• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a hash set that can be used to remove duplication of nodes
11 // in a graph.  This code was originally created by Chris Lattner for use with
12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18 
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/DataTypes.h"
24 
25 namespace llvm {
26 /// This folding set used for two purposes:
27 ///   1. Given information about a node we want to create, look up the unique
28 ///      instance of the node in the set.  If the node already exists, return
29 ///      it, otherwise return the bucket it should be inserted into.
30 ///   2. Given a node that has already been created, remove it from the set.
31 ///
32 /// This class is implemented as a single-link chained hash table, where the
33 /// "buckets" are actually the nodes themselves (the next pointer is in the
34 /// node).  The last node points back to the bucket to simplify node removal.
35 ///
36 /// Any node that is to be included in the folding set must be a subclass of
37 /// FoldingSetNode.  The node class must also define a Profile method used to
38 /// establish the unique bits of data for the node.  The Profile method is
39 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
40 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
41 /// NOTE: That the folding set does not own the nodes and it is the
42 /// responsibility of the user to dispose of the nodes.
43 ///
44 /// Eg.
45 ///    class MyNode : public FoldingSetNode {
46 ///    private:
47 ///      std::string Name;
48 ///      unsigned Value;
49 ///    public:
50 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
51 ///       ...
52 ///      void Profile(FoldingSetNodeID &ID) const {
53 ///        ID.AddString(Name);
54 ///        ID.AddInteger(Value);
55 ///      }
56 ///      ...
57 ///    };
58 ///
59 /// To define the folding set itself use the FoldingSet template;
60 ///
61 /// Eg.
62 ///    FoldingSet<MyNode> MyFoldingSet;
63 ///
64 /// Four public methods are available to manipulate the folding set;
65 ///
66 /// 1) If you have an existing node that you want add to the set but unsure
67 /// that the node might already exist then call;
68 ///
69 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
70 ///
71 /// If The result is equal to the input then the node has been inserted.
72 /// Otherwise, the result is the node existing in the folding set, and the
73 /// input can be discarded (use the result instead.)
74 ///
75 /// 2) If you are ready to construct a node but want to check if it already
76 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
77 /// check;
78 ///
79 ///   FoldingSetNodeID ID;
80 ///   ID.AddString(Name);
81 ///   ID.AddInteger(Value);
82 ///   void *InsertPoint;
83 ///
84 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
85 ///
86 /// If found then M with be non-NULL, else InsertPoint will point to where it
87 /// should be inserted using InsertNode.
88 ///
89 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
90 /// node with FindNodeOrInsertPos;
91 ///
92 ///    InsertNode(N, InsertPoint);
93 ///
94 /// 4) Finally, if you want to remove a node from the folding set call;
95 ///
96 ///    bool WasRemoved = RemoveNode(N);
97 ///
98 /// The result indicates whether the node existed in the folding set.
99 
100 class FoldingSetNodeID;
101 
102 //===----------------------------------------------------------------------===//
103 /// FoldingSetImpl - Implements the folding set functionality.  The main
104 /// structure is an array of buckets.  Each bucket is indexed by the hash of
105 /// the nodes it contains.  The bucket itself points to the nodes contained
106 /// in the bucket via a singly linked list.  The last node in the list points
107 /// back to the bucket to facilitate node removal.
108 ///
109 class FoldingSetImpl {
110   virtual void anchor(); // Out of line virtual method.
111 
112 protected:
113   /// Buckets - Array of bucket chains.
114   ///
115   void **Buckets;
116 
117   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
118   ///
119   unsigned NumBuckets;
120 
121   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
122   /// is greater than twice the number of buckets.
123   unsigned NumNodes;
124 
125   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
126   FoldingSetImpl(FoldingSetImpl &&Arg);
127   FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
128   ~FoldingSetImpl();
129 
130 public:
131   //===--------------------------------------------------------------------===//
132   /// Node - This class is used to maintain the singly linked bucket list in
133   /// a folding set.
134   ///
135   class Node {
136   private:
137     // NextInFoldingSetBucket - next link in the bucket list.
138     void *NextInFoldingSetBucket;
139 
140   public:
Node()141     Node() : NextInFoldingSetBucket(nullptr) {}
142 
143     // Accessors
getNextInBucket()144     void *getNextInBucket() const { return NextInFoldingSetBucket; }
SetNextInBucket(void * N)145     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
146   };
147 
148   /// clear - Remove all nodes from the folding set.
149   void clear();
150 
151   /// RemoveNode - Remove a node from the folding set, returning true if one
152   /// was removed or false if the node was not in the folding set.
153   bool RemoveNode(Node *N);
154 
155   /// GetOrInsertNode - If there is an existing simple Node exactly
156   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
157   /// it instead.
158   Node *GetOrInsertNode(Node *N);
159 
160   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
161   /// return it.  If not, return the insertion token that will make insertion
162   /// faster.
163   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
164 
165   /// InsertNode - Insert the specified node into the folding set, knowing that
166   /// it is not already in the folding set.  InsertPos must be obtained from
167   /// FindNodeOrInsertPos.
168   void InsertNode(Node *N, void *InsertPos);
169 
170   /// InsertNode - Insert the specified node into the folding set, knowing that
171   /// it is not already in the folding set.
InsertNode(Node * N)172   void InsertNode(Node *N) {
173     Node *Inserted = GetOrInsertNode(N);
174     (void)Inserted;
175     assert(Inserted == N && "Node already inserted!");
176   }
177 
178   /// size - Returns the number of nodes in the folding set.
size()179   unsigned size() const { return NumNodes; }
180 
181   /// empty - Returns true if there are no nodes in the folding set.
empty()182   bool empty() const { return NumNodes == 0; }
183 
184 private:
185   /// GrowHashTable - Double the size of the hash table and rehash everything.
186   ///
187   void GrowHashTable();
188 
189 protected:
190   /// GetNodeProfile - Instantiations of the FoldingSet template implement
191   /// this function to gather data bits for the given node.
192   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
193   /// NodeEquals - Instantiations of the FoldingSet template implement
194   /// this function to compare the given node with the given ID.
195   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
196                           FoldingSetNodeID &TempID) const=0;
197   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
198   /// this function to compute a hash value for the given node.
199   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
200 };
201 
202 //===----------------------------------------------------------------------===//
203 
204 template<typename T> struct FoldingSetTrait;
205 
206 /// DefaultFoldingSetTrait - This class provides default implementations
207 /// for FoldingSetTrait implementations.
208 ///
209 template<typename T> struct DefaultFoldingSetTrait {
ProfileDefaultFoldingSetTrait210   static void Profile(const T &X, FoldingSetNodeID &ID) {
211     X.Profile(ID);
212   }
ProfileDefaultFoldingSetTrait213   static void Profile(T &X, FoldingSetNodeID &ID) {
214     X.Profile(ID);
215   }
216 
217   // Equals - Test if the profile for X would match ID, using TempID
218   // to compute a temporary ID if necessary. The default implementation
219   // just calls Profile and does a regular comparison. Implementations
220   // can override this to provide more efficient implementations.
221   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
222                             FoldingSetNodeID &TempID);
223 
224   // ComputeHash - Compute a hash value for X, using TempID to
225   // compute a temporary ID if necessary. The default implementation
226   // just calls Profile and does a regular hash computation.
227   // Implementations can override this to provide more efficient
228   // implementations.
229   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
230 };
231 
232 /// FoldingSetTrait - This trait class is used to define behavior of how
233 /// to "profile" (in the FoldingSet parlance) an object of a given type.
234 /// The default behavior is to invoke a 'Profile' method on an object, but
235 /// through template specialization the behavior can be tailored for specific
236 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
237 /// to FoldingSets that were not originally designed to have that behavior.
238 template<typename T> struct FoldingSetTrait
239   : public DefaultFoldingSetTrait<T> {};
240 
241 template<typename T, typename Ctx> struct ContextualFoldingSetTrait;
242 
243 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
244 /// for ContextualFoldingSets.
245 template<typename T, typename Ctx>
246 struct DefaultContextualFoldingSetTrait {
ProfileDefaultContextualFoldingSetTrait247   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
248     X.Profile(ID, Context);
249   }
250   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
251                             FoldingSetNodeID &TempID, Ctx Context);
252   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
253                                      Ctx Context);
254 };
255 
256 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
257 /// ContextualFoldingSets.
258 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
259   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
260 
261 //===--------------------------------------------------------------------===//
262 /// FoldingSetNodeIDRef - This class describes a reference to an interned
263 /// FoldingSetNodeID, which can be a useful to store node id data rather
264 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
265 /// is often much larger than necessary, and the possibility of heap
266 /// allocation means it requires a non-trivial destructor call.
267 class FoldingSetNodeIDRef {
268   const unsigned *Data;
269   size_t Size;
270 
271 public:
FoldingSetNodeIDRef()272   FoldingSetNodeIDRef() : Data(nullptr), Size(0) {}
FoldingSetNodeIDRef(const unsigned * D,size_t S)273   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
274 
275   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
276   /// used to lookup the node in the FoldingSetImpl.
277   unsigned ComputeHash() const;
278 
279   bool operator==(FoldingSetNodeIDRef) const;
280 
281   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
282 
283   /// Used to compare the "ordering" of two nodes as defined by the
284   /// profiled bits and their ordering defined by memcmp().
285   bool operator<(FoldingSetNodeIDRef) const;
286 
getData()287   const unsigned *getData() const { return Data; }
getSize()288   size_t getSize() const { return Size; }
289 };
290 
291 //===--------------------------------------------------------------------===//
292 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
293 /// a node.  When all the bits are gathered this class is used to produce a
294 /// hash value for the node.
295 ///
296 class FoldingSetNodeID {
297   /// Bits - Vector of all the data bits that make the node unique.
298   /// Use a SmallVector to avoid a heap allocation in the common case.
299   SmallVector<unsigned, 32> Bits;
300 
301 public:
FoldingSetNodeID()302   FoldingSetNodeID() {}
303 
FoldingSetNodeID(FoldingSetNodeIDRef Ref)304   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
305     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
306 
307   /// Add* - Add various data types to Bit data.
308   ///
309   void AddPointer(const void *Ptr);
310   void AddInteger(signed I);
311   void AddInteger(unsigned I);
312   void AddInteger(long I);
313   void AddInteger(unsigned long I);
314   void AddInteger(long long I);
315   void AddInteger(unsigned long long I);
AddBoolean(bool B)316   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
317   void AddString(StringRef String);
318   void AddNodeID(const FoldingSetNodeID &ID);
319 
320   template <typename T>
Add(const T & x)321   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
322 
323   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
324   /// object to be used to compute a new profile.
clear()325   inline void clear() { Bits.clear(); }
326 
327   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
328   /// to lookup the node in the FoldingSetImpl.
329   unsigned ComputeHash() const;
330 
331   /// operator== - Used to compare two nodes to each other.
332   ///
333   bool operator==(const FoldingSetNodeID &RHS) const;
334   bool operator==(const FoldingSetNodeIDRef RHS) const;
335 
336   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
337   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
338 
339   /// Used to compare the "ordering" of two nodes as defined by the
340   /// profiled bits and their ordering defined by memcmp().
341   bool operator<(const FoldingSetNodeID &RHS) const;
342   bool operator<(const FoldingSetNodeIDRef RHS) const;
343 
344   /// Intern - Copy this node's data to a memory region allocated from the
345   /// given allocator and return a FoldingSetNodeIDRef describing the
346   /// interned data.
347   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
348 };
349 
350 // Convenience type to hide the implementation of the folding set.
351 typedef FoldingSetImpl::Node FoldingSetNode;
352 template<class T> class FoldingSetIterator;
353 template<class T> class FoldingSetBucketIterator;
354 
355 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
356 // require the definition of FoldingSetNodeID.
357 template<typename T>
358 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID)359 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
360                                   unsigned /*IDHash*/,
361                                   FoldingSetNodeID &TempID) {
362   FoldingSetTrait<T>::Profile(X, TempID);
363   return TempID == ID;
364 }
365 template<typename T>
366 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID)367 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
368   FoldingSetTrait<T>::Profile(X, TempID);
369   return TempID.ComputeHash();
370 }
371 template<typename T, typename Ctx>
372 inline bool
Equals(T & X,const FoldingSetNodeID & ID,unsigned,FoldingSetNodeID & TempID,Ctx Context)373 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
374                                                  const FoldingSetNodeID &ID,
375                                                  unsigned /*IDHash*/,
376                                                  FoldingSetNodeID &TempID,
377                                                  Ctx Context) {
378   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
379   return TempID == ID;
380 }
381 template<typename T, typename Ctx>
382 inline unsigned
ComputeHash(T & X,FoldingSetNodeID & TempID,Ctx Context)383 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
384                                                       FoldingSetNodeID &TempID,
385                                                       Ctx Context) {
386   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
387   return TempID.ComputeHash();
388 }
389 
390 //===----------------------------------------------------------------------===//
391 /// FoldingSet - This template class is used to instantiate a specialized
392 /// implementation of the folding set to the node class T.  T must be a
393 /// subclass of FoldingSetNode and implement a Profile function.
394 ///
395 /// Note that this set type is movable and move-assignable. However, its
396 /// moved-from state is not a valid state for anything other than
397 /// move-assigning and destroying. This is primarily to enable movable APIs
398 /// that incorporate these objects.
399 template <class T> class FoldingSet final : public FoldingSetImpl {
400 private:
401   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
402   /// way to convert nodes into a unique specifier.
GetNodeProfile(Node * N,FoldingSetNodeID & ID)403   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
404     T *TN = static_cast<T *>(N);
405     FoldingSetTrait<T>::Profile(*TN, ID);
406   }
407   /// NodeEquals - Instantiations may optionally provide a way to compare a
408   /// node with a specified ID.
NodeEquals(Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)409   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
410                   FoldingSetNodeID &TempID) const override {
411     T *TN = static_cast<T *>(N);
412     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
413   }
414   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
415   /// hash value directly from a node.
ComputeNodeHash(Node * N,FoldingSetNodeID & TempID)416   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
417     T *TN = static_cast<T *>(N);
418     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
419   }
420 
421 public:
422   explicit FoldingSet(unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)423       : FoldingSetImpl(Log2InitSize) {}
424 
FoldingSet(FoldingSet && Arg)425   FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
426   FoldingSet &operator=(FoldingSet &&RHS) {
427     (void)FoldingSetImpl::operator=(std::move(RHS));
428     return *this;
429   }
430 
431   typedef FoldingSetIterator<T> iterator;
begin()432   iterator begin() { return iterator(Buckets); }
end()433   iterator end() { return iterator(Buckets+NumBuckets); }
434 
435   typedef FoldingSetIterator<const T> const_iterator;
begin()436   const_iterator begin() const { return const_iterator(Buckets); }
end()437   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
438 
439   typedef FoldingSetBucketIterator<T> bucket_iterator;
440 
bucket_begin(unsigned hash)441   bucket_iterator bucket_begin(unsigned hash) {
442     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
443   }
444 
bucket_end(unsigned hash)445   bucket_iterator bucket_end(unsigned hash) {
446     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
447   }
448 
449   /// GetOrInsertNode - If there is an existing simple Node exactly
450   /// equal to the specified node, return it.  Otherwise, insert 'N' and
451   /// return it instead.
GetOrInsertNode(Node * N)452   T *GetOrInsertNode(Node *N) {
453     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
454   }
455 
456   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
457   /// return it.  If not, return the insertion token that will make insertion
458   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)459   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
460     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
461   }
462 };
463 
464 //===----------------------------------------------------------------------===//
465 /// ContextualFoldingSet - This template class is a further refinement
466 /// of FoldingSet which provides a context argument when calling
467 /// Profile on its nodes.  Currently, that argument is fixed at
468 /// initialization time.
469 ///
470 /// T must be a subclass of FoldingSetNode and implement a Profile
471 /// function with signature
472 ///   void Profile(llvm::FoldingSetNodeID &, Ctx);
473 template <class T, class Ctx>
474 class ContextualFoldingSet final : public FoldingSetImpl {
475   // Unfortunately, this can't derive from FoldingSet<T> because the
476   // construction vtable for FoldingSet<T> requires
477   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
478   // requires a single-argument T::Profile().
479 
480 private:
481   Ctx Context;
482 
483   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
484   /// way to convert nodes into a unique specifier.
GetNodeProfile(FoldingSetImpl::Node * N,FoldingSetNodeID & ID)485   void GetNodeProfile(FoldingSetImpl::Node *N,
486                       FoldingSetNodeID &ID) const override {
487     T *TN = static_cast<T *>(N);
488     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
489   }
NodeEquals(FoldingSetImpl::Node * N,const FoldingSetNodeID & ID,unsigned IDHash,FoldingSetNodeID & TempID)490   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
491                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
492     T *TN = static_cast<T *>(N);
493     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
494                                                      Context);
495   }
ComputeNodeHash(FoldingSetImpl::Node * N,FoldingSetNodeID & TempID)496   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
497                            FoldingSetNodeID &TempID) const override {
498     T *TN = static_cast<T *>(N);
499     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
500   }
501 
502 public:
503   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
FoldingSetImpl(Log2InitSize)504   : FoldingSetImpl(Log2InitSize), Context(Context)
505   {}
506 
getContext()507   Ctx getContext() const { return Context; }
508 
509   typedef FoldingSetIterator<T> iterator;
begin()510   iterator begin() { return iterator(Buckets); }
end()511   iterator end() { return iterator(Buckets+NumBuckets); }
512 
513   typedef FoldingSetIterator<const T> const_iterator;
begin()514   const_iterator begin() const { return const_iterator(Buckets); }
end()515   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
516 
517   typedef FoldingSetBucketIterator<T> bucket_iterator;
518 
bucket_begin(unsigned hash)519   bucket_iterator bucket_begin(unsigned hash) {
520     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
521   }
522 
bucket_end(unsigned hash)523   bucket_iterator bucket_end(unsigned hash) {
524     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
525   }
526 
527   /// GetOrInsertNode - If there is an existing simple Node exactly
528   /// equal to the specified node, return it.  Otherwise, insert 'N'
529   /// and return it instead.
GetOrInsertNode(Node * N)530   T *GetOrInsertNode(Node *N) {
531     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
532   }
533 
534   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
535   /// exists, return it.  If not, return the insertion token that will
536   /// make insertion faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)537   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
538     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
539   }
540 };
541 
542 //===----------------------------------------------------------------------===//
543 /// FoldingSetVector - This template class combines a FoldingSet and a vector
544 /// to provide the interface of FoldingSet but with deterministic iteration
545 /// order based on the insertion order. T must be a subclass of FoldingSetNode
546 /// and implement a Profile function.
547 template <class T, class VectorT = SmallVector<T*, 8> >
548 class FoldingSetVector {
549   FoldingSet<T> Set;
550   VectorT Vector;
551 
552 public:
553   explicit FoldingSetVector(unsigned Log2InitSize = 6)
Set(Log2InitSize)554       : Set(Log2InitSize) {
555   }
556 
557   typedef pointee_iterator<typename VectorT::iterator> iterator;
begin()558   iterator begin() { return Vector.begin(); }
end()559   iterator end()   { return Vector.end(); }
560 
561   typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
begin()562   const_iterator begin() const { return Vector.begin(); }
end()563   const_iterator end()   const { return Vector.end(); }
564 
565   /// clear - Remove all nodes from the folding set.
clear()566   void clear() { Set.clear(); Vector.clear(); }
567 
568   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
569   /// return it.  If not, return the insertion token that will make insertion
570   /// faster.
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)571   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
572     return Set.FindNodeOrInsertPos(ID, InsertPos);
573   }
574 
575   /// GetOrInsertNode - If there is an existing simple Node exactly
576   /// equal to the specified node, return it.  Otherwise, insert 'N' and
577   /// return it instead.
GetOrInsertNode(T * N)578   T *GetOrInsertNode(T *N) {
579     T *Result = Set.GetOrInsertNode(N);
580     if (Result == N) Vector.push_back(N);
581     return Result;
582   }
583 
584   /// InsertNode - Insert the specified node into the folding set, knowing that
585   /// it is not already in the folding set.  InsertPos must be obtained from
586   /// FindNodeOrInsertPos.
InsertNode(T * N,void * InsertPos)587   void InsertNode(T *N, void *InsertPos) {
588     Set.InsertNode(N, InsertPos);
589     Vector.push_back(N);
590   }
591 
592   /// InsertNode - Insert the specified node into the folding set, knowing that
593   /// it is not already in the folding set.
InsertNode(T * N)594   void InsertNode(T *N) {
595     Set.InsertNode(N);
596     Vector.push_back(N);
597   }
598 
599   /// size - Returns the number of nodes in the folding set.
size()600   unsigned size() const { return Set.size(); }
601 
602   /// empty - Returns true if there are no nodes in the folding set.
empty()603   bool empty() const { return Set.empty(); }
604 };
605 
606 //===----------------------------------------------------------------------===//
607 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
608 /// folding sets, which knows how to walk the folding set hash table.
609 class FoldingSetIteratorImpl {
610 protected:
611   FoldingSetNode *NodePtr;
612   FoldingSetIteratorImpl(void **Bucket);
613   void advance();
614 
615 public:
616   bool operator==(const FoldingSetIteratorImpl &RHS) const {
617     return NodePtr == RHS.NodePtr;
618   }
619   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
620     return NodePtr != RHS.NodePtr;
621   }
622 };
623 
624 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
625 public:
FoldingSetIterator(void ** Bucket)626   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
627 
628   T &operator*() const {
629     return *static_cast<T*>(NodePtr);
630   }
631 
632   T *operator->() const {
633     return static_cast<T*>(NodePtr);
634   }
635 
636   inline FoldingSetIterator &operator++() {          // Preincrement
637     advance();
638     return *this;
639   }
640   FoldingSetIterator operator++(int) {        // Postincrement
641     FoldingSetIterator tmp = *this; ++*this; return tmp;
642   }
643 };
644 
645 //===----------------------------------------------------------------------===//
646 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
647 /// shared by all folding sets, which knows how to walk a particular bucket
648 /// of a folding set hash table.
649 
650 class FoldingSetBucketIteratorImpl {
651 protected:
652   void *Ptr;
653 
654   explicit FoldingSetBucketIteratorImpl(void **Bucket);
655 
FoldingSetBucketIteratorImpl(void ** Bucket,bool)656   FoldingSetBucketIteratorImpl(void **Bucket, bool)
657     : Ptr(Bucket) {}
658 
advance()659   void advance() {
660     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
661     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
662     Ptr = reinterpret_cast<void*>(x);
663   }
664 
665 public:
666   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
667     return Ptr == RHS.Ptr;
668   }
669   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
670     return Ptr != RHS.Ptr;
671   }
672 };
673 
674 template <class T>
675 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
676 public:
FoldingSetBucketIterator(void ** Bucket)677   explicit FoldingSetBucketIterator(void **Bucket) :
678     FoldingSetBucketIteratorImpl(Bucket) {}
679 
FoldingSetBucketIterator(void ** Bucket,bool)680   FoldingSetBucketIterator(void **Bucket, bool) :
681     FoldingSetBucketIteratorImpl(Bucket, true) {}
682 
683   T &operator*() const { return *static_cast<T*>(Ptr); }
684   T *operator->() const { return static_cast<T*>(Ptr); }
685 
686   inline FoldingSetBucketIterator &operator++() { // Preincrement
687     advance();
688     return *this;
689   }
690   FoldingSetBucketIterator operator++(int) {      // Postincrement
691     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
692   }
693 };
694 
695 //===----------------------------------------------------------------------===//
696 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
697 /// types in an enclosing object so that they can be inserted into FoldingSets.
698 template <typename T>
699 class FoldingSetNodeWrapper : public FoldingSetNode {
700   T data;
701 
702 public:
703   template <typename... Ts>
FoldingSetNodeWrapper(Ts &&...Args)704   explicit FoldingSetNodeWrapper(Ts &&... Args)
705       : data(std::forward<Ts>(Args)...) {}
706 
Profile(FoldingSetNodeID & ID)707   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
708 
getValue()709   T &getValue() { return data; }
getValue()710   const T &getValue() const { return data; }
711 
712   operator T&() { return data; }
713   operator const T&() const { return data; }
714 };
715 
716 //===----------------------------------------------------------------------===//
717 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
718 /// a FoldingSetNodeID value rather than requiring the node to recompute it
719 /// each time it is needed. This trades space for speed (which can be
720 /// significant if the ID is long), and it also permits nodes to drop
721 /// information that would otherwise only be required for recomputing an ID.
722 class FastFoldingSetNode : public FoldingSetNode {
723   FoldingSetNodeID FastID;
724 
725 protected:
FastFoldingSetNode(const FoldingSetNodeID & ID)726   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
727 
728 public:
Profile(FoldingSetNodeID & ID)729   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
730 };
731 
732 //===----------------------------------------------------------------------===//
733 // Partial specializations of FoldingSetTrait.
734 
735 template<typename T> struct FoldingSetTrait<T*> {
736   static inline void Profile(T *X, FoldingSetNodeID &ID) {
737     ID.AddPointer(X);
738   }
739 };
740 template <typename T1, typename T2>
741 struct FoldingSetTrait<std::pair<T1, T2>> {
742   static inline void Profile(const std::pair<T1, T2> &P,
743                              llvm::FoldingSetNodeID &ID) {
744     ID.Add(P.first);
745     ID.Add(P.second);
746   }
747 };
748 } // End of namespace llvm.
749 
750 #endif
751