ConstantInt::get(Int32Ty, 0),
413     "callsite");
414 
415   llvm::Value *args[] = {
416     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
417     CallSite
418   };
419 
420   EmitNounwindRuntimeCall(F, args);
421 }
422 
EmitMCountInstrumentation()423 void CodeGenFunction::EmitMCountInstrumentation() {
424   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
425 
426   llvm::Constant *MCountFn =
427     CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
428   EmitNounwindRuntimeCall(MCountFn);
429 }
430 
431 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
432 // information in the program executable. The argument information stored
433 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Metadata *,5> & kernelMDArgs,CGBuilderTy & Builder,ASTContext & ASTCtx)434 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
435                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
436                                  SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
437                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
438   // Create MDNodes that represent the kernel arg metadata.
439   // Each MDNode is a list in the form of "key", N number of values which is
440   // the same number of values as their are kernel arguments.
441 
442   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
443 
444   // MDNode for the kernel argument address space qualifiers.
445   SmallVector<llvm::Metadata *, 8> addressQuals;
446   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
447 
448   // MDNode for the kernel argument access qualifiers (images only).
449   SmallVector<llvm::Metadata *, 8> accessQuals;
450   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
451 
452   // MDNode for the kernel argument type names.
453   SmallVector<llvm::Metadata *, 8> argTypeNames;
454   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
455 
456   // MDNode for the kernel argument base type names.
457   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
458   argBaseTypeNames.push_back(
459       llvm::MDString::get(Context, "kernel_arg_base_type"));
460 
461   // MDNode for the kernel argument type qualifiers.
462   SmallVector<llvm::Metadata *, 8> argTypeQuals;
463   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
464 
465   // MDNode for the kernel argument names.
466   SmallVector<llvm::Metadata *, 8> argNames;
467   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
468 
469   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
470     const ParmVarDecl *parm = FD->getParamDecl(i);
471     QualType ty = parm->getType();
472     std::string typeQuals;
473 
474     if (ty->isPointerType()) {
475       QualType pointeeTy = ty->getPointeeType();
476 
477       // Get address qualifier.
478       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
479           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
480 
481       // Get argument type name.
482       std::string typeName =
483           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
484 
485       // Turn "unsigned type" to "utype"
486       std::string::size_type pos = typeName.find("unsigned");
487       if (pointeeTy.isCanonical() && pos != std::string::npos)
488         typeName.erase(pos+1, 8);
489 
490       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
491 
492       std::string baseTypeName =
493           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
494               Policy) +
495           "*";
496 
497       // Turn "unsigned type" to "utype"
498       pos = baseTypeName.find("unsigned");
499       if (pos != std::string::npos)
500         baseTypeName.erase(pos+1, 8);
501 
502       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
503 
504       // Get argument type qualifiers:
505       if (ty.isRestrictQualified())
506         typeQuals = "restrict";
507       if (pointeeTy.isConstQualified() ||
508           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
509         typeQuals += typeQuals.empty() ? "const" : " const";
510       if (pointeeTy.isVolatileQualified())
511         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
512     } else {
513       uint32_t AddrSpc = 0;
514       if (ty->isImageType())
515         AddrSpc =
516           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
517 
518       addressQuals.push_back(
519           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
520 
521       // Get argument type name.
522       std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
523 
524       // Turn "unsigned type" to "utype"
525       std::string::size_type pos = typeName.find("unsigned");
526       if (ty.isCanonical() && pos != std::string::npos)
527         typeName.erase(pos+1, 8);
528 
529       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
530 
531       std::string baseTypeName =
532           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
533 
534       // Turn "unsigned type" to "utype"
535       pos = baseTypeName.find("unsigned");
536       if (pos != std::string::npos)
537         baseTypeName.erase(pos+1, 8);
538 
539       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
540 
541       // Get argument type qualifiers:
542       if (ty.isConstQualified())
543         typeQuals = "const";
544       if (ty.isVolatileQualified())
545         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
546     }
547 
548     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
549 
550     // Get image access qualifier:
551     if (ty->isImageType()) {
552       const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
553       if (A && A->isWriteOnly())
554         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
555       else
556         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
557       // FIXME: what about read_write?
558     } else
559       accessQuals.push_back(llvm::MDString::get(Context, "none"));
560 
561     // Get argument name.
562     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
563   }
564 
565   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
566   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
567   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
568   kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
569   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
570   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
571     kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
572 }
573 
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)574 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
575                                                llvm::Function *Fn)
576 {
577   if (!FD->hasAttr<OpenCLKernelAttr>())
578     return;
579 
580   llvm::LLVMContext &Context = getLLVMContext();
581 
582   SmallVector<llvm::Metadata *, 5> kernelMDArgs;
583   kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
584 
585   GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
586                        getContext());
587 
588   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
589     QualType hintQTy = A->getTypeHint();
590     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
591     bool isSignedInteger =
592         hintQTy->isSignedIntegerType() ||
593         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
594     llvm::Metadata *attrMDArgs[] = {
595         llvm::MDString::get(Context, "vec_type_hint"),
596         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
597             CGM.getTypes().ConvertType(A->getTypeHint()))),
598         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
599             llvm::IntegerType::get(Context, 32),
600             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
601     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
602   }
603 
604   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
605     llvm::Metadata *attrMDArgs[] = {
606         llvm::MDString::get(Context, "work_group_size_hint"),
607         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
608         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
609         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
610     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
611   }
612 
613   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
614     llvm::Metadata *attrMDArgs[] = {
615         llvm::MDString::get(Context, "reqd_work_group_size"),
616         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
617         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
618         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
619     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
620   }
621 
622   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
623   llvm::NamedMDNode *OpenCLKernelMetadata =
624     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
625   OpenCLKernelMetadata->addOperand(kernelMDNode);
626 }
627 
628 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)629 static bool endsWithReturn(const Decl* F) {
630   const Stmt *Body = nullptr;
631   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
632     Body = FD->getBody();
633   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
634     Body = OMD->getBody();
635 
636   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
637     auto LastStmt = CS->body_rbegin();
638     if (LastStmt != CS->body_rend())
639       return isa<ReturnStmt>(*LastStmt);
640   }
641   return false;
642 }
643 
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)644 void CodeGenFunction::StartFunction(GlobalDecl GD,
645                                     QualType RetTy,
646                                     llvm::Function *Fn,
647                                     const CGFunctionInfo &FnInfo,
648                                     const FunctionArgList &Args,
649                                     SourceLocation Loc,
650                                     SourceLocation StartLoc) {
651   assert(!CurFn &&
652          "Do not use a CodeGenFunction object for more than one function");
653 
654   const Decl *D = GD.getDecl();
655 
656   DidCallStackSave = false;
657   CurCodeDecl = D;
658   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
659   FnRetTy = RetTy;
660   CurFn = Fn;
661   CurFnInfo = &FnInfo;
662   assert(CurFn->isDeclaration() && "Function already has body?");
663 
664   if (CGM.isInSanitizerBlacklist(Fn, Loc))
665     SanOpts.clear();
666 
667   if (D) {
668     // Apply the no_sanitize* attributes to SanOpts.
669     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
670       SanOpts.Mask &= ~Attr->getMask();
671   }
672 
673   // Apply sanitizer attributes to the function.
674   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
675     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
676   if (SanOpts.has(SanitizerKind::Thread))
677     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
678   if (SanOpts.has(SanitizerKind::Memory))
679     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
680   if (SanOpts.has(SanitizerKind::SafeStack))
681     Fn->addFnAttr(llvm::Attribute::SafeStack);
682 
683   // Pass inline keyword to optimizer if it appears explicitly on any
684   // declaration. Also, in the case of -fno-inline attach NoInline
685   // attribute to all function that are not marked AlwaysInline.
686   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
687     if (!CGM.getCodeGenOpts().NoInline) {
688       for (auto RI : FD->redecls())
689         if (RI->isInlineSpecified()) {
690           Fn->addFnAttr(llvm::Attribute::InlineHint);
691           break;
692         }
693     } else if (!FD->hasAttr<AlwaysInlineAttr>())
694       Fn->addFnAttr(llvm::Attribute::NoInline);
695   }
696 
697   if (getLangOpts().OpenCL) {
698     // Add metadata for a kernel function.
699     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
700       EmitOpenCLKernelMetadata(FD, Fn);
701   }
702 
703   // If we are checking function types, emit a function type signature as
704   // prologue data.
705   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
706     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
707       if (llvm::Constant *PrologueSig =
708               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
709         llvm::Constant *FTRTTIConst =
710             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
711         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
712         llvm::Constant *PrologueStructConst =
713             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
714         Fn->setPrologueData(PrologueStructConst);
715       }
716     }
717   }
718 
719   // If we're in C++ mode and the function name is "main", it is guaranteed
720   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
721   // used within a program").
722   if (getLangOpts().CPlusPlus)
723     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
724       if (FD->isMain())
725         Fn->addFnAttr(llvm::Attribute::NoRecurse);
726 
727   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
728 
729   // Create a marker to make it easy to insert allocas into the entryblock
730   // later.  Don't create this with the builder, because we don't want it
731   // folded.
732   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
733   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
734   if (Builder.isNamePreserving())
735     AllocaInsertPt->setName("allocapt");
736 
737   ReturnBlock = getJumpDestInCurrentScope("return");
738 
739   Builder.SetInsertPoint(EntryBB);
740 
741   // Emit subprogram debug descriptor.
742   if (CGDebugInfo *DI = getDebugInfo()) {
743     SmallVector<QualType, 16> ArgTypes;
744     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
745 	 i != e; ++i) {
746       ArgTypes.push_back((*i)->getType());
747     }
748 
749     QualType FnType =
750       getContext().getFunctionType(RetTy, ArgTypes,
751                                    FunctionProtoType::ExtProtoInfo());
752     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
753   }
754 
755   if (ShouldInstrumentFunction())
756     EmitFunctionInstrumentation("__cyg_profile_func_enter");
757 
758   if (CGM.getCodeGenOpts().InstrumentForProfiling)
759     EmitMCountInstrumentation();
760 
761   if (RetTy->isVoidType()) {
762     // Void type; nothing to return.
763     ReturnValue = Address::invalid();
764 
765     // Count the implicit return.
766     if (!endsWithReturn(D))
767       ++NumReturnExprs;
768   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
769              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
770     // Indirect aggregate return; emit returned value directly into sret slot.
771     // This reduces code size, and affects correctness in C++.
772     auto AI = CurFn->arg_begin();
773     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
774       ++AI;
775     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
776   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
777              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
778     // Load the sret pointer from the argument struct and return into that.
779     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
780     llvm::Function::arg_iterator EI = CurFn->arg_end();
781     --EI;
782     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
783     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
784     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
785   } else {
786     ReturnValue = CreateIRTemp(RetTy, "retval");
787 
788     // Tell the epilog emitter to autorelease the result.  We do this
789     // now so that various specialized functions can suppress it
790     // during their IR-generation.
791     if (getLangOpts().ObjCAutoRefCount &&
792         !CurFnInfo->isReturnsRetained() &&
793         RetTy->isObjCRetainableType())
794       AutoreleaseResult = true;
795   }
796 
797   EmitStartEHSpec(CurCodeDecl);
798 
799   PrologueCleanupDepth = EHStack.stable_begin();
800   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
801 
802   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
803     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
804     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
805     if (MD->getParent()->isLambda() &&
806         MD->getOverloadedOperator() == OO_Call) {
807       // We're in a lambda; figure out the captures.
808       MD->getParent()->getCaptureFields(LambdaCaptureFields,
809                                         LambdaThisCaptureField);
810       if (LambdaThisCaptureField) {
811         // If this lambda captures this, load it.
812         LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
813         CXXThisValue = EmitLoadOfLValue(ThisLValue,
814                                         SourceLocation()).getScalarVal();
815       }
816       for (auto *FD : MD->getParent()->fields()) {
817         if (FD->hasCapturedVLAType()) {
818           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
819                                            SourceLocation()).getScalarVal();
820           auto VAT = FD->getCapturedVLAType();
821           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
822         }
823       }
824     } else {
825       // Not in a lambda; just use 'this' from the method.
826       // FIXME: Should we generate a new load for each use of 'this'?  The
827       // fast register allocator would be happier...
828       CXXThisValue = CXXABIThisValue;
829     }
830   }
831 
832   // If any of the arguments have a variably modified type, make sure to
833   // emit the type size.
834   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
835        i != e; ++i) {
836     const VarDecl *VD = *i;
837 
838     // Dig out the type as written from ParmVarDecls; it's unclear whether
839     // the standard (C99 6.9.1p10) requires this, but we're following the
840     // precedent set by gcc.
841     QualType Ty;
842     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
843       Ty = PVD->getOriginalType();
844     else
845       Ty = VD->getType();
846 
847     if (Ty->isVariablyModifiedType())
848       EmitVariablyModifiedType(Ty);
849   }
850   // Emit a location at the end of the prologue.
851   if (CGDebugInfo *DI = getDebugInfo())
852     DI->EmitLocation(Builder, StartLoc);
853 }
854 
EmitFunctionBody(FunctionArgList & Args,const Stmt * Body)855 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
856                                        const Stmt *Body) {
857   incrementProfileCounter(Body);
858   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
859     EmitCompoundStmtWithoutScope(*S);
860   else
861     EmitStmt(Body);
862 }
863 
864 /// When instrumenting to collect profile data, the counts for some blocks
865 /// such as switch cases need to not include the fall-through counts, so
866 /// emit a branch around the instrumentation code. When not instrumenting,
867 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)868 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
869                                                const Stmt *S) {
870   llvm::BasicBlock *SkipCountBB = nullptr;
871   if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
872     // When instrumenting for profiling, the fallthrough to certain
873     // statements needs to skip over the instrumentation code so that we
874     // get an accurate count.
875     SkipCountBB = createBasicBlock("skipcount");
876     EmitBranch(SkipCountBB);
877   }
878   EmitBlock(BB);
879   uint64_t CurrentCount = getCurrentProfileCount();
880   incrementProfileCounter(S);
881   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
882   if (SkipCountBB)
883     EmitBlock(SkipCountBB);
884 }
885 
886 /// Tries to mark the given function nounwind based on the
887 /// non-existence of any throwing calls within it.  We believe this is
888 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)889 static void TryMarkNoThrow(llvm::Function *F) {
890   // LLVM treats 'nounwind' on a function as part of the type, so we
891   // can't do this on functions that can be overwritten.
892   if (F->mayBeOverridden()) return;
893 
894   for (llvm::BasicBlock &BB : *F)
895     for (llvm::Instruction &I : BB)
896       if (I.mayThrow())
897         return;
898 
899   F->setDoesNotThrow();
900 }
901 
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)902 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
903                                    const CGFunctionInfo &FnInfo) {
904   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
905 
906   // Check if we should generate debug info for this function.
907   if (FD->hasAttr<NoDebugAttr>())
908     DebugInfo = nullptr; // disable debug info indefinitely for this function
909 
910   FunctionArgList Args;
911   QualType ResTy = FD->getReturnType();
912 
913   CurGD = GD;
914   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
915   if (MD && MD->isInstance()) {
916     if (CGM.getCXXABI().HasThisReturn(GD))
917       ResTy = MD->getThisType(getContext());
918     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
919       ResTy = CGM.getContext().VoidPtrTy;
920     CGM.getCXXABI().buildThisParam(*this, Args);
921   }
922 
923   for (auto *Param : FD->params()) {
924     Args.push_back(Param);
925     if (!Param->hasAttr<PassObjectSizeAttr>())
926       continue;
927 
928     IdentifierInfo *NoID = nullptr;
929     auto *Implicit = ImplicitParamDecl::Create(
930         getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
931         getContext().getSizeType());
932     SizeArguments[Param] = Implicit;
933     Args.push_back(Implicit);
934   }
935 
936   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
937     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
938 
939   SourceRange BodyRange;
940   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
941   CurEHLocation = BodyRange.getEnd();
942 
943   // Use the location of the start of the function to determine where
944   // the function definition is located. By default use the location
945   // of the declaration as the location for the subprogram. A function
946   // may lack a declaration in the source code if it is created by code
947   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
948   SourceLocation Loc = FD->getLocation();
949 
950   // If this is a function specialization then use the pattern body
951   // as the location for the function.
952   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
953     if (SpecDecl->hasBody(SpecDecl))
954       Loc = SpecDecl->getLocation();
955 
956   // Emit the standard function prologue.
957   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
958 
959   // Generate the body of the function.
960   PGO.assignRegionCounters(GD, CurFn);
961   if (isa<CXXDestructorDecl>(FD))
962     EmitDestructorBody(Args);
963   else if (isa<CXXConstructorDecl>(FD))
964     EmitConstructorBody(Args);
965   else if (getLangOpts().CUDA &&
966            !getLangOpts().CUDAIsDevice &&
967            FD->hasAttr<CUDAGlobalAttr>())
968     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
969   else if (isa<CXXConversionDecl>(FD) &&
970            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
971     // The lambda conversion to block pointer is special; the semantics can't be
972     // expressed in the AST, so IRGen needs to special-case it.
973     EmitLambdaToBlockPointerBody(Args);
974   } else if (isa<CXXMethodDecl>(FD) &&
975              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
976     // The lambda static invoker function is special, because it forwards or
977     // clones the body of the function call operator (but is actually static).
978     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
979   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
980              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
981               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
982     // Implicit copy-assignment gets the same special treatment as implicit
983     // copy-constructors.
984     emitImplicitAssignmentOperatorBody(Args);
985   } else if (Stmt *Body = FD->getBody()) {
986     EmitFunctionBody(Args, Body);
987   } else
988     llvm_unreachable("no definition for emitted function");
989 
990   // C++11 [stmt.return]p2:
991   //   Flowing off the end of a function [...] results in undefined behavior in
992   //   a value-returning function.
993   // C11 6.9.1p12:
994   //   If the '}' that terminates a function is reached, and the value of the
995   //   function call is used by the caller, the behavior is undefined.
996   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
997       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
998     if (SanOpts.has(SanitizerKind::Return)) {
999       SanitizerScope SanScope(this);
1000       llvm::Value *IsFalse = Builder.getFalse();
1001       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1002                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1003                 None);
1004     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1005       EmitTrapCall(llvm::Intrinsic::trap);
1006     }
1007     Builder.CreateUnreachable();
1008     Builder.ClearInsertionPoint();
1009   }
1010 
1011   // Emit the standard function epilogue.
1012   FinishFunction(BodyRange.getEnd());
1013 
1014   // If we haven't marked the function nothrow through other means, do
1015   // a quick pass now to see if we can.
1016   if (!CurFn->doesNotThrow())
1017     TryMarkNoThrow(CurFn);
1018 }
1019 
1020 /// ContainsLabel - Return true if the statement contains a label in it.  If
1021 /// this statement is not executed normally, it not containing a label means
1022 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1023 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1024   // Null statement, not a label!
1025   if (!S) return false;
1026 
1027   // If this is a label, we have to emit the code, consider something like:
1028   // if (0) {  ...  foo:  bar(); }  goto foo;
1029   //
1030   // TODO: If anyone cared, we could track __label__'s, since we know that you
1031   // can't jump to one from outside their declared region.
1032   if (isa<LabelStmt>(S))
1033     return true;
1034 
1035   // If this is a case/default statement, and we haven't seen a switch, we have
1036   // to emit the code.
1037   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1038     return true;
1039 
1040   // If this is a switch statement, we want to ignore cases below it.
1041   if (isa<SwitchStmt>(S))
1042     IgnoreCaseStmts = true;
1043 
1044   // Scan subexpressions for verboten labels.
1045   for (const Stmt *SubStmt : S->children())
1046     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1047       return true;
1048 
1049   return false;
1050 }
1051 
1052 /// containsBreak - Return true if the statement contains a break out of it.
1053 /// If the statement (recursively) contains a switch or loop with a break
1054 /// inside of it, this is fine.
containsBreak(const Stmt * S)1055 bool CodeGenFunction::containsBreak(const Stmt *S) {
1056   // Null statement, not a label!
1057   if (!S) return false;
1058 
1059   // If this is a switch or loop that defines its own break scope, then we can
1060   // include it and anything inside of it.
1061   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1062       isa<ForStmt>(S))
1063     return false;
1064 
1065   if (isa<BreakStmt>(S))
1066     return true;
1067 
1068   // Scan subexpressions for verboten breaks.
1069   for (const Stmt *SubStmt : S->children())
1070     if (containsBreak(SubStmt))
1071       return true;
1072 
1073   return false;
1074 }
1075 
1076 
1077 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1078 /// to a constant, or if it does but contains a label, return false.  If it
1079 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)1080 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1081                                                    bool &ResultBool) {
1082   llvm::APSInt ResultInt;
1083   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
1084     return false;
1085 
1086   ResultBool = ResultInt.getBoolValue();
1087   return true;
1088 }
1089 
1090 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1091 /// to a constant, or if it does but contains a label, return false.  If it
1092 /// constant folds return true and set the folded value.
1093 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)1094 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1095   // FIXME: Rename and handle conversion of other evaluatable things
1096   // to bool.
1097   llvm::APSInt Int;
1098   if (!Cond->EvaluateAsInt(Int, getContext()))
1099     return false;  // Not foldable, not integer or not fully evaluatable.
1100 
1101   if (CodeGenFunction::ContainsLabel(Cond))
1102     return false;  // Contains a label.
1103 
1104   ResultInt = Int;
1105   return true;
1106 }
1107 
1108 
1109 
1110 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1111 /// statement) to the specified blocks.  Based on the condition, this might try
1112 /// to simplify the codegen of the conditional based on the branch.
1113 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount)1114 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1115                                            llvm::BasicBlock *TrueBlock,
1116                                            llvm::BasicBlock *FalseBlock,
1117                                            uint64_t TrueCount) {
1118   Cond = Cond->IgnoreParens();
1119 
1120   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1121 
1122     // Handle X && Y in a condition.
1123     if (CondBOp->getOpcode() == BO_LAnd) {
1124       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1125       // folded if the case was simple enough.
1126       bool ConstantBool = false;
1127       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1128           ConstantBool) {
1129         // br(1 && X) -> br(X).
1130         incrementProfileCounter(CondBOp);
1131         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1132                                     TrueCount);
1133       }
1134 
1135       // If we have "X && 1", simplify the code to use an uncond branch.
1136       // "X && 0" would have been constant folded to 0.
1137       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1138           ConstantBool) {
1139         // br(X && 1) -> br(X).
1140         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1141                                     TrueCount);
1142       }
1143 
1144       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1145       // want to jump to the FalseBlock.
1146       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1147       // The counter tells us how often we evaluate RHS, and all of TrueCount
1148       // can be propagated to that branch.
1149       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1150 
1151       ConditionalEvaluation eval(*this);
1152       {
1153         ApplyDebugLocation DL(*this, Cond);
1154         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1155         EmitBlock(LHSTrue);
1156       }
1157 
1158       incrementProfileCounter(CondBOp);
1159       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1160 
1161       // Any temporaries created here are conditional.
1162       eval.begin(*this);
1163       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1164       eval.end(*this);
1165 
1166       return;
1167     }
1168 
1169     if (CondBOp->getOpcode() == BO_LOr) {
1170       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1171       // folded if the case was simple enough.
1172       bool ConstantBool = false;
1173       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1174           !ConstantBool) {
1175         // br(0 || X) -> br(X).
1176         incrementProfileCounter(CondBOp);
1177         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1178                                     TrueCount);
1179       }
1180 
1181       // If we have "X || 0", simplify the code to use an uncond branch.
1182       // "X || 1" would have been constant folded to 1.
1183       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1184           !ConstantBool) {
1185         // br(X || 0) -> br(X).
1186         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1187                                     TrueCount);
1188       }
1189 
1190       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1191       // want to jump to the TrueBlock.
1192       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1193       // We have the count for entry to the RHS and for the whole expression
1194       // being true, so we can divy up True count between the short circuit and
1195       // the RHS.
1196       uint64_t LHSCount =
1197           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1198       uint64_t RHSCount = TrueCount - LHSCount;
1199 
1200       ConditionalEvaluation eval(*this);
1201       {
1202         ApplyDebugLocation DL(*this, Cond);
1203         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1204         EmitBlock(LHSFalse);
1205       }
1206 
1207       incrementProfileCounter(CondBOp);
1208       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1209 
1210       // Any temporaries created here are conditional.
1211       eval.begin(*this);
1212       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1213 
1214       eval.end(*this);
1215 
1216       return;
1217     }
1218   }
1219 
1220   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1221     // br(!x, t, f) -> br(x, f, t)
1222     if (CondUOp->getOpcode() == UO_LNot) {
1223       // Negate the count.
1224       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1225       // Negate the condition and swap the destination blocks.
1226       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1227                                   FalseCount);
1228     }
1229   }
1230 
1231   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1232     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1233     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1234     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1235 
1236     ConditionalEvaluation cond(*this);
1237     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1238                          getProfileCount(CondOp));
1239 
1240     // When computing PGO branch weights, we only know the overall count for
1241     // the true block. This code is essentially doing tail duplication of the
1242     // naive code-gen, introducing new edges for which counts are not
1243     // available. Divide the counts proportionally between the LHS and RHS of
1244     // the conditional operator.
1245     uint64_t LHSScaledTrueCount = 0;
1246     if (TrueCount) {
1247       double LHSRatio =
1248           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1249       LHSScaledTrueCount = TrueCount * LHSRatio;
1250     }
1251 
1252     cond.begin(*this);
1253     EmitBlock(LHSBlock);
1254     incrementProfileCounter(CondOp);
1255     {
1256       ApplyDebugLocation DL(*this, Cond);
1257       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1258                            LHSScaledTrueCount);
1259     }
1260     cond.end(*this);
1261 
1262     cond.begin(*this);
1263     EmitBlock(RHSBlock);
1264     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1265                          TrueCount - LHSScaledTrueCount);
1266     cond.end(*this);
1267 
1268     return;
1269   }
1270 
1271   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1272     // Conditional operator handling can give us a throw expression as a
1273     // condition for a case like:
1274     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1275     // Fold this to:
1276     //   br(c, throw x, br(y, t, f))
1277     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1278     return;
1279   }
1280 
1281   // If the branch has a condition wrapped by __builtin_unpredictable,
1282   // create metadata that specifies that the branch is unpredictable.
1283   // Don't bother if not optimizing because that metadata would not be used.
1284   llvm::MDNode *Unpredictable = nullptr;
1285   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1286     if (const CallExpr *Call = dyn_cast<CallExpr>(Cond)) {
1287       const Decl *TargetDecl = Call->getCalleeDecl();
1288       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1289         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1290           llvm::MDBuilder MDHelper(getLLVMContext());
1291           Unpredictable = MDHelper.createUnpredictable();
1292         }
1293       }
1294     }
1295   }
1296 
1297   // Create branch weights based on the number of times we get here and the
1298   // number of times the condition should be true.
1299   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1300   llvm::MDNode *Weights =
1301       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1302 
1303   // Emit the code with the fully general case.
1304   llvm::Value *CondV;
1305   {
1306     ApplyDebugLocation DL(*this, Cond);
1307     CondV = EvaluateExprAsBool(Cond);
1308   }
1309   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1310 }
1311 
1312 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1313 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1314 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1315   CGM.ErrorUnsupported(S, Type);
1316 }
1317 
1318 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1319 /// variable-length array whose elements have a non-zero bit-pattern.
1320 ///
1321 /// \param baseType the inner-most element type of the array
1322 /// \param src - a char* pointing to the bit-pattern for a single
1323 /// base element of the array
1324 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1325 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1326                                Address dest, Address src,
1327                                llvm::Value *sizeInChars) {
1328   CGBuilderTy &Builder = CGF.Builder;
1329 
1330   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1331   llvm::Value *baseSizeInChars
1332     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1333 
1334   Address begin =
1335     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1336   llvm::Value *end =
1337     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1338 
1339   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1340   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1341   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1342 
1343   // Make a loop over the VLA.  C99 guarantees that the VLA element
1344   // count must be nonzero.
1345   CGF.EmitBlock(loopBB);
1346 
1347   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1348   cur->addIncoming(begin.getPointer(), originBB);
1349 
1350   CharUnits curAlign =
1351     dest.getAlignment().alignmentOfArrayElement(baseSize);
1352 
1353   // memcpy the individual element bit-pattern.
1354   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1355                        /*volatile*/ false);
1356 
1357   // Go to the next element.
1358   llvm::Value *next =
1359     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1360 
1361   // Leave if that's the end of the VLA.
1362   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1363   Builder.CreateCondBr(done, contBB, loopBB);
1364   cur->addIncoming(next, loopBB);
1365 
1366   CGF.EmitBlock(contBB);
1367 }
1368 
1369 void
EmitNullInitialization(Address DestPtr,QualType Ty)1370 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1371   // Ignore empty classes in C++.
1372   if (getLangOpts().CPlusPlus) {
1373     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1374       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1375         return;
1376     }
1377   }
1378 
1379   // Cast the dest ptr to the appropriate i8 pointer type.
1380   if (DestPtr.getElementType() != Int8Ty)
1381     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1382 
1383   // Get size and alignment info for this aggregate.
1384   CharUnits size = getContext().getTypeSizeInChars(Ty);
1385 
1386   llvm::Value *SizeVal;
1387   const VariableArrayType *vla;
1388 
1389   // Don't bother emitting a zero-byte memset.
1390   if (size.isZero()) {
1391     // But note that getTypeInfo returns 0 for a VLA.
1392     if (const VariableArrayType *vlaType =
1393           dyn_cast_or_null<VariableArrayType>(
1394                                           getContext().getAsArrayType(Ty))) {
1395       QualType eltType;
1396       llvm::Value *numElts;
1397       std::tie(numElts, eltType) = getVLASize(vlaType);
1398 
1399       SizeVal = numElts;
1400       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1401       if (!eltSize.isOne())
1402         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1403       vla = vlaType;
1404     } else {
1405       return;
1406     }
1407   } else {
1408     SizeVal = CGM.getSize(size);
1409     vla = nullptr;
1410   }
1411 
1412   // If the type contains a pointer to data member we can't memset it to zero.
1413   // Instead, create a null constant and copy it to the destination.
1414   // TODO: there are other patterns besides zero that we can usefully memset,
1415   // like -1, which happens to be the pattern used by member-pointers.
1416   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1417     // For a VLA, emit a single element, then splat that over the VLA.
1418     if (vla) Ty = getContext().getBaseElementType(vla);
1419 
1420     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1421 
1422     llvm::GlobalVariable *NullVariable =
1423       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1424                                /*isConstant=*/true,
1425                                llvm::GlobalVariable::PrivateLinkage,
1426                                NullConstant, Twine());
1427     CharUnits NullAlign = DestPtr.getAlignment();
1428     NullVariable->setAlignment(NullAlign.getQuantity());
1429     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1430                    NullAlign);
1431 
1432     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1433 
1434     // Get and call the appropriate llvm.memcpy overload.
1435     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1436     return;
1437   }
1438 
1439   // Otherwise, just memset the whole thing to zero.  This is legal
1440   // because in LLVM, all default initializers (other than the ones we just
1441   // handled above) are guaranteed to have a bit pattern of all zeros.
1442   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1443 }
1444 
GetAddrOfLabel(const LabelDecl * L)1445 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1446   // Make sure that there is a block for the indirect goto.
1447   if (!IndirectBranch)
1448     GetIndirectGotoBlock();
1449 
1450   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1451 
1452   // Make sure the indirect branch includes all of the address-taken blocks.
1453   IndirectBranch->addDestination(BB);
1454   return llvm::BlockAddress::get(CurFn, BB);
1455 }
1456 
GetIndirectGotoBlock()1457 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1458   // If we already made the indirect branch for indirect goto, return its block.
1459   if (IndirectBranch) return IndirectBranch->getParent();
1460 
1461   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1462 
1463   // Create the PHI node that indirect gotos will add entries to.
1464   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1465                                               "indirect.goto.dest");
1466 
1467   // Create the indirect branch instruction.
1468   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1469   return IndirectBranch->getParent();
1470 }
1471 
1472 /// Computes the length of an array in elements, as well as the base
1473 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)1474 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1475                                               QualType &baseType,
1476                                               Address &addr) {
1477   const ArrayType *arrayType = origArrayType;
1478 
1479   // If it's a VLA, we have to load the stored size.  Note that
1480   // this is the size of the VLA in bytes, not its size in elements.
1481   llvm::Value *numVLAElements = nullptr;
1482   if (isa<VariableArrayType>(arrayType)) {
1483     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1484 
1485     // Walk into all VLAs.  This doesn't require changes to addr,
1486     // which has type T* where T is the first non-VLA element type.
1487     do {
1488       QualType elementType = arrayType->getElementType();
1489       arrayType = getContext().getAsArrayType(elementType);
1490 
1491       // If we only have VLA components, 'addr' requires no adjustment.
1492       if (!arrayType) {
1493         baseType = elementType;
1494         return numVLAElements;
1495       }
1496     } while (isa<VariableArrayType>(arrayType));
1497 
1498     // We get out here only if we find a constant array type
1499     // inside the VLA.
1500   }
1501 
1502   // We have some number of constant-length arrays, so addr should
1503   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1504   // down to the first element of addr.
1505   SmallVector<llvm::Value*, 8> gepIndices;
1506 
1507   // GEP down to the array type.
1508   llvm::ConstantInt *zero = Builder.getInt32(0);
1509   gepIndices.push_back(zero);
1510 
1511   uint64_t countFromCLAs = 1;
1512   QualType eltType;
1513 
1514   llvm::ArrayType *llvmArrayType =
1515     dyn_cast<llvm::ArrayType>(addr.getElementType());
1516   while (llvmArrayType) {
1517     assert(isa<ConstantArrayType>(arrayType));
1518     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1519              == llvmArrayType->getNumElements());
1520 
1521     gepIndices.push_back(zero);
1522     countFromCLAs *= llvmArrayType->getNumElements();
1523     eltType = arrayType->getElementType();
1524 
1525     llvmArrayType =
1526       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1527     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1528     assert((!llvmArrayType || arrayType) &&
1529            "LLVM and Clang types are out-of-synch");
1530   }
1531 
1532   if (arrayType) {
1533     // From this point onwards, the Clang array type has been emitted
1534     // as some other type (probably a packed struct). Compute the array
1535     // size, and just emit the 'begin' expression as a bitcast.
1536     while (arrayType) {
1537       countFromCLAs *=
1538           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1539       eltType = arrayType->getElementType();
1540       arrayType = getContext().getAsArrayType(eltType);
1541     }
1542 
1543     llvm::Type *baseType = ConvertType(eltType);
1544     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1545   } else {
1546     // Create the actual GEP.
1547     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1548                                              gepIndices, "array.begin"),
1549                    addr.getAlignment());
1550   }
1551 
1552   baseType = eltType;
1553 
1554   llvm::Value *numElements
1555     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1556 
1557   // If we had any VLA dimensions, factor them in.
1558   if (numVLAElements)
1559     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1560 
1561   return numElements;
1562 }
1563 
1564 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1565 CodeGenFunction::getVLASize(QualType type) {
1566   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1567   assert(vla && "type was not a variable array type!");
1568   return getVLASize(vla);
1569 }
1570 
1571 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1572 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1573   // The number of elements so far; always size_t.
1574   llvm::Value *numElements = nullptr;
1575 
1576   QualType elementType;
1577   do {
1578     elementType = type->getElementType();
1579     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1580     assert(vlaSize && "no size for VLA!");
1581     assert(vlaSize->getType() == SizeTy);
1582 
1583     if (!numElements) {
1584       numElements = vlaSize;
1585     } else {
1586       // It's undefined behavior if this wraps around, so mark it that way.
1587       // FIXME: Teach -fsanitize=undefined to trap this.
1588       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1589     }
1590   } while ((type = getContext().getAsVariableArrayType(elementType)));
1591 
1592   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1593 }
1594 
EmitVariablyModifiedType(QualType type)1595 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1596   assert(type->isVariablyModifiedType() &&
1597          "Must pass variably modified type to EmitVLASizes!");
1598 
1599   EnsureInsertPoint();
1600 
1601   // We're going to walk down into the type and look for VLA
1602   // expressions.
1603   do {
1604     assert(type->isVariablyModifiedType());
1605 
1606     const Type *ty = type.getTypePtr();
1607     switch (ty->getTypeClass()) {
1608 
1609 #define TYPE(Class, Base)
1610 #define ABSTRACT_TYPE(Class, Base)
1611 #define NON_CANONICAL_TYPE(Class, Base)
1612 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1613 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1614 #include "clang/AST/TypeNodes.def"
1615       llvm_unreachable("unexpected dependent type!");
1616 
1617     // These types are never variably-modified.
1618     case Type::Builtin:
1619     case Type::Complex:
1620     case Type::Vector:
1621     case Type::ExtVector:
1622     case Type::Record:
1623     case Type::Enum:
1624     case Type::Elaborated:
1625     case Type::TemplateSpecialization:
1626     case Type::ObjCObject:
1627     case Type::ObjCInterface:
1628     case Type::ObjCObjectPointer:
1629       llvm_unreachable("type class is never variably-modified!");
1630 
1631     case Type::Adjusted:
1632       type = cast<AdjustedType>(ty)->getAdjustedType();
1633       break;
1634 
1635     case Type::Decayed:
1636       type = cast<DecayedType>(ty)->getPointeeType();
1637       break;
1638 
1639     case Type::Pointer:
1640       type = cast<PointerType>(ty)->getPointeeType();
1641       break;
1642 
1643     case Type::BlockPointer:
1644       type = cast<BlockPointerType>(ty)->getPointeeType();
1645       break;
1646 
1647     case Type::LValueReference:
1648     case Type::RValueReference:
1649       type = cast<ReferenceType>(ty)->getPointeeType();
1650       break;
1651 
1652     case Type::MemberPointer:
1653       type = cast<MemberPointerType>(ty)->getPointeeType();
1654       break;
1655 
1656     case Type::ConstantArray:
1657     case Type::IncompleteArray:
1658       // Losing element qualification here is fine.
1659       type = cast<ArrayType>(ty)->getElementType();
1660       break;
1661 
1662     case Type::VariableArray: {
1663       // Losing element qualification here is fine.
1664       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1665 
1666       // Unknown size indication requires no size computation.
1667       // Otherwise, evaluate and record it.
1668       if (const Expr *size = vat->getSizeExpr()) {
1669         // It's possible that we might have emitted this already,
1670         // e.g. with a typedef and a pointer to it.
1671         llvm::Value *&entry = VLASizeMap[size];
1672         if (!entry) {
1673           llvm::Value *Size = EmitScalarExpr(size);
1674 
1675           // C11 6.7.6.2p5:
1676           //   If the size is an expression that is not an integer constant
1677           //   expression [...] each time it is evaluated it shall have a value
1678           //   greater than zero.
1679           if (SanOpts.has(SanitizerKind::VLABound) &&
1680               size->getType()->isSignedIntegerType()) {
1681             SanitizerScope SanScope(this);
1682             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1683             llvm::Constant *StaticArgs[] = {
1684               EmitCheckSourceLocation(size->getLocStart()),
1685               EmitCheckTypeDescriptor(size->getType())
1686             };
1687             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1688                                      SanitizerKind::VLABound),
1689                       "vla_bound_not_positive", StaticArgs, Size);
1690           }
1691 
1692           // Always zexting here would be wrong if it weren't
1693           // undefined behavior to have a negative bound.
1694           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1695         }
1696       }
1697       type = vat->getElementType();
1698       break;
1699     }
1700 
1701     case Type::FunctionProto:
1702     case Type::FunctionNoProto:
1703       type = cast<FunctionType>(ty)->getReturnType();
1704       break;
1705 
1706     case Type::Paren:
1707     case Type::TypeOf:
1708     case Type::UnaryTransform:
1709     case Type::Attributed:
1710     case Type::SubstTemplateTypeParm:
1711     case Type::PackExpansion:
1712       // Keep walking after single level desugaring.
1713       type = type.getSingleStepDesugaredType(getContext());
1714       break;
1715 
1716     case Type::Typedef:
1717     case Type::Decltype:
1718     case Type::Auto:
1719       // Stop walking: nothing to do.
1720       return;
1721 
1722     case Type::TypeOfExpr:
1723       // Stop walking: emit typeof expression.
1724       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1725       return;
1726 
1727     case Type::Atomic:
1728       type = cast<AtomicType>(ty)->getValueType();
1729       break;
1730     }
1731   } while (type->isVariablyModifiedType());
1732 }
1733 
EmitVAListRef(const Expr * E)1734 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1735   if (getContext().getBuiltinVaListType()->isArrayType())
1736     return EmitPointerWithAlignment(E);
1737   return EmitLValue(E).getAddress();
1738 }
1739 
EmitMSVAListRef(const Expr * E)1740 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1741   return EmitLValue(E).getAddress();
1742 }
1743 
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1744 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1745                                               llvm::Constant *Init) {
1746   assert (Init && "Invalid DeclRefExpr initializer!");
1747   if (CGDebugInfo *Dbg = getDebugInfo())
1748     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1749       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1750 }
1751 
1752 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1753 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1754   // At the moment, the only aggressive peephole we do in IR gen
1755   // is trunc(zext) folding, but if we add more, we can easily
1756   // extend this protection.
1757 
1758   if (!rvalue.isScalar()) return PeepholeProtection();
1759   llvm::Value *value = rvalue.getScalarVal();
1760   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1761 
1762   // Just make an extra bitcast.
1763   assert(HaveInsertPoint());
1764   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1765                                                   Builder.GetInsertBlock());
1766 
1767   PeepholeProtection protection;
1768   protection.Inst = inst;
1769   return protection;
1770 }
1771 
unprotectFromPeepholes(PeepholeProtection protection)1772 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1773   if (!protection.Inst) return;
1774 
1775   // In theory, we could try to duplicate the peepholes now, but whatever.
1776   protection.Inst->eraseFromParent();
1777 }
1778 
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1779 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1780                                                  llvm::Value *AnnotatedVal,
1781                                                  StringRef AnnotationStr,
1782                                                  SourceLocation Location) {
1783   llvm::Value *Args[4] = {
1784     AnnotatedVal,
1785     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1786     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1787     CGM.EmitAnnotationLineNo(Location)
1788   };
1789   return Builder.CreateCall(AnnotationFn, Args);
1790 }
1791 
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1792 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1793   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1794   // FIXME We create a new bitcast for every annotation because that's what
1795   // llvm-gcc was doing.
1796   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1797     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1798                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1799                        I->getAnnotation(), D->getLocation());
1800 }
1801 
EmitFieldAnnotations(const FieldDecl * D,Address Addr)1802 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1803                                               Address Addr) {
1804   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1805   llvm::Value *V = Addr.getPointer();
1806   llvm::Type *VTy = V->getType();
1807   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1808                                     CGM.Int8PtrTy);
1809 
1810   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1811     // FIXME Always emit the cast inst so we can differentiate between
1812     // annotation on the first field of a struct and annotation on the struct
1813     // itself.
1814     if (VTy != CGM.Int8PtrTy)
1815       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1816     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1817     V = Builder.CreateBitCast(V, VTy);
1818   }
1819 
1820   return Address(V, Addr.getAlignment());
1821 }
1822 
~CGCapturedStmtInfo()1823 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1824 
SanitizerScope(CodeGenFunction * CGF)1825 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1826     : CGF(CGF) {
1827   assert(!CGF->IsSanitizerScope);
1828   CGF->IsSanitizerScope = true;
1829 }
1830 
~SanitizerScope()1831 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1832   CGF->IsSanitizerScope = false;
1833 }
1834 
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1835 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1836                                    const llvm::Twine &Name,
1837                                    llvm::BasicBlock *BB,
1838                                    llvm::BasicBlock::iterator InsertPt) const {
1839   LoopStack.InsertHelper(I);
1840   if (IsSanitizerScope)
1841     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1842 }
1843 
1844 template <bool PreserveNames>
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1845 void CGBuilderInserter<PreserveNames>::InsertHelper(
1846     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1847     llvm::BasicBlock::iterator InsertPt) const {
1848   llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1849                                                               InsertPt);
1850   if (CGF)
1851     CGF->InsertHelper(I, Name, BB, InsertPt);
1852 }
1853 
1854 #ifdef NDEBUG
1855 #define PreserveNames false
1856 #else
1857 #define PreserveNames true
1858 #endif
1859 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1860     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1861     llvm::BasicBlock::iterator InsertPt) const;
1862 #undef PreserveNames
1863 
hasRequiredFeatures(const SmallVectorImpl<StringRef> & ReqFeatures,CodeGenModule & CGM,const FunctionDecl * FD,std::string & FirstMissing)1864 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1865                                 CodeGenModule &CGM, const FunctionDecl *FD,
1866                                 std::string &FirstMissing) {
1867   // If there aren't any required features listed then go ahead and return.
1868   if (ReqFeatures.empty())
1869     return false;
1870 
1871   // Now build up the set of caller features and verify that all the required
1872   // features are there.
1873   llvm::StringMap<bool> CallerFeatureMap;
1874   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1875 
1876   // If we have at least one of the features in the feature list return
1877   // true, otherwise return false.
1878   return std::all_of(
1879       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1880         SmallVector<StringRef, 1> OrFeatures;
1881         Feature.split(OrFeatures, "|");
1882         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1883                            [&](StringRef Feature) {
1884                              if (!CallerFeatureMap.lookup(Feature)) {
1885                                FirstMissing = Feature.str();
1886                                return false;
1887                              }
1888                              return true;
1889                            });
1890       });
1891 }
1892 
1893 // Emits an error if we don't have a valid set of target features for the
1894 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)1895 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1896                                           const FunctionDecl *TargetDecl) {
1897   // Early exit if this is an indirect call.
1898   if (!TargetDecl)
1899     return;
1900 
1901   // Get the current enclosing function if it exists. If it doesn't
1902   // we can't check the target features anyhow.
1903   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1904   if (!FD)
1905     return;
1906 
1907   // Grab the required features for the call. For a builtin this is listed in
1908   // the td file with the default cpu, for an always_inline function this is any
1909   // listed cpu and any listed features.
1910   unsigned BuiltinID = TargetDecl->getBuiltinID();
1911   std::string MissingFeature;
1912   if (BuiltinID) {
1913     SmallVector<StringRef, 1> ReqFeatures;
1914     const char *FeatureList =
1915         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1916     // Return if the builtin doesn't have any required features.
1917     if (!FeatureList || StringRef(FeatureList) == "")
1918       return;
1919     StringRef(FeatureList).split(ReqFeatures, ",");
1920     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1921       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
1922           << TargetDecl->getDeclName()
1923           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
1924 
1925   } else if (TargetDecl->hasAttr<TargetAttr>()) {
1926     // Get the required features for the callee.
1927     SmallVector<StringRef, 1> ReqFeatures;
1928     llvm::StringMap<bool> CalleeFeatureMap;
1929     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
1930     for (const auto &F : CalleeFeatureMap) {
1931       // Only positive features are "required".
1932       if (F.getValue())
1933         ReqFeatures.push_back(F.getKey());
1934     }
1935     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
1936       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
1937           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
1938   }
1939 }
1940