1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 // to indicate the weights of each edge coming out of the branch.
19 // The weight of each edge is the weight of the target block for
20 // that edge. The weight of a block B is computed as the maximum
21 // number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/Pass.h"
43 #include "llvm/ProfileData/SampleProfReader.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorOr.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/IPO.h"
50 #include "llvm/Transforms/Utils/Cloning.h"
51 #include <cctype>
52
53 using namespace llvm;
54 using namespace sampleprof;
55
56 #define DEBUG_TYPE "sample-profile"
57
58 // Command line option to specify the file to read samples from. This is
59 // mainly used for debugging.
60 static cl::opt<std::string> SampleProfileFile(
61 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
62 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
63 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
64 "sample-profile-max-propagate-iterations", cl::init(100),
65 cl::desc("Maximum number of iterations to go through when propagating "
66 "sample block/edge weights through the CFG."));
67 static cl::opt<unsigned> SampleProfileRecordCoverage(
68 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
69 cl::desc("Emit a warning if less than N% of records in the input profile "
70 "are matched to the IR."));
71 static cl::opt<unsigned> SampleProfileSampleCoverage(
72 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
73 cl::desc("Emit a warning if less than N% of samples in the input profile "
74 "are matched to the IR."));
75 static cl::opt<double> SampleProfileHotThreshold(
76 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
77 cl::desc("Inlined functions that account for more than N% of all samples "
78 "collected in the parent function, will be inlined again."));
79 static cl::opt<double> SampleProfileGlobalHotThreshold(
80 "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"),
81 cl::desc("Top-level functions that account for more than N% of all samples "
82 "collected in the profile, will be marked as hot for the inliner "
83 "to consider."));
84 static cl::opt<double> SampleProfileGlobalColdThreshold(
85 "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"),
86 cl::desc("Top-level functions that account for less than N% of all samples "
87 "collected in the profile, will be marked as cold for the inliner "
88 "to consider."));
89
90 namespace {
91 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
92 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
93 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
94 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
95 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
96 BlockEdgeMap;
97
98 /// \brief Sample profile pass.
99 ///
100 /// This pass reads profile data from the file specified by
101 /// -sample-profile-file and annotates every affected function with the
102 /// profile information found in that file.
103 class SampleProfileLoader : public ModulePass {
104 public:
105 // Class identification, replacement for typeinfo
106 static char ID;
107
SampleProfileLoader(StringRef Name=SampleProfileFile)108 SampleProfileLoader(StringRef Name = SampleProfileFile)
109 : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(),
110 Samples(nullptr), Filename(Name), ProfileIsValid(false),
111 TotalCollectedSamples(0) {
112 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
113 }
114
115 bool doInitialization(Module &M) override;
116
dump()117 void dump() { Reader->dump(); }
118
getPassName() const119 const char *getPassName() const override { return "Sample profile pass"; }
120
121 bool runOnModule(Module &M) override;
122
getAnalysisUsage(AnalysisUsage & AU) const123 void getAnalysisUsage(AnalysisUsage &AU) const override {
124 AU.setPreservesCFG();
125 }
126
127 protected:
128 bool runOnFunction(Function &F);
129 unsigned getFunctionLoc(Function &F);
130 bool emitAnnotations(Function &F);
131 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
132 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
133 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
134 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
135 bool inlineHotFunctions(Function &F);
136 bool emitInlineHints(Function &F);
137 void printEdgeWeight(raw_ostream &OS, Edge E);
138 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
139 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
140 bool computeBlockWeights(Function &F);
141 void findEquivalenceClasses(Function &F);
142 void findEquivalencesFor(BasicBlock *BB1,
143 SmallVector<BasicBlock *, 8> Descendants,
144 DominatorTreeBase<BasicBlock> *DomTree);
145 void propagateWeights(Function &F);
146 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
147 void buildEdges(Function &F);
148 bool propagateThroughEdges(Function &F);
149 void computeDominanceAndLoopInfo(Function &F);
150 unsigned getOffset(unsigned L, unsigned H) const;
151 void clearFunctionData();
152
153 /// \brief Map basic blocks to their computed weights.
154 ///
155 /// The weight of a basic block is defined to be the maximum
156 /// of all the instruction weights in that block.
157 BlockWeightMap BlockWeights;
158
159 /// \brief Map edges to their computed weights.
160 ///
161 /// Edge weights are computed by propagating basic block weights in
162 /// SampleProfile::propagateWeights.
163 EdgeWeightMap EdgeWeights;
164
165 /// \brief Set of visited blocks during propagation.
166 SmallPtrSet<const BasicBlock *, 128> VisitedBlocks;
167
168 /// \brief Set of visited edges during propagation.
169 SmallSet<Edge, 128> VisitedEdges;
170
171 /// \brief Equivalence classes for block weights.
172 ///
173 /// Two blocks BB1 and BB2 are in the same equivalence class if they
174 /// dominate and post-dominate each other, and they are in the same loop
175 /// nest. When this happens, the two blocks are guaranteed to execute
176 /// the same number of times.
177 EquivalenceClassMap EquivalenceClass;
178
179 /// \brief Dominance, post-dominance and loop information.
180 std::unique_ptr<DominatorTree> DT;
181 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
182 std::unique_ptr<LoopInfo> LI;
183
184 /// \brief Predecessors for each basic block in the CFG.
185 BlockEdgeMap Predecessors;
186
187 /// \brief Successors for each basic block in the CFG.
188 BlockEdgeMap Successors;
189
190 /// \brief Profile reader object.
191 std::unique_ptr<SampleProfileReader> Reader;
192
193 /// \brief Samples collected for the body of this function.
194 FunctionSamples *Samples;
195
196 /// \brief Name of the profile file to load.
197 StringRef Filename;
198
199 /// \brief Flag indicating whether the profile input loaded successfully.
200 bool ProfileIsValid;
201
202 /// \brief Total number of samples collected in this profile.
203 ///
204 /// This is the sum of all the samples collected in all the functions executed
205 /// at runtime.
206 uint64_t TotalCollectedSamples;
207 };
208
209 class SampleCoverageTracker {
210 public:
SampleCoverageTracker()211 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
212
213 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
214 uint32_t Discriminator, uint64_t Samples);
215 unsigned computeCoverage(unsigned Used, unsigned Total) const;
216 unsigned countUsedRecords(const FunctionSamples *FS) const;
217 unsigned countBodyRecords(const FunctionSamples *FS) const;
getTotalUsedSamples() const218 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
219 uint64_t countBodySamples(const FunctionSamples *FS) const;
clear()220 void clear() {
221 SampleCoverage.clear();
222 TotalUsedSamples = 0;
223 }
224
225 private:
226 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
227 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
228 FunctionSamplesCoverageMap;
229
230 /// Coverage map for sampling records.
231 ///
232 /// This map keeps a record of sampling records that have been matched to
233 /// an IR instruction. This is used to detect some form of staleness in
234 /// profiles (see flag -sample-profile-check-coverage).
235 ///
236 /// Each entry in the map corresponds to a FunctionSamples instance. This is
237 /// another map that counts how many times the sample record at the
238 /// given location has been used.
239 FunctionSamplesCoverageMap SampleCoverage;
240
241 /// Number of samples used from the profile.
242 ///
243 /// When a sampling record is used for the first time, the samples from
244 /// that record are added to this accumulator. Coverage is later computed
245 /// based on the total number of samples available in this function and
246 /// its callsites.
247 ///
248 /// Note that this accumulator tracks samples used from a single function
249 /// and all the inlined callsites. Strictly, we should have a map of counters
250 /// keyed by FunctionSamples pointers, but these stats are cleared after
251 /// every function, so we just need to keep a single counter.
252 uint64_t TotalUsedSamples;
253 };
254
255 SampleCoverageTracker CoverageTracker;
256
257 /// Return true if the given callsite is hot wrt to its caller.
258 ///
259 /// Functions that were inlined in the original binary will be represented
260 /// in the inline stack in the sample profile. If the profile shows that
261 /// the original inline decision was "good" (i.e., the callsite is executed
262 /// frequently), then we will recreate the inline decision and apply the
263 /// profile from the inlined callsite.
264 ///
265 /// To decide whether an inlined callsite is hot, we compute the fraction
266 /// of samples used by the callsite with respect to the total number of samples
267 /// collected in the caller.
268 ///
269 /// If that fraction is larger than the default given by
270 /// SampleProfileHotThreshold, the callsite will be inlined again.
callsiteIsHot(const FunctionSamples * CallerFS,const FunctionSamples * CallsiteFS)271 bool callsiteIsHot(const FunctionSamples *CallerFS,
272 const FunctionSamples *CallsiteFS) {
273 if (!CallsiteFS)
274 return false; // The callsite was not inlined in the original binary.
275
276 uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
277 if (ParentTotalSamples == 0)
278 return false; // Avoid division by zero.
279
280 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
281 if (CallsiteTotalSamples == 0)
282 return false; // Callsite is trivially cold.
283
284 double PercentSamples =
285 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
286 return PercentSamples >= SampleProfileHotThreshold;
287 }
288
289 }
290
291 /// Mark as used the sample record for the given function samples at
292 /// (LineOffset, Discriminator).
293 ///
294 /// \returns true if this is the first time we mark the given record.
markSamplesUsed(const FunctionSamples * FS,uint32_t LineOffset,uint32_t Discriminator,uint64_t Samples)295 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
296 uint32_t LineOffset,
297 uint32_t Discriminator,
298 uint64_t Samples) {
299 LineLocation Loc(LineOffset, Discriminator);
300 unsigned &Count = SampleCoverage[FS][Loc];
301 bool FirstTime = (++Count == 1);
302 if (FirstTime)
303 TotalUsedSamples += Samples;
304 return FirstTime;
305 }
306
307 /// Return the number of sample records that were applied from this profile.
308 ///
309 /// This count does not include records from cold inlined callsites.
310 unsigned
countUsedRecords(const FunctionSamples * FS) const311 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
312 auto I = SampleCoverage.find(FS);
313
314 // The size of the coverage map for FS represents the number of records
315 // that were marked used at least once.
316 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
317
318 // If there are inlined callsites in this function, count the samples found
319 // in the respective bodies. However, do not bother counting callees with 0
320 // total samples, these are callees that were never invoked at runtime.
321 for (const auto &I : FS->getCallsiteSamples()) {
322 const FunctionSamples *CalleeSamples = &I.second;
323 if (callsiteIsHot(FS, CalleeSamples))
324 Count += countUsedRecords(CalleeSamples);
325 }
326
327 return Count;
328 }
329
330 /// Return the number of sample records in the body of this profile.
331 ///
332 /// This count does not include records from cold inlined callsites.
333 unsigned
countBodyRecords(const FunctionSamples * FS) const334 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
335 unsigned Count = FS->getBodySamples().size();
336
337 // Only count records in hot callsites.
338 for (const auto &I : FS->getCallsiteSamples()) {
339 const FunctionSamples *CalleeSamples = &I.second;
340 if (callsiteIsHot(FS, CalleeSamples))
341 Count += countBodyRecords(CalleeSamples);
342 }
343
344 return Count;
345 }
346
347 /// Return the number of samples collected in the body of this profile.
348 ///
349 /// This count does not include samples from cold inlined callsites.
350 uint64_t
countBodySamples(const FunctionSamples * FS) const351 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
352 uint64_t Total = 0;
353 for (const auto &I : FS->getBodySamples())
354 Total += I.second.getSamples();
355
356 // Only count samples in hot callsites.
357 for (const auto &I : FS->getCallsiteSamples()) {
358 const FunctionSamples *CalleeSamples = &I.second;
359 if (callsiteIsHot(FS, CalleeSamples))
360 Total += countBodySamples(CalleeSamples);
361 }
362
363 return Total;
364 }
365
366 /// Return the fraction of sample records used in this profile.
367 ///
368 /// The returned value is an unsigned integer in the range 0-100 indicating
369 /// the percentage of sample records that were used while applying this
370 /// profile to the associated function.
computeCoverage(unsigned Used,unsigned Total) const371 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
372 unsigned Total) const {
373 assert(Used <= Total &&
374 "number of used records cannot exceed the total number of records");
375 return Total > 0 ? Used * 100 / Total : 100;
376 }
377
378 /// Clear all the per-function data used to load samples and propagate weights.
clearFunctionData()379 void SampleProfileLoader::clearFunctionData() {
380 BlockWeights.clear();
381 EdgeWeights.clear();
382 VisitedBlocks.clear();
383 VisitedEdges.clear();
384 EquivalenceClass.clear();
385 DT = nullptr;
386 PDT = nullptr;
387 LI = nullptr;
388 Predecessors.clear();
389 Successors.clear();
390 CoverageTracker.clear();
391 }
392
393 /// \brief Returns the offset of lineno \p L to head_lineno \p H
394 ///
395 /// \param L Lineno
396 /// \param H Header lineno of the function
397 ///
398 /// \returns offset to the header lineno. 16 bits are used to represent offset.
399 /// We assume that a single function will not exceed 65535 LOC.
getOffset(unsigned L,unsigned H) const400 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
401 return (L - H) & 0xffff;
402 }
403
404 /// \brief Print the weight of edge \p E on stream \p OS.
405 ///
406 /// \param OS Stream to emit the output to.
407 /// \param E Edge to print.
printEdgeWeight(raw_ostream & OS,Edge E)408 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
409 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
410 << "]: " << EdgeWeights[E] << "\n";
411 }
412
413 /// \brief Print the equivalence class of block \p BB on stream \p OS.
414 ///
415 /// \param OS Stream to emit the output to.
416 /// \param BB Block to print.
printBlockEquivalence(raw_ostream & OS,const BasicBlock * BB)417 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
418 const BasicBlock *BB) {
419 const BasicBlock *Equiv = EquivalenceClass[BB];
420 OS << "equivalence[" << BB->getName()
421 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
422 }
423
424 /// \brief Print the weight of block \p BB on stream \p OS.
425 ///
426 /// \param OS Stream to emit the output to.
427 /// \param BB Block to print.
printBlockWeight(raw_ostream & OS,const BasicBlock * BB) const428 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
429 const BasicBlock *BB) const {
430 const auto &I = BlockWeights.find(BB);
431 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
432 OS << "weight[" << BB->getName() << "]: " << W << "\n";
433 }
434
435 /// \brief Get the weight for an instruction.
436 ///
437 /// The "weight" of an instruction \p Inst is the number of samples
438 /// collected on that instruction at runtime. To retrieve it, we
439 /// need to compute the line number of \p Inst relative to the start of its
440 /// function. We use HeaderLineno to compute the offset. We then
441 /// look up the samples collected for \p Inst using BodySamples.
442 ///
443 /// \param Inst Instruction to query.
444 ///
445 /// \returns the weight of \p Inst.
446 ErrorOr<uint64_t>
getInstWeight(const Instruction & Inst) const447 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
448 DebugLoc DLoc = Inst.getDebugLoc();
449 if (!DLoc)
450 return std::error_code();
451
452 const FunctionSamples *FS = findFunctionSamples(Inst);
453 if (!FS)
454 return std::error_code();
455
456 const DILocation *DIL = DLoc;
457 unsigned Lineno = DLoc.getLine();
458 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
459
460 uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
461 uint32_t Discriminator = DIL->getDiscriminator();
462 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
463 if (R) {
464 bool FirstMark =
465 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
466 if (FirstMark) {
467 const Function *F = Inst.getParent()->getParent();
468 LLVMContext &Ctx = F->getContext();
469 emitOptimizationRemark(
470 Ctx, DEBUG_TYPE, *F, DLoc,
471 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
472 Twine(LineOffset) +
473 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
474 }
475 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":"
476 << Inst << " (line offset: " << Lineno - HeaderLineno << "."
477 << DIL->getDiscriminator() << " - weight: " << R.get()
478 << ")\n");
479 }
480 return R;
481 }
482
483 /// \brief Compute the weight of a basic block.
484 ///
485 /// The weight of basic block \p BB is the maximum weight of all the
486 /// instructions in BB.
487 ///
488 /// \param BB The basic block to query.
489 ///
490 /// \returns the weight for \p BB.
491 ErrorOr<uint64_t>
getBlockWeight(const BasicBlock * BB) const492 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
493 bool Found = false;
494 uint64_t Weight = 0;
495 for (auto &I : BB->getInstList()) {
496 const ErrorOr<uint64_t> &R = getInstWeight(I);
497 if (R && R.get() >= Weight) {
498 Weight = R.get();
499 Found = true;
500 }
501 }
502 if (Found)
503 return Weight;
504 else
505 return std::error_code();
506 }
507
508 /// \brief Compute and store the weights of every basic block.
509 ///
510 /// This populates the BlockWeights map by computing
511 /// the weights of every basic block in the CFG.
512 ///
513 /// \param F The function to query.
computeBlockWeights(Function & F)514 bool SampleProfileLoader::computeBlockWeights(Function &F) {
515 bool Changed = false;
516 DEBUG(dbgs() << "Block weights\n");
517 for (const auto &BB : F) {
518 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
519 if (Weight) {
520 BlockWeights[&BB] = Weight.get();
521 VisitedBlocks.insert(&BB);
522 Changed = true;
523 }
524 DEBUG(printBlockWeight(dbgs(), &BB));
525 }
526
527 return Changed;
528 }
529
530 /// \brief Get the FunctionSamples for a call instruction.
531 ///
532 /// The FunctionSamples of a call instruction \p Inst is the inlined
533 /// instance in which that call instruction is calling to. It contains
534 /// all samples that resides in the inlined instance. We first find the
535 /// inlined instance in which the call instruction is from, then we
536 /// traverse its children to find the callsite with the matching
537 /// location and callee function name.
538 ///
539 /// \param Inst Call instruction to query.
540 ///
541 /// \returns The FunctionSamples pointer to the inlined instance.
542 const FunctionSamples *
findCalleeFunctionSamples(const CallInst & Inst) const543 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
544 const DILocation *DIL = Inst.getDebugLoc();
545 if (!DIL) {
546 return nullptr;
547 }
548 DISubprogram *SP = DIL->getScope()->getSubprogram();
549 if (!SP)
550 return nullptr;
551
552 Function *CalleeFunc = Inst.getCalledFunction();
553 if (!CalleeFunc) {
554 return nullptr;
555 }
556
557 StringRef CalleeName = CalleeFunc->getName();
558 const FunctionSamples *FS = findFunctionSamples(Inst);
559 if (FS == nullptr)
560 return nullptr;
561
562 return FS->findFunctionSamplesAt(
563 CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
564 DIL->getDiscriminator(), CalleeName));
565 }
566
567 /// \brief Get the FunctionSamples for an instruction.
568 ///
569 /// The FunctionSamples of an instruction \p Inst is the inlined instance
570 /// in which that instruction is coming from. We traverse the inline stack
571 /// of that instruction, and match it with the tree nodes in the profile.
572 ///
573 /// \param Inst Instruction to query.
574 ///
575 /// \returns the FunctionSamples pointer to the inlined instance.
576 const FunctionSamples *
findFunctionSamples(const Instruction & Inst) const577 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
578 SmallVector<CallsiteLocation, 10> S;
579 const DILocation *DIL = Inst.getDebugLoc();
580 if (!DIL) {
581 return Samples;
582 }
583 StringRef CalleeName;
584 for (const DILocation *DIL = Inst.getDebugLoc(); DIL;
585 DIL = DIL->getInlinedAt()) {
586 DISubprogram *SP = DIL->getScope()->getSubprogram();
587 if (!SP)
588 return nullptr;
589 if (!CalleeName.empty()) {
590 S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
591 DIL->getDiscriminator(), CalleeName));
592 }
593 CalleeName = SP->getLinkageName();
594 }
595 if (S.size() == 0)
596 return Samples;
597 const FunctionSamples *FS = Samples;
598 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
599 FS = FS->findFunctionSamplesAt(S[i]);
600 }
601 return FS;
602 }
603
604 /// \brief Emit an inline hint if \p F is globally hot or cold.
605 ///
606 /// If \p F consumes a significant fraction of samples (indicated by
607 /// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the
608 /// inliner to consider the function hot.
609 ///
610 /// If \p F consumes a small fraction of samples (indicated by
611 /// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner
612 /// to consider the function cold.
613 ///
614 /// FIXME - This setting of inline hints is sub-optimal. Instead of marking a
615 /// function globally hot or cold, we should be annotating individual callsites.
616 /// This is not currently possible, but work on the inliner will eventually
617 /// provide this ability. See http://reviews.llvm.org/D15003 for details and
618 /// discussion.
619 ///
620 /// \returns True if either attribute was applied to \p F.
emitInlineHints(Function & F)621 bool SampleProfileLoader::emitInlineHints(Function &F) {
622 if (TotalCollectedSamples == 0)
623 return false;
624
625 uint64_t FunctionSamples = Samples->getTotalSamples();
626 double SamplesPercent =
627 (double)FunctionSamples / (double)TotalCollectedSamples * 100.0;
628
629 // If the function collected more samples than the hot threshold, mark
630 // it globally hot.
631 if (SamplesPercent >= SampleProfileGlobalHotThreshold) {
632 F.addFnAttr(llvm::Attribute::InlineHint);
633 std::string Msg;
634 raw_string_ostream S(Msg);
635 S << "Applied inline hint to globally hot function '" << F.getName()
636 << "' with " << format("%.2f", SamplesPercent)
637 << "% of samples (threshold: "
638 << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)";
639 S.flush();
640 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
641 return true;
642 }
643
644 // If the function collected fewer samples than the cold threshold, mark
645 // it globally cold.
646 if (SamplesPercent <= SampleProfileGlobalColdThreshold) {
647 F.addFnAttr(llvm::Attribute::Cold);
648 std::string Msg;
649 raw_string_ostream S(Msg);
650 S << "Applied cold hint to globally cold function '" << F.getName()
651 << "' with " << format("%.2f", SamplesPercent)
652 << "% of samples (threshold: "
653 << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)";
654 S.flush();
655 emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
656 return true;
657 }
658
659 return false;
660 }
661
662 /// \brief Iteratively inline hot callsites of a function.
663 ///
664 /// Iteratively traverse all callsites of the function \p F, and find if
665 /// the corresponding inlined instance exists and is hot in profile. If
666 /// it is hot enough, inline the callsites and adds new callsites of the
667 /// callee into the caller.
668 ///
669 /// TODO: investigate the possibility of not invoking InlineFunction directly.
670 ///
671 /// \param F function to perform iterative inlining.
672 ///
673 /// \returns True if there is any inline happened.
inlineHotFunctions(Function & F)674 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
675 bool Changed = false;
676 LLVMContext &Ctx = F.getContext();
677 while (true) {
678 bool LocalChanged = false;
679 SmallVector<CallInst *, 10> CIS;
680 for (auto &BB : F) {
681 for (auto &I : BB.getInstList()) {
682 CallInst *CI = dyn_cast<CallInst>(&I);
683 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
684 CIS.push_back(CI);
685 }
686 }
687 for (auto CI : CIS) {
688 InlineFunctionInfo IFI;
689 Function *CalledFunction = CI->getCalledFunction();
690 DebugLoc DLoc = CI->getDebugLoc();
691 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
692 if (InlineFunction(CI, IFI)) {
693 LocalChanged = true;
694 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
695 Twine("inlined hot callee '") +
696 CalledFunction->getName() + "' with " +
697 Twine(NumSamples) + " samples into '" +
698 F.getName() + "'");
699 }
700 }
701 if (LocalChanged) {
702 Changed = true;
703 } else {
704 break;
705 }
706 }
707 return Changed;
708 }
709
710 /// \brief Find equivalence classes for the given block.
711 ///
712 /// This finds all the blocks that are guaranteed to execute the same
713 /// number of times as \p BB1. To do this, it traverses all the
714 /// descendants of \p BB1 in the dominator or post-dominator tree.
715 ///
716 /// A block BB2 will be in the same equivalence class as \p BB1 if
717 /// the following holds:
718 ///
719 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
720 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
721 /// dominate BB1 in the post-dominator tree.
722 ///
723 /// 2- Both BB2 and \p BB1 must be in the same loop.
724 ///
725 /// For every block BB2 that meets those two requirements, we set BB2's
726 /// equivalence class to \p BB1.
727 ///
728 /// \param BB1 Block to check.
729 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
730 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
731 /// with blocks from \p BB1's dominator tree, then
732 /// this is the post-dominator tree, and vice versa.
findEquivalencesFor(BasicBlock * BB1,SmallVector<BasicBlock *,8> Descendants,DominatorTreeBase<BasicBlock> * DomTree)733 void SampleProfileLoader::findEquivalencesFor(
734 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
735 DominatorTreeBase<BasicBlock> *DomTree) {
736 const BasicBlock *EC = EquivalenceClass[BB1];
737 uint64_t Weight = BlockWeights[EC];
738 for (const auto *BB2 : Descendants) {
739 bool IsDomParent = DomTree->dominates(BB2, BB1);
740 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
741 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
742 EquivalenceClass[BB2] = EC;
743
744 // If BB2 is heavier than BB1, make BB2 have the same weight
745 // as BB1.
746 //
747 // Note that we don't worry about the opposite situation here
748 // (when BB2 is lighter than BB1). We will deal with this
749 // during the propagation phase. Right now, we just want to
750 // make sure that BB1 has the largest weight of all the
751 // members of its equivalence set.
752 Weight = std::max(Weight, BlockWeights[BB2]);
753 }
754 }
755 BlockWeights[EC] = Weight;
756 }
757
758 /// \brief Find equivalence classes.
759 ///
760 /// Since samples may be missing from blocks, we can fill in the gaps by setting
761 /// the weights of all the blocks in the same equivalence class to the same
762 /// weight. To compute the concept of equivalence, we use dominance and loop
763 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
764 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
765 ///
766 /// \param F The function to query.
findEquivalenceClasses(Function & F)767 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
768 SmallVector<BasicBlock *, 8> DominatedBBs;
769 DEBUG(dbgs() << "\nBlock equivalence classes\n");
770 // Find equivalence sets based on dominance and post-dominance information.
771 for (auto &BB : F) {
772 BasicBlock *BB1 = &BB;
773
774 // Compute BB1's equivalence class once.
775 if (EquivalenceClass.count(BB1)) {
776 DEBUG(printBlockEquivalence(dbgs(), BB1));
777 continue;
778 }
779
780 // By default, blocks are in their own equivalence class.
781 EquivalenceClass[BB1] = BB1;
782
783 // Traverse all the blocks dominated by BB1. We are looking for
784 // every basic block BB2 such that:
785 //
786 // 1- BB1 dominates BB2.
787 // 2- BB2 post-dominates BB1.
788 // 3- BB1 and BB2 are in the same loop nest.
789 //
790 // If all those conditions hold, it means that BB2 is executed
791 // as many times as BB1, so they are placed in the same equivalence
792 // class by making BB2's equivalence class be BB1.
793 DominatedBBs.clear();
794 DT->getDescendants(BB1, DominatedBBs);
795 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
796
797 DEBUG(printBlockEquivalence(dbgs(), BB1));
798 }
799
800 // Assign weights to equivalence classes.
801 //
802 // All the basic blocks in the same equivalence class will execute
803 // the same number of times. Since we know that the head block in
804 // each equivalence class has the largest weight, assign that weight
805 // to all the blocks in that equivalence class.
806 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
807 for (auto &BI : F) {
808 const BasicBlock *BB = &BI;
809 const BasicBlock *EquivBB = EquivalenceClass[BB];
810 if (BB != EquivBB)
811 BlockWeights[BB] = BlockWeights[EquivBB];
812 DEBUG(printBlockWeight(dbgs(), BB));
813 }
814 }
815
816 /// \brief Visit the given edge to decide if it has a valid weight.
817 ///
818 /// If \p E has not been visited before, we copy to \p UnknownEdge
819 /// and increment the count of unknown edges.
820 ///
821 /// \param E Edge to visit.
822 /// \param NumUnknownEdges Current number of unknown edges.
823 /// \param UnknownEdge Set if E has not been visited before.
824 ///
825 /// \returns E's weight, if known. Otherwise, return 0.
visitEdge(Edge E,unsigned * NumUnknownEdges,Edge * UnknownEdge)826 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
827 Edge *UnknownEdge) {
828 if (!VisitedEdges.count(E)) {
829 (*NumUnknownEdges)++;
830 *UnknownEdge = E;
831 return 0;
832 }
833
834 return EdgeWeights[E];
835 }
836
837 /// \brief Propagate weights through incoming/outgoing edges.
838 ///
839 /// If the weight of a basic block is known, and there is only one edge
840 /// with an unknown weight, we can calculate the weight of that edge.
841 ///
842 /// Similarly, if all the edges have a known count, we can calculate the
843 /// count of the basic block, if needed.
844 ///
845 /// \param F Function to process.
846 ///
847 /// \returns True if new weights were assigned to edges or blocks.
propagateThroughEdges(Function & F)848 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
849 bool Changed = false;
850 DEBUG(dbgs() << "\nPropagation through edges\n");
851 for (const auto &BI : F) {
852 const BasicBlock *BB = &BI;
853 const BasicBlock *EC = EquivalenceClass[BB];
854
855 // Visit all the predecessor and successor edges to determine
856 // which ones have a weight assigned already. Note that it doesn't
857 // matter that we only keep track of a single unknown edge. The
858 // only case we are interested in handling is when only a single
859 // edge is unknown (see setEdgeOrBlockWeight).
860 for (unsigned i = 0; i < 2; i++) {
861 uint64_t TotalWeight = 0;
862 unsigned NumUnknownEdges = 0;
863 Edge UnknownEdge, SelfReferentialEdge;
864
865 if (i == 0) {
866 // First, visit all predecessor edges.
867 for (auto *Pred : Predecessors[BB]) {
868 Edge E = std::make_pair(Pred, BB);
869 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
870 if (E.first == E.second)
871 SelfReferentialEdge = E;
872 }
873 } else {
874 // On the second round, visit all successor edges.
875 for (auto *Succ : Successors[BB]) {
876 Edge E = std::make_pair(BB, Succ);
877 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
878 }
879 }
880
881 // After visiting all the edges, there are three cases that we
882 // can handle immediately:
883 //
884 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
885 // In this case, we simply check that the sum of all the edges
886 // is the same as BB's weight. If not, we change BB's weight
887 // to match. Additionally, if BB had not been visited before,
888 // we mark it visited.
889 //
890 // - Only one edge is unknown and BB has already been visited.
891 // In this case, we can compute the weight of the edge by
892 // subtracting the total block weight from all the known
893 // edge weights. If the edges weight more than BB, then the
894 // edge of the last remaining edge is set to zero.
895 //
896 // - There exists a self-referential edge and the weight of BB is
897 // known. In this case, this edge can be based on BB's weight.
898 // We add up all the other known edges and set the weight on
899 // the self-referential edge as we did in the previous case.
900 //
901 // In any other case, we must continue iterating. Eventually,
902 // all edges will get a weight, or iteration will stop when
903 // it reaches SampleProfileMaxPropagateIterations.
904 if (NumUnknownEdges <= 1) {
905 uint64_t &BBWeight = BlockWeights[EC];
906 if (NumUnknownEdges == 0) {
907 // If we already know the weight of all edges, the weight of the
908 // basic block can be computed. It should be no larger than the sum
909 // of all edge weights.
910 if (TotalWeight > BBWeight) {
911 BBWeight = TotalWeight;
912 Changed = true;
913 DEBUG(dbgs() << "All edge weights for " << BB->getName()
914 << " known. Set weight for block: ";
915 printBlockWeight(dbgs(), BB););
916 }
917 if (VisitedBlocks.insert(EC).second)
918 Changed = true;
919 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
920 // If there is a single unknown edge and the block has been
921 // visited, then we can compute E's weight.
922 if (BBWeight >= TotalWeight)
923 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
924 else
925 EdgeWeights[UnknownEdge] = 0;
926 VisitedEdges.insert(UnknownEdge);
927 Changed = true;
928 DEBUG(dbgs() << "Set weight for edge: ";
929 printEdgeWeight(dbgs(), UnknownEdge));
930 }
931 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
932 uint64_t &BBWeight = BlockWeights[BB];
933 // We have a self-referential edge and the weight of BB is known.
934 if (BBWeight >= TotalWeight)
935 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
936 else
937 EdgeWeights[SelfReferentialEdge] = 0;
938 VisitedEdges.insert(SelfReferentialEdge);
939 Changed = true;
940 DEBUG(dbgs() << "Set self-referential edge weight to: ";
941 printEdgeWeight(dbgs(), SelfReferentialEdge));
942 }
943 }
944 }
945
946 return Changed;
947 }
948
949 /// \brief Build in/out edge lists for each basic block in the CFG.
950 ///
951 /// We are interested in unique edges. If a block B1 has multiple
952 /// edges to another block B2, we only add a single B1->B2 edge.
buildEdges(Function & F)953 void SampleProfileLoader::buildEdges(Function &F) {
954 for (auto &BI : F) {
955 BasicBlock *B1 = &BI;
956
957 // Add predecessors for B1.
958 SmallPtrSet<BasicBlock *, 16> Visited;
959 if (!Predecessors[B1].empty())
960 llvm_unreachable("Found a stale predecessors list in a basic block.");
961 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
962 BasicBlock *B2 = *PI;
963 if (Visited.insert(B2).second)
964 Predecessors[B1].push_back(B2);
965 }
966
967 // Add successors for B1.
968 Visited.clear();
969 if (!Successors[B1].empty())
970 llvm_unreachable("Found a stale successors list in a basic block.");
971 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
972 BasicBlock *B2 = *SI;
973 if (Visited.insert(B2).second)
974 Successors[B1].push_back(B2);
975 }
976 }
977 }
978
979 /// \brief Propagate weights into edges
980 ///
981 /// The following rules are applied to every block BB in the CFG:
982 ///
983 /// - If BB has a single predecessor/successor, then the weight
984 /// of that edge is the weight of the block.
985 ///
986 /// - If all incoming or outgoing edges are known except one, and the
987 /// weight of the block is already known, the weight of the unknown
988 /// edge will be the weight of the block minus the sum of all the known
989 /// edges. If the sum of all the known edges is larger than BB's weight,
990 /// we set the unknown edge weight to zero.
991 ///
992 /// - If there is a self-referential edge, and the weight of the block is
993 /// known, the weight for that edge is set to the weight of the block
994 /// minus the weight of the other incoming edges to that block (if
995 /// known).
propagateWeights(Function & F)996 void SampleProfileLoader::propagateWeights(Function &F) {
997 bool Changed = true;
998 unsigned I = 0;
999
1000 // Add an entry count to the function using the samples gathered
1001 // at the function entry.
1002 F.setEntryCount(Samples->getHeadSamples());
1003
1004 // Before propagation starts, build, for each block, a list of
1005 // unique predecessors and successors. This is necessary to handle
1006 // identical edges in multiway branches. Since we visit all blocks and all
1007 // edges of the CFG, it is cleaner to build these lists once at the start
1008 // of the pass.
1009 buildEdges(F);
1010
1011 // Propagate until we converge or we go past the iteration limit.
1012 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1013 Changed = propagateThroughEdges(F);
1014 }
1015
1016 // Generate MD_prof metadata for every branch instruction using the
1017 // edge weights computed during propagation.
1018 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1019 LLVMContext &Ctx = F.getContext();
1020 MDBuilder MDB(Ctx);
1021 for (auto &BI : F) {
1022 BasicBlock *BB = &BI;
1023 TerminatorInst *TI = BB->getTerminator();
1024 if (TI->getNumSuccessors() == 1)
1025 continue;
1026 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1027 continue;
1028
1029 DEBUG(dbgs() << "\nGetting weights for branch at line "
1030 << TI->getDebugLoc().getLine() << ".\n");
1031 SmallVector<uint32_t, 4> Weights;
1032 uint32_t MaxWeight = 0;
1033 DebugLoc MaxDestLoc;
1034 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1035 BasicBlock *Succ = TI->getSuccessor(I);
1036 Edge E = std::make_pair(BB, Succ);
1037 uint64_t Weight = EdgeWeights[E];
1038 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1039 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1040 // if needed. Sample counts in profiles are 64-bit unsigned values,
1041 // but internally branch weights are expressed as 32-bit values.
1042 if (Weight > std::numeric_limits<uint32_t>::max()) {
1043 DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1044 Weight = std::numeric_limits<uint32_t>::max();
1045 }
1046 Weights.push_back(static_cast<uint32_t>(Weight));
1047 if (Weight != 0) {
1048 if (Weight > MaxWeight) {
1049 MaxWeight = Weight;
1050 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1051 }
1052 }
1053 }
1054
1055 // Only set weights if there is at least one non-zero weight.
1056 // In any other case, let the analyzer set weights.
1057 if (MaxWeight > 0) {
1058 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1059 TI->setMetadata(llvm::LLVMContext::MD_prof,
1060 MDB.createBranchWeights(Weights));
1061 DebugLoc BranchLoc = TI->getDebugLoc();
1062 emitOptimizationRemark(
1063 Ctx, DEBUG_TYPE, F, MaxDestLoc,
1064 Twine("most popular destination for conditional branches at ") +
1065 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1066 Twine(BranchLoc.getLine()) + ":" +
1067 Twine(BranchLoc.getCol()))
1068 : Twine("<UNKNOWN LOCATION>")));
1069 } else {
1070 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1071 }
1072 }
1073 }
1074
1075 /// \brief Get the line number for the function header.
1076 ///
1077 /// This looks up function \p F in the current compilation unit and
1078 /// retrieves the line number where the function is defined. This is
1079 /// line 0 for all the samples read from the profile file. Every line
1080 /// number is relative to this line.
1081 ///
1082 /// \param F Function object to query.
1083 ///
1084 /// \returns the line number where \p F is defined. If it returns 0,
1085 /// it means that there is no debug information available for \p F.
getFunctionLoc(Function & F)1086 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1087 if (DISubprogram *S = getDISubprogram(&F))
1088 return S->getLine();
1089
1090 // If the start of \p F is missing, emit a diagnostic to inform the user
1091 // about the missed opportunity.
1092 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1093 "No debug information found in function " + F.getName() +
1094 ": Function profile not used",
1095 DS_Warning));
1096 return 0;
1097 }
1098
computeDominanceAndLoopInfo(Function & F)1099 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1100 DT.reset(new DominatorTree);
1101 DT->recalculate(F);
1102
1103 PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1104 PDT->recalculate(F);
1105
1106 LI.reset(new LoopInfo);
1107 LI->analyze(*DT);
1108 }
1109
1110 /// \brief Generate branch weight metadata for all branches in \p F.
1111 ///
1112 /// Branch weights are computed out of instruction samples using a
1113 /// propagation heuristic. Propagation proceeds in 3 phases:
1114 ///
1115 /// 1- Assignment of block weights. All the basic blocks in the function
1116 /// are initial assigned the same weight as their most frequently
1117 /// executed instruction.
1118 ///
1119 /// 2- Creation of equivalence classes. Since samples may be missing from
1120 /// blocks, we can fill in the gaps by setting the weights of all the
1121 /// blocks in the same equivalence class to the same weight. To compute
1122 /// the concept of equivalence, we use dominance and loop information.
1123 /// Two blocks B1 and B2 are in the same equivalence class if B1
1124 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1125 ///
1126 /// 3- Propagation of block weights into edges. This uses a simple
1127 /// propagation heuristic. The following rules are applied to every
1128 /// block BB in the CFG:
1129 ///
1130 /// - If BB has a single predecessor/successor, then the weight
1131 /// of that edge is the weight of the block.
1132 ///
1133 /// - If all the edges are known except one, and the weight of the
1134 /// block is already known, the weight of the unknown edge will
1135 /// be the weight of the block minus the sum of all the known
1136 /// edges. If the sum of all the known edges is larger than BB's weight,
1137 /// we set the unknown edge weight to zero.
1138 ///
1139 /// - If there is a self-referential edge, and the weight of the block is
1140 /// known, the weight for that edge is set to the weight of the block
1141 /// minus the weight of the other incoming edges to that block (if
1142 /// known).
1143 ///
1144 /// Since this propagation is not guaranteed to finalize for every CFG, we
1145 /// only allow it to proceed for a limited number of iterations (controlled
1146 /// by -sample-profile-max-propagate-iterations).
1147 ///
1148 /// FIXME: Try to replace this propagation heuristic with a scheme
1149 /// that is guaranteed to finalize. A work-list approach similar to
1150 /// the standard value propagation algorithm used by SSA-CCP might
1151 /// work here.
1152 ///
1153 /// Once all the branch weights are computed, we emit the MD_prof
1154 /// metadata on BB using the computed values for each of its branches.
1155 ///
1156 /// \param F The function to query.
1157 ///
1158 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F)1159 bool SampleProfileLoader::emitAnnotations(Function &F) {
1160 bool Changed = false;
1161
1162 if (getFunctionLoc(F) == 0)
1163 return false;
1164
1165 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1166 << ": " << getFunctionLoc(F) << "\n");
1167
1168 Changed |= emitInlineHints(F);
1169
1170 Changed |= inlineHotFunctions(F);
1171
1172 // Compute basic block weights.
1173 Changed |= computeBlockWeights(F);
1174
1175 if (Changed) {
1176 // Compute dominance and loop info needed for propagation.
1177 computeDominanceAndLoopInfo(F);
1178
1179 // Find equivalence classes.
1180 findEquivalenceClasses(F);
1181
1182 // Propagate weights to all edges.
1183 propagateWeights(F);
1184 }
1185
1186 // If coverage checking was requested, compute it now.
1187 if (SampleProfileRecordCoverage) {
1188 unsigned Used = CoverageTracker.countUsedRecords(Samples);
1189 unsigned Total = CoverageTracker.countBodyRecords(Samples);
1190 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1191 if (Coverage < SampleProfileRecordCoverage) {
1192 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1193 getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
1194 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1195 Twine(Coverage) + "%) were applied",
1196 DS_Warning));
1197 }
1198 }
1199
1200 if (SampleProfileSampleCoverage) {
1201 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1202 uint64_t Total = CoverageTracker.countBodySamples(Samples);
1203 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1204 if (Coverage < SampleProfileSampleCoverage) {
1205 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1206 getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
1207 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1208 Twine(Coverage) + "%) were applied",
1209 DS_Warning));
1210 }
1211 }
1212 return Changed;
1213 }
1214
1215 char SampleProfileLoader::ID = 0;
1216 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1217 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)1218 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1219 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1220 "Sample Profile loader", false, false)
1221
1222 bool SampleProfileLoader::doInitialization(Module &M) {
1223 auto &Ctx = M.getContext();
1224 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1225 if (std::error_code EC = ReaderOrErr.getError()) {
1226 std::string Msg = "Could not open profile: " + EC.message();
1227 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1228 return false;
1229 }
1230 Reader = std::move(ReaderOrErr.get());
1231 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1232 return true;
1233 }
1234
createSampleProfileLoaderPass()1235 ModulePass *llvm::createSampleProfileLoaderPass() {
1236 return new SampleProfileLoader(SampleProfileFile);
1237 }
1238
createSampleProfileLoaderPass(StringRef Name)1239 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1240 return new SampleProfileLoader(Name);
1241 }
1242
runOnModule(Module & M)1243 bool SampleProfileLoader::runOnModule(Module &M) {
1244 if (!ProfileIsValid)
1245 return false;
1246
1247 // Compute the total number of samples collected in this profile.
1248 for (const auto &I : Reader->getProfiles())
1249 TotalCollectedSamples += I.second.getTotalSamples();
1250
1251 bool retval = false;
1252 for (auto &F : M)
1253 if (!F.isDeclaration()) {
1254 clearFunctionData();
1255 retval |= runOnFunction(F);
1256 }
1257 return retval;
1258 }
1259
runOnFunction(Function & F)1260 bool SampleProfileLoader::runOnFunction(Function &F) {
1261 Samples = Reader->getSamplesFor(F);
1262 if (!Samples->empty())
1263 return emitAnnotations(F);
1264 return false;
1265 }
1266