1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 /// Return true if the value is cheaper to scalarize than it is to leave as a
26 /// vector operation. isConstant indicates whether we're extracting one known
27 /// element. If false we're extracting a variable index.
cheapToScalarize(Value * V,bool isConstant)28 static bool cheapToScalarize(Value *V, bool isConstant) {
29 if (Constant *C = dyn_cast<Constant>(V)) {
30 if (isConstant) return true;
31
32 // If all elts are the same, we can extract it and use any of the values.
33 if (Constant *Op0 = C->getAggregateElement(0U)) {
34 for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
35 ++i)
36 if (C->getAggregateElement(i) != Op0)
37 return false;
38 return true;
39 }
40 }
41 Instruction *I = dyn_cast<Instruction>(V);
42 if (!I) return false;
43
44 // Insert element gets simplified to the inserted element or is deleted if
45 // this is constant idx extract element and its a constant idx insertelt.
46 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
47 isa<ConstantInt>(I->getOperand(2)))
48 return true;
49 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
50 return true;
51 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
52 if (BO->hasOneUse() &&
53 (cheapToScalarize(BO->getOperand(0), isConstant) ||
54 cheapToScalarize(BO->getOperand(1), isConstant)))
55 return true;
56 if (CmpInst *CI = dyn_cast<CmpInst>(I))
57 if (CI->hasOneUse() &&
58 (cheapToScalarize(CI->getOperand(0), isConstant) ||
59 cheapToScalarize(CI->getOperand(1), isConstant)))
60 return true;
61
62 return false;
63 }
64
65 // If we have a PHI node with a vector type that has only 2 uses: feed
66 // itself and be an operand of extractelement at a constant location,
67 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)68 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
69 // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
70 if (!PN->hasNUses(2))
71 return nullptr;
72
73 // If so, it's known at this point that one operand is PHI and the other is
74 // an extractelement node. Find the PHI user that is not the extractelement
75 // node.
76 auto iu = PN->user_begin();
77 Instruction *PHIUser = dyn_cast<Instruction>(*iu);
78 if (PHIUser == cast<Instruction>(&EI))
79 PHIUser = cast<Instruction>(*(++iu));
80
81 // Verify that this PHI user has one use, which is the PHI itself,
82 // and that it is a binary operation which is cheap to scalarize.
83 // otherwise return NULL.
84 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
85 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
86 return nullptr;
87
88 // Create a scalar PHI node that will replace the vector PHI node
89 // just before the current PHI node.
90 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
91 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
92 // Scalarize each PHI operand.
93 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
94 Value *PHIInVal = PN->getIncomingValue(i);
95 BasicBlock *inBB = PN->getIncomingBlock(i);
96 Value *Elt = EI.getIndexOperand();
97 // If the operand is the PHI induction variable:
98 if (PHIInVal == PHIUser) {
99 // Scalarize the binary operation. Its first operand is the
100 // scalar PHI, and the second operand is extracted from the other
101 // vector operand.
102 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
103 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
104 Value *Op = InsertNewInstWith(
105 ExtractElementInst::Create(B0->getOperand(opId), Elt,
106 B0->getOperand(opId)->getName() + ".Elt"),
107 *B0);
108 Value *newPHIUser = InsertNewInstWith(
109 BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
110 scalarPHI->addIncoming(newPHIUser, inBB);
111 } else {
112 // Scalarize PHI input:
113 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
114 // Insert the new instruction into the predecessor basic block.
115 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
116 BasicBlock::iterator InsertPos;
117 if (pos && !isa<PHINode>(pos)) {
118 InsertPos = ++pos->getIterator();
119 } else {
120 InsertPos = inBB->getFirstInsertionPt();
121 }
122
123 InsertNewInstWith(newEI, *InsertPos);
124
125 scalarPHI->addIncoming(newEI, inBB);
126 }
127 }
128 return ReplaceInstUsesWith(EI, scalarPHI);
129 }
130
visitExtractElementInst(ExtractElementInst & EI)131 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
132 if (Value *V = SimplifyExtractElementInst(
133 EI.getVectorOperand(), EI.getIndexOperand(), DL, TLI, DT, AC))
134 return ReplaceInstUsesWith(EI, V);
135
136 // If vector val is constant with all elements the same, replace EI with
137 // that element. We handle a known element # below.
138 if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
139 if (cheapToScalarize(C, false))
140 return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
141
142 // If extracting a specified index from the vector, see if we can recursively
143 // find a previously computed scalar that was inserted into the vector.
144 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
145 unsigned IndexVal = IdxC->getZExtValue();
146 unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
147
148 // InstSimplify handles cases where the index is invalid.
149 assert(IndexVal < VectorWidth);
150
151 // This instruction only demands the single element from the input vector.
152 // If the input vector has a single use, simplify it based on this use
153 // property.
154 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
155 APInt UndefElts(VectorWidth, 0);
156 APInt DemandedMask(VectorWidth, 0);
157 DemandedMask.setBit(IndexVal);
158 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), DemandedMask,
159 UndefElts)) {
160 EI.setOperand(0, V);
161 return &EI;
162 }
163 }
164
165 // If this extractelement is directly using a bitcast from a vector of
166 // the same number of elements, see if we can find the source element from
167 // it. In this case, we will end up needing to bitcast the scalars.
168 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
169 if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
170 if (VT->getNumElements() == VectorWidth)
171 if (Value *Elt = findScalarElement(BCI->getOperand(0), IndexVal))
172 return new BitCastInst(Elt, EI.getType());
173 }
174
175 // If there's a vector PHI feeding a scalar use through this extractelement
176 // instruction, try to scalarize the PHI.
177 if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
178 Instruction *scalarPHI = scalarizePHI(EI, PN);
179 if (scalarPHI)
180 return scalarPHI;
181 }
182 }
183
184 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
185 // Push extractelement into predecessor operation if legal and
186 // profitable to do so.
187 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
188 if (I->hasOneUse() &&
189 cheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
190 Value *newEI0 =
191 Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
192 EI.getName()+".lhs");
193 Value *newEI1 =
194 Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
195 EI.getName()+".rhs");
196 return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
197 }
198 } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
199 // Extracting the inserted element?
200 if (IE->getOperand(2) == EI.getOperand(1))
201 return ReplaceInstUsesWith(EI, IE->getOperand(1));
202 // If the inserted and extracted elements are constants, they must not
203 // be the same value, extract from the pre-inserted value instead.
204 if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
205 Worklist.AddValue(EI.getOperand(0));
206 EI.setOperand(0, IE->getOperand(0));
207 return &EI;
208 }
209 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
210 // If this is extracting an element from a shufflevector, figure out where
211 // it came from and extract from the appropriate input element instead.
212 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
213 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
214 Value *Src;
215 unsigned LHSWidth =
216 SVI->getOperand(0)->getType()->getVectorNumElements();
217
218 if (SrcIdx < 0)
219 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
220 if (SrcIdx < (int)LHSWidth)
221 Src = SVI->getOperand(0);
222 else {
223 SrcIdx -= LHSWidth;
224 Src = SVI->getOperand(1);
225 }
226 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
227 return ExtractElementInst::Create(Src,
228 ConstantInt::get(Int32Ty,
229 SrcIdx, false));
230 }
231 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
232 // Canonicalize extractelement(cast) -> cast(extractelement).
233 // Bitcasts can change the number of vector elements, and they cost
234 // nothing.
235 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
236 Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
237 EI.getIndexOperand());
238 Worklist.AddValue(EE);
239 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
240 }
241 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
242 if (SI->hasOneUse()) {
243 // TODO: For a select on vectors, it might be useful to do this if it
244 // has multiple extractelement uses. For vector select, that seems to
245 // fight the vectorizer.
246
247 // If we are extracting an element from a vector select or a select on
248 // vectors, create a select on the scalars extracted from the vector
249 // arguments.
250 Value *TrueVal = SI->getTrueValue();
251 Value *FalseVal = SI->getFalseValue();
252
253 Value *Cond = SI->getCondition();
254 if (Cond->getType()->isVectorTy()) {
255 Cond = Builder->CreateExtractElement(Cond,
256 EI.getIndexOperand(),
257 Cond->getName() + ".elt");
258 }
259
260 Value *V1Elem
261 = Builder->CreateExtractElement(TrueVal,
262 EI.getIndexOperand(),
263 TrueVal->getName() + ".elt");
264
265 Value *V2Elem
266 = Builder->CreateExtractElement(FalseVal,
267 EI.getIndexOperand(),
268 FalseVal->getName() + ".elt");
269 return SelectInst::Create(Cond,
270 V1Elem,
271 V2Elem,
272 SI->getName() + ".elt");
273 }
274 }
275 }
276 return nullptr;
277 }
278
279 /// If V is a shuffle of values that ONLY returns elements from either LHS or
280 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<Constant * > & Mask)281 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
282 SmallVectorImpl<Constant*> &Mask) {
283 assert(LHS->getType() == RHS->getType() &&
284 "Invalid CollectSingleShuffleElements");
285 unsigned NumElts = V->getType()->getVectorNumElements();
286
287 if (isa<UndefValue>(V)) {
288 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
289 return true;
290 }
291
292 if (V == LHS) {
293 for (unsigned i = 0; i != NumElts; ++i)
294 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
295 return true;
296 }
297
298 if (V == RHS) {
299 for (unsigned i = 0; i != NumElts; ++i)
300 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
301 i+NumElts));
302 return true;
303 }
304
305 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
306 // If this is an insert of an extract from some other vector, include it.
307 Value *VecOp = IEI->getOperand(0);
308 Value *ScalarOp = IEI->getOperand(1);
309 Value *IdxOp = IEI->getOperand(2);
310
311 if (!isa<ConstantInt>(IdxOp))
312 return false;
313 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
314
315 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
316 // We can handle this if the vector we are inserting into is
317 // transitively ok.
318 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
319 // If so, update the mask to reflect the inserted undef.
320 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
321 return true;
322 }
323 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
324 if (isa<ConstantInt>(EI->getOperand(1))) {
325 unsigned ExtractedIdx =
326 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
327 unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
328
329 // This must be extracting from either LHS or RHS.
330 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
331 // We can handle this if the vector we are inserting into is
332 // transitively ok.
333 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
334 // If so, update the mask to reflect the inserted value.
335 if (EI->getOperand(0) == LHS) {
336 Mask[InsertedIdx % NumElts] =
337 ConstantInt::get(Type::getInt32Ty(V->getContext()),
338 ExtractedIdx);
339 } else {
340 assert(EI->getOperand(0) == RHS);
341 Mask[InsertedIdx % NumElts] =
342 ConstantInt::get(Type::getInt32Ty(V->getContext()),
343 ExtractedIdx + NumLHSElts);
344 }
345 return true;
346 }
347 }
348 }
349 }
350 }
351
352 return false;
353 }
354
355
356 /// We are building a shuffle to create V, which is a sequence of insertelement,
357 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
358 /// not rely on the second vector source. Return a std::pair containing the
359 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
360 /// parameter as required.
361 ///
362 /// Note: we intentionally don't try to fold earlier shuffles since they have
363 /// often been chosen carefully to be efficiently implementable on the target.
364 typedef std::pair<Value *, Value *> ShuffleOps;
365
collectShuffleElements(Value * V,SmallVectorImpl<Constant * > & Mask,Value * PermittedRHS)366 static ShuffleOps collectShuffleElements(Value *V,
367 SmallVectorImpl<Constant *> &Mask,
368 Value *PermittedRHS) {
369 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
370 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
371
372 if (isa<UndefValue>(V)) {
373 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
374 return std::make_pair(
375 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
376 }
377
378 if (isa<ConstantAggregateZero>(V)) {
379 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
380 return std::make_pair(V, nullptr);
381 }
382
383 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
384 // If this is an insert of an extract from some other vector, include it.
385 Value *VecOp = IEI->getOperand(0);
386 Value *ScalarOp = IEI->getOperand(1);
387 Value *IdxOp = IEI->getOperand(2);
388
389 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
390 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
391 unsigned ExtractedIdx =
392 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
393 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
394
395 // Either the extracted from or inserted into vector must be RHSVec,
396 // otherwise we'd end up with a shuffle of three inputs.
397 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
398 Value *RHS = EI->getOperand(0);
399 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS);
400 assert(LR.second == nullptr || LR.second == RHS);
401
402 if (LR.first->getType() != RHS->getType()) {
403 // We tried our best, but we can't find anything compatible with RHS
404 // further up the chain. Return a trivial shuffle.
405 for (unsigned i = 0; i < NumElts; ++i)
406 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
407 return std::make_pair(V, nullptr);
408 }
409
410 unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
411 Mask[InsertedIdx % NumElts] =
412 ConstantInt::get(Type::getInt32Ty(V->getContext()),
413 NumLHSElts+ExtractedIdx);
414 return std::make_pair(LR.first, RHS);
415 }
416
417 if (VecOp == PermittedRHS) {
418 // We've gone as far as we can: anything on the other side of the
419 // extractelement will already have been converted into a shuffle.
420 unsigned NumLHSElts =
421 EI->getOperand(0)->getType()->getVectorNumElements();
422 for (unsigned i = 0; i != NumElts; ++i)
423 Mask.push_back(ConstantInt::get(
424 Type::getInt32Ty(V->getContext()),
425 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
426 return std::make_pair(EI->getOperand(0), PermittedRHS);
427 }
428
429 // If this insertelement is a chain that comes from exactly these two
430 // vectors, return the vector and the effective shuffle.
431 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
432 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
433 Mask))
434 return std::make_pair(EI->getOperand(0), PermittedRHS);
435 }
436 }
437 }
438
439 // Otherwise, we can't do anything fancy. Return an identity vector.
440 for (unsigned i = 0; i != NumElts; ++i)
441 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
442 return std::make_pair(V, nullptr);
443 }
444
445 /// Try to find redundant insertvalue instructions, like the following ones:
446 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
447 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
448 /// Here the second instruction inserts values at the same indices, as the
449 /// first one, making the first one redundant.
450 /// It should be transformed to:
451 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)452 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
453 bool IsRedundant = false;
454 ArrayRef<unsigned int> FirstIndices = I.getIndices();
455
456 // If there is a chain of insertvalue instructions (each of them except the
457 // last one has only one use and it's another insertvalue insn from this
458 // chain), check if any of the 'children' uses the same indices as the first
459 // instruction. In this case, the first one is redundant.
460 Value *V = &I;
461 unsigned Depth = 0;
462 while (V->hasOneUse() && Depth < 10) {
463 User *U = V->user_back();
464 auto UserInsInst = dyn_cast<InsertValueInst>(U);
465 if (!UserInsInst || U->getOperand(0) != V)
466 break;
467 if (UserInsInst->getIndices() == FirstIndices) {
468 IsRedundant = true;
469 break;
470 }
471 V = UserInsInst;
472 Depth++;
473 }
474
475 if (IsRedundant)
476 return ReplaceInstUsesWith(I, I.getOperand(0));
477 return nullptr;
478 }
479
visitInsertElementInst(InsertElementInst & IE)480 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
481 Value *VecOp = IE.getOperand(0);
482 Value *ScalarOp = IE.getOperand(1);
483 Value *IdxOp = IE.getOperand(2);
484
485 // Inserting an undef or into an undefined place, remove this.
486 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
487 ReplaceInstUsesWith(IE, VecOp);
488
489 // If the inserted element was extracted from some other vector, and if the
490 // indexes are constant, try to turn this into a shufflevector operation.
491 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
492 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
493 unsigned NumInsertVectorElts = IE.getType()->getNumElements();
494 unsigned NumExtractVectorElts =
495 EI->getOperand(0)->getType()->getVectorNumElements();
496 unsigned ExtractedIdx =
497 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
498 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
499
500 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
501 return ReplaceInstUsesWith(IE, VecOp);
502
503 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert.
504 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
505
506 // If we are extracting a value from a vector, then inserting it right
507 // back into the same place, just use the input vector.
508 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
509 return ReplaceInstUsesWith(IE, VecOp);
510
511 // If this insertelement isn't used by some other insertelement, turn it
512 // (and any insertelements it points to), into one big shuffle.
513 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
514 SmallVector<Constant*, 16> Mask;
515 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr);
516
517 // The proposed shuffle may be trivial, in which case we shouldn't
518 // perform the combine.
519 if (LR.first != &IE && LR.second != &IE) {
520 // We now have a shuffle of LHS, RHS, Mask.
521 if (LR.second == nullptr)
522 LR.second = UndefValue::get(LR.first->getType());
523 return new ShuffleVectorInst(LR.first, LR.second,
524 ConstantVector::get(Mask));
525 }
526 }
527 }
528 }
529
530 unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
531 APInt UndefElts(VWidth, 0);
532 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
533 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
534 if (V != &IE)
535 return ReplaceInstUsesWith(IE, V);
536 return &IE;
537 }
538
539 return nullptr;
540 }
541
542 /// Return true if we can evaluate the specified expression tree if the vector
543 /// elements were shuffled in a different order.
CanEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)544 static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
545 unsigned Depth = 5) {
546 // We can always reorder the elements of a constant.
547 if (isa<Constant>(V))
548 return true;
549
550 // We won't reorder vector arguments. No IPO here.
551 Instruction *I = dyn_cast<Instruction>(V);
552 if (!I) return false;
553
554 // Two users may expect different orders of the elements. Don't try it.
555 if (!I->hasOneUse())
556 return false;
557
558 if (Depth == 0) return false;
559
560 switch (I->getOpcode()) {
561 case Instruction::Add:
562 case Instruction::FAdd:
563 case Instruction::Sub:
564 case Instruction::FSub:
565 case Instruction::Mul:
566 case Instruction::FMul:
567 case Instruction::UDiv:
568 case Instruction::SDiv:
569 case Instruction::FDiv:
570 case Instruction::URem:
571 case Instruction::SRem:
572 case Instruction::FRem:
573 case Instruction::Shl:
574 case Instruction::LShr:
575 case Instruction::AShr:
576 case Instruction::And:
577 case Instruction::Or:
578 case Instruction::Xor:
579 case Instruction::ICmp:
580 case Instruction::FCmp:
581 case Instruction::Trunc:
582 case Instruction::ZExt:
583 case Instruction::SExt:
584 case Instruction::FPToUI:
585 case Instruction::FPToSI:
586 case Instruction::UIToFP:
587 case Instruction::SIToFP:
588 case Instruction::FPTrunc:
589 case Instruction::FPExt:
590 case Instruction::GetElementPtr: {
591 for (Value *Operand : I->operands()) {
592 if (!CanEvaluateShuffled(Operand, Mask, Depth-1))
593 return false;
594 }
595 return true;
596 }
597 case Instruction::InsertElement: {
598 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
599 if (!CI) return false;
600 int ElementNumber = CI->getLimitedValue();
601
602 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
603 // can't put an element into multiple indices.
604 bool SeenOnce = false;
605 for (int i = 0, e = Mask.size(); i != e; ++i) {
606 if (Mask[i] == ElementNumber) {
607 if (SeenOnce)
608 return false;
609 SeenOnce = true;
610 }
611 }
612 return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
613 }
614 }
615 return false;
616 }
617
618 /// Rebuild a new instruction just like 'I' but with the new operands given.
619 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)620 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
621 // We don't want to use the IRBuilder here because we want the replacement
622 // instructions to appear next to 'I', not the builder's insertion point.
623 switch (I->getOpcode()) {
624 case Instruction::Add:
625 case Instruction::FAdd:
626 case Instruction::Sub:
627 case Instruction::FSub:
628 case Instruction::Mul:
629 case Instruction::FMul:
630 case Instruction::UDiv:
631 case Instruction::SDiv:
632 case Instruction::FDiv:
633 case Instruction::URem:
634 case Instruction::SRem:
635 case Instruction::FRem:
636 case Instruction::Shl:
637 case Instruction::LShr:
638 case Instruction::AShr:
639 case Instruction::And:
640 case Instruction::Or:
641 case Instruction::Xor: {
642 BinaryOperator *BO = cast<BinaryOperator>(I);
643 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
644 BinaryOperator *New =
645 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
646 NewOps[0], NewOps[1], "", BO);
647 if (isa<OverflowingBinaryOperator>(BO)) {
648 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
649 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
650 }
651 if (isa<PossiblyExactOperator>(BO)) {
652 New->setIsExact(BO->isExact());
653 }
654 if (isa<FPMathOperator>(BO))
655 New->copyFastMathFlags(I);
656 return New;
657 }
658 case Instruction::ICmp:
659 assert(NewOps.size() == 2 && "icmp with #ops != 2");
660 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
661 NewOps[0], NewOps[1]);
662 case Instruction::FCmp:
663 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
664 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
665 NewOps[0], NewOps[1]);
666 case Instruction::Trunc:
667 case Instruction::ZExt:
668 case Instruction::SExt:
669 case Instruction::FPToUI:
670 case Instruction::FPToSI:
671 case Instruction::UIToFP:
672 case Instruction::SIToFP:
673 case Instruction::FPTrunc:
674 case Instruction::FPExt: {
675 // It's possible that the mask has a different number of elements from
676 // the original cast. We recompute the destination type to match the mask.
677 Type *DestTy =
678 VectorType::get(I->getType()->getScalarType(),
679 NewOps[0]->getType()->getVectorNumElements());
680 assert(NewOps.size() == 1 && "cast with #ops != 1");
681 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
682 "", I);
683 }
684 case Instruction::GetElementPtr: {
685 Value *Ptr = NewOps[0];
686 ArrayRef<Value*> Idx = NewOps.slice(1);
687 GetElementPtrInst *GEP = GetElementPtrInst::Create(
688 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
689 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
690 return GEP;
691 }
692 }
693 llvm_unreachable("failed to rebuild vector instructions");
694 }
695
696 Value *
EvaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)697 InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
698 // Mask.size() does not need to be equal to the number of vector elements.
699
700 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
701 if (isa<UndefValue>(V)) {
702 return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
703 Mask.size()));
704 }
705 if (isa<ConstantAggregateZero>(V)) {
706 return ConstantAggregateZero::get(
707 VectorType::get(V->getType()->getScalarType(),
708 Mask.size()));
709 }
710 if (Constant *C = dyn_cast<Constant>(V)) {
711 SmallVector<Constant *, 16> MaskValues;
712 for (int i = 0, e = Mask.size(); i != e; ++i) {
713 if (Mask[i] == -1)
714 MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
715 else
716 MaskValues.push_back(Builder->getInt32(Mask[i]));
717 }
718 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
719 ConstantVector::get(MaskValues));
720 }
721
722 Instruction *I = cast<Instruction>(V);
723 switch (I->getOpcode()) {
724 case Instruction::Add:
725 case Instruction::FAdd:
726 case Instruction::Sub:
727 case Instruction::FSub:
728 case Instruction::Mul:
729 case Instruction::FMul:
730 case Instruction::UDiv:
731 case Instruction::SDiv:
732 case Instruction::FDiv:
733 case Instruction::URem:
734 case Instruction::SRem:
735 case Instruction::FRem:
736 case Instruction::Shl:
737 case Instruction::LShr:
738 case Instruction::AShr:
739 case Instruction::And:
740 case Instruction::Or:
741 case Instruction::Xor:
742 case Instruction::ICmp:
743 case Instruction::FCmp:
744 case Instruction::Trunc:
745 case Instruction::ZExt:
746 case Instruction::SExt:
747 case Instruction::FPToUI:
748 case Instruction::FPToSI:
749 case Instruction::UIToFP:
750 case Instruction::SIToFP:
751 case Instruction::FPTrunc:
752 case Instruction::FPExt:
753 case Instruction::Select:
754 case Instruction::GetElementPtr: {
755 SmallVector<Value*, 8> NewOps;
756 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
757 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
758 Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
759 NewOps.push_back(V);
760 NeedsRebuild |= (V != I->getOperand(i));
761 }
762 if (NeedsRebuild) {
763 return buildNew(I, NewOps);
764 }
765 return I;
766 }
767 case Instruction::InsertElement: {
768 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
769
770 // The insertelement was inserting at Element. Figure out which element
771 // that becomes after shuffling. The answer is guaranteed to be unique
772 // by CanEvaluateShuffled.
773 bool Found = false;
774 int Index = 0;
775 for (int e = Mask.size(); Index != e; ++Index) {
776 if (Mask[Index] == Element) {
777 Found = true;
778 break;
779 }
780 }
781
782 // If element is not in Mask, no need to handle the operand 1 (element to
783 // be inserted). Just evaluate values in operand 0 according to Mask.
784 if (!Found)
785 return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
786
787 Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
788 return InsertElementInst::Create(V, I->getOperand(1),
789 Builder->getInt32(Index), "", I);
790 }
791 }
792 llvm_unreachable("failed to reorder elements of vector instruction!");
793 }
794
recognizeIdentityMask(const SmallVectorImpl<int> & Mask,bool & isLHSID,bool & isRHSID)795 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
796 bool &isLHSID, bool &isRHSID) {
797 isLHSID = isRHSID = true;
798
799 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
800 if (Mask[i] < 0) continue; // Ignore undef values.
801 // Is this an identity shuffle of the LHS value?
802 isLHSID &= (Mask[i] == (int)i);
803
804 // Is this an identity shuffle of the RHS value?
805 isRHSID &= (Mask[i]-e == i);
806 }
807 }
808
809 // Returns true if the shuffle is extracting a contiguous range of values from
810 // LHS, for example:
811 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
812 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
813 // Shuffles to: |EE|FF|GG|HH|
814 // +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,SmallVector<int,16> & Mask)815 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
816 SmallVector<int, 16> &Mask) {
817 unsigned LHSElems =
818 cast<VectorType>(SVI.getOperand(0)->getType())->getNumElements();
819 unsigned MaskElems = Mask.size();
820 unsigned BegIdx = Mask.front();
821 unsigned EndIdx = Mask.back();
822 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
823 return false;
824 for (unsigned I = 0; I != MaskElems; ++I)
825 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
826 return false;
827 return true;
828 }
829
visitShuffleVectorInst(ShuffleVectorInst & SVI)830 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
831 Value *LHS = SVI.getOperand(0);
832 Value *RHS = SVI.getOperand(1);
833 SmallVector<int, 16> Mask = SVI.getShuffleMask();
834 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
835
836 bool MadeChange = false;
837
838 // Undefined shuffle mask -> undefined value.
839 if (isa<UndefValue>(SVI.getOperand(2)))
840 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
841
842 unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
843
844 APInt UndefElts(VWidth, 0);
845 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
846 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
847 if (V != &SVI)
848 return ReplaceInstUsesWith(SVI, V);
849 LHS = SVI.getOperand(0);
850 RHS = SVI.getOperand(1);
851 MadeChange = true;
852 }
853
854 unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
855
856 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
857 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
858 if (LHS == RHS || isa<UndefValue>(LHS)) {
859 if (isa<UndefValue>(LHS) && LHS == RHS) {
860 // shuffle(undef,undef,mask) -> undef.
861 Value *Result = (VWidth == LHSWidth)
862 ? LHS : UndefValue::get(SVI.getType());
863 return ReplaceInstUsesWith(SVI, Result);
864 }
865
866 // Remap any references to RHS to use LHS.
867 SmallVector<Constant*, 16> Elts;
868 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
869 if (Mask[i] < 0) {
870 Elts.push_back(UndefValue::get(Int32Ty));
871 continue;
872 }
873
874 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
875 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
876 Mask[i] = -1; // Turn into undef.
877 Elts.push_back(UndefValue::get(Int32Ty));
878 } else {
879 Mask[i] = Mask[i] % e; // Force to LHS.
880 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
881 }
882 }
883 SVI.setOperand(0, SVI.getOperand(1));
884 SVI.setOperand(1, UndefValue::get(RHS->getType()));
885 SVI.setOperand(2, ConstantVector::get(Elts));
886 LHS = SVI.getOperand(0);
887 RHS = SVI.getOperand(1);
888 MadeChange = true;
889 }
890
891 if (VWidth == LHSWidth) {
892 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
893 bool isLHSID, isRHSID;
894 recognizeIdentityMask(Mask, isLHSID, isRHSID);
895
896 // Eliminate identity shuffles.
897 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
898 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
899 }
900
901 if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
902 Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
903 return ReplaceInstUsesWith(SVI, V);
904 }
905
906 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
907 // a non-vector type. We can instead bitcast the original vector followed by
908 // an extract of the desired element:
909 //
910 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
911 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
912 // %1 = bitcast <4 x i8> %sroa to i32
913 // Becomes:
914 // %bc = bitcast <16 x i8> %in to <4 x i32>
915 // %ext = extractelement <4 x i32> %bc, i32 0
916 //
917 // If the shuffle is extracting a contiguous range of values from the input
918 // vector then each use which is a bitcast of the extracted size can be
919 // replaced. This will work if the vector types are compatible, and the begin
920 // index is aligned to a value in the casted vector type. If the begin index
921 // isn't aligned then we can shuffle the original vector (keeping the same
922 // vector type) before extracting.
923 //
924 // This code will bail out if the target type is fundamentally incompatible
925 // with vectors of the source type.
926 //
927 // Example of <16 x i8>, target type i32:
928 // Index range [4,8): v-----------v Will work.
929 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
930 // <16 x i8>: | | | | | | | | | | | | | | | | |
931 // <4 x i32>: | | | | |
932 // +-----------+-----------+-----------+-----------+
933 // Index range [6,10): ^-----------^ Needs an extra shuffle.
934 // Target type i40: ^--------------^ Won't work, bail.
935 if (isShuffleExtractingFromLHS(SVI, Mask)) {
936 Value *V = LHS;
937 unsigned MaskElems = Mask.size();
938 unsigned BegIdx = Mask.front();
939 VectorType *SrcTy = cast<VectorType>(V->getType());
940 unsigned VecBitWidth = SrcTy->getBitWidth();
941 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
942 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
943 unsigned SrcNumElems = SrcTy->getNumElements();
944 SmallVector<BitCastInst *, 8> BCs;
945 DenseMap<Type *, Value *> NewBCs;
946 for (User *U : SVI.users())
947 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
948 if (!BC->use_empty())
949 // Only visit bitcasts that weren't previously handled.
950 BCs.push_back(BC);
951 for (BitCastInst *BC : BCs) {
952 Type *TgtTy = BC->getDestTy();
953 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
954 if (!TgtElemBitWidth)
955 continue;
956 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
957 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
958 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
959 if (!VecBitWidthsEqual)
960 continue;
961 if (!VectorType::isValidElementType(TgtTy))
962 continue;
963 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
964 if (!BegIsAligned) {
965 // Shuffle the input so [0,NumElements) contains the output, and
966 // [NumElems,SrcNumElems) is undef.
967 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
968 UndefValue::get(Int32Ty));
969 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
970 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
971 V = Builder->CreateShuffleVector(V, UndefValue::get(V->getType()),
972 ConstantVector::get(ShuffleMask),
973 SVI.getName() + ".extract");
974 BegIdx = 0;
975 }
976 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
977 assert(SrcElemsPerTgtElem);
978 BegIdx /= SrcElemsPerTgtElem;
979 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
980 auto *NewBC =
981 BCAlreadyExists
982 ? NewBCs[CastSrcTy]
983 : Builder->CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
984 if (!BCAlreadyExists)
985 NewBCs[CastSrcTy] = NewBC;
986 auto *Ext = Builder->CreateExtractElement(
987 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
988 // The shufflevector isn't being replaced: the bitcast that used it
989 // is. InstCombine will visit the newly-created instructions.
990 ReplaceInstUsesWith(*BC, Ext);
991 MadeChange = true;
992 }
993 }
994
995 // If the LHS is a shufflevector itself, see if we can combine it with this
996 // one without producing an unusual shuffle.
997 // Cases that might be simplified:
998 // 1.
999 // x1=shuffle(v1,v2,mask1)
1000 // x=shuffle(x1,undef,mask)
1001 // ==>
1002 // x=shuffle(v1,undef,newMask)
1003 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1004 // 2.
1005 // x1=shuffle(v1,undef,mask1)
1006 // x=shuffle(x1,x2,mask)
1007 // where v1.size() == mask1.size()
1008 // ==>
1009 // x=shuffle(v1,x2,newMask)
1010 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1011 // 3.
1012 // x2=shuffle(v2,undef,mask2)
1013 // x=shuffle(x1,x2,mask)
1014 // where v2.size() == mask2.size()
1015 // ==>
1016 // x=shuffle(x1,v2,newMask)
1017 // newMask[i] = (mask[i] < x1.size())
1018 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1019 // 4.
1020 // x1=shuffle(v1,undef,mask1)
1021 // x2=shuffle(v2,undef,mask2)
1022 // x=shuffle(x1,x2,mask)
1023 // where v1.size() == v2.size()
1024 // ==>
1025 // x=shuffle(v1,v2,newMask)
1026 // newMask[i] = (mask[i] < x1.size())
1027 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1028 //
1029 // Here we are really conservative:
1030 // we are absolutely afraid of producing a shuffle mask not in the input
1031 // program, because the code gen may not be smart enough to turn a merged
1032 // shuffle into two specific shuffles: it may produce worse code. As such,
1033 // we only merge two shuffles if the result is either a splat or one of the
1034 // input shuffle masks. In this case, merging the shuffles just removes
1035 // one instruction, which we know is safe. This is good for things like
1036 // turning: (splat(splat)) -> splat, or
1037 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1038 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1039 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1040 if (LHSShuffle)
1041 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1042 LHSShuffle = nullptr;
1043 if (RHSShuffle)
1044 if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1045 RHSShuffle = nullptr;
1046 if (!LHSShuffle && !RHSShuffle)
1047 return MadeChange ? &SVI : nullptr;
1048
1049 Value* LHSOp0 = nullptr;
1050 Value* LHSOp1 = nullptr;
1051 Value* RHSOp0 = nullptr;
1052 unsigned LHSOp0Width = 0;
1053 unsigned RHSOp0Width = 0;
1054 if (LHSShuffle) {
1055 LHSOp0 = LHSShuffle->getOperand(0);
1056 LHSOp1 = LHSShuffle->getOperand(1);
1057 LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
1058 }
1059 if (RHSShuffle) {
1060 RHSOp0 = RHSShuffle->getOperand(0);
1061 RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
1062 }
1063 Value* newLHS = LHS;
1064 Value* newRHS = RHS;
1065 if (LHSShuffle) {
1066 // case 1
1067 if (isa<UndefValue>(RHS)) {
1068 newLHS = LHSOp0;
1069 newRHS = LHSOp1;
1070 }
1071 // case 2 or 4
1072 else if (LHSOp0Width == LHSWidth) {
1073 newLHS = LHSOp0;
1074 }
1075 }
1076 // case 3 or 4
1077 if (RHSShuffle && RHSOp0Width == LHSWidth) {
1078 newRHS = RHSOp0;
1079 }
1080 // case 4
1081 if (LHSOp0 == RHSOp0) {
1082 newLHS = LHSOp0;
1083 newRHS = nullptr;
1084 }
1085
1086 if (newLHS == LHS && newRHS == RHS)
1087 return MadeChange ? &SVI : nullptr;
1088
1089 SmallVector<int, 16> LHSMask;
1090 SmallVector<int, 16> RHSMask;
1091 if (newLHS != LHS)
1092 LHSMask = LHSShuffle->getShuffleMask();
1093 if (RHSShuffle && newRHS != RHS)
1094 RHSMask = RHSShuffle->getShuffleMask();
1095
1096 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1097 SmallVector<int, 16> newMask;
1098 bool isSplat = true;
1099 int SplatElt = -1;
1100 // Create a new mask for the new ShuffleVectorInst so that the new
1101 // ShuffleVectorInst is equivalent to the original one.
1102 for (unsigned i = 0; i < VWidth; ++i) {
1103 int eltMask;
1104 if (Mask[i] < 0) {
1105 // This element is an undef value.
1106 eltMask = -1;
1107 } else if (Mask[i] < (int)LHSWidth) {
1108 // This element is from left hand side vector operand.
1109 //
1110 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1111 // new mask value for the element.
1112 if (newLHS != LHS) {
1113 eltMask = LHSMask[Mask[i]];
1114 // If the value selected is an undef value, explicitly specify it
1115 // with a -1 mask value.
1116 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1117 eltMask = -1;
1118 } else
1119 eltMask = Mask[i];
1120 } else {
1121 // This element is from right hand side vector operand
1122 //
1123 // If the value selected is an undef value, explicitly specify it
1124 // with a -1 mask value. (case 1)
1125 if (isa<UndefValue>(RHS))
1126 eltMask = -1;
1127 // If RHS is going to be replaced (case 3 or 4), calculate the
1128 // new mask value for the element.
1129 else if (newRHS != RHS) {
1130 eltMask = RHSMask[Mask[i]-LHSWidth];
1131 // If the value selected is an undef value, explicitly specify it
1132 // with a -1 mask value.
1133 if (eltMask >= (int)RHSOp0Width) {
1134 assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1135 && "should have been check above");
1136 eltMask = -1;
1137 }
1138 } else
1139 eltMask = Mask[i]-LHSWidth;
1140
1141 // If LHS's width is changed, shift the mask value accordingly.
1142 // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1143 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1144 // If newRHS == newLHS, we want to remap any references from newRHS to
1145 // newLHS so that we can properly identify splats that may occur due to
1146 // obfuscation across the two vectors.
1147 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1148 eltMask += newLHSWidth;
1149 }
1150
1151 // Check if this could still be a splat.
1152 if (eltMask >= 0) {
1153 if (SplatElt >= 0 && SplatElt != eltMask)
1154 isSplat = false;
1155 SplatElt = eltMask;
1156 }
1157
1158 newMask.push_back(eltMask);
1159 }
1160
1161 // If the result mask is equal to one of the original shuffle masks,
1162 // or is a splat, do the replacement.
1163 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1164 SmallVector<Constant*, 16> Elts;
1165 for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1166 if (newMask[i] < 0) {
1167 Elts.push_back(UndefValue::get(Int32Ty));
1168 } else {
1169 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1170 }
1171 }
1172 if (!newRHS)
1173 newRHS = UndefValue::get(newLHS->getType());
1174 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1175 }
1176
1177 // If the result mask is an identity, replace uses of this instruction with
1178 // corresponding argument.
1179 bool isLHSID, isRHSID;
1180 recognizeIdentityMask(newMask, isLHSID, isRHSID);
1181 if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS);
1182 if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS);
1183
1184 return MadeChange ? &SVI : nullptr;
1185 }
1186