• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_x86.h"
18 
19 #include "art_method.h"
20 #include "code_generator_utils.h"
21 #include "compiled_method.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "entrypoints/quick/quick_entrypoints_enum.h"
24 #include "gc/accounting/card_table.h"
25 #include "intrinsics.h"
26 #include "intrinsics_x86.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/class-inl.h"
29 #include "thread.h"
30 #include "utils/assembler.h"
31 #include "utils/stack_checks.h"
32 #include "utils/x86/assembler_x86.h"
33 #include "utils/x86/managed_register_x86.h"
34 
35 namespace art {
36 
37 template<class MirrorType>
38 class GcRoot;
39 
40 namespace x86 {
41 
42 static constexpr int kCurrentMethodStackOffset = 0;
43 static constexpr Register kMethodRegisterArgument = EAX;
44 static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
45 
46 static constexpr int kC2ConditionMask = 0x400;
47 
48 static constexpr int kFakeReturnRegister = Register(8);
49 
50 #define __ down_cast<X86Assembler*>(codegen->GetAssembler())->
51 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x).Int32Value()
52 
53 class NullCheckSlowPathX86 : public SlowPathCode {
54  public:
NullCheckSlowPathX86(HNullCheck * instruction)55   explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
56 
EmitNativeCode(CodeGenerator * codegen)57   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
58     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
59     __ Bind(GetEntryLabel());
60     if (instruction_->CanThrowIntoCatchBlock()) {
61       // Live registers will be restored in the catch block if caught.
62       SaveLiveRegisters(codegen, instruction_->GetLocations());
63     }
64     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
65                                instruction_,
66                                instruction_->GetDexPc(),
67                                this);
68     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
69   }
70 
IsFatal() const71   bool IsFatal() const OVERRIDE { return true; }
72 
GetDescription() const73   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
74 
75  private:
76   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
77 };
78 
79 class DivZeroCheckSlowPathX86 : public SlowPathCode {
80  public:
DivZeroCheckSlowPathX86(HDivZeroCheck * instruction)81   explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
82 
EmitNativeCode(CodeGenerator * codegen)83   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
84     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
85     __ Bind(GetEntryLabel());
86     if (instruction_->CanThrowIntoCatchBlock()) {
87       // Live registers will be restored in the catch block if caught.
88       SaveLiveRegisters(codegen, instruction_->GetLocations());
89     }
90     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
91                                instruction_,
92                                instruction_->GetDexPc(),
93                                this);
94     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
95   }
96 
IsFatal() const97   bool IsFatal() const OVERRIDE { return true; }
98 
GetDescription() const99   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
100 
101  private:
102   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
103 };
104 
105 class DivRemMinusOneSlowPathX86 : public SlowPathCode {
106  public:
DivRemMinusOneSlowPathX86(HInstruction * instruction,Register reg,bool is_div)107   DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
108       : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
109 
EmitNativeCode(CodeGenerator * codegen)110   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
111     __ Bind(GetEntryLabel());
112     if (is_div_) {
113       __ negl(reg_);
114     } else {
115       __ movl(reg_, Immediate(0));
116     }
117     __ jmp(GetExitLabel());
118   }
119 
GetDescription() const120   const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
121 
122  private:
123   Register reg_;
124   bool is_div_;
125   DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
126 };
127 
128 class BoundsCheckSlowPathX86 : public SlowPathCode {
129  public:
BoundsCheckSlowPathX86(HBoundsCheck * instruction)130   explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
131 
EmitNativeCode(CodeGenerator * codegen)132   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
133     LocationSummary* locations = instruction_->GetLocations();
134     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
135     __ Bind(GetEntryLabel());
136     // We're moving two locations to locations that could overlap, so we need a parallel
137     // move resolver.
138     if (instruction_->CanThrowIntoCatchBlock()) {
139       // Live registers will be restored in the catch block if caught.
140       SaveLiveRegisters(codegen, instruction_->GetLocations());
141     }
142     InvokeRuntimeCallingConvention calling_convention;
143     x86_codegen->EmitParallelMoves(
144         locations->InAt(0),
145         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
146         Primitive::kPrimInt,
147         locations->InAt(1),
148         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
149         Primitive::kPrimInt);
150     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
151                                instruction_,
152                                instruction_->GetDexPc(),
153                                this);
154     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
155   }
156 
IsFatal() const157   bool IsFatal() const OVERRIDE { return true; }
158 
GetDescription() const159   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
160 
161  private:
162   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
163 };
164 
165 class SuspendCheckSlowPathX86 : public SlowPathCode {
166  public:
SuspendCheckSlowPathX86(HSuspendCheck * instruction,HBasicBlock * successor)167   SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
168       : SlowPathCode(instruction), successor_(successor) {}
169 
EmitNativeCode(CodeGenerator * codegen)170   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
171     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
172     __ Bind(GetEntryLabel());
173     SaveLiveRegisters(codegen, instruction_->GetLocations());
174     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
175                                instruction_,
176                                instruction_->GetDexPc(),
177                                this);
178     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
179     RestoreLiveRegisters(codegen, instruction_->GetLocations());
180     if (successor_ == nullptr) {
181       __ jmp(GetReturnLabel());
182     } else {
183       __ jmp(x86_codegen->GetLabelOf(successor_));
184     }
185   }
186 
GetReturnLabel()187   Label* GetReturnLabel() {
188     DCHECK(successor_ == nullptr);
189     return &return_label_;
190   }
191 
GetSuccessor() const192   HBasicBlock* GetSuccessor() const {
193     return successor_;
194   }
195 
GetDescription() const196   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
197 
198  private:
199   HBasicBlock* const successor_;
200   Label return_label_;
201 
202   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
203 };
204 
205 class LoadStringSlowPathX86 : public SlowPathCode {
206  public:
LoadStringSlowPathX86(HLoadString * instruction)207   explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
208 
EmitNativeCode(CodeGenerator * codegen)209   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
210     LocationSummary* locations = instruction_->GetLocations();
211     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
212 
213     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
214     __ Bind(GetEntryLabel());
215     SaveLiveRegisters(codegen, locations);
216 
217     InvokeRuntimeCallingConvention calling_convention;
218     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
219     __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index));
220     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
221                                instruction_,
222                                instruction_->GetDexPc(),
223                                this);
224     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
225     x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
226     RestoreLiveRegisters(codegen, locations);
227 
228     __ jmp(GetExitLabel());
229   }
230 
GetDescription() const231   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
232 
233  private:
234   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
235 };
236 
237 class LoadClassSlowPathX86 : public SlowPathCode {
238  public:
LoadClassSlowPathX86(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)239   LoadClassSlowPathX86(HLoadClass* cls,
240                        HInstruction* at,
241                        uint32_t dex_pc,
242                        bool do_clinit)
243       : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
244     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
245   }
246 
EmitNativeCode(CodeGenerator * codegen)247   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
248     LocationSummary* locations = at_->GetLocations();
249     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
250     __ Bind(GetEntryLabel());
251     SaveLiveRegisters(codegen, locations);
252 
253     InvokeRuntimeCallingConvention calling_convention;
254     __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex()));
255     x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
256                                           : QUICK_ENTRY_POINT(pInitializeType),
257                                at_, dex_pc_, this);
258     if (do_clinit_) {
259       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
260     } else {
261       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
262     }
263 
264     // Move the class to the desired location.
265     Location out = locations->Out();
266     if (out.IsValid()) {
267       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
268       x86_codegen->Move32(out, Location::RegisterLocation(EAX));
269     }
270 
271     RestoreLiveRegisters(codegen, locations);
272     __ jmp(GetExitLabel());
273   }
274 
GetDescription() const275   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
276 
277  private:
278   // The class this slow path will load.
279   HLoadClass* const cls_;
280 
281   // The instruction where this slow path is happening.
282   // (Might be the load class or an initialization check).
283   HInstruction* const at_;
284 
285   // The dex PC of `at_`.
286   const uint32_t dex_pc_;
287 
288   // Whether to initialize the class.
289   const bool do_clinit_;
290 
291   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
292 };
293 
294 class TypeCheckSlowPathX86 : public SlowPathCode {
295  public:
TypeCheckSlowPathX86(HInstruction * instruction,bool is_fatal)296   TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
297       : SlowPathCode(instruction), is_fatal_(is_fatal) {}
298 
EmitNativeCode(CodeGenerator * codegen)299   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
300     LocationSummary* locations = instruction_->GetLocations();
301     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
302                                                         : locations->Out();
303     DCHECK(instruction_->IsCheckCast()
304            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
305 
306     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
307     __ Bind(GetEntryLabel());
308 
309     if (!is_fatal_) {
310       SaveLiveRegisters(codegen, locations);
311     }
312 
313     // We're moving two locations to locations that could overlap, so we need a parallel
314     // move resolver.
315     InvokeRuntimeCallingConvention calling_convention;
316     x86_codegen->EmitParallelMoves(
317         locations->InAt(1),
318         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
319         Primitive::kPrimNot,
320         object_class,
321         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
322         Primitive::kPrimNot);
323 
324     if (instruction_->IsInstanceOf()) {
325       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
326                                  instruction_,
327                                  instruction_->GetDexPc(),
328                                  this);
329       CheckEntrypointTypes<
330           kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
331     } else {
332       DCHECK(instruction_->IsCheckCast());
333       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
334                                  instruction_,
335                                  instruction_->GetDexPc(),
336                                  this);
337       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
338     }
339 
340     if (!is_fatal_) {
341       if (instruction_->IsInstanceOf()) {
342         x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
343       }
344       RestoreLiveRegisters(codegen, locations);
345 
346       __ jmp(GetExitLabel());
347     }
348   }
349 
GetDescription() const350   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
IsFatal() const351   bool IsFatal() const OVERRIDE { return is_fatal_; }
352 
353  private:
354   const bool is_fatal_;
355 
356   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
357 };
358 
359 class DeoptimizationSlowPathX86 : public SlowPathCode {
360  public:
DeoptimizationSlowPathX86(HDeoptimize * instruction)361   explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
362     : SlowPathCode(instruction) {}
363 
EmitNativeCode(CodeGenerator * codegen)364   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
365     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
366     __ Bind(GetEntryLabel());
367     SaveLiveRegisters(codegen, instruction_->GetLocations());
368     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
369                                instruction_,
370                                instruction_->GetDexPc(),
371                                this);
372     CheckEntrypointTypes<kQuickDeoptimize, void, void>();
373   }
374 
GetDescription() const375   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
376 
377  private:
378   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
379 };
380 
381 class ArraySetSlowPathX86 : public SlowPathCode {
382  public:
ArraySetSlowPathX86(HInstruction * instruction)383   explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
384 
EmitNativeCode(CodeGenerator * codegen)385   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
386     LocationSummary* locations = instruction_->GetLocations();
387     __ Bind(GetEntryLabel());
388     SaveLiveRegisters(codegen, locations);
389 
390     InvokeRuntimeCallingConvention calling_convention;
391     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
392     parallel_move.AddMove(
393         locations->InAt(0),
394         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
395         Primitive::kPrimNot,
396         nullptr);
397     parallel_move.AddMove(
398         locations->InAt(1),
399         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
400         Primitive::kPrimInt,
401         nullptr);
402     parallel_move.AddMove(
403         locations->InAt(2),
404         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
405         Primitive::kPrimNot,
406         nullptr);
407     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
408 
409     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
410     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
411                                instruction_,
412                                instruction_->GetDexPc(),
413                                this);
414     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
415     RestoreLiveRegisters(codegen, locations);
416     __ jmp(GetExitLabel());
417   }
418 
GetDescription() const419   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
420 
421  private:
422   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
423 };
424 
425 // Slow path marking an object during a read barrier.
426 class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
427  public:
ReadBarrierMarkSlowPathX86(HInstruction * instruction,Location out,Location obj)428   ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location out, Location obj)
429       : SlowPathCode(instruction), out_(out), obj_(obj) {
430     DCHECK(kEmitCompilerReadBarrier);
431   }
432 
GetDescription() const433   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
434 
EmitNativeCode(CodeGenerator * codegen)435   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
436     LocationSummary* locations = instruction_->GetLocations();
437     Register reg_out = out_.AsRegister<Register>();
438     DCHECK(locations->CanCall());
439     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
440     DCHECK(instruction_->IsInstanceFieldGet() ||
441            instruction_->IsStaticFieldGet() ||
442            instruction_->IsArrayGet() ||
443            instruction_->IsLoadClass() ||
444            instruction_->IsLoadString() ||
445            instruction_->IsInstanceOf() ||
446            instruction_->IsCheckCast())
447         << "Unexpected instruction in read barrier marking slow path: "
448         << instruction_->DebugName();
449 
450     __ Bind(GetEntryLabel());
451     SaveLiveRegisters(codegen, locations);
452 
453     InvokeRuntimeCallingConvention calling_convention;
454     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
455     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
456     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
457                                instruction_,
458                                instruction_->GetDexPc(),
459                                this);
460     CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
461     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
462 
463     RestoreLiveRegisters(codegen, locations);
464     __ jmp(GetExitLabel());
465   }
466 
467  private:
468   const Location out_;
469   const Location obj_;
470 
471   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
472 };
473 
474 // Slow path generating a read barrier for a heap reference.
475 class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
476  public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)477   ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
478                                          Location out,
479                                          Location ref,
480                                          Location obj,
481                                          uint32_t offset,
482                                          Location index)
483       : SlowPathCode(instruction),
484         out_(out),
485         ref_(ref),
486         obj_(obj),
487         offset_(offset),
488         index_(index) {
489     DCHECK(kEmitCompilerReadBarrier);
490     // If `obj` is equal to `out` or `ref`, it means the initial object
491     // has been overwritten by (or after) the heap object reference load
492     // to be instrumented, e.g.:
493     //
494     //   __ movl(out, Address(out, offset));
495     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
496     //
497     // In that case, we have lost the information about the original
498     // object, and the emitted read barrier cannot work properly.
499     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
500     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
501   }
502 
EmitNativeCode(CodeGenerator * codegen)503   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
504     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
505     LocationSummary* locations = instruction_->GetLocations();
506     Register reg_out = out_.AsRegister<Register>();
507     DCHECK(locations->CanCall());
508     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
509     DCHECK(!instruction_->IsInvoke() ||
510            (instruction_->IsInvokeStaticOrDirect() &&
511             instruction_->GetLocations()->Intrinsified()))
512         << "Unexpected instruction in read barrier for heap reference slow path: "
513         << instruction_->DebugName();
514 
515     __ Bind(GetEntryLabel());
516     SaveLiveRegisters(codegen, locations);
517 
518     // We may have to change the index's value, but as `index_` is a
519     // constant member (like other "inputs" of this slow path),
520     // introduce a copy of it, `index`.
521     Location index = index_;
522     if (index_.IsValid()) {
523       // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
524       if (instruction_->IsArrayGet()) {
525         // Compute the actual memory offset and store it in `index`.
526         Register index_reg = index_.AsRegister<Register>();
527         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
528         if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
529           // We are about to change the value of `index_reg` (see the
530           // calls to art::x86::X86Assembler::shll and
531           // art::x86::X86Assembler::AddImmediate below), but it has
532           // not been saved by the previous call to
533           // art::SlowPathCode::SaveLiveRegisters, as it is a
534           // callee-save register --
535           // art::SlowPathCode::SaveLiveRegisters does not consider
536           // callee-save registers, as it has been designed with the
537           // assumption that callee-save registers are supposed to be
538           // handled by the called function.  So, as a callee-save
539           // register, `index_reg` _would_ eventually be saved onto
540           // the stack, but it would be too late: we would have
541           // changed its value earlier.  Therefore, we manually save
542           // it here into another freely available register,
543           // `free_reg`, chosen of course among the caller-save
544           // registers (as a callee-save `free_reg` register would
545           // exhibit the same problem).
546           //
547           // Note we could have requested a temporary register from
548           // the register allocator instead; but we prefer not to, as
549           // this is a slow path, and we know we can find a
550           // caller-save register that is available.
551           Register free_reg = FindAvailableCallerSaveRegister(codegen);
552           __ movl(free_reg, index_reg);
553           index_reg = free_reg;
554           index = Location::RegisterLocation(index_reg);
555         } else {
556           // The initial register stored in `index_` has already been
557           // saved in the call to art::SlowPathCode::SaveLiveRegisters
558           // (as it is not a callee-save register), so we can freely
559           // use it.
560         }
561         // Shifting the index value contained in `index_reg` by the scale
562         // factor (2) cannot overflow in practice, as the runtime is
563         // unable to allocate object arrays with a size larger than
564         // 2^26 - 1 (that is, 2^28 - 4 bytes).
565         __ shll(index_reg, Immediate(TIMES_4));
566         static_assert(
567             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
568             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
569         __ AddImmediate(index_reg, Immediate(offset_));
570       } else {
571         DCHECK(instruction_->IsInvoke());
572         DCHECK(instruction_->GetLocations()->Intrinsified());
573         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
574                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
575             << instruction_->AsInvoke()->GetIntrinsic();
576         DCHECK_EQ(offset_, 0U);
577         DCHECK(index_.IsRegisterPair());
578         // UnsafeGet's offset location is a register pair, the low
579         // part contains the correct offset.
580         index = index_.ToLow();
581       }
582     }
583 
584     // We're moving two or three locations to locations that could
585     // overlap, so we need a parallel move resolver.
586     InvokeRuntimeCallingConvention calling_convention;
587     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
588     parallel_move.AddMove(ref_,
589                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
590                           Primitive::kPrimNot,
591                           nullptr);
592     parallel_move.AddMove(obj_,
593                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
594                           Primitive::kPrimNot,
595                           nullptr);
596     if (index.IsValid()) {
597       parallel_move.AddMove(index,
598                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
599                             Primitive::kPrimInt,
600                             nullptr);
601       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
602     } else {
603       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
604       __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
605     }
606     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
607                                instruction_,
608                                instruction_->GetDexPc(),
609                                this);
610     CheckEntrypointTypes<
611         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
612     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
613 
614     RestoreLiveRegisters(codegen, locations);
615     __ jmp(GetExitLabel());
616   }
617 
GetDescription() const618   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
619 
620  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)621   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
622     size_t ref = static_cast<int>(ref_.AsRegister<Register>());
623     size_t obj = static_cast<int>(obj_.AsRegister<Register>());
624     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
625       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
626         return static_cast<Register>(i);
627       }
628     }
629     // We shall never fail to find a free caller-save register, as
630     // there are more than two core caller-save registers on x86
631     // (meaning it is possible to find one which is different from
632     // `ref` and `obj`).
633     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
634     LOG(FATAL) << "Could not find a free caller-save register";
635     UNREACHABLE();
636   }
637 
638   const Location out_;
639   const Location ref_;
640   const Location obj_;
641   const uint32_t offset_;
642   // An additional location containing an index to an array.
643   // Only used for HArrayGet and the UnsafeGetObject &
644   // UnsafeGetObjectVolatile intrinsics.
645   const Location index_;
646 
647   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
648 };
649 
650 // Slow path generating a read barrier for a GC root.
651 class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
652  public:
ReadBarrierForRootSlowPathX86(HInstruction * instruction,Location out,Location root)653   ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
654       : SlowPathCode(instruction), out_(out), root_(root) {
655     DCHECK(kEmitCompilerReadBarrier);
656   }
657 
EmitNativeCode(CodeGenerator * codegen)658   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
659     LocationSummary* locations = instruction_->GetLocations();
660     Register reg_out = out_.AsRegister<Register>();
661     DCHECK(locations->CanCall());
662     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
663     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
664         << "Unexpected instruction in read barrier for GC root slow path: "
665         << instruction_->DebugName();
666 
667     __ Bind(GetEntryLabel());
668     SaveLiveRegisters(codegen, locations);
669 
670     InvokeRuntimeCallingConvention calling_convention;
671     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
672     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
673     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
674                                instruction_,
675                                instruction_->GetDexPc(),
676                                this);
677     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
678     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
679 
680     RestoreLiveRegisters(codegen, locations);
681     __ jmp(GetExitLabel());
682   }
683 
GetDescription() const684   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
685 
686  private:
687   const Location out_;
688   const Location root_;
689 
690   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
691 };
692 
693 #undef __
694 #define __ down_cast<X86Assembler*>(GetAssembler())->
695 
X86Condition(IfCondition cond)696 inline Condition X86Condition(IfCondition cond) {
697   switch (cond) {
698     case kCondEQ: return kEqual;
699     case kCondNE: return kNotEqual;
700     case kCondLT: return kLess;
701     case kCondLE: return kLessEqual;
702     case kCondGT: return kGreater;
703     case kCondGE: return kGreaterEqual;
704     case kCondB:  return kBelow;
705     case kCondBE: return kBelowEqual;
706     case kCondA:  return kAbove;
707     case kCondAE: return kAboveEqual;
708   }
709   LOG(FATAL) << "Unreachable";
710   UNREACHABLE();
711 }
712 
713 // Maps signed condition to unsigned condition and FP condition to x86 name.
X86UnsignedOrFPCondition(IfCondition cond)714 inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
715   switch (cond) {
716     case kCondEQ: return kEqual;
717     case kCondNE: return kNotEqual;
718     // Signed to unsigned, and FP to x86 name.
719     case kCondLT: return kBelow;
720     case kCondLE: return kBelowEqual;
721     case kCondGT: return kAbove;
722     case kCondGE: return kAboveEqual;
723     // Unsigned remain unchanged.
724     case kCondB:  return kBelow;
725     case kCondBE: return kBelowEqual;
726     case kCondA:  return kAbove;
727     case kCondAE: return kAboveEqual;
728   }
729   LOG(FATAL) << "Unreachable";
730   UNREACHABLE();
731 }
732 
DumpCoreRegister(std::ostream & stream,int reg) const733 void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
734   stream << Register(reg);
735 }
736 
DumpFloatingPointRegister(std::ostream & stream,int reg) const737 void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
738   stream << XmmRegister(reg);
739 }
740 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)741 size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
742   __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
743   return kX86WordSize;
744 }
745 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)746 size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
747   __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
748   return kX86WordSize;
749 }
750 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)751 size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
752   __ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
753   return GetFloatingPointSpillSlotSize();
754 }
755 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)756 size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
757   __ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
758   return GetFloatingPointSpillSlotSize();
759 }
760 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)761 void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
762                                      HInstruction* instruction,
763                                      uint32_t dex_pc,
764                                      SlowPathCode* slow_path) {
765   InvokeRuntime(GetThreadOffset<kX86WordSize>(entrypoint).Int32Value(),
766                 instruction,
767                 dex_pc,
768                 slow_path);
769 }
770 
InvokeRuntime(int32_t entry_point_offset,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)771 void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset,
772                                      HInstruction* instruction,
773                                      uint32_t dex_pc,
774                                      SlowPathCode* slow_path) {
775   ValidateInvokeRuntime(instruction, slow_path);
776   __ fs()->call(Address::Absolute(entry_point_offset));
777   RecordPcInfo(instruction, dex_pc, slow_path);
778 }
779 
CodeGeneratorX86(HGraph * graph,const X86InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)780 CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
781                                    const X86InstructionSetFeatures& isa_features,
782                                    const CompilerOptions& compiler_options,
783                                    OptimizingCompilerStats* stats)
784     : CodeGenerator(graph,
785                     kNumberOfCpuRegisters,
786                     kNumberOfXmmRegisters,
787                     kNumberOfRegisterPairs,
788                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
789                                         arraysize(kCoreCalleeSaves))
790                         | (1 << kFakeReturnRegister),
791                     0,
792                     compiler_options,
793                     stats),
794       block_labels_(nullptr),
795       location_builder_(graph, this),
796       instruction_visitor_(graph, this),
797       move_resolver_(graph->GetArena(), this),
798       assembler_(graph->GetArena()),
799       isa_features_(isa_features),
800       method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
801       relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
802       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
803       simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
804       string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
805       constant_area_start_(-1),
806       fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
807       method_address_offset_(-1) {
808   // Use a fake return address register to mimic Quick.
809   AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
810 }
811 
SetupBlockedRegisters() const812 void CodeGeneratorX86::SetupBlockedRegisters() const {
813   // Don't allocate the dalvik style register pair passing.
814   blocked_register_pairs_[ECX_EDX] = true;
815 
816   // Stack register is always reserved.
817   blocked_core_registers_[ESP] = true;
818 
819   UpdateBlockedPairRegisters();
820 }
821 
UpdateBlockedPairRegisters() const822 void CodeGeneratorX86::UpdateBlockedPairRegisters() const {
823   for (int i = 0; i < kNumberOfRegisterPairs; i++) {
824     X86ManagedRegister current =
825         X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
826     if (blocked_core_registers_[current.AsRegisterPairLow()]
827         || blocked_core_registers_[current.AsRegisterPairHigh()]) {
828       blocked_register_pairs_[i] = true;
829     }
830   }
831 }
832 
InstructionCodeGeneratorX86(HGraph * graph,CodeGeneratorX86 * codegen)833 InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
834       : InstructionCodeGenerator(graph, codegen),
835         assembler_(codegen->GetAssembler()),
836         codegen_(codegen) {}
837 
DWARFReg(Register reg)838 static dwarf::Reg DWARFReg(Register reg) {
839   return dwarf::Reg::X86Core(static_cast<int>(reg));
840 }
841 
GenerateFrameEntry()842 void CodeGeneratorX86::GenerateFrameEntry() {
843   __ cfi().SetCurrentCFAOffset(kX86WordSize);  // return address
844   __ Bind(&frame_entry_label_);
845   bool skip_overflow_check =
846       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
847   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
848 
849   if (!skip_overflow_check) {
850     __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
851     RecordPcInfo(nullptr, 0);
852   }
853 
854   if (HasEmptyFrame()) {
855     return;
856   }
857 
858   for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
859     Register reg = kCoreCalleeSaves[i];
860     if (allocated_registers_.ContainsCoreRegister(reg)) {
861       __ pushl(reg);
862       __ cfi().AdjustCFAOffset(kX86WordSize);
863       __ cfi().RelOffset(DWARFReg(reg), 0);
864     }
865   }
866 
867   int adjust = GetFrameSize() - FrameEntrySpillSize();
868   __ subl(ESP, Immediate(adjust));
869   __ cfi().AdjustCFAOffset(adjust);
870   __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
871 }
872 
GenerateFrameExit()873 void CodeGeneratorX86::GenerateFrameExit() {
874   __ cfi().RememberState();
875   if (!HasEmptyFrame()) {
876     int adjust = GetFrameSize() - FrameEntrySpillSize();
877     __ addl(ESP, Immediate(adjust));
878     __ cfi().AdjustCFAOffset(-adjust);
879 
880     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
881       Register reg = kCoreCalleeSaves[i];
882       if (allocated_registers_.ContainsCoreRegister(reg)) {
883         __ popl(reg);
884         __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
885         __ cfi().Restore(DWARFReg(reg));
886       }
887     }
888   }
889   __ ret();
890   __ cfi().RestoreState();
891   __ cfi().DefCFAOffset(GetFrameSize());
892 }
893 
Bind(HBasicBlock * block)894 void CodeGeneratorX86::Bind(HBasicBlock* block) {
895   __ Bind(GetLabelOf(block));
896 }
897 
GetReturnLocation(Primitive::Type type) const898 Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
899   switch (type) {
900     case Primitive::kPrimBoolean:
901     case Primitive::kPrimByte:
902     case Primitive::kPrimChar:
903     case Primitive::kPrimShort:
904     case Primitive::kPrimInt:
905     case Primitive::kPrimNot:
906       return Location::RegisterLocation(EAX);
907 
908     case Primitive::kPrimLong:
909       return Location::RegisterPairLocation(EAX, EDX);
910 
911     case Primitive::kPrimVoid:
912       return Location::NoLocation();
913 
914     case Primitive::kPrimDouble:
915     case Primitive::kPrimFloat:
916       return Location::FpuRegisterLocation(XMM0);
917   }
918 
919   UNREACHABLE();
920 }
921 
GetMethodLocation() const922 Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
923   return Location::RegisterLocation(kMethodRegisterArgument);
924 }
925 
GetNextLocation(Primitive::Type type)926 Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
927   switch (type) {
928     case Primitive::kPrimBoolean:
929     case Primitive::kPrimByte:
930     case Primitive::kPrimChar:
931     case Primitive::kPrimShort:
932     case Primitive::kPrimInt:
933     case Primitive::kPrimNot: {
934       uint32_t index = gp_index_++;
935       stack_index_++;
936       if (index < calling_convention.GetNumberOfRegisters()) {
937         return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
938       } else {
939         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
940       }
941     }
942 
943     case Primitive::kPrimLong: {
944       uint32_t index = gp_index_;
945       gp_index_ += 2;
946       stack_index_ += 2;
947       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
948         X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
949             calling_convention.GetRegisterPairAt(index));
950         return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
951       } else {
952         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
953       }
954     }
955 
956     case Primitive::kPrimFloat: {
957       uint32_t index = float_index_++;
958       stack_index_++;
959       if (index < calling_convention.GetNumberOfFpuRegisters()) {
960         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
961       } else {
962         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
963       }
964     }
965 
966     case Primitive::kPrimDouble: {
967       uint32_t index = float_index_++;
968       stack_index_ += 2;
969       if (index < calling_convention.GetNumberOfFpuRegisters()) {
970         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
971       } else {
972         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
973       }
974     }
975 
976     case Primitive::kPrimVoid:
977       LOG(FATAL) << "Unexpected parameter type " << type;
978       break;
979   }
980   return Location::NoLocation();
981 }
982 
Move32(Location destination,Location source)983 void CodeGeneratorX86::Move32(Location destination, Location source) {
984   if (source.Equals(destination)) {
985     return;
986   }
987   if (destination.IsRegister()) {
988     if (source.IsRegister()) {
989       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
990     } else if (source.IsFpuRegister()) {
991       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
992     } else {
993       DCHECK(source.IsStackSlot());
994       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
995     }
996   } else if (destination.IsFpuRegister()) {
997     if (source.IsRegister()) {
998       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
999     } else if (source.IsFpuRegister()) {
1000       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1001     } else {
1002       DCHECK(source.IsStackSlot());
1003       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1004     }
1005   } else {
1006     DCHECK(destination.IsStackSlot()) << destination;
1007     if (source.IsRegister()) {
1008       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
1009     } else if (source.IsFpuRegister()) {
1010       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1011     } else if (source.IsConstant()) {
1012       HConstant* constant = source.GetConstant();
1013       int32_t value = GetInt32ValueOf(constant);
1014       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
1015     } else {
1016       DCHECK(source.IsStackSlot());
1017       __ pushl(Address(ESP, source.GetStackIndex()));
1018       __ popl(Address(ESP, destination.GetStackIndex()));
1019     }
1020   }
1021 }
1022 
Move64(Location destination,Location source)1023 void CodeGeneratorX86::Move64(Location destination, Location source) {
1024   if (source.Equals(destination)) {
1025     return;
1026   }
1027   if (destination.IsRegisterPair()) {
1028     if (source.IsRegisterPair()) {
1029       EmitParallelMoves(
1030           Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1031           Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1032           Primitive::kPrimInt,
1033           Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1034           Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1035           Primitive::kPrimInt);
1036     } else if (source.IsFpuRegister()) {
1037       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
1038       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
1039       __ psrlq(src_reg, Immediate(32));
1040       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
1041     } else {
1042       // No conflict possible, so just do the moves.
1043       DCHECK(source.IsDoubleStackSlot());
1044       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
1045       __ movl(destination.AsRegisterPairHigh<Register>(),
1046               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
1047     }
1048   } else if (destination.IsFpuRegister()) {
1049     if (source.IsFpuRegister()) {
1050       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1051     } else if (source.IsDoubleStackSlot()) {
1052       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1053     } else if (source.IsRegisterPair()) {
1054       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
1055       // Create stack space for 2 elements.
1056       __ subl(ESP, Immediate(2 * elem_size));
1057       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
1058       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
1059       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
1060       // And remove the temporary stack space we allocated.
1061       __ addl(ESP, Immediate(2 * elem_size));
1062     } else {
1063       LOG(FATAL) << "Unimplemented";
1064     }
1065   } else {
1066     DCHECK(destination.IsDoubleStackSlot()) << destination;
1067     if (source.IsRegisterPair()) {
1068       // No conflict possible, so just do the moves.
1069       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
1070       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1071               source.AsRegisterPairHigh<Register>());
1072     } else if (source.IsFpuRegister()) {
1073       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1074     } else if (source.IsConstant()) {
1075       HConstant* constant = source.GetConstant();
1076       int64_t value;
1077       if (constant->IsLongConstant()) {
1078         value = constant->AsLongConstant()->GetValue();
1079       } else {
1080         DCHECK(constant->IsDoubleConstant());
1081         value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
1082       }
1083       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
1084       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value)));
1085     } else {
1086       DCHECK(source.IsDoubleStackSlot()) << source;
1087       EmitParallelMoves(
1088           Location::StackSlot(source.GetStackIndex()),
1089           Location::StackSlot(destination.GetStackIndex()),
1090           Primitive::kPrimInt,
1091           Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
1092           Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
1093           Primitive::kPrimInt);
1094     }
1095   }
1096 }
1097 
MoveConstant(Location location,int32_t value)1098 void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
1099   DCHECK(location.IsRegister());
1100   __ movl(location.AsRegister<Register>(), Immediate(value));
1101 }
1102 
MoveLocation(Location dst,Location src,Primitive::Type dst_type)1103 void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1104   HParallelMove move(GetGraph()->GetArena());
1105   if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
1106     move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
1107     move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
1108   } else {
1109     move.AddMove(src, dst, dst_type, nullptr);
1110   }
1111   GetMoveResolver()->EmitNativeCode(&move);
1112 }
1113 
AddLocationAsTemp(Location location,LocationSummary * locations)1114 void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
1115   if (location.IsRegister()) {
1116     locations->AddTemp(location);
1117   } else if (location.IsRegisterPair()) {
1118     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1119     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1120   } else {
1121     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1122   }
1123 }
1124 
HandleGoto(HInstruction * got,HBasicBlock * successor)1125 void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1126   DCHECK(!successor->IsExitBlock());
1127 
1128   HBasicBlock* block = got->GetBlock();
1129   HInstruction* previous = got->GetPrevious();
1130 
1131   HLoopInformation* info = block->GetLoopInformation();
1132   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1133     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1134     return;
1135   }
1136 
1137   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1138     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1139   }
1140   if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1141     __ jmp(codegen_->GetLabelOf(successor));
1142   }
1143 }
1144 
VisitGoto(HGoto * got)1145 void LocationsBuilderX86::VisitGoto(HGoto* got) {
1146   got->SetLocations(nullptr);
1147 }
1148 
VisitGoto(HGoto * got)1149 void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
1150   HandleGoto(got, got->GetSuccessor());
1151 }
1152 
VisitTryBoundary(HTryBoundary * try_boundary)1153 void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1154   try_boundary->SetLocations(nullptr);
1155 }
1156 
VisitTryBoundary(HTryBoundary * try_boundary)1157 void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1158   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1159   if (!successor->IsExitBlock()) {
1160     HandleGoto(try_boundary, successor);
1161   }
1162 }
1163 
VisitExit(HExit * exit)1164 void LocationsBuilderX86::VisitExit(HExit* exit) {
1165   exit->SetLocations(nullptr);
1166 }
1167 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)1168 void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1169 }
1170 
1171 template<class LabelType>
GenerateFPJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1172 void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
1173                                                   LabelType* true_label,
1174                                                   LabelType* false_label) {
1175   if (cond->IsFPConditionTrueIfNaN()) {
1176     __ j(kUnordered, true_label);
1177   } else if (cond->IsFPConditionFalseIfNaN()) {
1178     __ j(kUnordered, false_label);
1179   }
1180   __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
1181 }
1182 
1183 template<class LabelType>
GenerateLongComparesAndJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1184 void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
1185                                                                LabelType* true_label,
1186                                                                LabelType* false_label) {
1187   LocationSummary* locations = cond->GetLocations();
1188   Location left = locations->InAt(0);
1189   Location right = locations->InAt(1);
1190   IfCondition if_cond = cond->GetCondition();
1191 
1192   Register left_high = left.AsRegisterPairHigh<Register>();
1193   Register left_low = left.AsRegisterPairLow<Register>();
1194   IfCondition true_high_cond = if_cond;
1195   IfCondition false_high_cond = cond->GetOppositeCondition();
1196   Condition final_condition = X86UnsignedOrFPCondition(if_cond);  // unsigned on lower part
1197 
1198   // Set the conditions for the test, remembering that == needs to be
1199   // decided using the low words.
1200   switch (if_cond) {
1201     case kCondEQ:
1202     case kCondNE:
1203       // Nothing to do.
1204       break;
1205     case kCondLT:
1206       false_high_cond = kCondGT;
1207       break;
1208     case kCondLE:
1209       true_high_cond = kCondLT;
1210       break;
1211     case kCondGT:
1212       false_high_cond = kCondLT;
1213       break;
1214     case kCondGE:
1215       true_high_cond = kCondGT;
1216       break;
1217     case kCondB:
1218       false_high_cond = kCondA;
1219       break;
1220     case kCondBE:
1221       true_high_cond = kCondB;
1222       break;
1223     case kCondA:
1224       false_high_cond = kCondB;
1225       break;
1226     case kCondAE:
1227       true_high_cond = kCondA;
1228       break;
1229   }
1230 
1231   if (right.IsConstant()) {
1232     int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1233     int32_t val_high = High32Bits(value);
1234     int32_t val_low = Low32Bits(value);
1235 
1236     codegen_->Compare32BitValue(left_high, val_high);
1237     if (if_cond == kCondNE) {
1238       __ j(X86Condition(true_high_cond), true_label);
1239     } else if (if_cond == kCondEQ) {
1240       __ j(X86Condition(false_high_cond), false_label);
1241     } else {
1242       __ j(X86Condition(true_high_cond), true_label);
1243       __ j(X86Condition(false_high_cond), false_label);
1244     }
1245     // Must be equal high, so compare the lows.
1246     codegen_->Compare32BitValue(left_low, val_low);
1247   } else if (right.IsRegisterPair()) {
1248     Register right_high = right.AsRegisterPairHigh<Register>();
1249     Register right_low = right.AsRegisterPairLow<Register>();
1250 
1251     __ cmpl(left_high, right_high);
1252     if (if_cond == kCondNE) {
1253       __ j(X86Condition(true_high_cond), true_label);
1254     } else if (if_cond == kCondEQ) {
1255       __ j(X86Condition(false_high_cond), false_label);
1256     } else {
1257       __ j(X86Condition(true_high_cond), true_label);
1258       __ j(X86Condition(false_high_cond), false_label);
1259     }
1260     // Must be equal high, so compare the lows.
1261     __ cmpl(left_low, right_low);
1262   } else {
1263     DCHECK(right.IsDoubleStackSlot());
1264     __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
1265     if (if_cond == kCondNE) {
1266       __ j(X86Condition(true_high_cond), true_label);
1267     } else if (if_cond == kCondEQ) {
1268       __ j(X86Condition(false_high_cond), false_label);
1269     } else {
1270       __ j(X86Condition(true_high_cond), true_label);
1271       __ j(X86Condition(false_high_cond), false_label);
1272     }
1273     // Must be equal high, so compare the lows.
1274     __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
1275   }
1276   // The last comparison might be unsigned.
1277   __ j(final_condition, true_label);
1278 }
1279 
GenerateFPCompare(Location lhs,Location rhs,HInstruction * insn,bool is_double)1280 void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
1281                                                     Location rhs,
1282                                                     HInstruction* insn,
1283                                                     bool is_double) {
1284   HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
1285   if (is_double) {
1286     if (rhs.IsFpuRegister()) {
1287       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1288     } else if (const_area != nullptr) {
1289       DCHECK(const_area->IsEmittedAtUseSite());
1290       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
1291                  codegen_->LiteralDoubleAddress(
1292                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
1293                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1294     } else {
1295       DCHECK(rhs.IsDoubleStackSlot());
1296       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1297     }
1298   } else {
1299     if (rhs.IsFpuRegister()) {
1300       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1301     } else if (const_area != nullptr) {
1302       DCHECK(const_area->IsEmittedAtUseSite());
1303       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
1304                  codegen_->LiteralFloatAddress(
1305                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
1306                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1307     } else {
1308       DCHECK(rhs.IsStackSlot());
1309       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1310     }
1311   }
1312 }
1313 
1314 template<class LabelType>
GenerateCompareTestAndBranch(HCondition * condition,LabelType * true_target_in,LabelType * false_target_in)1315 void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
1316                                                                LabelType* true_target_in,
1317                                                                LabelType* false_target_in) {
1318   // Generated branching requires both targets to be explicit. If either of the
1319   // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1320   LabelType fallthrough_target;
1321   LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1322   LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1323 
1324   LocationSummary* locations = condition->GetLocations();
1325   Location left = locations->InAt(0);
1326   Location right = locations->InAt(1);
1327 
1328   Primitive::Type type = condition->InputAt(0)->GetType();
1329   switch (type) {
1330     case Primitive::kPrimLong:
1331       GenerateLongComparesAndJumps(condition, true_target, false_target);
1332       break;
1333     case Primitive::kPrimFloat:
1334       GenerateFPCompare(left, right, condition, false);
1335       GenerateFPJumps(condition, true_target, false_target);
1336       break;
1337     case Primitive::kPrimDouble:
1338       GenerateFPCompare(left, right, condition, true);
1339       GenerateFPJumps(condition, true_target, false_target);
1340       break;
1341     default:
1342       LOG(FATAL) << "Unexpected compare type " << type;
1343   }
1344 
1345   if (false_target != &fallthrough_target) {
1346     __ jmp(false_target);
1347   }
1348 
1349   if (fallthrough_target.IsLinked()) {
1350     __ Bind(&fallthrough_target);
1351   }
1352 }
1353 
AreEflagsSetFrom(HInstruction * cond,HInstruction * branch)1354 static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
1355   // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
1356   // are set only strictly before `branch`. We can't use the eflags on long/FP
1357   // conditions if they are materialized due to the complex branching.
1358   return cond->IsCondition() &&
1359          cond->GetNext() == branch &&
1360          cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
1361          !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
1362 }
1363 
1364 template<class LabelType>
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,LabelType * true_target,LabelType * false_target)1365 void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
1366                                                         size_t condition_input_index,
1367                                                         LabelType* true_target,
1368                                                         LabelType* false_target) {
1369   HInstruction* cond = instruction->InputAt(condition_input_index);
1370 
1371   if (true_target == nullptr && false_target == nullptr) {
1372     // Nothing to do. The code always falls through.
1373     return;
1374   } else if (cond->IsIntConstant()) {
1375     // Constant condition, statically compared against "true" (integer value 1).
1376     if (cond->AsIntConstant()->IsTrue()) {
1377       if (true_target != nullptr) {
1378         __ jmp(true_target);
1379       }
1380     } else {
1381       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1382       if (false_target != nullptr) {
1383         __ jmp(false_target);
1384       }
1385     }
1386     return;
1387   }
1388 
1389   // The following code generates these patterns:
1390   //  (1) true_target == nullptr && false_target != nullptr
1391   //        - opposite condition true => branch to false_target
1392   //  (2) true_target != nullptr && false_target == nullptr
1393   //        - condition true => branch to true_target
1394   //  (3) true_target != nullptr && false_target != nullptr
1395   //        - condition true => branch to true_target
1396   //        - branch to false_target
1397   if (IsBooleanValueOrMaterializedCondition(cond)) {
1398     if (AreEflagsSetFrom(cond, instruction)) {
1399       if (true_target == nullptr) {
1400         __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
1401       } else {
1402         __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
1403       }
1404     } else {
1405       // Materialized condition, compare against 0.
1406       Location lhs = instruction->GetLocations()->InAt(condition_input_index);
1407       if (lhs.IsRegister()) {
1408         __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
1409       } else {
1410         __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
1411       }
1412       if (true_target == nullptr) {
1413         __ j(kEqual, false_target);
1414       } else {
1415         __ j(kNotEqual, true_target);
1416       }
1417     }
1418   } else {
1419     // Condition has not been materialized, use its inputs as the comparison and
1420     // its condition as the branch condition.
1421     HCondition* condition = cond->AsCondition();
1422 
1423     // If this is a long or FP comparison that has been folded into
1424     // the HCondition, generate the comparison directly.
1425     Primitive::Type type = condition->InputAt(0)->GetType();
1426     if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1427       GenerateCompareTestAndBranch(condition, true_target, false_target);
1428       return;
1429     }
1430 
1431     Location lhs = condition->GetLocations()->InAt(0);
1432     Location rhs = condition->GetLocations()->InAt(1);
1433     // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
1434     if (rhs.IsRegister()) {
1435       __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
1436     } else if (rhs.IsConstant()) {
1437       int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1438       codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant);
1439     } else {
1440       __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
1441     }
1442     if (true_target == nullptr) {
1443       __ j(X86Condition(condition->GetOppositeCondition()), false_target);
1444     } else {
1445       __ j(X86Condition(condition->GetCondition()), true_target);
1446     }
1447   }
1448 
1449   // If neither branch falls through (case 3), the conditional branch to `true_target`
1450   // was already emitted (case 2) and we need to emit a jump to `false_target`.
1451   if (true_target != nullptr && false_target != nullptr) {
1452     __ jmp(false_target);
1453   }
1454 }
1455 
VisitIf(HIf * if_instr)1456 void LocationsBuilderX86::VisitIf(HIf* if_instr) {
1457   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1458   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1459     locations->SetInAt(0, Location::Any());
1460   }
1461 }
1462 
VisitIf(HIf * if_instr)1463 void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
1464   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1465   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1466   Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1467       nullptr : codegen_->GetLabelOf(true_successor);
1468   Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1469       nullptr : codegen_->GetLabelOf(false_successor);
1470   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1471 }
1472 
VisitDeoptimize(HDeoptimize * deoptimize)1473 void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1474   LocationSummary* locations = new (GetGraph()->GetArena())
1475       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1476   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1477     locations->SetInAt(0, Location::Any());
1478   }
1479 }
1480 
VisitDeoptimize(HDeoptimize * deoptimize)1481 void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1482   SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
1483   GenerateTestAndBranch<Label>(deoptimize,
1484                                /* condition_input_index */ 0,
1485                                slow_path->GetEntryLabel(),
1486                                /* false_target */ nullptr);
1487 }
1488 
SelectCanUseCMOV(HSelect * select)1489 static bool SelectCanUseCMOV(HSelect* select) {
1490   // There are no conditional move instructions for XMMs.
1491   if (Primitive::IsFloatingPointType(select->GetType())) {
1492     return false;
1493   }
1494 
1495   // A FP condition doesn't generate the single CC that we need.
1496   // In 32 bit mode, a long condition doesn't generate a single CC either.
1497   HInstruction* condition = select->GetCondition();
1498   if (condition->IsCondition()) {
1499     Primitive::Type compare_type = condition->InputAt(0)->GetType();
1500     if (compare_type == Primitive::kPrimLong ||
1501         Primitive::IsFloatingPointType(compare_type)) {
1502       return false;
1503     }
1504   }
1505 
1506   // We can generate a CMOV for this Select.
1507   return true;
1508 }
1509 
VisitSelect(HSelect * select)1510 void LocationsBuilderX86::VisitSelect(HSelect* select) {
1511   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1512   if (Primitive::IsFloatingPointType(select->GetType())) {
1513     locations->SetInAt(0, Location::RequiresFpuRegister());
1514     locations->SetInAt(1, Location::Any());
1515   } else {
1516     locations->SetInAt(0, Location::RequiresRegister());
1517     if (SelectCanUseCMOV(select)) {
1518       if (select->InputAt(1)->IsConstant()) {
1519         // Cmov can't handle a constant value.
1520         locations->SetInAt(1, Location::RequiresRegister());
1521       } else {
1522         locations->SetInAt(1, Location::Any());
1523       }
1524     } else {
1525       locations->SetInAt(1, Location::Any());
1526     }
1527   }
1528   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1529     locations->SetInAt(2, Location::RequiresRegister());
1530   }
1531   locations->SetOut(Location::SameAsFirstInput());
1532 }
1533 
GenerateIntCompare(Location lhs,Location rhs)1534 void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
1535   Register lhs_reg = lhs.AsRegister<Register>();
1536   if (rhs.IsConstant()) {
1537     int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1538     codegen_->Compare32BitValue(lhs_reg, value);
1539   } else if (rhs.IsStackSlot()) {
1540     __ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex()));
1541   } else {
1542     __ cmpl(lhs_reg, rhs.AsRegister<Register>());
1543   }
1544 }
1545 
VisitSelect(HSelect * select)1546 void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
1547   LocationSummary* locations = select->GetLocations();
1548   DCHECK(locations->InAt(0).Equals(locations->Out()));
1549   if (SelectCanUseCMOV(select)) {
1550     // If both the condition and the source types are integer, we can generate
1551     // a CMOV to implement Select.
1552 
1553     HInstruction* select_condition = select->GetCondition();
1554     Condition cond = kNotEqual;
1555 
1556     // Figure out how to test the 'condition'.
1557     if (select_condition->IsCondition()) {
1558       HCondition* condition = select_condition->AsCondition();
1559       if (!condition->IsEmittedAtUseSite()) {
1560         // This was a previously materialized condition.
1561         // Can we use the existing condition code?
1562         if (AreEflagsSetFrom(condition, select)) {
1563           // Materialization was the previous instruction. Condition codes are right.
1564           cond = X86Condition(condition->GetCondition());
1565         } else {
1566           // No, we have to recreate the condition code.
1567           Register cond_reg = locations->InAt(2).AsRegister<Register>();
1568           __ testl(cond_reg, cond_reg);
1569         }
1570       } else {
1571         // We can't handle FP or long here.
1572         DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
1573         DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
1574         LocationSummary* cond_locations = condition->GetLocations();
1575         GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
1576         cond = X86Condition(condition->GetCondition());
1577       }
1578     } else {
1579       // Must be a boolean condition, which needs to be compared to 0.
1580       Register cond_reg = locations->InAt(2).AsRegister<Register>();
1581       __ testl(cond_reg, cond_reg);
1582     }
1583 
1584     // If the condition is true, overwrite the output, which already contains false.
1585     Location false_loc = locations->InAt(0);
1586     Location true_loc = locations->InAt(1);
1587     if (select->GetType() == Primitive::kPrimLong) {
1588       // 64 bit conditional move.
1589       Register false_high = false_loc.AsRegisterPairHigh<Register>();
1590       Register false_low = false_loc.AsRegisterPairLow<Register>();
1591       if (true_loc.IsRegisterPair()) {
1592         __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
1593         __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
1594       } else {
1595         __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
1596         __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
1597       }
1598     } else {
1599       // 32 bit conditional move.
1600       Register false_reg = false_loc.AsRegister<Register>();
1601       if (true_loc.IsRegister()) {
1602         __ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
1603       } else {
1604         __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
1605       }
1606     }
1607   } else {
1608     NearLabel false_target;
1609     GenerateTestAndBranch<NearLabel>(
1610         select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
1611     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1612     __ Bind(&false_target);
1613   }
1614 }
1615 
VisitNativeDebugInfo(HNativeDebugInfo * info)1616 void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1617   new (GetGraph()->GetArena()) LocationSummary(info);
1618 }
1619 
VisitNativeDebugInfo(HNativeDebugInfo *)1620 void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
1621   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1622 }
1623 
GenerateNop()1624 void CodeGeneratorX86::GenerateNop() {
1625   __ nop();
1626 }
1627 
HandleCondition(HCondition * cond)1628 void LocationsBuilderX86::HandleCondition(HCondition* cond) {
1629   LocationSummary* locations =
1630       new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1631   // Handle the long/FP comparisons made in instruction simplification.
1632   switch (cond->InputAt(0)->GetType()) {
1633     case Primitive::kPrimLong: {
1634       locations->SetInAt(0, Location::RequiresRegister());
1635       locations->SetInAt(1, Location::Any());
1636       if (!cond->IsEmittedAtUseSite()) {
1637         locations->SetOut(Location::RequiresRegister());
1638       }
1639       break;
1640     }
1641     case Primitive::kPrimFloat:
1642     case Primitive::kPrimDouble: {
1643       locations->SetInAt(0, Location::RequiresFpuRegister());
1644       if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
1645         DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
1646       } else if (cond->InputAt(1)->IsConstant()) {
1647         locations->SetInAt(1, Location::RequiresFpuRegister());
1648       } else {
1649         locations->SetInAt(1, Location::Any());
1650       }
1651       if (!cond->IsEmittedAtUseSite()) {
1652         locations->SetOut(Location::RequiresRegister());
1653       }
1654       break;
1655     }
1656     default:
1657       locations->SetInAt(0, Location::RequiresRegister());
1658       locations->SetInAt(1, Location::Any());
1659       if (!cond->IsEmittedAtUseSite()) {
1660         // We need a byte register.
1661         locations->SetOut(Location::RegisterLocation(ECX));
1662       }
1663       break;
1664   }
1665 }
1666 
HandleCondition(HCondition * cond)1667 void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
1668   if (cond->IsEmittedAtUseSite()) {
1669     return;
1670   }
1671 
1672   LocationSummary* locations = cond->GetLocations();
1673   Location lhs = locations->InAt(0);
1674   Location rhs = locations->InAt(1);
1675   Register reg = locations->Out().AsRegister<Register>();
1676   NearLabel true_label, false_label;
1677 
1678   switch (cond->InputAt(0)->GetType()) {
1679     default: {
1680       // Integer case.
1681 
1682       // Clear output register: setb only sets the low byte.
1683       __ xorl(reg, reg);
1684       GenerateIntCompare(lhs, rhs);
1685       __ setb(X86Condition(cond->GetCondition()), reg);
1686       return;
1687     }
1688     case Primitive::kPrimLong:
1689       GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1690       break;
1691     case Primitive::kPrimFloat:
1692       GenerateFPCompare(lhs, rhs, cond, false);
1693       GenerateFPJumps(cond, &true_label, &false_label);
1694       break;
1695     case Primitive::kPrimDouble:
1696       GenerateFPCompare(lhs, rhs, cond, true);
1697       GenerateFPJumps(cond, &true_label, &false_label);
1698       break;
1699   }
1700 
1701   // Convert the jumps into the result.
1702   NearLabel done_label;
1703 
1704   // False case: result = 0.
1705   __ Bind(&false_label);
1706   __ xorl(reg, reg);
1707   __ jmp(&done_label);
1708 
1709   // True case: result = 1.
1710   __ Bind(&true_label);
1711   __ movl(reg, Immediate(1));
1712   __ Bind(&done_label);
1713 }
1714 
VisitEqual(HEqual * comp)1715 void LocationsBuilderX86::VisitEqual(HEqual* comp) {
1716   HandleCondition(comp);
1717 }
1718 
VisitEqual(HEqual * comp)1719 void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
1720   HandleCondition(comp);
1721 }
1722 
VisitNotEqual(HNotEqual * comp)1723 void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
1724   HandleCondition(comp);
1725 }
1726 
VisitNotEqual(HNotEqual * comp)1727 void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
1728   HandleCondition(comp);
1729 }
1730 
VisitLessThan(HLessThan * comp)1731 void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
1732   HandleCondition(comp);
1733 }
1734 
VisitLessThan(HLessThan * comp)1735 void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
1736   HandleCondition(comp);
1737 }
1738 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1739 void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1740   HandleCondition(comp);
1741 }
1742 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1743 void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1744   HandleCondition(comp);
1745 }
1746 
VisitGreaterThan(HGreaterThan * comp)1747 void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
1748   HandleCondition(comp);
1749 }
1750 
VisitGreaterThan(HGreaterThan * comp)1751 void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
1752   HandleCondition(comp);
1753 }
1754 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1755 void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1756   HandleCondition(comp);
1757 }
1758 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1759 void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1760   HandleCondition(comp);
1761 }
1762 
VisitBelow(HBelow * comp)1763 void LocationsBuilderX86::VisitBelow(HBelow* comp) {
1764   HandleCondition(comp);
1765 }
1766 
VisitBelow(HBelow * comp)1767 void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
1768   HandleCondition(comp);
1769 }
1770 
VisitBelowOrEqual(HBelowOrEqual * comp)1771 void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1772   HandleCondition(comp);
1773 }
1774 
VisitBelowOrEqual(HBelowOrEqual * comp)1775 void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1776   HandleCondition(comp);
1777 }
1778 
VisitAbove(HAbove * comp)1779 void LocationsBuilderX86::VisitAbove(HAbove* comp) {
1780   HandleCondition(comp);
1781 }
1782 
VisitAbove(HAbove * comp)1783 void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
1784   HandleCondition(comp);
1785 }
1786 
VisitAboveOrEqual(HAboveOrEqual * comp)1787 void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1788   HandleCondition(comp);
1789 }
1790 
VisitAboveOrEqual(HAboveOrEqual * comp)1791 void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1792   HandleCondition(comp);
1793 }
1794 
VisitIntConstant(HIntConstant * constant)1795 void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
1796   LocationSummary* locations =
1797       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1798   locations->SetOut(Location::ConstantLocation(constant));
1799 }
1800 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)1801 void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
1802   // Will be generated at use site.
1803 }
1804 
VisitNullConstant(HNullConstant * constant)1805 void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
1806   LocationSummary* locations =
1807       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1808   locations->SetOut(Location::ConstantLocation(constant));
1809 }
1810 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)1811 void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
1812   // Will be generated at use site.
1813 }
1814 
VisitLongConstant(HLongConstant * constant)1815 void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
1816   LocationSummary* locations =
1817       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1818   locations->SetOut(Location::ConstantLocation(constant));
1819 }
1820 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)1821 void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
1822   // Will be generated at use site.
1823 }
1824 
VisitFloatConstant(HFloatConstant * constant)1825 void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
1826   LocationSummary* locations =
1827       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1828   locations->SetOut(Location::ConstantLocation(constant));
1829 }
1830 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)1831 void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
1832   // Will be generated at use site.
1833 }
1834 
VisitDoubleConstant(HDoubleConstant * constant)1835 void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
1836   LocationSummary* locations =
1837       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1838   locations->SetOut(Location::ConstantLocation(constant));
1839 }
1840 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)1841 void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
1842   // Will be generated at use site.
1843 }
1844 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1845 void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1846   memory_barrier->SetLocations(nullptr);
1847 }
1848 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1849 void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1850   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
1851 }
1852 
VisitReturnVoid(HReturnVoid * ret)1853 void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
1854   ret->SetLocations(nullptr);
1855 }
1856 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)1857 void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
1858   codegen_->GenerateFrameExit();
1859 }
1860 
VisitReturn(HReturn * ret)1861 void LocationsBuilderX86::VisitReturn(HReturn* ret) {
1862   LocationSummary* locations =
1863       new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
1864   switch (ret->InputAt(0)->GetType()) {
1865     case Primitive::kPrimBoolean:
1866     case Primitive::kPrimByte:
1867     case Primitive::kPrimChar:
1868     case Primitive::kPrimShort:
1869     case Primitive::kPrimInt:
1870     case Primitive::kPrimNot:
1871       locations->SetInAt(0, Location::RegisterLocation(EAX));
1872       break;
1873 
1874     case Primitive::kPrimLong:
1875       locations->SetInAt(
1876           0, Location::RegisterPairLocation(EAX, EDX));
1877       break;
1878 
1879     case Primitive::kPrimFloat:
1880     case Primitive::kPrimDouble:
1881       locations->SetInAt(
1882           0, Location::FpuRegisterLocation(XMM0));
1883       break;
1884 
1885     default:
1886       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1887   }
1888 }
1889 
VisitReturn(HReturn * ret)1890 void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
1891   if (kIsDebugBuild) {
1892     switch (ret->InputAt(0)->GetType()) {
1893       case Primitive::kPrimBoolean:
1894       case Primitive::kPrimByte:
1895       case Primitive::kPrimChar:
1896       case Primitive::kPrimShort:
1897       case Primitive::kPrimInt:
1898       case Primitive::kPrimNot:
1899         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
1900         break;
1901 
1902       case Primitive::kPrimLong:
1903         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
1904         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
1905         break;
1906 
1907       case Primitive::kPrimFloat:
1908       case Primitive::kPrimDouble:
1909         DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
1910         break;
1911 
1912       default:
1913         LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1914     }
1915   }
1916   codegen_->GenerateFrameExit();
1917 }
1918 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1919 void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1920   // The trampoline uses the same calling convention as dex calling conventions,
1921   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
1922   // the method_idx.
1923   HandleInvoke(invoke);
1924 }
1925 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1926 void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1927   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
1928 }
1929 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1930 void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1931   // Explicit clinit checks triggered by static invokes must have been pruned by
1932   // art::PrepareForRegisterAllocation.
1933   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1934 
1935   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1936   if (intrinsic.TryDispatch(invoke)) {
1937     if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
1938       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
1939     }
1940     return;
1941   }
1942 
1943   HandleInvoke(invoke);
1944 
1945   // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
1946   if (invoke->HasPcRelativeDexCache()) {
1947     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
1948   }
1949 }
1950 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorX86 * codegen)1951 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
1952   if (invoke->GetLocations()->Intrinsified()) {
1953     IntrinsicCodeGeneratorX86 intrinsic(codegen);
1954     intrinsic.Dispatch(invoke);
1955     return true;
1956   }
1957   return false;
1958 }
1959 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1960 void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1961   // Explicit clinit checks triggered by static invokes must have been pruned by
1962   // art::PrepareForRegisterAllocation.
1963   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1964 
1965   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1966     return;
1967   }
1968 
1969   LocationSummary* locations = invoke->GetLocations();
1970   codegen_->GenerateStaticOrDirectCall(
1971       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
1972   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1973 }
1974 
VisitInvokeVirtual(HInvokeVirtual * invoke)1975 void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1976   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1977   if (intrinsic.TryDispatch(invoke)) {
1978     return;
1979   }
1980 
1981   HandleInvoke(invoke);
1982 }
1983 
HandleInvoke(HInvoke * invoke)1984 void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
1985   InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
1986   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
1987 }
1988 
VisitInvokeVirtual(HInvokeVirtual * invoke)1989 void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1990   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1991     return;
1992   }
1993 
1994   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
1995   DCHECK(!codegen_->IsLeafMethod());
1996   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1997 }
1998 
VisitInvokeInterface(HInvokeInterface * invoke)1999 void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2000   // This call to HandleInvoke allocates a temporary (core) register
2001   // which is also used to transfer the hidden argument from FP to
2002   // core register.
2003   HandleInvoke(invoke);
2004   // Add the hidden argument.
2005   invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
2006 }
2007 
VisitInvokeInterface(HInvokeInterface * invoke)2008 void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2009   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2010   LocationSummary* locations = invoke->GetLocations();
2011   Register temp = locations->GetTemp(0).AsRegister<Register>();
2012   XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2013   Location receiver = locations->InAt(0);
2014   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2015 
2016   // Set the hidden argument. This is safe to do this here, as XMM7
2017   // won't be modified thereafter, before the `call` instruction.
2018   DCHECK_EQ(XMM7, hidden_reg);
2019   __ movl(temp, Immediate(invoke->GetDexMethodIndex()));
2020   __ movd(hidden_reg, temp);
2021 
2022   if (receiver.IsStackSlot()) {
2023     __ movl(temp, Address(ESP, receiver.GetStackIndex()));
2024     // /* HeapReference<Class> */ temp = temp->klass_
2025     __ movl(temp, Address(temp, class_offset));
2026   } else {
2027     // /* HeapReference<Class> */ temp = receiver->klass_
2028     __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
2029   }
2030   codegen_->MaybeRecordImplicitNullCheck(invoke);
2031   // Instead of simply (possibly) unpoisoning `temp` here, we should
2032   // emit a read barrier for the previous class reference load.
2033   // However this is not required in practice, as this is an
2034   // intermediate/temporary reference and because the current
2035   // concurrent copying collector keeps the from-space memory
2036   // intact/accessible until the end of the marking phase (the
2037   // concurrent copying collector may not in the future).
2038   __ MaybeUnpoisonHeapReference(temp);
2039   // temp = temp->GetAddressOfIMT()
2040   __ movl(temp,
2041       Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
2042   // temp = temp->GetImtEntryAt(method_offset);
2043   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2044       invoke->GetImtIndex() % ImTable::kSize, kX86PointerSize));
2045   __ movl(temp, Address(temp, method_offset));
2046   // call temp->GetEntryPoint();
2047   __ call(Address(temp,
2048                   ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
2049 
2050   DCHECK(!codegen_->IsLeafMethod());
2051   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2052 }
2053 
VisitNeg(HNeg * neg)2054 void LocationsBuilderX86::VisitNeg(HNeg* neg) {
2055   LocationSummary* locations =
2056       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2057   switch (neg->GetResultType()) {
2058     case Primitive::kPrimInt:
2059     case Primitive::kPrimLong:
2060       locations->SetInAt(0, Location::RequiresRegister());
2061       locations->SetOut(Location::SameAsFirstInput());
2062       break;
2063 
2064     case Primitive::kPrimFloat:
2065       locations->SetInAt(0, Location::RequiresFpuRegister());
2066       locations->SetOut(Location::SameAsFirstInput());
2067       locations->AddTemp(Location::RequiresRegister());
2068       locations->AddTemp(Location::RequiresFpuRegister());
2069       break;
2070 
2071     case Primitive::kPrimDouble:
2072       locations->SetInAt(0, Location::RequiresFpuRegister());
2073       locations->SetOut(Location::SameAsFirstInput());
2074       locations->AddTemp(Location::RequiresFpuRegister());
2075       break;
2076 
2077     default:
2078       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2079   }
2080 }
2081 
VisitNeg(HNeg * neg)2082 void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
2083   LocationSummary* locations = neg->GetLocations();
2084   Location out = locations->Out();
2085   Location in = locations->InAt(0);
2086   switch (neg->GetResultType()) {
2087     case Primitive::kPrimInt:
2088       DCHECK(in.IsRegister());
2089       DCHECK(in.Equals(out));
2090       __ negl(out.AsRegister<Register>());
2091       break;
2092 
2093     case Primitive::kPrimLong:
2094       DCHECK(in.IsRegisterPair());
2095       DCHECK(in.Equals(out));
2096       __ negl(out.AsRegisterPairLow<Register>());
2097       // Negation is similar to subtraction from zero.  The least
2098       // significant byte triggers a borrow when it is different from
2099       // zero; to take it into account, add 1 to the most significant
2100       // byte if the carry flag (CF) is set to 1 after the first NEGL
2101       // operation.
2102       __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
2103       __ negl(out.AsRegisterPairHigh<Register>());
2104       break;
2105 
2106     case Primitive::kPrimFloat: {
2107       DCHECK(in.Equals(out));
2108       Register constant = locations->GetTemp(0).AsRegister<Register>();
2109       XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2110       // Implement float negation with an exclusive or with value
2111       // 0x80000000 (mask for bit 31, representing the sign of a
2112       // single-precision floating-point number).
2113       __ movl(constant, Immediate(INT32_C(0x80000000)));
2114       __ movd(mask, constant);
2115       __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2116       break;
2117     }
2118 
2119     case Primitive::kPrimDouble: {
2120       DCHECK(in.Equals(out));
2121       XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2122       // Implement double negation with an exclusive or with value
2123       // 0x8000000000000000 (mask for bit 63, representing the sign of
2124       // a double-precision floating-point number).
2125       __ LoadLongConstant(mask, INT64_C(0x8000000000000000));
2126       __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2127       break;
2128     }
2129 
2130     default:
2131       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2132   }
2133 }
2134 
VisitX86FPNeg(HX86FPNeg * neg)2135 void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
2136   LocationSummary* locations =
2137       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2138   DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
2139   locations->SetInAt(0, Location::RequiresFpuRegister());
2140   locations->SetInAt(1, Location::RequiresRegister());
2141   locations->SetOut(Location::SameAsFirstInput());
2142   locations->AddTemp(Location::RequiresFpuRegister());
2143 }
2144 
VisitX86FPNeg(HX86FPNeg * neg)2145 void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
2146   LocationSummary* locations = neg->GetLocations();
2147   Location out = locations->Out();
2148   DCHECK(locations->InAt(0).Equals(out));
2149 
2150   Register constant_area = locations->InAt(1).AsRegister<Register>();
2151   XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2152   if (neg->GetType() == Primitive::kPrimFloat) {
2153     __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area));
2154     __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2155   } else {
2156      __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area));
2157      __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2158   }
2159 }
2160 
VisitTypeConversion(HTypeConversion * conversion)2161 void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
2162   Primitive::Type result_type = conversion->GetResultType();
2163   Primitive::Type input_type = conversion->GetInputType();
2164   DCHECK_NE(result_type, input_type);
2165 
2166   // The float-to-long and double-to-long type conversions rely on a
2167   // call to the runtime.
2168   LocationSummary::CallKind call_kind =
2169       ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2170        && result_type == Primitive::kPrimLong)
2171       ? LocationSummary::kCall
2172       : LocationSummary::kNoCall;
2173   LocationSummary* locations =
2174       new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2175 
2176   // The Java language does not allow treating boolean as an integral type but
2177   // our bit representation makes it safe.
2178 
2179   switch (result_type) {
2180     case Primitive::kPrimByte:
2181       switch (input_type) {
2182         case Primitive::kPrimLong: {
2183           // Type conversion from long to byte is a result of code transformations.
2184           HInstruction* input = conversion->InputAt(0);
2185           Location input_location = input->IsConstant()
2186               ? Location::ConstantLocation(input->AsConstant())
2187               : Location::RegisterPairLocation(EAX, EDX);
2188           locations->SetInAt(0, input_location);
2189           // Make the output overlap to please the register allocator. This greatly simplifies
2190           // the validation of the linear scan implementation
2191           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2192           break;
2193         }
2194         case Primitive::kPrimBoolean:
2195           // Boolean input is a result of code transformations.
2196         case Primitive::kPrimShort:
2197         case Primitive::kPrimInt:
2198         case Primitive::kPrimChar:
2199           // Processing a Dex `int-to-byte' instruction.
2200           locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
2201           // Make the output overlap to please the register allocator. This greatly simplifies
2202           // the validation of the linear scan implementation
2203           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2204           break;
2205 
2206         default:
2207           LOG(FATAL) << "Unexpected type conversion from " << input_type
2208                      << " to " << result_type;
2209       }
2210       break;
2211 
2212     case Primitive::kPrimShort:
2213       switch (input_type) {
2214         case Primitive::kPrimLong:
2215           // Type conversion from long to short is a result of code transformations.
2216         case Primitive::kPrimBoolean:
2217           // Boolean input is a result of code transformations.
2218         case Primitive::kPrimByte:
2219         case Primitive::kPrimInt:
2220         case Primitive::kPrimChar:
2221           // Processing a Dex `int-to-short' instruction.
2222           locations->SetInAt(0, Location::Any());
2223           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2224           break;
2225 
2226         default:
2227           LOG(FATAL) << "Unexpected type conversion from " << input_type
2228                      << " to " << result_type;
2229       }
2230       break;
2231 
2232     case Primitive::kPrimInt:
2233       switch (input_type) {
2234         case Primitive::kPrimLong:
2235           // Processing a Dex `long-to-int' instruction.
2236           locations->SetInAt(0, Location::Any());
2237           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2238           break;
2239 
2240         case Primitive::kPrimFloat:
2241           // Processing a Dex `float-to-int' instruction.
2242           locations->SetInAt(0, Location::RequiresFpuRegister());
2243           locations->SetOut(Location::RequiresRegister());
2244           locations->AddTemp(Location::RequiresFpuRegister());
2245           break;
2246 
2247         case Primitive::kPrimDouble:
2248           // Processing a Dex `double-to-int' instruction.
2249           locations->SetInAt(0, Location::RequiresFpuRegister());
2250           locations->SetOut(Location::RequiresRegister());
2251           locations->AddTemp(Location::RequiresFpuRegister());
2252           break;
2253 
2254         default:
2255           LOG(FATAL) << "Unexpected type conversion from " << input_type
2256                      << " to " << result_type;
2257       }
2258       break;
2259 
2260     case Primitive::kPrimLong:
2261       switch (input_type) {
2262         case Primitive::kPrimBoolean:
2263           // Boolean input is a result of code transformations.
2264         case Primitive::kPrimByte:
2265         case Primitive::kPrimShort:
2266         case Primitive::kPrimInt:
2267         case Primitive::kPrimChar:
2268           // Processing a Dex `int-to-long' instruction.
2269           locations->SetInAt(0, Location::RegisterLocation(EAX));
2270           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2271           break;
2272 
2273         case Primitive::kPrimFloat:
2274         case Primitive::kPrimDouble: {
2275           // Processing a Dex `float-to-long' or 'double-to-long' instruction.
2276           InvokeRuntimeCallingConvention calling_convention;
2277           XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
2278           locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
2279 
2280           // The runtime helper puts the result in EAX, EDX.
2281           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2282         }
2283         break;
2284 
2285         default:
2286           LOG(FATAL) << "Unexpected type conversion from " << input_type
2287                      << " to " << result_type;
2288       }
2289       break;
2290 
2291     case Primitive::kPrimChar:
2292       switch (input_type) {
2293         case Primitive::kPrimLong:
2294           // Type conversion from long to char is a result of code transformations.
2295         case Primitive::kPrimBoolean:
2296           // Boolean input is a result of code transformations.
2297         case Primitive::kPrimByte:
2298         case Primitive::kPrimShort:
2299         case Primitive::kPrimInt:
2300           // Processing a Dex `int-to-char' instruction.
2301           locations->SetInAt(0, Location::Any());
2302           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2303           break;
2304 
2305         default:
2306           LOG(FATAL) << "Unexpected type conversion from " << input_type
2307                      << " to " << result_type;
2308       }
2309       break;
2310 
2311     case Primitive::kPrimFloat:
2312       switch (input_type) {
2313         case Primitive::kPrimBoolean:
2314           // Boolean input is a result of code transformations.
2315         case Primitive::kPrimByte:
2316         case Primitive::kPrimShort:
2317         case Primitive::kPrimInt:
2318         case Primitive::kPrimChar:
2319           // Processing a Dex `int-to-float' instruction.
2320           locations->SetInAt(0, Location::RequiresRegister());
2321           locations->SetOut(Location::RequiresFpuRegister());
2322           break;
2323 
2324         case Primitive::kPrimLong:
2325           // Processing a Dex `long-to-float' instruction.
2326           locations->SetInAt(0, Location::Any());
2327           locations->SetOut(Location::Any());
2328           break;
2329 
2330         case Primitive::kPrimDouble:
2331           // Processing a Dex `double-to-float' instruction.
2332           locations->SetInAt(0, Location::RequiresFpuRegister());
2333           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2334           break;
2335 
2336         default:
2337           LOG(FATAL) << "Unexpected type conversion from " << input_type
2338                      << " to " << result_type;
2339       };
2340       break;
2341 
2342     case Primitive::kPrimDouble:
2343       switch (input_type) {
2344         case Primitive::kPrimBoolean:
2345           // Boolean input is a result of code transformations.
2346         case Primitive::kPrimByte:
2347         case Primitive::kPrimShort:
2348         case Primitive::kPrimInt:
2349         case Primitive::kPrimChar:
2350           // Processing a Dex `int-to-double' instruction.
2351           locations->SetInAt(0, Location::RequiresRegister());
2352           locations->SetOut(Location::RequiresFpuRegister());
2353           break;
2354 
2355         case Primitive::kPrimLong:
2356           // Processing a Dex `long-to-double' instruction.
2357           locations->SetInAt(0, Location::Any());
2358           locations->SetOut(Location::Any());
2359           break;
2360 
2361         case Primitive::kPrimFloat:
2362           // Processing a Dex `float-to-double' instruction.
2363           locations->SetInAt(0, Location::RequiresFpuRegister());
2364           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2365           break;
2366 
2367         default:
2368           LOG(FATAL) << "Unexpected type conversion from " << input_type
2369                      << " to " << result_type;
2370       }
2371       break;
2372 
2373     default:
2374       LOG(FATAL) << "Unexpected type conversion from " << input_type
2375                  << " to " << result_type;
2376   }
2377 }
2378 
VisitTypeConversion(HTypeConversion * conversion)2379 void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
2380   LocationSummary* locations = conversion->GetLocations();
2381   Location out = locations->Out();
2382   Location in = locations->InAt(0);
2383   Primitive::Type result_type = conversion->GetResultType();
2384   Primitive::Type input_type = conversion->GetInputType();
2385   DCHECK_NE(result_type, input_type);
2386   switch (result_type) {
2387     case Primitive::kPrimByte:
2388       switch (input_type) {
2389         case Primitive::kPrimLong:
2390           // Type conversion from long to byte is a result of code transformations.
2391           if (in.IsRegisterPair()) {
2392             __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
2393           } else {
2394             DCHECK(in.GetConstant()->IsLongConstant());
2395             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2396             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2397           }
2398           break;
2399         case Primitive::kPrimBoolean:
2400           // Boolean input is a result of code transformations.
2401         case Primitive::kPrimShort:
2402         case Primitive::kPrimInt:
2403         case Primitive::kPrimChar:
2404           // Processing a Dex `int-to-byte' instruction.
2405           if (in.IsRegister()) {
2406             __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
2407           } else {
2408             DCHECK(in.GetConstant()->IsIntConstant());
2409             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2410             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2411           }
2412           break;
2413 
2414         default:
2415           LOG(FATAL) << "Unexpected type conversion from " << input_type
2416                      << " to " << result_type;
2417       }
2418       break;
2419 
2420     case Primitive::kPrimShort:
2421       switch (input_type) {
2422         case Primitive::kPrimLong:
2423           // Type conversion from long to short is a result of code transformations.
2424           if (in.IsRegisterPair()) {
2425             __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2426           } else if (in.IsDoubleStackSlot()) {
2427             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2428           } else {
2429             DCHECK(in.GetConstant()->IsLongConstant());
2430             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2431             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2432           }
2433           break;
2434         case Primitive::kPrimBoolean:
2435           // Boolean input is a result of code transformations.
2436         case Primitive::kPrimByte:
2437         case Primitive::kPrimInt:
2438         case Primitive::kPrimChar:
2439           // Processing a Dex `int-to-short' instruction.
2440           if (in.IsRegister()) {
2441             __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2442           } else if (in.IsStackSlot()) {
2443             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2444           } else {
2445             DCHECK(in.GetConstant()->IsIntConstant());
2446             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2447             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2448           }
2449           break;
2450 
2451         default:
2452           LOG(FATAL) << "Unexpected type conversion from " << input_type
2453                      << " to " << result_type;
2454       }
2455       break;
2456 
2457     case Primitive::kPrimInt:
2458       switch (input_type) {
2459         case Primitive::kPrimLong:
2460           // Processing a Dex `long-to-int' instruction.
2461           if (in.IsRegisterPair()) {
2462             __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2463           } else if (in.IsDoubleStackSlot()) {
2464             __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2465           } else {
2466             DCHECK(in.IsConstant());
2467             DCHECK(in.GetConstant()->IsLongConstant());
2468             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2469             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
2470           }
2471           break;
2472 
2473         case Primitive::kPrimFloat: {
2474           // Processing a Dex `float-to-int' instruction.
2475           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2476           Register output = out.AsRegister<Register>();
2477           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2478           NearLabel done, nan;
2479 
2480           __ movl(output, Immediate(kPrimIntMax));
2481           // temp = int-to-float(output)
2482           __ cvtsi2ss(temp, output);
2483           // if input >= temp goto done
2484           __ comiss(input, temp);
2485           __ j(kAboveEqual, &done);
2486           // if input == NaN goto nan
2487           __ j(kUnordered, &nan);
2488           // output = float-to-int-truncate(input)
2489           __ cvttss2si(output, input);
2490           __ jmp(&done);
2491           __ Bind(&nan);
2492           //  output = 0
2493           __ xorl(output, output);
2494           __ Bind(&done);
2495           break;
2496         }
2497 
2498         case Primitive::kPrimDouble: {
2499           // Processing a Dex `double-to-int' instruction.
2500           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2501           Register output = out.AsRegister<Register>();
2502           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2503           NearLabel done, nan;
2504 
2505           __ movl(output, Immediate(kPrimIntMax));
2506           // temp = int-to-double(output)
2507           __ cvtsi2sd(temp, output);
2508           // if input >= temp goto done
2509           __ comisd(input, temp);
2510           __ j(kAboveEqual, &done);
2511           // if input == NaN goto nan
2512           __ j(kUnordered, &nan);
2513           // output = double-to-int-truncate(input)
2514           __ cvttsd2si(output, input);
2515           __ jmp(&done);
2516           __ Bind(&nan);
2517           //  output = 0
2518           __ xorl(output, output);
2519           __ Bind(&done);
2520           break;
2521         }
2522 
2523         default:
2524           LOG(FATAL) << "Unexpected type conversion from " << input_type
2525                      << " to " << result_type;
2526       }
2527       break;
2528 
2529     case Primitive::kPrimLong:
2530       switch (input_type) {
2531         case Primitive::kPrimBoolean:
2532           // Boolean input is a result of code transformations.
2533         case Primitive::kPrimByte:
2534         case Primitive::kPrimShort:
2535         case Primitive::kPrimInt:
2536         case Primitive::kPrimChar:
2537           // Processing a Dex `int-to-long' instruction.
2538           DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
2539           DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
2540           DCHECK_EQ(in.AsRegister<Register>(), EAX);
2541           __ cdq();
2542           break;
2543 
2544         case Primitive::kPrimFloat:
2545           // Processing a Dex `float-to-long' instruction.
2546           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
2547                                   conversion,
2548                                   conversion->GetDexPc(),
2549                                   nullptr);
2550           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2551           break;
2552 
2553         case Primitive::kPrimDouble:
2554           // Processing a Dex `double-to-long' instruction.
2555           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
2556                                   conversion,
2557                                   conversion->GetDexPc(),
2558                                   nullptr);
2559           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2560           break;
2561 
2562         default:
2563           LOG(FATAL) << "Unexpected type conversion from " << input_type
2564                      << " to " << result_type;
2565       }
2566       break;
2567 
2568     case Primitive::kPrimChar:
2569       switch (input_type) {
2570         case Primitive::kPrimLong:
2571           // Type conversion from long to short is a result of code transformations.
2572           if (in.IsRegisterPair()) {
2573             __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2574           } else if (in.IsDoubleStackSlot()) {
2575             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2576           } else {
2577             DCHECK(in.GetConstant()->IsLongConstant());
2578             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2579             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2580           }
2581           break;
2582         case Primitive::kPrimBoolean:
2583           // Boolean input is a result of code transformations.
2584         case Primitive::kPrimByte:
2585         case Primitive::kPrimShort:
2586         case Primitive::kPrimInt:
2587           // Processing a Dex `Process a Dex `int-to-char'' instruction.
2588           if (in.IsRegister()) {
2589             __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2590           } else if (in.IsStackSlot()) {
2591             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2592           } else {
2593             DCHECK(in.GetConstant()->IsIntConstant());
2594             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2595             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2596           }
2597           break;
2598 
2599         default:
2600           LOG(FATAL) << "Unexpected type conversion from " << input_type
2601                      << " to " << result_type;
2602       }
2603       break;
2604 
2605     case Primitive::kPrimFloat:
2606       switch (input_type) {
2607         case Primitive::kPrimBoolean:
2608           // Boolean input is a result of code transformations.
2609         case Primitive::kPrimByte:
2610         case Primitive::kPrimShort:
2611         case Primitive::kPrimInt:
2612         case Primitive::kPrimChar:
2613           // Processing a Dex `int-to-float' instruction.
2614           __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2615           break;
2616 
2617         case Primitive::kPrimLong: {
2618           // Processing a Dex `long-to-float' instruction.
2619           size_t adjustment = 0;
2620 
2621           // Create stack space for the call to
2622           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
2623           // TODO: enhance register allocator to ask for stack temporaries.
2624           if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
2625             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2626             __ subl(ESP, Immediate(adjustment));
2627           }
2628 
2629           // Load the value to the FP stack, using temporaries if needed.
2630           PushOntoFPStack(in, 0, adjustment, false, true);
2631 
2632           if (out.IsStackSlot()) {
2633             __ fstps(Address(ESP, out.GetStackIndex() + adjustment));
2634           } else {
2635             __ fstps(Address(ESP, 0));
2636             Location stack_temp = Location::StackSlot(0);
2637             codegen_->Move32(out, stack_temp);
2638           }
2639 
2640           // Remove the temporary stack space we allocated.
2641           if (adjustment != 0) {
2642             __ addl(ESP, Immediate(adjustment));
2643           }
2644           break;
2645         }
2646 
2647         case Primitive::kPrimDouble:
2648           // Processing a Dex `double-to-float' instruction.
2649           __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2650           break;
2651 
2652         default:
2653           LOG(FATAL) << "Unexpected type conversion from " << input_type
2654                      << " to " << result_type;
2655       };
2656       break;
2657 
2658     case Primitive::kPrimDouble:
2659       switch (input_type) {
2660         case Primitive::kPrimBoolean:
2661           // Boolean input is a result of code transformations.
2662         case Primitive::kPrimByte:
2663         case Primitive::kPrimShort:
2664         case Primitive::kPrimInt:
2665         case Primitive::kPrimChar:
2666           // Processing a Dex `int-to-double' instruction.
2667           __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2668           break;
2669 
2670         case Primitive::kPrimLong: {
2671           // Processing a Dex `long-to-double' instruction.
2672           size_t adjustment = 0;
2673 
2674           // Create stack space for the call to
2675           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
2676           // TODO: enhance register allocator to ask for stack temporaries.
2677           if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
2678             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2679             __ subl(ESP, Immediate(adjustment));
2680           }
2681 
2682           // Load the value to the FP stack, using temporaries if needed.
2683           PushOntoFPStack(in, 0, adjustment, false, true);
2684 
2685           if (out.IsDoubleStackSlot()) {
2686             __ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
2687           } else {
2688             __ fstpl(Address(ESP, 0));
2689             Location stack_temp = Location::DoubleStackSlot(0);
2690             codegen_->Move64(out, stack_temp);
2691           }
2692 
2693           // Remove the temporary stack space we allocated.
2694           if (adjustment != 0) {
2695             __ addl(ESP, Immediate(adjustment));
2696           }
2697           break;
2698         }
2699 
2700         case Primitive::kPrimFloat:
2701           // Processing a Dex `float-to-double' instruction.
2702           __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2703           break;
2704 
2705         default:
2706           LOG(FATAL) << "Unexpected type conversion from " << input_type
2707                      << " to " << result_type;
2708       };
2709       break;
2710 
2711     default:
2712       LOG(FATAL) << "Unexpected type conversion from " << input_type
2713                  << " to " << result_type;
2714   }
2715 }
2716 
VisitAdd(HAdd * add)2717 void LocationsBuilderX86::VisitAdd(HAdd* add) {
2718   LocationSummary* locations =
2719       new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2720   switch (add->GetResultType()) {
2721     case Primitive::kPrimInt: {
2722       locations->SetInAt(0, Location::RequiresRegister());
2723       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2724       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2725       break;
2726     }
2727 
2728     case Primitive::kPrimLong: {
2729       locations->SetInAt(0, Location::RequiresRegister());
2730       locations->SetInAt(1, Location::Any());
2731       locations->SetOut(Location::SameAsFirstInput());
2732       break;
2733     }
2734 
2735     case Primitive::kPrimFloat:
2736     case Primitive::kPrimDouble: {
2737       locations->SetInAt(0, Location::RequiresFpuRegister());
2738       if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2739         DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
2740       } else if (add->InputAt(1)->IsConstant()) {
2741         locations->SetInAt(1, Location::RequiresFpuRegister());
2742       } else {
2743         locations->SetInAt(1, Location::Any());
2744       }
2745       locations->SetOut(Location::SameAsFirstInput());
2746       break;
2747     }
2748 
2749     default:
2750       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2751       break;
2752   }
2753 }
2754 
VisitAdd(HAdd * add)2755 void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
2756   LocationSummary* locations = add->GetLocations();
2757   Location first = locations->InAt(0);
2758   Location second = locations->InAt(1);
2759   Location out = locations->Out();
2760 
2761   switch (add->GetResultType()) {
2762     case Primitive::kPrimInt: {
2763       if (second.IsRegister()) {
2764         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2765           __ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
2766         } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
2767           __ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
2768         } else {
2769           __ leal(out.AsRegister<Register>(), Address(
2770               first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
2771           }
2772       } else if (second.IsConstant()) {
2773         int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
2774         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2775           __ addl(out.AsRegister<Register>(), Immediate(value));
2776         } else {
2777           __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
2778         }
2779       } else {
2780         DCHECK(first.Equals(locations->Out()));
2781         __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2782       }
2783       break;
2784     }
2785 
2786     case Primitive::kPrimLong: {
2787       if (second.IsRegisterPair()) {
2788         __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2789         __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2790       } else if (second.IsDoubleStackSlot()) {
2791         __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2792         __ adcl(first.AsRegisterPairHigh<Register>(),
2793                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2794       } else {
2795         DCHECK(second.IsConstant()) << second;
2796         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2797         __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2798         __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2799       }
2800       break;
2801     }
2802 
2803     case Primitive::kPrimFloat: {
2804       if (second.IsFpuRegister()) {
2805         __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2806       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2807         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2808         DCHECK(const_area->IsEmittedAtUseSite());
2809         __ addss(first.AsFpuRegister<XmmRegister>(),
2810                  codegen_->LiteralFloatAddress(
2811                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
2812                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2813       } else {
2814         DCHECK(second.IsStackSlot());
2815         __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2816       }
2817       break;
2818     }
2819 
2820     case Primitive::kPrimDouble: {
2821       if (second.IsFpuRegister()) {
2822         __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2823       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2824         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2825         DCHECK(const_area->IsEmittedAtUseSite());
2826         __ addsd(first.AsFpuRegister<XmmRegister>(),
2827                  codegen_->LiteralDoubleAddress(
2828                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2829                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2830       } else {
2831         DCHECK(second.IsDoubleStackSlot());
2832         __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2833       }
2834       break;
2835     }
2836 
2837     default:
2838       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2839   }
2840 }
2841 
VisitSub(HSub * sub)2842 void LocationsBuilderX86::VisitSub(HSub* sub) {
2843   LocationSummary* locations =
2844       new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2845   switch (sub->GetResultType()) {
2846     case Primitive::kPrimInt:
2847     case Primitive::kPrimLong: {
2848       locations->SetInAt(0, Location::RequiresRegister());
2849       locations->SetInAt(1, Location::Any());
2850       locations->SetOut(Location::SameAsFirstInput());
2851       break;
2852     }
2853     case Primitive::kPrimFloat:
2854     case Primitive::kPrimDouble: {
2855       locations->SetInAt(0, Location::RequiresFpuRegister());
2856       if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2857         DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
2858       } else if (sub->InputAt(1)->IsConstant()) {
2859         locations->SetInAt(1, Location::RequiresFpuRegister());
2860       } else {
2861         locations->SetInAt(1, Location::Any());
2862       }
2863       locations->SetOut(Location::SameAsFirstInput());
2864       break;
2865     }
2866 
2867     default:
2868       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2869   }
2870 }
2871 
VisitSub(HSub * sub)2872 void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
2873   LocationSummary* locations = sub->GetLocations();
2874   Location first = locations->InAt(0);
2875   Location second = locations->InAt(1);
2876   DCHECK(first.Equals(locations->Out()));
2877   switch (sub->GetResultType()) {
2878     case Primitive::kPrimInt: {
2879       if (second.IsRegister()) {
2880         __ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
2881       } else if (second.IsConstant()) {
2882         __ subl(first.AsRegister<Register>(),
2883                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
2884       } else {
2885         __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2886       }
2887       break;
2888     }
2889 
2890     case Primitive::kPrimLong: {
2891       if (second.IsRegisterPair()) {
2892         __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2893         __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2894       } else if (second.IsDoubleStackSlot()) {
2895         __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2896         __ sbbl(first.AsRegisterPairHigh<Register>(),
2897                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2898       } else {
2899         DCHECK(second.IsConstant()) << second;
2900         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2901         __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2902         __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2903       }
2904       break;
2905     }
2906 
2907     case Primitive::kPrimFloat: {
2908       if (second.IsFpuRegister()) {
2909         __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2910       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2911         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2912         DCHECK(const_area->IsEmittedAtUseSite());
2913         __ subss(first.AsFpuRegister<XmmRegister>(),
2914                  codegen_->LiteralFloatAddress(
2915                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
2916                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2917       } else {
2918         DCHECK(second.IsStackSlot());
2919         __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2920       }
2921       break;
2922     }
2923 
2924     case Primitive::kPrimDouble: {
2925       if (second.IsFpuRegister()) {
2926         __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2927       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2928         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2929         DCHECK(const_area->IsEmittedAtUseSite());
2930         __ subsd(first.AsFpuRegister<XmmRegister>(),
2931                  codegen_->LiteralDoubleAddress(
2932                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2933                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2934       } else {
2935         DCHECK(second.IsDoubleStackSlot());
2936         __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2937       }
2938       break;
2939     }
2940 
2941     default:
2942       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2943   }
2944 }
2945 
VisitMul(HMul * mul)2946 void LocationsBuilderX86::VisitMul(HMul* mul) {
2947   LocationSummary* locations =
2948       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
2949   switch (mul->GetResultType()) {
2950     case Primitive::kPrimInt:
2951       locations->SetInAt(0, Location::RequiresRegister());
2952       locations->SetInAt(1, Location::Any());
2953       if (mul->InputAt(1)->IsIntConstant()) {
2954         // Can use 3 operand multiply.
2955         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2956       } else {
2957         locations->SetOut(Location::SameAsFirstInput());
2958       }
2959       break;
2960     case Primitive::kPrimLong: {
2961       locations->SetInAt(0, Location::RequiresRegister());
2962       locations->SetInAt(1, Location::Any());
2963       locations->SetOut(Location::SameAsFirstInput());
2964       // Needed for imul on 32bits with 64bits output.
2965       locations->AddTemp(Location::RegisterLocation(EAX));
2966       locations->AddTemp(Location::RegisterLocation(EDX));
2967       break;
2968     }
2969     case Primitive::kPrimFloat:
2970     case Primitive::kPrimDouble: {
2971       locations->SetInAt(0, Location::RequiresFpuRegister());
2972       if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
2973         DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
2974       } else if (mul->InputAt(1)->IsConstant()) {
2975         locations->SetInAt(1, Location::RequiresFpuRegister());
2976       } else {
2977         locations->SetInAt(1, Location::Any());
2978       }
2979       locations->SetOut(Location::SameAsFirstInput());
2980       break;
2981     }
2982 
2983     default:
2984       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2985   }
2986 }
2987 
VisitMul(HMul * mul)2988 void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
2989   LocationSummary* locations = mul->GetLocations();
2990   Location first = locations->InAt(0);
2991   Location second = locations->InAt(1);
2992   Location out = locations->Out();
2993 
2994   switch (mul->GetResultType()) {
2995     case Primitive::kPrimInt:
2996       // The constant may have ended up in a register, so test explicitly to avoid
2997       // problems where the output may not be the same as the first operand.
2998       if (mul->InputAt(1)->IsIntConstant()) {
2999         Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
3000         __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
3001       } else if (second.IsRegister()) {
3002         DCHECK(first.Equals(out));
3003         __ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
3004       } else {
3005         DCHECK(second.IsStackSlot());
3006         DCHECK(first.Equals(out));
3007         __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3008       }
3009       break;
3010 
3011     case Primitive::kPrimLong: {
3012       Register in1_hi = first.AsRegisterPairHigh<Register>();
3013       Register in1_lo = first.AsRegisterPairLow<Register>();
3014       Register eax = locations->GetTemp(0).AsRegister<Register>();
3015       Register edx = locations->GetTemp(1).AsRegister<Register>();
3016 
3017       DCHECK_EQ(EAX, eax);
3018       DCHECK_EQ(EDX, edx);
3019 
3020       // input: in1 - 64 bits, in2 - 64 bits.
3021       // output: in1
3022       // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3023       // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3024       // parts: in1.lo = (in1.lo * in2.lo)[31:0]
3025       if (second.IsConstant()) {
3026         DCHECK(second.GetConstant()->IsLongConstant());
3027 
3028         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3029         int32_t low_value = Low32Bits(value);
3030         int32_t high_value = High32Bits(value);
3031         Immediate low(low_value);
3032         Immediate high(high_value);
3033 
3034         __ movl(eax, high);
3035         // eax <- in1.lo * in2.hi
3036         __ imull(eax, in1_lo);
3037         // in1.hi <- in1.hi * in2.lo
3038         __ imull(in1_hi, low);
3039         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3040         __ addl(in1_hi, eax);
3041         // move in2_lo to eax to prepare for double precision
3042         __ movl(eax, low);
3043         // edx:eax <- in1.lo * in2.lo
3044         __ mull(in1_lo);
3045         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3046         __ addl(in1_hi, edx);
3047         // in1.lo <- (in1.lo * in2.lo)[31:0];
3048         __ movl(in1_lo, eax);
3049       } else if (second.IsRegisterPair()) {
3050         Register in2_hi = second.AsRegisterPairHigh<Register>();
3051         Register in2_lo = second.AsRegisterPairLow<Register>();
3052 
3053         __ movl(eax, in2_hi);
3054         // eax <- in1.lo * in2.hi
3055         __ imull(eax, in1_lo);
3056         // in1.hi <- in1.hi * in2.lo
3057         __ imull(in1_hi, in2_lo);
3058         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3059         __ addl(in1_hi, eax);
3060         // move in1_lo to eax to prepare for double precision
3061         __ movl(eax, in1_lo);
3062         // edx:eax <- in1.lo * in2.lo
3063         __ mull(in2_lo);
3064         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3065         __ addl(in1_hi, edx);
3066         // in1.lo <- (in1.lo * in2.lo)[31:0];
3067         __ movl(in1_lo, eax);
3068       } else {
3069         DCHECK(second.IsDoubleStackSlot()) << second;
3070         Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
3071         Address in2_lo(ESP, second.GetStackIndex());
3072 
3073         __ movl(eax, in2_hi);
3074         // eax <- in1.lo * in2.hi
3075         __ imull(eax, in1_lo);
3076         // in1.hi <- in1.hi * in2.lo
3077         __ imull(in1_hi, in2_lo);
3078         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3079         __ addl(in1_hi, eax);
3080         // move in1_lo to eax to prepare for double precision
3081         __ movl(eax, in1_lo);
3082         // edx:eax <- in1.lo * in2.lo
3083         __ mull(in2_lo);
3084         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3085         __ addl(in1_hi, edx);
3086         // in1.lo <- (in1.lo * in2.lo)[31:0];
3087         __ movl(in1_lo, eax);
3088       }
3089 
3090       break;
3091     }
3092 
3093     case Primitive::kPrimFloat: {
3094       DCHECK(first.Equals(locations->Out()));
3095       if (second.IsFpuRegister()) {
3096         __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3097       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3098         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3099         DCHECK(const_area->IsEmittedAtUseSite());
3100         __ mulss(first.AsFpuRegister<XmmRegister>(),
3101                  codegen_->LiteralFloatAddress(
3102                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3103                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3104       } else {
3105         DCHECK(second.IsStackSlot());
3106         __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3107       }
3108       break;
3109     }
3110 
3111     case Primitive::kPrimDouble: {
3112       DCHECK(first.Equals(locations->Out()));
3113       if (second.IsFpuRegister()) {
3114         __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3115       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3116         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3117         DCHECK(const_area->IsEmittedAtUseSite());
3118         __ mulsd(first.AsFpuRegister<XmmRegister>(),
3119                  codegen_->LiteralDoubleAddress(
3120                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3121                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3122       } else {
3123         DCHECK(second.IsDoubleStackSlot());
3124         __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3125       }
3126       break;
3127     }
3128 
3129     default:
3130       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3131   }
3132 }
3133 
PushOntoFPStack(Location source,uint32_t temp_offset,uint32_t stack_adjustment,bool is_fp,bool is_wide)3134 void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
3135                                                   uint32_t temp_offset,
3136                                                   uint32_t stack_adjustment,
3137                                                   bool is_fp,
3138                                                   bool is_wide) {
3139   if (source.IsStackSlot()) {
3140     DCHECK(!is_wide);
3141     if (is_fp) {
3142       __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3143     } else {
3144       __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3145     }
3146   } else if (source.IsDoubleStackSlot()) {
3147     DCHECK(is_wide);
3148     if (is_fp) {
3149       __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3150     } else {
3151       __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3152     }
3153   } else {
3154     // Write the value to the temporary location on the stack and load to FP stack.
3155     if (!is_wide) {
3156       Location stack_temp = Location::StackSlot(temp_offset);
3157       codegen_->Move32(stack_temp, source);
3158       if (is_fp) {
3159         __ flds(Address(ESP, temp_offset));
3160       } else {
3161         __ filds(Address(ESP, temp_offset));
3162       }
3163     } else {
3164       Location stack_temp = Location::DoubleStackSlot(temp_offset);
3165       codegen_->Move64(stack_temp, source);
3166       if (is_fp) {
3167         __ fldl(Address(ESP, temp_offset));
3168       } else {
3169         __ fildl(Address(ESP, temp_offset));
3170       }
3171     }
3172   }
3173 }
3174 
GenerateRemFP(HRem * rem)3175 void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
3176   Primitive::Type type = rem->GetResultType();
3177   bool is_float = type == Primitive::kPrimFloat;
3178   size_t elem_size = Primitive::ComponentSize(type);
3179   LocationSummary* locations = rem->GetLocations();
3180   Location first = locations->InAt(0);
3181   Location second = locations->InAt(1);
3182   Location out = locations->Out();
3183 
3184   // Create stack space for 2 elements.
3185   // TODO: enhance register allocator to ask for stack temporaries.
3186   __ subl(ESP, Immediate(2 * elem_size));
3187 
3188   // Load the values to the FP stack in reverse order, using temporaries if needed.
3189   const bool is_wide = !is_float;
3190   PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
3191   PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
3192 
3193   // Loop doing FPREM until we stabilize.
3194   NearLabel retry;
3195   __ Bind(&retry);
3196   __ fprem();
3197 
3198   // Move FP status to AX.
3199   __ fstsw();
3200 
3201   // And see if the argument reduction is complete. This is signaled by the
3202   // C2 FPU flag bit set to 0.
3203   __ andl(EAX, Immediate(kC2ConditionMask));
3204   __ j(kNotEqual, &retry);
3205 
3206   // We have settled on the final value. Retrieve it into an XMM register.
3207   // Store FP top of stack to real stack.
3208   if (is_float) {
3209     __ fsts(Address(ESP, 0));
3210   } else {
3211     __ fstl(Address(ESP, 0));
3212   }
3213 
3214   // Pop the 2 items from the FP stack.
3215   __ fucompp();
3216 
3217   // Load the value from the stack into an XMM register.
3218   DCHECK(out.IsFpuRegister()) << out;
3219   if (is_float) {
3220     __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3221   } else {
3222     __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3223   }
3224 
3225   // And remove the temporary stack space we allocated.
3226   __ addl(ESP, Immediate(2 * elem_size));
3227 }
3228 
3229 
DivRemOneOrMinusOne(HBinaryOperation * instruction)3230 void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3231   DCHECK(instruction->IsDiv() || instruction->IsRem());
3232 
3233   LocationSummary* locations = instruction->GetLocations();
3234   DCHECK(locations->InAt(1).IsConstant());
3235   DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
3236 
3237   Register out_register = locations->Out().AsRegister<Register>();
3238   Register input_register = locations->InAt(0).AsRegister<Register>();
3239   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3240 
3241   DCHECK(imm == 1 || imm == -1);
3242 
3243   if (instruction->IsRem()) {
3244     __ xorl(out_register, out_register);
3245   } else {
3246     __ movl(out_register, input_register);
3247     if (imm == -1) {
3248       __ negl(out_register);
3249     }
3250   }
3251 }
3252 
3253 
DivByPowerOfTwo(HDiv * instruction)3254 void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
3255   LocationSummary* locations = instruction->GetLocations();
3256 
3257   Register out_register = locations->Out().AsRegister<Register>();
3258   Register input_register = locations->InAt(0).AsRegister<Register>();
3259   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3260   DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3261   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3262 
3263   Register num = locations->GetTemp(0).AsRegister<Register>();
3264 
3265   __ leal(num, Address(input_register, abs_imm - 1));
3266   __ testl(input_register, input_register);
3267   __ cmovl(kGreaterEqual, num, input_register);
3268   int shift = CTZ(imm);
3269   __ sarl(num, Immediate(shift));
3270 
3271   if (imm < 0) {
3272     __ negl(num);
3273   }
3274 
3275   __ movl(out_register, num);
3276 }
3277 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3278 void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3279   DCHECK(instruction->IsDiv() || instruction->IsRem());
3280 
3281   LocationSummary* locations = instruction->GetLocations();
3282   int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3283 
3284   Register eax = locations->InAt(0).AsRegister<Register>();
3285   Register out = locations->Out().AsRegister<Register>();
3286   Register num;
3287   Register edx;
3288 
3289   if (instruction->IsDiv()) {
3290     edx = locations->GetTemp(0).AsRegister<Register>();
3291     num = locations->GetTemp(1).AsRegister<Register>();
3292   } else {
3293     edx = locations->Out().AsRegister<Register>();
3294     num = locations->GetTemp(0).AsRegister<Register>();
3295   }
3296 
3297   DCHECK_EQ(EAX, eax);
3298   DCHECK_EQ(EDX, edx);
3299   if (instruction->IsDiv()) {
3300     DCHECK_EQ(EAX, out);
3301   } else {
3302     DCHECK_EQ(EDX, out);
3303   }
3304 
3305   int64_t magic;
3306   int shift;
3307   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3308 
3309   NearLabel ndiv;
3310   NearLabel end;
3311   // If numerator is 0, the result is 0, no computation needed.
3312   __ testl(eax, eax);
3313   __ j(kNotEqual, &ndiv);
3314 
3315   __ xorl(out, out);
3316   __ jmp(&end);
3317 
3318   __ Bind(&ndiv);
3319 
3320   // Save the numerator.
3321   __ movl(num, eax);
3322 
3323   // EAX = magic
3324   __ movl(eax, Immediate(magic));
3325 
3326   // EDX:EAX = magic * numerator
3327   __ imull(num);
3328 
3329   if (imm > 0 && magic < 0) {
3330     // EDX += num
3331     __ addl(edx, num);
3332   } else if (imm < 0 && magic > 0) {
3333     __ subl(edx, num);
3334   }
3335 
3336   // Shift if needed.
3337   if (shift != 0) {
3338     __ sarl(edx, Immediate(shift));
3339   }
3340 
3341   // EDX += 1 if EDX < 0
3342   __ movl(eax, edx);
3343   __ shrl(edx, Immediate(31));
3344   __ addl(edx, eax);
3345 
3346   if (instruction->IsRem()) {
3347     __ movl(eax, num);
3348     __ imull(edx, Immediate(imm));
3349     __ subl(eax, edx);
3350     __ movl(edx, eax);
3351   } else {
3352     __ movl(eax, edx);
3353   }
3354   __ Bind(&end);
3355 }
3356 
GenerateDivRemIntegral(HBinaryOperation * instruction)3357 void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
3358   DCHECK(instruction->IsDiv() || instruction->IsRem());
3359 
3360   LocationSummary* locations = instruction->GetLocations();
3361   Location out = locations->Out();
3362   Location first = locations->InAt(0);
3363   Location second = locations->InAt(1);
3364   bool is_div = instruction->IsDiv();
3365 
3366   switch (instruction->GetResultType()) {
3367     case Primitive::kPrimInt: {
3368       DCHECK_EQ(EAX, first.AsRegister<Register>());
3369       DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
3370 
3371       if (second.IsConstant()) {
3372         int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3373 
3374         if (imm == 0) {
3375           // Do not generate anything for 0. DivZeroCheck would forbid any generated code.
3376         } else if (imm == 1 || imm == -1) {
3377           DivRemOneOrMinusOne(instruction);
3378         } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
3379           DivByPowerOfTwo(instruction->AsDiv());
3380         } else {
3381           DCHECK(imm <= -2 || imm >= 2);
3382           GenerateDivRemWithAnyConstant(instruction);
3383         }
3384       } else {
3385         SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
3386             instruction, out.AsRegister<Register>(), is_div);
3387         codegen_->AddSlowPath(slow_path);
3388 
3389         Register second_reg = second.AsRegister<Register>();
3390         // 0x80000000/-1 triggers an arithmetic exception!
3391         // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
3392         // it's safe to just use negl instead of more complex comparisons.
3393 
3394         __ cmpl(second_reg, Immediate(-1));
3395         __ j(kEqual, slow_path->GetEntryLabel());
3396 
3397         // edx:eax <- sign-extended of eax
3398         __ cdq();
3399         // eax = quotient, edx = remainder
3400         __ idivl(second_reg);
3401         __ Bind(slow_path->GetExitLabel());
3402       }
3403       break;
3404     }
3405 
3406     case Primitive::kPrimLong: {
3407       InvokeRuntimeCallingConvention calling_convention;
3408       DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3409       DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3410       DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3411       DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3412       DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
3413       DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
3414 
3415       if (is_div) {
3416         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
3417                                 instruction,
3418                                 instruction->GetDexPc(),
3419                                 nullptr);
3420         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3421       } else {
3422         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
3423                                 instruction,
3424                                 instruction->GetDexPc(),
3425                                 nullptr);
3426         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3427       }
3428       break;
3429     }
3430 
3431     default:
3432       LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
3433   }
3434 }
3435 
VisitDiv(HDiv * div)3436 void LocationsBuilderX86::VisitDiv(HDiv* div) {
3437   LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
3438       ? LocationSummary::kCall
3439       : LocationSummary::kNoCall;
3440   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3441 
3442   switch (div->GetResultType()) {
3443     case Primitive::kPrimInt: {
3444       locations->SetInAt(0, Location::RegisterLocation(EAX));
3445       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3446       locations->SetOut(Location::SameAsFirstInput());
3447       // Intel uses edx:eax as the dividend.
3448       locations->AddTemp(Location::RegisterLocation(EDX));
3449       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3450       // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
3451       // output and request another temp.
3452       if (div->InputAt(1)->IsIntConstant()) {
3453         locations->AddTemp(Location::RequiresRegister());
3454       }
3455       break;
3456     }
3457     case Primitive::kPrimLong: {
3458       InvokeRuntimeCallingConvention calling_convention;
3459       locations->SetInAt(0, Location::RegisterPairLocation(
3460           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3461       locations->SetInAt(1, Location::RegisterPairLocation(
3462           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3463       // Runtime helper puts the result in EAX, EDX.
3464       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3465       break;
3466     }
3467     case Primitive::kPrimFloat:
3468     case Primitive::kPrimDouble: {
3469       locations->SetInAt(0, Location::RequiresFpuRegister());
3470       if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3471         DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
3472       } else if (div->InputAt(1)->IsConstant()) {
3473         locations->SetInAt(1, Location::RequiresFpuRegister());
3474       } else {
3475         locations->SetInAt(1, Location::Any());
3476       }
3477       locations->SetOut(Location::SameAsFirstInput());
3478       break;
3479     }
3480 
3481     default:
3482       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3483   }
3484 }
3485 
VisitDiv(HDiv * div)3486 void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
3487   LocationSummary* locations = div->GetLocations();
3488   Location first = locations->InAt(0);
3489   Location second = locations->InAt(1);
3490 
3491   switch (div->GetResultType()) {
3492     case Primitive::kPrimInt:
3493     case Primitive::kPrimLong: {
3494       GenerateDivRemIntegral(div);
3495       break;
3496     }
3497 
3498     case Primitive::kPrimFloat: {
3499       if (second.IsFpuRegister()) {
3500         __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3501       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3502         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3503         DCHECK(const_area->IsEmittedAtUseSite());
3504         __ divss(first.AsFpuRegister<XmmRegister>(),
3505                  codegen_->LiteralFloatAddress(
3506                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
3507                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3508       } else {
3509         DCHECK(second.IsStackSlot());
3510         __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3511       }
3512       break;
3513     }
3514 
3515     case Primitive::kPrimDouble: {
3516       if (second.IsFpuRegister()) {
3517         __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3518       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3519         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3520         DCHECK(const_area->IsEmittedAtUseSite());
3521         __ divsd(first.AsFpuRegister<XmmRegister>(),
3522                  codegen_->LiteralDoubleAddress(
3523                    const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3524                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3525       } else {
3526         DCHECK(second.IsDoubleStackSlot());
3527         __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3528       }
3529       break;
3530     }
3531 
3532     default:
3533       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3534   }
3535 }
3536 
VisitRem(HRem * rem)3537 void LocationsBuilderX86::VisitRem(HRem* rem) {
3538   Primitive::Type type = rem->GetResultType();
3539 
3540   LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
3541       ? LocationSummary::kCall
3542       : LocationSummary::kNoCall;
3543   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3544 
3545   switch (type) {
3546     case Primitive::kPrimInt: {
3547       locations->SetInAt(0, Location::RegisterLocation(EAX));
3548       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
3549       locations->SetOut(Location::RegisterLocation(EDX));
3550       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3551       // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
3552       // output and request another temp.
3553       if (rem->InputAt(1)->IsIntConstant()) {
3554         locations->AddTemp(Location::RequiresRegister());
3555       }
3556       break;
3557     }
3558     case Primitive::kPrimLong: {
3559       InvokeRuntimeCallingConvention calling_convention;
3560       locations->SetInAt(0, Location::RegisterPairLocation(
3561           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3562       locations->SetInAt(1, Location::RegisterPairLocation(
3563           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3564       // Runtime helper puts the result in EAX, EDX.
3565       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3566       break;
3567     }
3568     case Primitive::kPrimDouble:
3569     case Primitive::kPrimFloat: {
3570       locations->SetInAt(0, Location::Any());
3571       locations->SetInAt(1, Location::Any());
3572       locations->SetOut(Location::RequiresFpuRegister());
3573       locations->AddTemp(Location::RegisterLocation(EAX));
3574       break;
3575     }
3576 
3577     default:
3578       LOG(FATAL) << "Unexpected rem type " << type;
3579   }
3580 }
3581 
VisitRem(HRem * rem)3582 void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
3583   Primitive::Type type = rem->GetResultType();
3584   switch (type) {
3585     case Primitive::kPrimInt:
3586     case Primitive::kPrimLong: {
3587       GenerateDivRemIntegral(rem);
3588       break;
3589     }
3590     case Primitive::kPrimFloat:
3591     case Primitive::kPrimDouble: {
3592       GenerateRemFP(rem);
3593       break;
3594     }
3595     default:
3596       LOG(FATAL) << "Unexpected rem type " << type;
3597   }
3598 }
3599 
VisitDivZeroCheck(HDivZeroCheck * instruction)3600 void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3601   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
3602       ? LocationSummary::kCallOnSlowPath
3603       : LocationSummary::kNoCall;
3604   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3605   switch (instruction->GetType()) {
3606     case Primitive::kPrimBoolean:
3607     case Primitive::kPrimByte:
3608     case Primitive::kPrimChar:
3609     case Primitive::kPrimShort:
3610     case Primitive::kPrimInt: {
3611       locations->SetInAt(0, Location::Any());
3612       break;
3613     }
3614     case Primitive::kPrimLong: {
3615       locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3616       if (!instruction->IsConstant()) {
3617         locations->AddTemp(Location::RequiresRegister());
3618       }
3619       break;
3620     }
3621     default:
3622       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3623   }
3624   if (instruction->HasUses()) {
3625     locations->SetOut(Location::SameAsFirstInput());
3626   }
3627 }
3628 
VisitDivZeroCheck(HDivZeroCheck * instruction)3629 void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3630   SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
3631   codegen_->AddSlowPath(slow_path);
3632 
3633   LocationSummary* locations = instruction->GetLocations();
3634   Location value = locations->InAt(0);
3635 
3636   switch (instruction->GetType()) {
3637     case Primitive::kPrimBoolean:
3638     case Primitive::kPrimByte:
3639     case Primitive::kPrimChar:
3640     case Primitive::kPrimShort:
3641     case Primitive::kPrimInt: {
3642       if (value.IsRegister()) {
3643         __ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
3644         __ j(kEqual, slow_path->GetEntryLabel());
3645       } else if (value.IsStackSlot()) {
3646         __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
3647         __ j(kEqual, slow_path->GetEntryLabel());
3648       } else {
3649         DCHECK(value.IsConstant()) << value;
3650         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3651         __ jmp(slow_path->GetEntryLabel());
3652         }
3653       }
3654       break;
3655     }
3656     case Primitive::kPrimLong: {
3657       if (value.IsRegisterPair()) {
3658         Register temp = locations->GetTemp(0).AsRegister<Register>();
3659         __ movl(temp, value.AsRegisterPairLow<Register>());
3660         __ orl(temp, value.AsRegisterPairHigh<Register>());
3661         __ j(kEqual, slow_path->GetEntryLabel());
3662       } else {
3663         DCHECK(value.IsConstant()) << value;
3664         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3665           __ jmp(slow_path->GetEntryLabel());
3666         }
3667       }
3668       break;
3669     }
3670     default:
3671       LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
3672   }
3673 }
3674 
HandleShift(HBinaryOperation * op)3675 void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
3676   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3677 
3678   LocationSummary* locations =
3679       new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3680 
3681   switch (op->GetResultType()) {
3682     case Primitive::kPrimInt:
3683     case Primitive::kPrimLong: {
3684       // Can't have Location::Any() and output SameAsFirstInput()
3685       locations->SetInAt(0, Location::RequiresRegister());
3686       // The shift count needs to be in CL or a constant.
3687       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
3688       locations->SetOut(Location::SameAsFirstInput());
3689       break;
3690     }
3691     default:
3692       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3693   }
3694 }
3695 
HandleShift(HBinaryOperation * op)3696 void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
3697   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3698 
3699   LocationSummary* locations = op->GetLocations();
3700   Location first = locations->InAt(0);
3701   Location second = locations->InAt(1);
3702   DCHECK(first.Equals(locations->Out()));
3703 
3704   switch (op->GetResultType()) {
3705     case Primitive::kPrimInt: {
3706       DCHECK(first.IsRegister());
3707       Register first_reg = first.AsRegister<Register>();
3708       if (second.IsRegister()) {
3709         Register second_reg = second.AsRegister<Register>();
3710         DCHECK_EQ(ECX, second_reg);
3711         if (op->IsShl()) {
3712           __ shll(first_reg, second_reg);
3713         } else if (op->IsShr()) {
3714           __ sarl(first_reg, second_reg);
3715         } else {
3716           __ shrl(first_reg, second_reg);
3717         }
3718       } else {
3719         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
3720         if (shift == 0) {
3721           return;
3722         }
3723         Immediate imm(shift);
3724         if (op->IsShl()) {
3725           __ shll(first_reg, imm);
3726         } else if (op->IsShr()) {
3727           __ sarl(first_reg, imm);
3728         } else {
3729           __ shrl(first_reg, imm);
3730         }
3731       }
3732       break;
3733     }
3734     case Primitive::kPrimLong: {
3735       if (second.IsRegister()) {
3736         Register second_reg = second.AsRegister<Register>();
3737         DCHECK_EQ(ECX, second_reg);
3738         if (op->IsShl()) {
3739           GenerateShlLong(first, second_reg);
3740         } else if (op->IsShr()) {
3741           GenerateShrLong(first, second_reg);
3742         } else {
3743           GenerateUShrLong(first, second_reg);
3744         }
3745       } else {
3746         // Shift by a constant.
3747         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3748         // Nothing to do if the shift is 0, as the input is already the output.
3749         if (shift != 0) {
3750           if (op->IsShl()) {
3751             GenerateShlLong(first, shift);
3752           } else if (op->IsShr()) {
3753             GenerateShrLong(first, shift);
3754           } else {
3755             GenerateUShrLong(first, shift);
3756           }
3757         }
3758       }
3759       break;
3760     }
3761     default:
3762       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3763   }
3764 }
3765 
GenerateShlLong(const Location & loc,int shift)3766 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
3767   Register low = loc.AsRegisterPairLow<Register>();
3768   Register high = loc.AsRegisterPairHigh<Register>();
3769   if (shift == 1) {
3770     // This is just an addition.
3771     __ addl(low, low);
3772     __ adcl(high, high);
3773   } else if (shift == 32) {
3774     // Shift by 32 is easy. High gets low, and low gets 0.
3775     codegen_->EmitParallelMoves(
3776         loc.ToLow(),
3777         loc.ToHigh(),
3778         Primitive::kPrimInt,
3779         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3780         loc.ToLow(),
3781         Primitive::kPrimInt);
3782   } else if (shift > 32) {
3783     // Low part becomes 0.  High part is low part << (shift-32).
3784     __ movl(high, low);
3785     __ shll(high, Immediate(shift - 32));
3786     __ xorl(low, low);
3787   } else {
3788     // Between 1 and 31.
3789     __ shld(high, low, Immediate(shift));
3790     __ shll(low, Immediate(shift));
3791   }
3792 }
3793 
GenerateShlLong(const Location & loc,Register shifter)3794 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
3795   NearLabel done;
3796   __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
3797   __ shll(loc.AsRegisterPairLow<Register>(), shifter);
3798   __ testl(shifter, Immediate(32));
3799   __ j(kEqual, &done);
3800   __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
3801   __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
3802   __ Bind(&done);
3803 }
3804 
GenerateShrLong(const Location & loc,int shift)3805 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
3806   Register low = loc.AsRegisterPairLow<Register>();
3807   Register high = loc.AsRegisterPairHigh<Register>();
3808   if (shift == 32) {
3809     // Need to copy the sign.
3810     DCHECK_NE(low, high);
3811     __ movl(low, high);
3812     __ sarl(high, Immediate(31));
3813   } else if (shift > 32) {
3814     DCHECK_NE(low, high);
3815     // High part becomes sign. Low part is shifted by shift - 32.
3816     __ movl(low, high);
3817     __ sarl(high, Immediate(31));
3818     __ sarl(low, Immediate(shift - 32));
3819   } else {
3820     // Between 1 and 31.
3821     __ shrd(low, high, Immediate(shift));
3822     __ sarl(high, Immediate(shift));
3823   }
3824 }
3825 
GenerateShrLong(const Location & loc,Register shifter)3826 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
3827   NearLabel done;
3828   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3829   __ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
3830   __ testl(shifter, Immediate(32));
3831   __ j(kEqual, &done);
3832   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3833   __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
3834   __ Bind(&done);
3835 }
3836 
GenerateUShrLong(const Location & loc,int shift)3837 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
3838   Register low = loc.AsRegisterPairLow<Register>();
3839   Register high = loc.AsRegisterPairHigh<Register>();
3840   if (shift == 32) {
3841     // Shift by 32 is easy. Low gets high, and high gets 0.
3842     codegen_->EmitParallelMoves(
3843         loc.ToHigh(),
3844         loc.ToLow(),
3845         Primitive::kPrimInt,
3846         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3847         loc.ToHigh(),
3848         Primitive::kPrimInt);
3849   } else if (shift > 32) {
3850     // Low part is high >> (shift - 32). High part becomes 0.
3851     __ movl(low, high);
3852     __ shrl(low, Immediate(shift - 32));
3853     __ xorl(high, high);
3854   } else {
3855     // Between 1 and 31.
3856     __ shrd(low, high, Immediate(shift));
3857     __ shrl(high, Immediate(shift));
3858   }
3859 }
3860 
GenerateUShrLong(const Location & loc,Register shifter)3861 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
3862   NearLabel done;
3863   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3864   __ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
3865   __ testl(shifter, Immediate(32));
3866   __ j(kEqual, &done);
3867   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3868   __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
3869   __ Bind(&done);
3870 }
3871 
VisitRor(HRor * ror)3872 void LocationsBuilderX86::VisitRor(HRor* ror) {
3873   LocationSummary* locations =
3874       new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3875 
3876   switch (ror->GetResultType()) {
3877     case Primitive::kPrimLong:
3878       // Add the temporary needed.
3879       locations->AddTemp(Location::RequiresRegister());
3880       FALLTHROUGH_INTENDED;
3881     case Primitive::kPrimInt:
3882       locations->SetInAt(0, Location::RequiresRegister());
3883       // The shift count needs to be in CL (unless it is a constant).
3884       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
3885       locations->SetOut(Location::SameAsFirstInput());
3886       break;
3887     default:
3888       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3889       UNREACHABLE();
3890   }
3891 }
3892 
VisitRor(HRor * ror)3893 void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
3894   LocationSummary* locations = ror->GetLocations();
3895   Location first = locations->InAt(0);
3896   Location second = locations->InAt(1);
3897 
3898   if (ror->GetResultType() == Primitive::kPrimInt) {
3899     Register first_reg = first.AsRegister<Register>();
3900     if (second.IsRegister()) {
3901       Register second_reg = second.AsRegister<Register>();
3902       __ rorl(first_reg, second_reg);
3903     } else {
3904       Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
3905       __ rorl(first_reg, imm);
3906     }
3907     return;
3908   }
3909 
3910   DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
3911   Register first_reg_lo = first.AsRegisterPairLow<Register>();
3912   Register first_reg_hi = first.AsRegisterPairHigh<Register>();
3913   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
3914   if (second.IsRegister()) {
3915     Register second_reg = second.AsRegister<Register>();
3916     DCHECK_EQ(second_reg, ECX);
3917     __ movl(temp_reg, first_reg_hi);
3918     __ shrd(first_reg_hi, first_reg_lo, second_reg);
3919     __ shrd(first_reg_lo, temp_reg, second_reg);
3920     __ movl(temp_reg, first_reg_hi);
3921     __ testl(second_reg, Immediate(32));
3922     __ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
3923     __ cmovl(kNotEqual, first_reg_lo, temp_reg);
3924   } else {
3925     int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3926     if (shift_amt == 0) {
3927       // Already fine.
3928       return;
3929     }
3930     if (shift_amt == 32) {
3931       // Just swap.
3932       __ movl(temp_reg, first_reg_lo);
3933       __ movl(first_reg_lo, first_reg_hi);
3934       __ movl(first_reg_hi, temp_reg);
3935       return;
3936     }
3937 
3938     Immediate imm(shift_amt);
3939     // Save the constents of the low value.
3940     __ movl(temp_reg, first_reg_lo);
3941 
3942     // Shift right into low, feeding bits from high.
3943     __ shrd(first_reg_lo, first_reg_hi, imm);
3944 
3945     // Shift right into high, feeding bits from the original low.
3946     __ shrd(first_reg_hi, temp_reg, imm);
3947 
3948     // Swap if needed.
3949     if (shift_amt > 32) {
3950       __ movl(temp_reg, first_reg_lo);
3951       __ movl(first_reg_lo, first_reg_hi);
3952       __ movl(first_reg_hi, temp_reg);
3953     }
3954   }
3955 }
3956 
VisitShl(HShl * shl)3957 void LocationsBuilderX86::VisitShl(HShl* shl) {
3958   HandleShift(shl);
3959 }
3960 
VisitShl(HShl * shl)3961 void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
3962   HandleShift(shl);
3963 }
3964 
VisitShr(HShr * shr)3965 void LocationsBuilderX86::VisitShr(HShr* shr) {
3966   HandleShift(shr);
3967 }
3968 
VisitShr(HShr * shr)3969 void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
3970   HandleShift(shr);
3971 }
3972 
VisitUShr(HUShr * ushr)3973 void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
3974   HandleShift(ushr);
3975 }
3976 
VisitUShr(HUShr * ushr)3977 void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
3978   HandleShift(ushr);
3979 }
3980 
VisitNewInstance(HNewInstance * instruction)3981 void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
3982   LocationSummary* locations =
3983       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3984   locations->SetOut(Location::RegisterLocation(EAX));
3985   if (instruction->IsStringAlloc()) {
3986     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3987   } else {
3988     InvokeRuntimeCallingConvention calling_convention;
3989     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3990     locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3991   }
3992 }
3993 
VisitNewInstance(HNewInstance * instruction)3994 void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
3995   // Note: if heap poisoning is enabled, the entry point takes cares
3996   // of poisoning the reference.
3997   if (instruction->IsStringAlloc()) {
3998     // String is allocated through StringFactory. Call NewEmptyString entry point.
3999     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
4000     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize);
4001     __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
4002     __ call(Address(temp, code_offset.Int32Value()));
4003     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4004   } else {
4005     codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4006                             instruction,
4007                             instruction->GetDexPc(),
4008                             nullptr);
4009     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4010     DCHECK(!codegen_->IsLeafMethod());
4011   }
4012 }
4013 
VisitNewArray(HNewArray * instruction)4014 void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
4015   LocationSummary* locations =
4016       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4017   locations->SetOut(Location::RegisterLocation(EAX));
4018   InvokeRuntimeCallingConvention calling_convention;
4019   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4020   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4021   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
4022 }
4023 
VisitNewArray(HNewArray * instruction)4024 void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
4025   InvokeRuntimeCallingConvention calling_convention;
4026   __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
4027   // Note: if heap poisoning is enabled, the entry point takes cares
4028   // of poisoning the reference.
4029   codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4030                           instruction,
4031                           instruction->GetDexPc(),
4032                           nullptr);
4033   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4034   DCHECK(!codegen_->IsLeafMethod());
4035 }
4036 
VisitParameterValue(HParameterValue * instruction)4037 void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
4038   LocationSummary* locations =
4039       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4040   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4041   if (location.IsStackSlot()) {
4042     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4043   } else if (location.IsDoubleStackSlot()) {
4044     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4045   }
4046   locations->SetOut(location);
4047 }
4048 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4049 void InstructionCodeGeneratorX86::VisitParameterValue(
4050     HParameterValue* instruction ATTRIBUTE_UNUSED) {
4051 }
4052 
VisitCurrentMethod(HCurrentMethod * instruction)4053 void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
4054   LocationSummary* locations =
4055       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4056   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
4057 }
4058 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4059 void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4060 }
4061 
VisitClassTableGet(HClassTableGet * instruction)4062 void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
4063   LocationSummary* locations =
4064       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4065   locations->SetInAt(0, Location::RequiresRegister());
4066   locations->SetOut(Location::RequiresRegister());
4067 }
4068 
VisitClassTableGet(HClassTableGet * instruction)4069 void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
4070   LocationSummary* locations = instruction->GetLocations();
4071   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
4072     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4073         instruction->GetIndex(), kX86PointerSize).SizeValue();
4074     __ movl(locations->Out().AsRegister<Register>(),
4075             Address(locations->InAt(0).AsRegister<Register>(), method_offset));
4076   } else {
4077     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4078         instruction->GetIndex() % ImTable::kSize, kX86PointerSize));
4079     __ movl(locations->Out().AsRegister<Register>(),
4080             Address(locations->InAt(0).AsRegister<Register>(),
4081                     mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
4082     // temp = temp->GetImtEntryAt(method_offset);
4083     __ movl(locations->Out().AsRegister<Register>(),
4084             Address(locations->Out().AsRegister<Register>(), method_offset));
4085   }
4086 }
4087 
VisitNot(HNot * not_)4088 void LocationsBuilderX86::VisitNot(HNot* not_) {
4089   LocationSummary* locations =
4090       new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4091   locations->SetInAt(0, Location::RequiresRegister());
4092   locations->SetOut(Location::SameAsFirstInput());
4093 }
4094 
VisitNot(HNot * not_)4095 void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
4096   LocationSummary* locations = not_->GetLocations();
4097   Location in = locations->InAt(0);
4098   Location out = locations->Out();
4099   DCHECK(in.Equals(out));
4100   switch (not_->GetResultType()) {
4101     case Primitive::kPrimInt:
4102       __ notl(out.AsRegister<Register>());
4103       break;
4104 
4105     case Primitive::kPrimLong:
4106       __ notl(out.AsRegisterPairLow<Register>());
4107       __ notl(out.AsRegisterPairHigh<Register>());
4108       break;
4109 
4110     default:
4111       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4112   }
4113 }
4114 
VisitBooleanNot(HBooleanNot * bool_not)4115 void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
4116   LocationSummary* locations =
4117       new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4118   locations->SetInAt(0, Location::RequiresRegister());
4119   locations->SetOut(Location::SameAsFirstInput());
4120 }
4121 
VisitBooleanNot(HBooleanNot * bool_not)4122 void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
4123   LocationSummary* locations = bool_not->GetLocations();
4124   Location in = locations->InAt(0);
4125   Location out = locations->Out();
4126   DCHECK(in.Equals(out));
4127   __ xorl(out.AsRegister<Register>(), Immediate(1));
4128 }
4129 
VisitCompare(HCompare * compare)4130 void LocationsBuilderX86::VisitCompare(HCompare* compare) {
4131   LocationSummary* locations =
4132       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4133   switch (compare->InputAt(0)->GetType()) {
4134     case Primitive::kPrimBoolean:
4135     case Primitive::kPrimByte:
4136     case Primitive::kPrimShort:
4137     case Primitive::kPrimChar:
4138     case Primitive::kPrimInt:
4139     case Primitive::kPrimLong: {
4140       locations->SetInAt(0, Location::RequiresRegister());
4141       locations->SetInAt(1, Location::Any());
4142       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4143       break;
4144     }
4145     case Primitive::kPrimFloat:
4146     case Primitive::kPrimDouble: {
4147       locations->SetInAt(0, Location::RequiresFpuRegister());
4148       if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
4149         DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
4150       } else if (compare->InputAt(1)->IsConstant()) {
4151         locations->SetInAt(1, Location::RequiresFpuRegister());
4152       } else {
4153         locations->SetInAt(1, Location::Any());
4154       }
4155       locations->SetOut(Location::RequiresRegister());
4156       break;
4157     }
4158     default:
4159       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4160   }
4161 }
4162 
VisitCompare(HCompare * compare)4163 void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
4164   LocationSummary* locations = compare->GetLocations();
4165   Register out = locations->Out().AsRegister<Register>();
4166   Location left = locations->InAt(0);
4167   Location right = locations->InAt(1);
4168 
4169   NearLabel less, greater, done;
4170   Condition less_cond = kLess;
4171 
4172   switch (compare->InputAt(0)->GetType()) {
4173     case Primitive::kPrimBoolean:
4174     case Primitive::kPrimByte:
4175     case Primitive::kPrimShort:
4176     case Primitive::kPrimChar:
4177     case Primitive::kPrimInt: {
4178       GenerateIntCompare(left, right);
4179       break;
4180     }
4181     case Primitive::kPrimLong: {
4182       Register left_low = left.AsRegisterPairLow<Register>();
4183       Register left_high = left.AsRegisterPairHigh<Register>();
4184       int32_t val_low = 0;
4185       int32_t val_high = 0;
4186       bool right_is_const = false;
4187 
4188       if (right.IsConstant()) {
4189         DCHECK(right.GetConstant()->IsLongConstant());
4190         right_is_const = true;
4191         int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
4192         val_low = Low32Bits(val);
4193         val_high = High32Bits(val);
4194       }
4195 
4196       if (right.IsRegisterPair()) {
4197         __ cmpl(left_high, right.AsRegisterPairHigh<Register>());
4198       } else if (right.IsDoubleStackSlot()) {
4199         __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
4200       } else {
4201         DCHECK(right_is_const) << right;
4202         codegen_->Compare32BitValue(left_high, val_high);
4203       }
4204       __ j(kLess, &less);  // Signed compare.
4205       __ j(kGreater, &greater);  // Signed compare.
4206       if (right.IsRegisterPair()) {
4207         __ cmpl(left_low, right.AsRegisterPairLow<Register>());
4208       } else if (right.IsDoubleStackSlot()) {
4209         __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
4210       } else {
4211         DCHECK(right_is_const) << right;
4212         codegen_->Compare32BitValue(left_low, val_low);
4213       }
4214       less_cond = kBelow;  // for CF (unsigned).
4215       break;
4216     }
4217     case Primitive::kPrimFloat: {
4218       GenerateFPCompare(left, right, compare, false);
4219       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4220       less_cond = kBelow;  // for CF (floats).
4221       break;
4222     }
4223     case Primitive::kPrimDouble: {
4224       GenerateFPCompare(left, right, compare, true);
4225       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4226       less_cond = kBelow;  // for CF (floats).
4227       break;
4228     }
4229     default:
4230       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4231   }
4232 
4233   __ movl(out, Immediate(0));
4234   __ j(kEqual, &done);
4235   __ j(less_cond, &less);
4236 
4237   __ Bind(&greater);
4238   __ movl(out, Immediate(1));
4239   __ jmp(&done);
4240 
4241   __ Bind(&less);
4242   __ movl(out, Immediate(-1));
4243 
4244   __ Bind(&done);
4245 }
4246 
VisitPhi(HPhi * instruction)4247 void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
4248   LocationSummary* locations =
4249       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4250   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4251     locations->SetInAt(i, Location::Any());
4252   }
4253   locations->SetOut(Location::Any());
4254 }
4255 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)4256 void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4257   LOG(FATAL) << "Unreachable";
4258 }
4259 
GenerateMemoryBarrier(MemBarrierKind kind)4260 void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
4261   /*
4262    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
4263    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
4264    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
4265    */
4266   switch (kind) {
4267     case MemBarrierKind::kAnyAny: {
4268       MemoryFence();
4269       break;
4270     }
4271     case MemBarrierKind::kAnyStore:
4272     case MemBarrierKind::kLoadAny:
4273     case MemBarrierKind::kStoreStore: {
4274       // nop
4275       break;
4276     }
4277     default:
4278       LOG(FATAL) << "Unexpected memory barrier " << kind;
4279   }
4280 }
4281 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,MethodReference target_method ATTRIBUTE_UNUSED)4282 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
4283       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4284       MethodReference target_method ATTRIBUTE_UNUSED) {
4285   HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
4286 
4287   // We disable pc-relative load when there is an irreducible loop, as the optimization
4288   // is incompatible with it.
4289   // TODO: Create as many X86ComputeBaseMethodAddress instructions
4290   // as needed for methods with irreducible loops.
4291   if (GetGraph()->HasIrreducibleLoops() &&
4292       (dispatch_info.method_load_kind ==
4293           HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
4294     dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
4295   }
4296   switch (dispatch_info.code_ptr_location) {
4297     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4298     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4299       // For direct code, we actually prefer to call via the code pointer from ArtMethod*.
4300       // (Though the direct CALL ptr16:32 is available for consideration).
4301       return HInvokeStaticOrDirect::DispatchInfo {
4302         dispatch_info.method_load_kind,
4303         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
4304         dispatch_info.method_load_data,
4305         0u
4306       };
4307     default:
4308       return dispatch_info;
4309   }
4310 }
4311 
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)4312 Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
4313                                                                  Register temp) {
4314   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
4315   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4316   if (!invoke->GetLocations()->Intrinsified()) {
4317     return location.AsRegister<Register>();
4318   }
4319   // For intrinsics we allow any location, so it may be on the stack.
4320   if (!location.IsRegister()) {
4321     __ movl(temp, Address(ESP, location.GetStackIndex()));
4322     return temp;
4323   }
4324   // For register locations, check if the register was saved. If so, get it from the stack.
4325   // Note: There is a chance that the register was saved but not overwritten, so we could
4326   // save one load. However, since this is just an intrinsic slow path we prefer this
4327   // simple and more robust approach rather that trying to determine if that's the case.
4328   SlowPathCode* slow_path = GetCurrentSlowPath();
4329   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
4330   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
4331     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
4332     __ movl(temp, Address(ESP, stack_offset));
4333     return temp;
4334   }
4335   return location.AsRegister<Register>();
4336 }
4337 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)4338 void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
4339   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
4340   switch (invoke->GetMethodLoadKind()) {
4341     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
4342       // temp = thread->string_init_entrypoint
4343       __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset()));
4344       break;
4345     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4346       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4347       break;
4348     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
4349       __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
4350       break;
4351     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
4352       __ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0));
4353       method_patches_.emplace_back(invoke->GetTargetMethod());
4354       __ Bind(&method_patches_.back().label);  // Bind the label at the end of the "movl" insn.
4355       break;
4356     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
4357       Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
4358                                                                 temp.AsRegister<Register>());
4359       __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
4360       // Bind a new fixup label at the end of the "movl" insn.
4361       uint32_t offset = invoke->GetDexCacheArrayOffset();
4362       __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset));
4363       break;
4364     }
4365     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
4366       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4367       Register method_reg;
4368       Register reg = temp.AsRegister<Register>();
4369       if (current_method.IsRegister()) {
4370         method_reg = current_method.AsRegister<Register>();
4371       } else {
4372         DCHECK(invoke->GetLocations()->Intrinsified());
4373         DCHECK(!current_method.IsValid());
4374         method_reg = reg;
4375         __ movl(reg, Address(ESP, kCurrentMethodStackOffset));
4376       }
4377       // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
4378       __ movl(reg, Address(method_reg,
4379                            ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value()));
4380       // temp = temp[index_in_cache];
4381       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
4382       uint32_t index_in_cache = invoke->GetDexMethodIndex();
4383       __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache)));
4384       break;
4385     }
4386   }
4387 
4388   switch (invoke->GetCodePtrLocation()) {
4389     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4390       __ call(GetFrameEntryLabel());
4391       break;
4392     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
4393       relative_call_patches_.emplace_back(invoke->GetTargetMethod());
4394       Label* label = &relative_call_patches_.back().label;
4395       __ call(label);  // Bind to the patch label, override at link time.
4396       __ Bind(label);  // Bind the label at the end of the "call" insn.
4397       break;
4398     }
4399     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4400     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4401       // Filtered out by GetSupportedInvokeStaticOrDirectDispatch().
4402       LOG(FATAL) << "Unsupported";
4403       UNREACHABLE();
4404     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4405       // (callee_method + offset_of_quick_compiled_code)()
4406       __ call(Address(callee_method.AsRegister<Register>(),
4407                       ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4408                           kX86WordSize).Int32Value()));
4409       break;
4410   }
4411 
4412   DCHECK(!IsLeafMethod());
4413 }
4414 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in)4415 void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
4416   Register temp = temp_in.AsRegister<Register>();
4417   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4418       invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
4419 
4420   // Use the calling convention instead of the location of the receiver, as
4421   // intrinsics may have put the receiver in a different register. In the intrinsics
4422   // slow path, the arguments have been moved to the right place, so here we are
4423   // guaranteed that the receiver is the first register of the calling convention.
4424   InvokeDexCallingConvention calling_convention;
4425   Register receiver = calling_convention.GetRegisterAt(0);
4426   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4427   // /* HeapReference<Class> */ temp = receiver->klass_
4428   __ movl(temp, Address(receiver, class_offset));
4429   MaybeRecordImplicitNullCheck(invoke);
4430   // Instead of simply (possibly) unpoisoning `temp` here, we should
4431   // emit a read barrier for the previous class reference load.
4432   // However this is not required in practice, as this is an
4433   // intermediate/temporary reference and because the current
4434   // concurrent copying collector keeps the from-space memory
4435   // intact/accessible until the end of the marking phase (the
4436   // concurrent copying collector may not in the future).
4437   __ MaybeUnpoisonHeapReference(temp);
4438   // temp = temp->GetMethodAt(method_offset);
4439   __ movl(temp, Address(temp, method_offset));
4440   // call temp->GetEntryPoint();
4441   __ call(Address(
4442       temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
4443 }
4444 
RecordSimplePatch()4445 void CodeGeneratorX86::RecordSimplePatch() {
4446   if (GetCompilerOptions().GetIncludePatchInformation()) {
4447     simple_patches_.emplace_back();
4448     __ Bind(&simple_patches_.back());
4449   }
4450 }
4451 
RecordStringPatch(HLoadString * load_string)4452 void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) {
4453   string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex());
4454   __ Bind(&string_patches_.back().label);
4455 }
4456 
NewPcRelativeDexCacheArrayPatch(const DexFile & dex_file,uint32_t element_offset)4457 Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
4458                                                          uint32_t element_offset) {
4459   // Add the patch entry and bind its label at the end of the instruction.
4460   pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset);
4461   return &pc_relative_dex_cache_patches_.back().label;
4462 }
4463 
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)4464 void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
4465   DCHECK(linker_patches->empty());
4466   size_t size =
4467       method_patches_.size() +
4468       relative_call_patches_.size() +
4469       pc_relative_dex_cache_patches_.size() +
4470       simple_patches_.size() +
4471       string_patches_.size();
4472   linker_patches->reserve(size);
4473   // The label points to the end of the "movl" insn but the literal offset for method
4474   // patch needs to point to the embedded constant which occupies the last 4 bytes.
4475   constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
4476   for (const MethodPatchInfo<Label>& info : method_patches_) {
4477     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4478     linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
4479                                                        info.target_method.dex_file,
4480                                                        info.target_method.dex_method_index));
4481   }
4482   for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
4483     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4484     linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
4485                                                              info.target_method.dex_file,
4486                                                              info.target_method.dex_method_index));
4487   }
4488   for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
4489     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4490     linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset,
4491                                                               &info.target_dex_file,
4492                                                               GetMethodAddressOffset(),
4493                                                               info.element_offset));
4494   }
4495   for (const Label& label : simple_patches_) {
4496     uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4497     linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
4498   }
4499   if (GetCompilerOptions().GetCompilePic()) {
4500     for (const StringPatchInfo<Label>& info : string_patches_) {
4501       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4502       linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset,
4503                                                                  &info.dex_file,
4504                                                                  GetMethodAddressOffset(),
4505                                                                  info.string_index));
4506     }
4507   } else {
4508     for (const StringPatchInfo<Label>& info : string_patches_) {
4509       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4510       linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
4511                                                          &info.dex_file,
4512                                                          info.string_index));
4513     }
4514   }
4515 }
4516 
MarkGCCard(Register temp,Register card,Register object,Register value,bool value_can_be_null)4517 void CodeGeneratorX86::MarkGCCard(Register temp,
4518                                   Register card,
4519                                   Register object,
4520                                   Register value,
4521                                   bool value_can_be_null) {
4522   NearLabel is_null;
4523   if (value_can_be_null) {
4524     __ testl(value, value);
4525     __ j(kEqual, &is_null);
4526   }
4527   __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value()));
4528   __ movl(temp, object);
4529   __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
4530   __ movb(Address(temp, card, TIMES_1, 0),
4531           X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
4532   if (value_can_be_null) {
4533     __ Bind(&is_null);
4534   }
4535 }
4536 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4537 void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4538   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4539 
4540   bool object_field_get_with_read_barrier =
4541       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4542   LocationSummary* locations =
4543       new (GetGraph()->GetArena()) LocationSummary(instruction,
4544                                                    kEmitCompilerReadBarrier ?
4545                                                        LocationSummary::kCallOnSlowPath :
4546                                                        LocationSummary::kNoCall);
4547   locations->SetInAt(0, Location::RequiresRegister());
4548 
4549   if (Primitive::IsFloatingPointType(instruction->GetType())) {
4550     locations->SetOut(Location::RequiresFpuRegister());
4551   } else {
4552     // The output overlaps in case of long: we don't want the low move
4553     // to overwrite the object's location.  Likewise, in the case of
4554     // an object field get with read barriers enabled, we do not want
4555     // the move to overwrite the object's location, as we need it to emit
4556     // the read barrier.
4557     locations->SetOut(
4558         Location::RequiresRegister(),
4559         (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
4560             Location::kOutputOverlap :
4561             Location::kNoOutputOverlap);
4562   }
4563 
4564   if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
4565     // Long values can be loaded atomically into an XMM using movsd.
4566     // So we use an XMM register as a temp to achieve atomicity (first
4567     // load the temp into the XMM and then copy the XMM into the
4568     // output, 32 bits at a time).
4569     locations->AddTemp(Location::RequiresFpuRegister());
4570   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4571     // We need a temporary register for the read barrier marking slow
4572     // path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier.
4573     locations->AddTemp(Location::RequiresRegister());
4574   }
4575 }
4576 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4577 void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
4578                                                  const FieldInfo& field_info) {
4579   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4580 
4581   LocationSummary* locations = instruction->GetLocations();
4582   Location base_loc = locations->InAt(0);
4583   Register base = base_loc.AsRegister<Register>();
4584   Location out = locations->Out();
4585   bool is_volatile = field_info.IsVolatile();
4586   Primitive::Type field_type = field_info.GetFieldType();
4587   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4588 
4589   switch (field_type) {
4590     case Primitive::kPrimBoolean: {
4591       __ movzxb(out.AsRegister<Register>(), Address(base, offset));
4592       break;
4593     }
4594 
4595     case Primitive::kPrimByte: {
4596       __ movsxb(out.AsRegister<Register>(), Address(base, offset));
4597       break;
4598     }
4599 
4600     case Primitive::kPrimShort: {
4601       __ movsxw(out.AsRegister<Register>(), Address(base, offset));
4602       break;
4603     }
4604 
4605     case Primitive::kPrimChar: {
4606       __ movzxw(out.AsRegister<Register>(), Address(base, offset));
4607       break;
4608     }
4609 
4610     case Primitive::kPrimInt:
4611       __ movl(out.AsRegister<Register>(), Address(base, offset));
4612       break;
4613 
4614     case Primitive::kPrimNot: {
4615       // /* HeapReference<Object> */ out = *(base + offset)
4616       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4617         Location temp_loc = locations->GetTemp(0);
4618         // Note that a potential implicit null check is handled in this
4619         // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
4620         codegen_->GenerateFieldLoadWithBakerReadBarrier(
4621             instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4622         if (is_volatile) {
4623           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4624         }
4625       } else {
4626         __ movl(out.AsRegister<Register>(), Address(base, offset));
4627         codegen_->MaybeRecordImplicitNullCheck(instruction);
4628         if (is_volatile) {
4629           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4630         }
4631         // If read barriers are enabled, emit read barriers other than
4632         // Baker's using a slow path (and also unpoison the loaded
4633         // reference, if heap poisoning is enabled).
4634         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4635       }
4636       break;
4637     }
4638 
4639     case Primitive::kPrimLong: {
4640       if (is_volatile) {
4641         XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4642         __ movsd(temp, Address(base, offset));
4643         codegen_->MaybeRecordImplicitNullCheck(instruction);
4644         __ movd(out.AsRegisterPairLow<Register>(), temp);
4645         __ psrlq(temp, Immediate(32));
4646         __ movd(out.AsRegisterPairHigh<Register>(), temp);
4647       } else {
4648         DCHECK_NE(base, out.AsRegisterPairLow<Register>());
4649         __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
4650         codegen_->MaybeRecordImplicitNullCheck(instruction);
4651         __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
4652       }
4653       break;
4654     }
4655 
4656     case Primitive::kPrimFloat: {
4657       __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4658       break;
4659     }
4660 
4661     case Primitive::kPrimDouble: {
4662       __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4663       break;
4664     }
4665 
4666     case Primitive::kPrimVoid:
4667       LOG(FATAL) << "Unreachable type " << field_type;
4668       UNREACHABLE();
4669   }
4670 
4671   if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
4672     // Potential implicit null checks, in the case of reference or
4673     // long fields, are handled in the previous switch statement.
4674   } else {
4675     codegen_->MaybeRecordImplicitNullCheck(instruction);
4676   }
4677 
4678   if (is_volatile) {
4679     if (field_type == Primitive::kPrimNot) {
4680       // Memory barriers, in the case of references, are also handled
4681       // in the previous switch statement.
4682     } else {
4683       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4684     }
4685   }
4686 }
4687 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)4688 void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4689   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4690 
4691   LocationSummary* locations =
4692       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4693   locations->SetInAt(0, Location::RequiresRegister());
4694   bool is_volatile = field_info.IsVolatile();
4695   Primitive::Type field_type = field_info.GetFieldType();
4696   bool is_byte_type = (field_type == Primitive::kPrimBoolean)
4697     || (field_type == Primitive::kPrimByte);
4698 
4699   // The register allocator does not support multiple
4700   // inputs that die at entry with one in a specific register.
4701   if (is_byte_type) {
4702     // Ensure the value is in a byte register.
4703     locations->SetInAt(1, Location::RegisterLocation(EAX));
4704   } else if (Primitive::IsFloatingPointType(field_type)) {
4705     if (is_volatile && field_type == Primitive::kPrimDouble) {
4706       // In order to satisfy the semantics of volatile, this must be a single instruction store.
4707       locations->SetInAt(1, Location::RequiresFpuRegister());
4708     } else {
4709       locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
4710     }
4711   } else if (is_volatile && field_type == Primitive::kPrimLong) {
4712     // In order to satisfy the semantics of volatile, this must be a single instruction store.
4713     locations->SetInAt(1, Location::RequiresRegister());
4714 
4715     // 64bits value can be atomically written to an address with movsd and an XMM register.
4716     // We need two XMM registers because there's no easier way to (bit) copy a register pair
4717     // into a single XMM register (we copy each pair part into the XMMs and then interleave them).
4718     // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
4719     // isolated cases when we need this it isn't worth adding the extra complexity.
4720     locations->AddTemp(Location::RequiresFpuRegister());
4721     locations->AddTemp(Location::RequiresFpuRegister());
4722   } else {
4723     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4724 
4725     if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4726       // Temporary registers for the write barrier.
4727       locations->AddTemp(Location::RequiresRegister());  // May be used for reference poisoning too.
4728       // Ensure the card is in a byte register.
4729       locations->AddTemp(Location::RegisterLocation(ECX));
4730     }
4731   }
4732 }
4733 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)4734 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
4735                                                  const FieldInfo& field_info,
4736                                                  bool value_can_be_null) {
4737   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4738 
4739   LocationSummary* locations = instruction->GetLocations();
4740   Register base = locations->InAt(0).AsRegister<Register>();
4741   Location value = locations->InAt(1);
4742   bool is_volatile = field_info.IsVolatile();
4743   Primitive::Type field_type = field_info.GetFieldType();
4744   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4745   bool needs_write_barrier =
4746       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4747 
4748   if (is_volatile) {
4749     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4750   }
4751 
4752   bool maybe_record_implicit_null_check_done = false;
4753 
4754   switch (field_type) {
4755     case Primitive::kPrimBoolean:
4756     case Primitive::kPrimByte: {
4757       __ movb(Address(base, offset), value.AsRegister<ByteRegister>());
4758       break;
4759     }
4760 
4761     case Primitive::kPrimShort:
4762     case Primitive::kPrimChar: {
4763       if (value.IsConstant()) {
4764         int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4765         __ movw(Address(base, offset), Immediate(v));
4766       } else {
4767         __ movw(Address(base, offset), value.AsRegister<Register>());
4768       }
4769       break;
4770     }
4771 
4772     case Primitive::kPrimInt:
4773     case Primitive::kPrimNot: {
4774       if (kPoisonHeapReferences && needs_write_barrier) {
4775         // Note that in the case where `value` is a null reference,
4776         // we do not enter this block, as the reference does not
4777         // need poisoning.
4778         DCHECK_EQ(field_type, Primitive::kPrimNot);
4779         Register temp = locations->GetTemp(0).AsRegister<Register>();
4780         __ movl(temp, value.AsRegister<Register>());
4781         __ PoisonHeapReference(temp);
4782         __ movl(Address(base, offset), temp);
4783       } else if (value.IsConstant()) {
4784         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4785         __ movl(Address(base, offset), Immediate(v));
4786       } else {
4787         DCHECK(value.IsRegister()) << value;
4788         __ movl(Address(base, offset), value.AsRegister<Register>());
4789       }
4790       break;
4791     }
4792 
4793     case Primitive::kPrimLong: {
4794       if (is_volatile) {
4795         XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4796         XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
4797         __ movd(temp1, value.AsRegisterPairLow<Register>());
4798         __ movd(temp2, value.AsRegisterPairHigh<Register>());
4799         __ punpckldq(temp1, temp2);
4800         __ movsd(Address(base, offset), temp1);
4801         codegen_->MaybeRecordImplicitNullCheck(instruction);
4802       } else if (value.IsConstant()) {
4803         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4804         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4805         codegen_->MaybeRecordImplicitNullCheck(instruction);
4806         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4807       } else {
4808         __ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
4809         codegen_->MaybeRecordImplicitNullCheck(instruction);
4810         __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
4811       }
4812       maybe_record_implicit_null_check_done = true;
4813       break;
4814     }
4815 
4816     case Primitive::kPrimFloat: {
4817       if (value.IsConstant()) {
4818         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4819         __ movl(Address(base, offset), Immediate(v));
4820       } else {
4821         __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4822       }
4823       break;
4824     }
4825 
4826     case Primitive::kPrimDouble: {
4827       if (value.IsConstant()) {
4828         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4829         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4830         codegen_->MaybeRecordImplicitNullCheck(instruction);
4831         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4832         maybe_record_implicit_null_check_done = true;
4833       } else {
4834         __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4835       }
4836       break;
4837     }
4838 
4839     case Primitive::kPrimVoid:
4840       LOG(FATAL) << "Unreachable type " << field_type;
4841       UNREACHABLE();
4842   }
4843 
4844   if (!maybe_record_implicit_null_check_done) {
4845     codegen_->MaybeRecordImplicitNullCheck(instruction);
4846   }
4847 
4848   if (needs_write_barrier) {
4849     Register temp = locations->GetTemp(0).AsRegister<Register>();
4850     Register card = locations->GetTemp(1).AsRegister<Register>();
4851     codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4852   }
4853 
4854   if (is_volatile) {
4855     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4856   }
4857 }
4858 
VisitStaticFieldGet(HStaticFieldGet * instruction)4859 void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4860   HandleFieldGet(instruction, instruction->GetFieldInfo());
4861 }
4862 
VisitStaticFieldGet(HStaticFieldGet * instruction)4863 void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4864   HandleFieldGet(instruction, instruction->GetFieldInfo());
4865 }
4866 
VisitStaticFieldSet(HStaticFieldSet * instruction)4867 void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4868   HandleFieldSet(instruction, instruction->GetFieldInfo());
4869 }
4870 
VisitStaticFieldSet(HStaticFieldSet * instruction)4871 void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4872   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4873 }
4874 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4875 void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4876   HandleFieldSet(instruction, instruction->GetFieldInfo());
4877 }
4878 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4879 void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4880   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4881 }
4882 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4883 void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4884   HandleFieldGet(instruction, instruction->GetFieldInfo());
4885 }
4886 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4887 void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4888   HandleFieldGet(instruction, instruction->GetFieldInfo());
4889 }
4890 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4891 void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
4892     HUnresolvedInstanceFieldGet* instruction) {
4893   FieldAccessCallingConventionX86 calling_convention;
4894   codegen_->CreateUnresolvedFieldLocationSummary(
4895       instruction, instruction->GetFieldType(), calling_convention);
4896 }
4897 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4898 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
4899     HUnresolvedInstanceFieldGet* instruction) {
4900   FieldAccessCallingConventionX86 calling_convention;
4901   codegen_->GenerateUnresolvedFieldAccess(instruction,
4902                                           instruction->GetFieldType(),
4903                                           instruction->GetFieldIndex(),
4904                                           instruction->GetDexPc(),
4905                                           calling_convention);
4906 }
4907 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4908 void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
4909     HUnresolvedInstanceFieldSet* instruction) {
4910   FieldAccessCallingConventionX86 calling_convention;
4911   codegen_->CreateUnresolvedFieldLocationSummary(
4912       instruction, instruction->GetFieldType(), calling_convention);
4913 }
4914 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4915 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
4916     HUnresolvedInstanceFieldSet* instruction) {
4917   FieldAccessCallingConventionX86 calling_convention;
4918   codegen_->GenerateUnresolvedFieldAccess(instruction,
4919                                           instruction->GetFieldType(),
4920                                           instruction->GetFieldIndex(),
4921                                           instruction->GetDexPc(),
4922                                           calling_convention);
4923 }
4924 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4925 void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
4926     HUnresolvedStaticFieldGet* instruction) {
4927   FieldAccessCallingConventionX86 calling_convention;
4928   codegen_->CreateUnresolvedFieldLocationSummary(
4929       instruction, instruction->GetFieldType(), calling_convention);
4930 }
4931 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4932 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
4933     HUnresolvedStaticFieldGet* instruction) {
4934   FieldAccessCallingConventionX86 calling_convention;
4935   codegen_->GenerateUnresolvedFieldAccess(instruction,
4936                                           instruction->GetFieldType(),
4937                                           instruction->GetFieldIndex(),
4938                                           instruction->GetDexPc(),
4939                                           calling_convention);
4940 }
4941 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4942 void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
4943     HUnresolvedStaticFieldSet* instruction) {
4944   FieldAccessCallingConventionX86 calling_convention;
4945   codegen_->CreateUnresolvedFieldLocationSummary(
4946       instruction, instruction->GetFieldType(), calling_convention);
4947 }
4948 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4949 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
4950     HUnresolvedStaticFieldSet* instruction) {
4951   FieldAccessCallingConventionX86 calling_convention;
4952   codegen_->GenerateUnresolvedFieldAccess(instruction,
4953                                           instruction->GetFieldType(),
4954                                           instruction->GetFieldIndex(),
4955                                           instruction->GetDexPc(),
4956                                           calling_convention);
4957 }
4958 
VisitNullCheck(HNullCheck * instruction)4959 void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
4960   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4961       ? LocationSummary::kCallOnSlowPath
4962       : LocationSummary::kNoCall;
4963   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4964   Location loc = codegen_->IsImplicitNullCheckAllowed(instruction)
4965       ? Location::RequiresRegister()
4966       : Location::Any();
4967   locations->SetInAt(0, loc);
4968   if (instruction->HasUses()) {
4969     locations->SetOut(Location::SameAsFirstInput());
4970   }
4971 }
4972 
GenerateImplicitNullCheck(HNullCheck * instruction)4973 void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
4974   if (CanMoveNullCheckToUser(instruction)) {
4975     return;
4976   }
4977   LocationSummary* locations = instruction->GetLocations();
4978   Location obj = locations->InAt(0);
4979 
4980   __ testl(EAX, Address(obj.AsRegister<Register>(), 0));
4981   RecordPcInfo(instruction, instruction->GetDexPc());
4982 }
4983 
GenerateExplicitNullCheck(HNullCheck * instruction)4984 void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
4985   SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
4986   AddSlowPath(slow_path);
4987 
4988   LocationSummary* locations = instruction->GetLocations();
4989   Location obj = locations->InAt(0);
4990 
4991   if (obj.IsRegister()) {
4992     __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
4993   } else if (obj.IsStackSlot()) {
4994     __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
4995   } else {
4996     DCHECK(obj.IsConstant()) << obj;
4997     DCHECK(obj.GetConstant()->IsNullConstant());
4998     __ jmp(slow_path->GetEntryLabel());
4999     return;
5000   }
5001   __ j(kEqual, slow_path->GetEntryLabel());
5002 }
5003 
VisitNullCheck(HNullCheck * instruction)5004 void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
5005   codegen_->GenerateNullCheck(instruction);
5006 }
5007 
VisitArrayGet(HArrayGet * instruction)5008 void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
5009   bool object_array_get_with_read_barrier =
5010       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
5011   LocationSummary* locations =
5012       new (GetGraph()->GetArena()) LocationSummary(instruction,
5013                                                    object_array_get_with_read_barrier ?
5014                                                        LocationSummary::kCallOnSlowPath :
5015                                                        LocationSummary::kNoCall);
5016   locations->SetInAt(0, Location::RequiresRegister());
5017   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5018   if (Primitive::IsFloatingPointType(instruction->GetType())) {
5019     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5020   } else {
5021     // The output overlaps in case of long: we don't want the low move
5022     // to overwrite the array's location.  Likewise, in the case of an
5023     // object array get with read barriers enabled, we do not want the
5024     // move to overwrite the array's location, as we need it to emit
5025     // the read barrier.
5026     locations->SetOut(
5027         Location::RequiresRegister(),
5028         (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
5029             Location::kOutputOverlap :
5030             Location::kNoOutputOverlap);
5031   }
5032   // We need a temporary register for the read barrier marking slow
5033   // path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier.
5034   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
5035     locations->AddTemp(Location::RequiresRegister());
5036   }
5037 }
5038 
VisitArrayGet(HArrayGet * instruction)5039 void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
5040   LocationSummary* locations = instruction->GetLocations();
5041   Location obj_loc = locations->InAt(0);
5042   Register obj = obj_loc.AsRegister<Register>();
5043   Location index = locations->InAt(1);
5044   Location out_loc = locations->Out();
5045 
5046   Primitive::Type type = instruction->GetType();
5047   switch (type) {
5048     case Primitive::kPrimBoolean: {
5049       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5050       Register out = out_loc.AsRegister<Register>();
5051       if (index.IsConstant()) {
5052         __ movzxb(out, Address(obj,
5053             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5054       } else {
5055         __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5056       }
5057       break;
5058     }
5059 
5060     case Primitive::kPrimByte: {
5061       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
5062       Register out = out_loc.AsRegister<Register>();
5063       if (index.IsConstant()) {
5064         __ movsxb(out, Address(obj,
5065             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5066       } else {
5067         __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5068       }
5069       break;
5070     }
5071 
5072     case Primitive::kPrimShort: {
5073       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
5074       Register out = out_loc.AsRegister<Register>();
5075       if (index.IsConstant()) {
5076         __ movsxw(out, Address(obj,
5077             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5078       } else {
5079         __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5080       }
5081       break;
5082     }
5083 
5084     case Primitive::kPrimChar: {
5085       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5086       Register out = out_loc.AsRegister<Register>();
5087       if (index.IsConstant()) {
5088         __ movzxw(out, Address(obj,
5089             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5090       } else {
5091         __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5092       }
5093       break;
5094     }
5095 
5096     case Primitive::kPrimInt: {
5097       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5098       Register out = out_loc.AsRegister<Register>();
5099       if (index.IsConstant()) {
5100         __ movl(out, Address(obj,
5101             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5102       } else {
5103         __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5104       }
5105       break;
5106     }
5107 
5108     case Primitive::kPrimNot: {
5109       static_assert(
5110           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5111           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5112       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5113       // /* HeapReference<Object> */ out =
5114       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
5115       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5116         Location temp = locations->GetTemp(0);
5117         // Note that a potential implicit null check is handled in this
5118         // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
5119         codegen_->GenerateArrayLoadWithBakerReadBarrier(
5120             instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
5121       } else {
5122         Register out = out_loc.AsRegister<Register>();
5123         if (index.IsConstant()) {
5124           uint32_t offset =
5125               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5126           __ movl(out, Address(obj, offset));
5127           codegen_->MaybeRecordImplicitNullCheck(instruction);
5128           // If read barriers are enabled, emit read barriers other than
5129           // Baker's using a slow path (and also unpoison the loaded
5130           // reference, if heap poisoning is enabled).
5131           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
5132         } else {
5133           __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5134           codegen_->MaybeRecordImplicitNullCheck(instruction);
5135           // If read barriers are enabled, emit read barriers other than
5136           // Baker's using a slow path (and also unpoison the loaded
5137           // reference, if heap poisoning is enabled).
5138           codegen_->MaybeGenerateReadBarrierSlow(
5139               instruction, out_loc, out_loc, obj_loc, data_offset, index);
5140         }
5141       }
5142       break;
5143     }
5144 
5145     case Primitive::kPrimLong: {
5146       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5147       DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
5148       if (index.IsConstant()) {
5149         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5150         __ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset));
5151         codegen_->MaybeRecordImplicitNullCheck(instruction);
5152         __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize));
5153       } else {
5154         __ movl(out_loc.AsRegisterPairLow<Register>(),
5155                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5156         codegen_->MaybeRecordImplicitNullCheck(instruction);
5157         __ movl(out_loc.AsRegisterPairHigh<Register>(),
5158                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize));
5159       }
5160       break;
5161     }
5162 
5163     case Primitive::kPrimFloat: {
5164       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5165       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5166       if (index.IsConstant()) {
5167         __ movss(out, Address(obj,
5168             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5169       } else {
5170         __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5171       }
5172       break;
5173     }
5174 
5175     case Primitive::kPrimDouble: {
5176       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5177       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5178       if (index.IsConstant()) {
5179         __ movsd(out, Address(obj,
5180             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
5181       } else {
5182         __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5183       }
5184       break;
5185     }
5186 
5187     case Primitive::kPrimVoid:
5188       LOG(FATAL) << "Unreachable type " << type;
5189       UNREACHABLE();
5190   }
5191 
5192   if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
5193     // Potential implicit null checks, in the case of reference or
5194     // long arrays, are handled in the previous switch statement.
5195   } else {
5196     codegen_->MaybeRecordImplicitNullCheck(instruction);
5197   }
5198 }
5199 
VisitArraySet(HArraySet * instruction)5200 void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
5201   Primitive::Type value_type = instruction->GetComponentType();
5202 
5203   bool needs_write_barrier =
5204       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5205   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5206   bool object_array_set_with_read_barrier =
5207       kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
5208 
5209   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5210       instruction,
5211       (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
5212           LocationSummary::kCallOnSlowPath :
5213           LocationSummary::kNoCall);
5214 
5215   bool is_byte_type = (value_type == Primitive::kPrimBoolean)
5216       || (value_type == Primitive::kPrimByte);
5217   // We need the inputs to be different than the output in case of long operation.
5218   // In case of a byte operation, the register allocator does not support multiple
5219   // inputs that die at entry with one in a specific register.
5220   locations->SetInAt(0, Location::RequiresRegister());
5221   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5222   if (is_byte_type) {
5223     // Ensure the value is in a byte register.
5224     locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
5225   } else if (Primitive::IsFloatingPointType(value_type)) {
5226     locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
5227   } else {
5228     locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
5229   }
5230   if (needs_write_barrier) {
5231     // Temporary registers for the write barrier.
5232     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
5233     // Ensure the card is in a byte register.
5234     locations->AddTemp(Location::RegisterLocation(ECX));
5235   }
5236 }
5237 
VisitArraySet(HArraySet * instruction)5238 void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
5239   LocationSummary* locations = instruction->GetLocations();
5240   Location array_loc = locations->InAt(0);
5241   Register array = array_loc.AsRegister<Register>();
5242   Location index = locations->InAt(1);
5243   Location value = locations->InAt(2);
5244   Primitive::Type value_type = instruction->GetComponentType();
5245   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5246   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5247   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5248   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5249   bool needs_write_barrier =
5250       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5251 
5252   switch (value_type) {
5253     case Primitive::kPrimBoolean:
5254     case Primitive::kPrimByte: {
5255       uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5256       Address address = index.IsConstant()
5257           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset)
5258           : Address(array, index.AsRegister<Register>(), TIMES_1, offset);
5259       if (value.IsRegister()) {
5260         __ movb(address, value.AsRegister<ByteRegister>());
5261       } else {
5262         __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5263       }
5264       codegen_->MaybeRecordImplicitNullCheck(instruction);
5265       break;
5266     }
5267 
5268     case Primitive::kPrimShort:
5269     case Primitive::kPrimChar: {
5270       uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5271       Address address = index.IsConstant()
5272           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset)
5273           : Address(array, index.AsRegister<Register>(), TIMES_2, offset);
5274       if (value.IsRegister()) {
5275         __ movw(address, value.AsRegister<Register>());
5276       } else {
5277         __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5278       }
5279       codegen_->MaybeRecordImplicitNullCheck(instruction);
5280       break;
5281     }
5282 
5283     case Primitive::kPrimNot: {
5284       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5285       Address address = index.IsConstant()
5286           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5287           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5288 
5289       if (!value.IsRegister()) {
5290         // Just setting null.
5291         DCHECK(instruction->InputAt(2)->IsNullConstant());
5292         DCHECK(value.IsConstant()) << value;
5293         __ movl(address, Immediate(0));
5294         codegen_->MaybeRecordImplicitNullCheck(instruction);
5295         DCHECK(!needs_write_barrier);
5296         DCHECK(!may_need_runtime_call_for_type_check);
5297         break;
5298       }
5299 
5300       DCHECK(needs_write_barrier);
5301       Register register_value = value.AsRegister<Register>();
5302       NearLabel done, not_null, do_put;
5303       SlowPathCode* slow_path = nullptr;
5304       Register temp = locations->GetTemp(0).AsRegister<Register>();
5305       if (may_need_runtime_call_for_type_check) {
5306         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
5307         codegen_->AddSlowPath(slow_path);
5308         if (instruction->GetValueCanBeNull()) {
5309           __ testl(register_value, register_value);
5310           __ j(kNotEqual, &not_null);
5311           __ movl(address, Immediate(0));
5312           codegen_->MaybeRecordImplicitNullCheck(instruction);
5313           __ jmp(&done);
5314           __ Bind(&not_null);
5315         }
5316 
5317         if (kEmitCompilerReadBarrier) {
5318           // When read barriers are enabled, the type checking
5319           // instrumentation requires two read barriers:
5320           //
5321           //   __ movl(temp2, temp);
5322           //   // /* HeapReference<Class> */ temp = temp->component_type_
5323           //   __ movl(temp, Address(temp, component_offset));
5324           //   codegen_->GenerateReadBarrierSlow(
5325           //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
5326           //
5327           //   // /* HeapReference<Class> */ temp2 = register_value->klass_
5328           //   __ movl(temp2, Address(register_value, class_offset));
5329           //   codegen_->GenerateReadBarrierSlow(
5330           //       instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc);
5331           //
5332           //   __ cmpl(temp, temp2);
5333           //
5334           // However, the second read barrier may trash `temp`, as it
5335           // is a temporary register, and as such would not be saved
5336           // along with live registers before calling the runtime (nor
5337           // restored afterwards).  So in this case, we bail out and
5338           // delegate the work to the array set slow path.
5339           //
5340           // TODO: Extend the register allocator to support a new
5341           // "(locally) live temp" location so as to avoid always
5342           // going into the slow path when read barriers are enabled.
5343           __ jmp(slow_path->GetEntryLabel());
5344         } else {
5345           // /* HeapReference<Class> */ temp = array->klass_
5346           __ movl(temp, Address(array, class_offset));
5347           codegen_->MaybeRecordImplicitNullCheck(instruction);
5348           __ MaybeUnpoisonHeapReference(temp);
5349 
5350           // /* HeapReference<Class> */ temp = temp->component_type_
5351           __ movl(temp, Address(temp, component_offset));
5352           // If heap poisoning is enabled, no need to unpoison `temp`
5353           // nor the object reference in `register_value->klass`, as
5354           // we are comparing two poisoned references.
5355           __ cmpl(temp, Address(register_value, class_offset));
5356 
5357           if (instruction->StaticTypeOfArrayIsObjectArray()) {
5358             __ j(kEqual, &do_put);
5359             // If heap poisoning is enabled, the `temp` reference has
5360             // not been unpoisoned yet; unpoison it now.
5361             __ MaybeUnpoisonHeapReference(temp);
5362 
5363             // /* HeapReference<Class> */ temp = temp->super_class_
5364             __ movl(temp, Address(temp, super_offset));
5365             // If heap poisoning is enabled, no need to unpoison
5366             // `temp`, as we are comparing against null below.
5367             __ testl(temp, temp);
5368             __ j(kNotEqual, slow_path->GetEntryLabel());
5369             __ Bind(&do_put);
5370           } else {
5371             __ j(kNotEqual, slow_path->GetEntryLabel());
5372           }
5373         }
5374       }
5375 
5376       if (kPoisonHeapReferences) {
5377         __ movl(temp, register_value);
5378         __ PoisonHeapReference(temp);
5379         __ movl(address, temp);
5380       } else {
5381         __ movl(address, register_value);
5382       }
5383       if (!may_need_runtime_call_for_type_check) {
5384         codegen_->MaybeRecordImplicitNullCheck(instruction);
5385       }
5386 
5387       Register card = locations->GetTemp(1).AsRegister<Register>();
5388       codegen_->MarkGCCard(
5389           temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
5390       __ Bind(&done);
5391 
5392       if (slow_path != nullptr) {
5393         __ Bind(slow_path->GetExitLabel());
5394       }
5395 
5396       break;
5397     }
5398 
5399     case Primitive::kPrimInt: {
5400       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5401       Address address = index.IsConstant()
5402           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5403           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5404       if (value.IsRegister()) {
5405         __ movl(address, value.AsRegister<Register>());
5406       } else {
5407         DCHECK(value.IsConstant()) << value;
5408         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5409         __ movl(address, Immediate(v));
5410       }
5411       codegen_->MaybeRecordImplicitNullCheck(instruction);
5412       break;
5413     }
5414 
5415     case Primitive::kPrimLong: {
5416       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5417       if (index.IsConstant()) {
5418         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5419         if (value.IsRegisterPair()) {
5420           __ movl(Address(array, offset), value.AsRegisterPairLow<Register>());
5421           codegen_->MaybeRecordImplicitNullCheck(instruction);
5422           __ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>());
5423         } else {
5424           DCHECK(value.IsConstant());
5425           int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5426           __ movl(Address(array, offset), Immediate(Low32Bits(val)));
5427           codegen_->MaybeRecordImplicitNullCheck(instruction);
5428           __ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val)));
5429         }
5430       } else {
5431         if (value.IsRegisterPair()) {
5432           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5433                   value.AsRegisterPairLow<Register>());
5434           codegen_->MaybeRecordImplicitNullCheck(instruction);
5435           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5436                   value.AsRegisterPairHigh<Register>());
5437         } else {
5438           DCHECK(value.IsConstant());
5439           int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5440           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5441                   Immediate(Low32Bits(val)));
5442           codegen_->MaybeRecordImplicitNullCheck(instruction);
5443           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5444                   Immediate(High32Bits(val)));
5445         }
5446       }
5447       break;
5448     }
5449 
5450     case Primitive::kPrimFloat: {
5451       uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5452       Address address = index.IsConstant()
5453           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5454           : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5455       if (value.IsFpuRegister()) {
5456         __ movss(address, value.AsFpuRegister<XmmRegister>());
5457       } else {
5458         DCHECK(value.IsConstant());
5459         int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
5460         __ movl(address, Immediate(v));
5461       }
5462       codegen_->MaybeRecordImplicitNullCheck(instruction);
5463       break;
5464     }
5465 
5466     case Primitive::kPrimDouble: {
5467       uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5468       Address address = index.IsConstant()
5469           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset)
5470           : Address(array, index.AsRegister<Register>(), TIMES_8, offset);
5471       if (value.IsFpuRegister()) {
5472         __ movsd(address, value.AsFpuRegister<XmmRegister>());
5473       } else {
5474         DCHECK(value.IsConstant());
5475         Address address_hi = index.IsConstant() ?
5476             Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) +
5477                            offset + kX86WordSize) :
5478             Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize);
5479         int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
5480         __ movl(address, Immediate(Low32Bits(v)));
5481         codegen_->MaybeRecordImplicitNullCheck(instruction);
5482         __ movl(address_hi, Immediate(High32Bits(v)));
5483       }
5484       break;
5485     }
5486 
5487     case Primitive::kPrimVoid:
5488       LOG(FATAL) << "Unreachable type " << instruction->GetType();
5489       UNREACHABLE();
5490   }
5491 }
5492 
VisitArrayLength(HArrayLength * instruction)5493 void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
5494   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
5495   locations->SetInAt(0, Location::RequiresRegister());
5496   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5497 }
5498 
VisitArrayLength(HArrayLength * instruction)5499 void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
5500   LocationSummary* locations = instruction->GetLocations();
5501   uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
5502   Register obj = locations->InAt(0).AsRegister<Register>();
5503   Register out = locations->Out().AsRegister<Register>();
5504   __ movl(out, Address(obj, offset));
5505   codegen_->MaybeRecordImplicitNullCheck(instruction);
5506 }
5507 
VisitBoundsCheck(HBoundsCheck * instruction)5508 void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5509   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
5510       ? LocationSummary::kCallOnSlowPath
5511       : LocationSummary::kNoCall;
5512   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5513   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5514   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5515   if (instruction->HasUses()) {
5516     locations->SetOut(Location::SameAsFirstInput());
5517   }
5518 }
5519 
VisitBoundsCheck(HBoundsCheck * instruction)5520 void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5521   LocationSummary* locations = instruction->GetLocations();
5522   Location index_loc = locations->InAt(0);
5523   Location length_loc = locations->InAt(1);
5524   SlowPathCode* slow_path =
5525     new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
5526 
5527   if (length_loc.IsConstant()) {
5528     int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
5529     if (index_loc.IsConstant()) {
5530       // BCE will remove the bounds check if we are guarenteed to pass.
5531       int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5532       if (index < 0 || index >= length) {
5533         codegen_->AddSlowPath(slow_path);
5534         __ jmp(slow_path->GetEntryLabel());
5535       } else {
5536         // Some optimization after BCE may have generated this, and we should not
5537         // generate a bounds check if it is a valid range.
5538       }
5539       return;
5540     }
5541 
5542     // We have to reverse the jump condition because the length is the constant.
5543     Register index_reg = index_loc.AsRegister<Register>();
5544     __ cmpl(index_reg, Immediate(length));
5545     codegen_->AddSlowPath(slow_path);
5546     __ j(kAboveEqual, slow_path->GetEntryLabel());
5547   } else {
5548     Register length = length_loc.AsRegister<Register>();
5549     if (index_loc.IsConstant()) {
5550       int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5551       __ cmpl(length, Immediate(value));
5552     } else {
5553       __ cmpl(length, index_loc.AsRegister<Register>());
5554     }
5555     codegen_->AddSlowPath(slow_path);
5556     __ j(kBelowEqual, slow_path->GetEntryLabel());
5557   }
5558 }
5559 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5560 void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5561   LOG(FATAL) << "Unreachable";
5562 }
5563 
VisitParallelMove(HParallelMove * instruction)5564 void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
5565   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5566 }
5567 
VisitSuspendCheck(HSuspendCheck * instruction)5568 void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5569   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5570 }
5571 
VisitSuspendCheck(HSuspendCheck * instruction)5572 void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5573   HBasicBlock* block = instruction->GetBlock();
5574   if (block->GetLoopInformation() != nullptr) {
5575     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5576     // The back edge will generate the suspend check.
5577     return;
5578   }
5579   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5580     // The goto will generate the suspend check.
5581     return;
5582   }
5583   GenerateSuspendCheck(instruction, nullptr);
5584 }
5585 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)5586 void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
5587                                                        HBasicBlock* successor) {
5588   SuspendCheckSlowPathX86* slow_path =
5589       down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
5590   if (slow_path == nullptr) {
5591     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
5592     instruction->SetSlowPath(slow_path);
5593     codegen_->AddSlowPath(slow_path);
5594     if (successor != nullptr) {
5595       DCHECK(successor->IsLoopHeader());
5596       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5597     }
5598   } else {
5599     DCHECK_EQ(slow_path->GetSuccessor(), successor);
5600   }
5601 
5602   __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()),
5603                 Immediate(0));
5604   if (successor == nullptr) {
5605     __ j(kNotEqual, slow_path->GetEntryLabel());
5606     __ Bind(slow_path->GetReturnLabel());
5607   } else {
5608     __ j(kEqual, codegen_->GetLabelOf(successor));
5609     __ jmp(slow_path->GetEntryLabel());
5610   }
5611 }
5612 
GetAssembler() const5613 X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
5614   return codegen_->GetAssembler();
5615 }
5616 
MoveMemoryToMemory32(int dst,int src)5617 void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
5618   ScratchRegisterScope ensure_scratch(
5619       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5620   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5621   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5622   __ movl(temp_reg, Address(ESP, src + stack_offset));
5623   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5624 }
5625 
MoveMemoryToMemory64(int dst,int src)5626 void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
5627   ScratchRegisterScope ensure_scratch(
5628       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5629   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5630   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5631   __ movl(temp_reg, Address(ESP, src + stack_offset));
5632   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5633   __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
5634   __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
5635 }
5636 
EmitMove(size_t index)5637 void ParallelMoveResolverX86::EmitMove(size_t index) {
5638   MoveOperands* move = moves_[index];
5639   Location source = move->GetSource();
5640   Location destination = move->GetDestination();
5641 
5642   if (source.IsRegister()) {
5643     if (destination.IsRegister()) {
5644       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5645     } else if (destination.IsFpuRegister()) {
5646       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
5647     } else {
5648       DCHECK(destination.IsStackSlot());
5649       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
5650     }
5651   } else if (source.IsRegisterPair()) {
5652       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
5653       // Create stack space for 2 elements.
5654       __ subl(ESP, Immediate(2 * elem_size));
5655       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
5656       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
5657       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
5658       // And remove the temporary stack space we allocated.
5659       __ addl(ESP, Immediate(2 * elem_size));
5660   } else if (source.IsFpuRegister()) {
5661     if (destination.IsRegister()) {
5662       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
5663     } else if (destination.IsFpuRegister()) {
5664       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5665     } else if (destination.IsRegisterPair()) {
5666       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
5667       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
5668       __ psrlq(src_reg, Immediate(32));
5669       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
5670     } else if (destination.IsStackSlot()) {
5671       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5672     } else {
5673       DCHECK(destination.IsDoubleStackSlot());
5674       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5675     }
5676   } else if (source.IsStackSlot()) {
5677     if (destination.IsRegister()) {
5678       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
5679     } else if (destination.IsFpuRegister()) {
5680       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5681     } else {
5682       DCHECK(destination.IsStackSlot());
5683       MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
5684     }
5685   } else if (source.IsDoubleStackSlot()) {
5686     if (destination.IsRegisterPair()) {
5687       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
5688       __ movl(destination.AsRegisterPairHigh<Register>(),
5689               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
5690     } else if (destination.IsFpuRegister()) {
5691       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5692     } else {
5693       DCHECK(destination.IsDoubleStackSlot()) << destination;
5694       MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
5695     }
5696   } else if (source.IsConstant()) {
5697     HConstant* constant = source.GetConstant();
5698     if (constant->IsIntConstant() || constant->IsNullConstant()) {
5699       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5700       if (destination.IsRegister()) {
5701         if (value == 0) {
5702           __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
5703         } else {
5704           __ movl(destination.AsRegister<Register>(), Immediate(value));
5705         }
5706       } else {
5707         DCHECK(destination.IsStackSlot()) << destination;
5708         __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
5709       }
5710     } else if (constant->IsFloatConstant()) {
5711       float fp_value = constant->AsFloatConstant()->GetValue();
5712       int32_t value = bit_cast<int32_t, float>(fp_value);
5713       Immediate imm(value);
5714       if (destination.IsFpuRegister()) {
5715         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5716         if (value == 0) {
5717           // Easy handling of 0.0.
5718           __ xorps(dest, dest);
5719         } else {
5720           ScratchRegisterScope ensure_scratch(
5721               this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5722           Register temp = static_cast<Register>(ensure_scratch.GetRegister());
5723           __ movl(temp, Immediate(value));
5724           __ movd(dest, temp);
5725         }
5726       } else {
5727         DCHECK(destination.IsStackSlot()) << destination;
5728         __ movl(Address(ESP, destination.GetStackIndex()), imm);
5729       }
5730     } else if (constant->IsLongConstant()) {
5731       int64_t value = constant->AsLongConstant()->GetValue();
5732       int32_t low_value = Low32Bits(value);
5733       int32_t high_value = High32Bits(value);
5734       Immediate low(low_value);
5735       Immediate high(high_value);
5736       if (destination.IsDoubleStackSlot()) {
5737         __ movl(Address(ESP, destination.GetStackIndex()), low);
5738         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5739       } else {
5740         __ movl(destination.AsRegisterPairLow<Register>(), low);
5741         __ movl(destination.AsRegisterPairHigh<Register>(), high);
5742       }
5743     } else {
5744       DCHECK(constant->IsDoubleConstant());
5745       double dbl_value = constant->AsDoubleConstant()->GetValue();
5746       int64_t value = bit_cast<int64_t, double>(dbl_value);
5747       int32_t low_value = Low32Bits(value);
5748       int32_t high_value = High32Bits(value);
5749       Immediate low(low_value);
5750       Immediate high(high_value);
5751       if (destination.IsFpuRegister()) {
5752         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5753         if (value == 0) {
5754           // Easy handling of 0.0.
5755           __ xorpd(dest, dest);
5756         } else {
5757           __ pushl(high);
5758           __ pushl(low);
5759           __ movsd(dest, Address(ESP, 0));
5760           __ addl(ESP, Immediate(8));
5761         }
5762       } else {
5763         DCHECK(destination.IsDoubleStackSlot()) << destination;
5764         __ movl(Address(ESP, destination.GetStackIndex()), low);
5765         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5766       }
5767     }
5768   } else {
5769     LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
5770   }
5771 }
5772 
Exchange(Register reg,int mem)5773 void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
5774   Register suggested_scratch = reg == EAX ? EBX : EAX;
5775   ScratchRegisterScope ensure_scratch(
5776       this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5777 
5778   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5779   __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
5780   __ movl(Address(ESP, mem + stack_offset), reg);
5781   __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
5782 }
5783 
Exchange32(XmmRegister reg,int mem)5784 void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
5785   ScratchRegisterScope ensure_scratch(
5786       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5787 
5788   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5789   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5790   __ movl(temp_reg, Address(ESP, mem + stack_offset));
5791   __ movss(Address(ESP, mem + stack_offset), reg);
5792   __ movd(reg, temp_reg);
5793 }
5794 
Exchange(int mem1,int mem2)5795 void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
5796   ScratchRegisterScope ensure_scratch1(
5797       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5798 
5799   Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
5800   ScratchRegisterScope ensure_scratch2(
5801       this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5802 
5803   int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
5804   stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
5805   __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
5806   __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
5807   __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
5808   __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
5809 }
5810 
EmitSwap(size_t index)5811 void ParallelMoveResolverX86::EmitSwap(size_t index) {
5812   MoveOperands* move = moves_[index];
5813   Location source = move->GetSource();
5814   Location destination = move->GetDestination();
5815 
5816   if (source.IsRegister() && destination.IsRegister()) {
5817     // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
5818     DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
5819     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5820     __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
5821     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5822   } else if (source.IsRegister() && destination.IsStackSlot()) {
5823     Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5824   } else if (source.IsStackSlot() && destination.IsRegister()) {
5825     Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5826   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5827     Exchange(destination.GetStackIndex(), source.GetStackIndex());
5828   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5829     // Use XOR Swap algorithm to avoid a temporary.
5830     DCHECK_NE(source.reg(), destination.reg());
5831     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5832     __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
5833     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5834   } else if (source.IsFpuRegister() && destination.IsStackSlot()) {
5835     Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
5836   } else if (destination.IsFpuRegister() && source.IsStackSlot()) {
5837     Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
5838   } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
5839     // Take advantage of the 16 bytes in the XMM register.
5840     XmmRegister reg = source.AsFpuRegister<XmmRegister>();
5841     Address stack(ESP, destination.GetStackIndex());
5842     // Load the double into the high doubleword.
5843     __ movhpd(reg, stack);
5844 
5845     // Store the low double into the destination.
5846     __ movsd(stack, reg);
5847 
5848     // Move the high double to the low double.
5849     __ psrldq(reg, Immediate(8));
5850   } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
5851     // Take advantage of the 16 bytes in the XMM register.
5852     XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
5853     Address stack(ESP, source.GetStackIndex());
5854     // Load the double into the high doubleword.
5855     __ movhpd(reg, stack);
5856 
5857     // Store the low double into the destination.
5858     __ movsd(stack, reg);
5859 
5860     // Move the high double to the low double.
5861     __ psrldq(reg, Immediate(8));
5862   } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
5863     Exchange(destination.GetStackIndex(), source.GetStackIndex());
5864     Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
5865   } else {
5866     LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
5867   }
5868 }
5869 
SpillScratch(int reg)5870 void ParallelMoveResolverX86::SpillScratch(int reg) {
5871   __ pushl(static_cast<Register>(reg));
5872 }
5873 
RestoreScratch(int reg)5874 void ParallelMoveResolverX86::RestoreScratch(int reg) {
5875   __ popl(static_cast<Register>(reg));
5876 }
5877 
VisitLoadClass(HLoadClass * cls)5878 void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
5879   InvokeRuntimeCallingConvention calling_convention;
5880   CodeGenerator::CreateLoadClassLocationSummary(
5881       cls,
5882       Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5883       Location::RegisterLocation(EAX),
5884       /* code_generator_supports_read_barrier */ true);
5885 }
5886 
VisitLoadClass(HLoadClass * cls)5887 void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) {
5888   LocationSummary* locations = cls->GetLocations();
5889   if (cls->NeedsAccessCheck()) {
5890     codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5891     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
5892                             cls,
5893                             cls->GetDexPc(),
5894                             nullptr);
5895     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5896     return;
5897   }
5898 
5899   Location out_loc = locations->Out();
5900   Register out = out_loc.AsRegister<Register>();
5901   Register current_method = locations->InAt(0).AsRegister<Register>();
5902 
5903   if (cls->IsReferrersClass()) {
5904     DCHECK(!cls->CanCallRuntime());
5905     DCHECK(!cls->MustGenerateClinitCheck());
5906     // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5907     GenerateGcRootFieldLoad(
5908         cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
5909   } else {
5910     // /* GcRoot<mirror::Class>[] */ out =
5911     //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5912     __ movl(out, Address(current_method,
5913                          ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value()));
5914     // /* GcRoot<mirror::Class> */ out = out[type_index]
5915     GenerateGcRootFieldLoad(
5916         cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
5917 
5918     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
5919       DCHECK(cls->CanCallRuntime());
5920       SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5921           cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5922       codegen_->AddSlowPath(slow_path);
5923 
5924       if (!cls->IsInDexCache()) {
5925         __ testl(out, out);
5926         __ j(kEqual, slow_path->GetEntryLabel());
5927       }
5928 
5929       if (cls->MustGenerateClinitCheck()) {
5930         GenerateClassInitializationCheck(slow_path, out);
5931       } else {
5932         __ Bind(slow_path->GetExitLabel());
5933       }
5934     }
5935   }
5936 }
5937 
VisitClinitCheck(HClinitCheck * check)5938 void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
5939   LocationSummary* locations =
5940       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5941   locations->SetInAt(0, Location::RequiresRegister());
5942   if (check->HasUses()) {
5943     locations->SetOut(Location::SameAsFirstInput());
5944   }
5945 }
5946 
VisitClinitCheck(HClinitCheck * check)5947 void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
5948   // We assume the class to not be null.
5949   SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5950       check->GetLoadClass(), check, check->GetDexPc(), true);
5951   codegen_->AddSlowPath(slow_path);
5952   GenerateClassInitializationCheck(slow_path,
5953                                    check->GetLocations()->InAt(0).AsRegister<Register>());
5954 }
5955 
GenerateClassInitializationCheck(SlowPathCode * slow_path,Register class_reg)5956 void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
5957     SlowPathCode* slow_path, Register class_reg) {
5958   __ cmpl(Address(class_reg,  mirror::Class::StatusOffset().Int32Value()),
5959           Immediate(mirror::Class::kStatusInitialized));
5960   __ j(kLess, slow_path->GetEntryLabel());
5961   __ Bind(slow_path->GetExitLabel());
5962   // No need for memory fence, thanks to the X86 memory model.
5963 }
5964 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5965 HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
5966     HLoadString::LoadKind desired_string_load_kind) {
5967   if (kEmitCompilerReadBarrier) {
5968     switch (desired_string_load_kind) {
5969       case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5970       case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5971       case HLoadString::LoadKind::kBootImageAddress:
5972         // TODO: Implement for read barrier.
5973         return HLoadString::LoadKind::kDexCacheViaMethod;
5974       default:
5975         break;
5976     }
5977   }
5978   switch (desired_string_load_kind) {
5979     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5980       DCHECK(!GetCompilerOptions().GetCompilePic());
5981       break;
5982     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5983       DCHECK(GetCompilerOptions().GetCompilePic());
5984       FALLTHROUGH_INTENDED;
5985     case HLoadString::LoadKind::kDexCachePcRelative:
5986       DCHECK(!Runtime::Current()->UseJitCompilation());  // Note: boot image is also non-JIT.
5987       // We disable pc-relative load when there is an irreducible loop, as the optimization
5988       // is incompatible with it.
5989       // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods
5990       // with irreducible loops.
5991       if (GetGraph()->HasIrreducibleLoops()) {
5992         return HLoadString::LoadKind::kDexCacheViaMethod;
5993       }
5994       break;
5995     case HLoadString::LoadKind::kBootImageAddress:
5996       break;
5997     case HLoadString::LoadKind::kDexCacheAddress:
5998       DCHECK(Runtime::Current()->UseJitCompilation());
5999       break;
6000     case HLoadString::LoadKind::kDexCacheViaMethod:
6001       break;
6002   }
6003   return desired_string_load_kind;
6004 }
6005 
VisitLoadString(HLoadString * load)6006 void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
6007   LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
6008       ? LocationSummary::kCallOnSlowPath
6009       : LocationSummary::kNoCall;
6010   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
6011   HLoadString::LoadKind load_kind = load->GetLoadKind();
6012   if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
6013       load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
6014       load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
6015     locations->SetInAt(0, Location::RequiresRegister());
6016   }
6017   locations->SetOut(Location::RequiresRegister());
6018 }
6019 
VisitLoadString(HLoadString * load)6020 void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) {
6021   LocationSummary* locations = load->GetLocations();
6022   Location out_loc = locations->Out();
6023   Register out = out_loc.AsRegister<Register>();
6024 
6025   switch (load->GetLoadKind()) {
6026     case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
6027       DCHECK(!kEmitCompilerReadBarrier);
6028       __ movl(out, Immediate(/* placeholder */ 0));
6029       codegen_->RecordStringPatch(load);
6030       return;  // No dex cache slow path.
6031     }
6032     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6033       DCHECK(!kEmitCompilerReadBarrier);
6034       Register method_address = locations->InAt(0).AsRegister<Register>();
6035       __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
6036       codegen_->RecordStringPatch(load);
6037       return;  // No dex cache slow path.
6038     }
6039     case HLoadString::LoadKind::kBootImageAddress: {
6040       DCHECK(!kEmitCompilerReadBarrier);
6041       DCHECK_NE(load->GetAddress(), 0u);
6042       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6043       __ movl(out, Immediate(address));
6044       codegen_->RecordSimplePatch();
6045       return;  // No dex cache slow path.
6046     }
6047     case HLoadString::LoadKind::kDexCacheAddress: {
6048       DCHECK_NE(load->GetAddress(), 0u);
6049       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6050       GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address));
6051       break;
6052     }
6053     case HLoadString::LoadKind::kDexCachePcRelative: {
6054       Register base_reg = locations->InAt(0).AsRegister<Register>();
6055       uint32_t offset = load->GetDexCacheElementOffset();
6056       Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset);
6057       GenerateGcRootFieldLoad(
6058           load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label);
6059       break;
6060     }
6061     case HLoadString::LoadKind::kDexCacheViaMethod: {
6062       Register current_method = locations->InAt(0).AsRegister<Register>();
6063 
6064       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
6065       GenerateGcRootFieldLoad(
6066           load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
6067 
6068       // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
6069       __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
6070       // /* GcRoot<mirror::String> */ out = out[string_index]
6071       GenerateGcRootFieldLoad(
6072           load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
6073       break;
6074     }
6075     default:
6076       LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
6077       UNREACHABLE();
6078   }
6079 
6080   if (!load->IsInDexCache()) {
6081     SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
6082     codegen_->AddSlowPath(slow_path);
6083     __ testl(out, out);
6084     __ j(kEqual, slow_path->GetEntryLabel());
6085     __ Bind(slow_path->GetExitLabel());
6086   }
6087 }
6088 
GetExceptionTlsAddress()6089 static Address GetExceptionTlsAddress() {
6090   return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value());
6091 }
6092 
VisitLoadException(HLoadException * load)6093 void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
6094   LocationSummary* locations =
6095       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6096   locations->SetOut(Location::RequiresRegister());
6097 }
6098 
VisitLoadException(HLoadException * load)6099 void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
6100   __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
6101 }
6102 
VisitClearException(HClearException * clear)6103 void LocationsBuilderX86::VisitClearException(HClearException* clear) {
6104   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6105 }
6106 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)6107 void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6108   __ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
6109 }
6110 
VisitThrow(HThrow * instruction)6111 void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
6112   LocationSummary* locations =
6113       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6114   InvokeRuntimeCallingConvention calling_convention;
6115   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6116 }
6117 
VisitThrow(HThrow * instruction)6118 void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
6119   codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
6120                           instruction,
6121                           instruction->GetDexPc(),
6122                           nullptr);
6123   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6124 }
6125 
TypeCheckNeedsATemporary(TypeCheckKind type_check_kind)6126 static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
6127   return kEmitCompilerReadBarrier &&
6128       (kUseBakerReadBarrier ||
6129        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6130        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6131        type_check_kind == TypeCheckKind::kArrayObjectCheck);
6132 }
6133 
VisitInstanceOf(HInstanceOf * instruction)6134 void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
6135   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6136   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6137   switch (type_check_kind) {
6138     case TypeCheckKind::kExactCheck:
6139     case TypeCheckKind::kAbstractClassCheck:
6140     case TypeCheckKind::kClassHierarchyCheck:
6141     case TypeCheckKind::kArrayObjectCheck:
6142       call_kind =
6143           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6144       break;
6145     case TypeCheckKind::kArrayCheck:
6146     case TypeCheckKind::kUnresolvedCheck:
6147     case TypeCheckKind::kInterfaceCheck:
6148       call_kind = LocationSummary::kCallOnSlowPath;
6149       break;
6150   }
6151 
6152   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6153   locations->SetInAt(0, Location::RequiresRegister());
6154   locations->SetInAt(1, Location::Any());
6155   // Note that TypeCheckSlowPathX86 uses this "out" register too.
6156   locations->SetOut(Location::RequiresRegister());
6157   // When read barriers are enabled, we need a temporary register for
6158   // some cases.
6159   if (TypeCheckNeedsATemporary(type_check_kind)) {
6160     locations->AddTemp(Location::RequiresRegister());
6161   }
6162 }
6163 
VisitInstanceOf(HInstanceOf * instruction)6164 void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
6165   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6166   LocationSummary* locations = instruction->GetLocations();
6167   Location obj_loc = locations->InAt(0);
6168   Register obj = obj_loc.AsRegister<Register>();
6169   Location cls = locations->InAt(1);
6170   Location out_loc = locations->Out();
6171   Register out = out_loc.AsRegister<Register>();
6172   Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6173       locations->GetTemp(0) :
6174       Location::NoLocation();
6175   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6176   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6177   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6178   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6179   SlowPathCode* slow_path = nullptr;
6180   NearLabel done, zero;
6181 
6182   // Return 0 if `obj` is null.
6183   // Avoid null check if we know obj is not null.
6184   if (instruction->MustDoNullCheck()) {
6185     __ testl(obj, obj);
6186     __ j(kEqual, &zero);
6187   }
6188 
6189   // /* HeapReference<Class> */ out = obj->klass_
6190   GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
6191 
6192   switch (type_check_kind) {
6193     case TypeCheckKind::kExactCheck: {
6194       if (cls.IsRegister()) {
6195         __ cmpl(out, cls.AsRegister<Register>());
6196       } else {
6197         DCHECK(cls.IsStackSlot()) << cls;
6198         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6199       }
6200 
6201       // Classes must be equal for the instanceof to succeed.
6202       __ j(kNotEqual, &zero);
6203       __ movl(out, Immediate(1));
6204       __ jmp(&done);
6205       break;
6206     }
6207 
6208     case TypeCheckKind::kAbstractClassCheck: {
6209       // If the class is abstract, we eagerly fetch the super class of the
6210       // object to avoid doing a comparison we know will fail.
6211       NearLabel loop;
6212       __ Bind(&loop);
6213       // /* HeapReference<Class> */ out = out->super_class_
6214       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6215       __ testl(out, out);
6216       // If `out` is null, we use it for the result, and jump to `done`.
6217       __ j(kEqual, &done);
6218       if (cls.IsRegister()) {
6219         __ cmpl(out, cls.AsRegister<Register>());
6220       } else {
6221         DCHECK(cls.IsStackSlot()) << cls;
6222         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6223       }
6224       __ j(kNotEqual, &loop);
6225       __ movl(out, Immediate(1));
6226       if (zero.IsLinked()) {
6227         __ jmp(&done);
6228       }
6229       break;
6230     }
6231 
6232     case TypeCheckKind::kClassHierarchyCheck: {
6233       // Walk over the class hierarchy to find a match.
6234       NearLabel loop, success;
6235       __ Bind(&loop);
6236       if (cls.IsRegister()) {
6237         __ cmpl(out, cls.AsRegister<Register>());
6238       } else {
6239         DCHECK(cls.IsStackSlot()) << cls;
6240         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6241       }
6242       __ j(kEqual, &success);
6243       // /* HeapReference<Class> */ out = out->super_class_
6244       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6245       __ testl(out, out);
6246       __ j(kNotEqual, &loop);
6247       // If `out` is null, we use it for the result, and jump to `done`.
6248       __ jmp(&done);
6249       __ Bind(&success);
6250       __ movl(out, Immediate(1));
6251       if (zero.IsLinked()) {
6252         __ jmp(&done);
6253       }
6254       break;
6255     }
6256 
6257     case TypeCheckKind::kArrayObjectCheck: {
6258       // Do an exact check.
6259       NearLabel exact_check;
6260       if (cls.IsRegister()) {
6261         __ cmpl(out, cls.AsRegister<Register>());
6262       } else {
6263         DCHECK(cls.IsStackSlot()) << cls;
6264         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6265       }
6266       __ j(kEqual, &exact_check);
6267       // Otherwise, we need to check that the object's class is a non-primitive array.
6268       // /* HeapReference<Class> */ out = out->component_type_
6269       GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
6270       __ testl(out, out);
6271       // If `out` is null, we use it for the result, and jump to `done`.
6272       __ j(kEqual, &done);
6273       __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
6274       __ j(kNotEqual, &zero);
6275       __ Bind(&exact_check);
6276       __ movl(out, Immediate(1));
6277       __ jmp(&done);
6278       break;
6279     }
6280 
6281     case TypeCheckKind::kArrayCheck: {
6282       if (cls.IsRegister()) {
6283         __ cmpl(out, cls.AsRegister<Register>());
6284       } else {
6285         DCHECK(cls.IsStackSlot()) << cls;
6286         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6287       }
6288       DCHECK(locations->OnlyCallsOnSlowPath());
6289       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6290                                                                     /* is_fatal */ false);
6291       codegen_->AddSlowPath(slow_path);
6292       __ j(kNotEqual, slow_path->GetEntryLabel());
6293       __ movl(out, Immediate(1));
6294       if (zero.IsLinked()) {
6295         __ jmp(&done);
6296       }
6297       break;
6298     }
6299 
6300     case TypeCheckKind::kUnresolvedCheck:
6301     case TypeCheckKind::kInterfaceCheck: {
6302       // Note that we indeed only call on slow path, but we always go
6303       // into the slow path for the unresolved and interface check
6304       // cases.
6305       //
6306       // We cannot directly call the InstanceofNonTrivial runtime
6307       // entry point without resorting to a type checking slow path
6308       // here (i.e. by calling InvokeRuntime directly), as it would
6309       // require to assign fixed registers for the inputs of this
6310       // HInstanceOf instruction (following the runtime calling
6311       // convention), which might be cluttered by the potential first
6312       // read barrier emission at the beginning of this method.
6313       //
6314       // TODO: Introduce a new runtime entry point taking the object
6315       // to test (instead of its class) as argument, and let it deal
6316       // with the read barrier issues. This will let us refactor this
6317       // case of the `switch` code as it was previously (with a direct
6318       // call to the runtime not using a type checking slow path).
6319       // This should also be beneficial for the other cases above.
6320       DCHECK(locations->OnlyCallsOnSlowPath());
6321       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6322                                                                     /* is_fatal */ false);
6323       codegen_->AddSlowPath(slow_path);
6324       __ jmp(slow_path->GetEntryLabel());
6325       if (zero.IsLinked()) {
6326         __ jmp(&done);
6327       }
6328       break;
6329     }
6330   }
6331 
6332   if (zero.IsLinked()) {
6333     __ Bind(&zero);
6334     __ xorl(out, out);
6335   }
6336 
6337   if (done.IsLinked()) {
6338     __ Bind(&done);
6339   }
6340 
6341   if (slow_path != nullptr) {
6342     __ Bind(slow_path->GetExitLabel());
6343   }
6344 }
6345 
VisitCheckCast(HCheckCast * instruction)6346 void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
6347   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6348   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6349   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6350   switch (type_check_kind) {
6351     case TypeCheckKind::kExactCheck:
6352     case TypeCheckKind::kAbstractClassCheck:
6353     case TypeCheckKind::kClassHierarchyCheck:
6354     case TypeCheckKind::kArrayObjectCheck:
6355       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
6356           LocationSummary::kCallOnSlowPath :
6357           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
6358       break;
6359     case TypeCheckKind::kArrayCheck:
6360     case TypeCheckKind::kUnresolvedCheck:
6361     case TypeCheckKind::kInterfaceCheck:
6362       call_kind = LocationSummary::kCallOnSlowPath;
6363       break;
6364   }
6365   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6366   locations->SetInAt(0, Location::RequiresRegister());
6367   locations->SetInAt(1, Location::Any());
6368   // Note that TypeCheckSlowPathX86 uses this "temp" register too.
6369   locations->AddTemp(Location::RequiresRegister());
6370   // When read barriers are enabled, we need an additional temporary
6371   // register for some cases.
6372   if (TypeCheckNeedsATemporary(type_check_kind)) {
6373     locations->AddTemp(Location::RequiresRegister());
6374   }
6375 }
6376 
VisitCheckCast(HCheckCast * instruction)6377 void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
6378   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6379   LocationSummary* locations = instruction->GetLocations();
6380   Location obj_loc = locations->InAt(0);
6381   Register obj = obj_loc.AsRegister<Register>();
6382   Location cls = locations->InAt(1);
6383   Location temp_loc = locations->GetTemp(0);
6384   Register temp = temp_loc.AsRegister<Register>();
6385   Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6386       locations->GetTemp(1) :
6387       Location::NoLocation();
6388   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6389   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6390   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6391   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6392 
6393   bool is_type_check_slow_path_fatal =
6394       (type_check_kind == TypeCheckKind::kExactCheck ||
6395        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6396        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6397        type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6398       !instruction->CanThrowIntoCatchBlock();
6399   SlowPathCode* type_check_slow_path =
6400       new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6401                                                         is_type_check_slow_path_fatal);
6402   codegen_->AddSlowPath(type_check_slow_path);
6403 
6404   NearLabel done;
6405   // Avoid null check if we know obj is not null.
6406   if (instruction->MustDoNullCheck()) {
6407     __ testl(obj, obj);
6408     __ j(kEqual, &done);
6409   }
6410 
6411   // /* HeapReference<Class> */ temp = obj->klass_
6412   GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6413 
6414   switch (type_check_kind) {
6415     case TypeCheckKind::kExactCheck:
6416     case TypeCheckKind::kArrayCheck: {
6417       if (cls.IsRegister()) {
6418         __ cmpl(temp, cls.AsRegister<Register>());
6419       } else {
6420         DCHECK(cls.IsStackSlot()) << cls;
6421         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6422       }
6423       // Jump to slow path for throwing the exception or doing a
6424       // more involved array check.
6425       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
6426       break;
6427     }
6428 
6429     case TypeCheckKind::kAbstractClassCheck: {
6430       // If the class is abstract, we eagerly fetch the super class of the
6431       // object to avoid doing a comparison we know will fail.
6432       NearLabel loop, compare_classes;
6433       __ Bind(&loop);
6434       // /* HeapReference<Class> */ temp = temp->super_class_
6435       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6436 
6437       // If the class reference currently in `temp` is not null, jump
6438       // to the `compare_classes` label to compare it with the checked
6439       // class.
6440       __ testl(temp, temp);
6441       __ j(kNotEqual, &compare_classes);
6442       // Otherwise, jump to the slow path to throw the exception.
6443       //
6444       // But before, move back the object's class into `temp` before
6445       // going into the slow path, as it has been overwritten in the
6446       // meantime.
6447       // /* HeapReference<Class> */ temp = obj->klass_
6448       GenerateReferenceLoadTwoRegisters(
6449           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6450       __ jmp(type_check_slow_path->GetEntryLabel());
6451 
6452       __ Bind(&compare_classes);
6453       if (cls.IsRegister()) {
6454         __ cmpl(temp, cls.AsRegister<Register>());
6455       } else {
6456         DCHECK(cls.IsStackSlot()) << cls;
6457         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6458       }
6459       __ j(kNotEqual, &loop);
6460       break;
6461     }
6462 
6463     case TypeCheckKind::kClassHierarchyCheck: {
6464       // Walk over the class hierarchy to find a match.
6465       NearLabel loop;
6466       __ Bind(&loop);
6467       if (cls.IsRegister()) {
6468         __ cmpl(temp, cls.AsRegister<Register>());
6469       } else {
6470         DCHECK(cls.IsStackSlot()) << cls;
6471         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6472       }
6473       __ j(kEqual, &done);
6474 
6475       // /* HeapReference<Class> */ temp = temp->super_class_
6476       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6477 
6478       // If the class reference currently in `temp` is not null, jump
6479       // back at the beginning of the loop.
6480       __ testl(temp, temp);
6481       __ j(kNotEqual, &loop);
6482       // Otherwise, jump to the slow path to throw the exception.
6483       //
6484       // But before, move back the object's class into `temp` before
6485       // going into the slow path, as it has been overwritten in the
6486       // meantime.
6487       // /* HeapReference<Class> */ temp = obj->klass_
6488       GenerateReferenceLoadTwoRegisters(
6489           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6490       __ jmp(type_check_slow_path->GetEntryLabel());
6491       break;
6492     }
6493 
6494     case TypeCheckKind::kArrayObjectCheck: {
6495       // Do an exact check.
6496       NearLabel check_non_primitive_component_type;
6497       if (cls.IsRegister()) {
6498         __ cmpl(temp, cls.AsRegister<Register>());
6499       } else {
6500         DCHECK(cls.IsStackSlot()) << cls;
6501         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6502       }
6503       __ j(kEqual, &done);
6504 
6505       // Otherwise, we need to check that the object's class is a non-primitive array.
6506       // /* HeapReference<Class> */ temp = temp->component_type_
6507       GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
6508 
6509       // If the component type is not null (i.e. the object is indeed
6510       // an array), jump to label `check_non_primitive_component_type`
6511       // to further check that this component type is not a primitive
6512       // type.
6513       __ testl(temp, temp);
6514       __ j(kNotEqual, &check_non_primitive_component_type);
6515       // Otherwise, jump to the slow path to throw the exception.
6516       //
6517       // But before, move back the object's class into `temp` before
6518       // going into the slow path, as it has been overwritten in the
6519       // meantime.
6520       // /* HeapReference<Class> */ temp = obj->klass_
6521       GenerateReferenceLoadTwoRegisters(
6522           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6523       __ jmp(type_check_slow_path->GetEntryLabel());
6524 
6525       __ Bind(&check_non_primitive_component_type);
6526       __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
6527       __ j(kEqual, &done);
6528       // Same comment as above regarding `temp` and the slow path.
6529       // /* HeapReference<Class> */ temp = obj->klass_
6530       GenerateReferenceLoadTwoRegisters(
6531           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6532       __ jmp(type_check_slow_path->GetEntryLabel());
6533       break;
6534     }
6535 
6536     case TypeCheckKind::kUnresolvedCheck:
6537     case TypeCheckKind::kInterfaceCheck:
6538       // We always go into the type check slow path for the unresolved
6539       // and interface check cases.
6540       //
6541       // We cannot directly call the CheckCast runtime entry point
6542       // without resorting to a type checking slow path here (i.e. by
6543       // calling InvokeRuntime directly), as it would require to
6544       // assign fixed registers for the inputs of this HInstanceOf
6545       // instruction (following the runtime calling convention), which
6546       // might be cluttered by the potential first read barrier
6547       // emission at the beginning of this method.
6548       //
6549       // TODO: Introduce a new runtime entry point taking the object
6550       // to test (instead of its class) as argument, and let it deal
6551       // with the read barrier issues. This will let us refactor this
6552       // case of the `switch` code as it was previously (with a direct
6553       // call to the runtime not using a type checking slow path).
6554       // This should also be beneficial for the other cases above.
6555       __ jmp(type_check_slow_path->GetEntryLabel());
6556       break;
6557   }
6558   __ Bind(&done);
6559 
6560   __ Bind(type_check_slow_path->GetExitLabel());
6561 }
6562 
VisitMonitorOperation(HMonitorOperation * instruction)6563 void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6564   LocationSummary* locations =
6565       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6566   InvokeRuntimeCallingConvention calling_convention;
6567   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6568 }
6569 
VisitMonitorOperation(HMonitorOperation * instruction)6570 void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6571   codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject)
6572                                                  : QUICK_ENTRY_POINT(pUnlockObject),
6573                           instruction,
6574                           instruction->GetDexPc(),
6575                           nullptr);
6576   if (instruction->IsEnter()) {
6577     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6578   } else {
6579     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6580   }
6581 }
6582 
VisitAnd(HAnd * instruction)6583 void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
VisitOr(HOr * instruction)6584 void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
VisitXor(HXor * instruction)6585 void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
6586 
HandleBitwiseOperation(HBinaryOperation * instruction)6587 void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6588   LocationSummary* locations =
6589       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6590   DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6591          || instruction->GetResultType() == Primitive::kPrimLong);
6592   locations->SetInAt(0, Location::RequiresRegister());
6593   locations->SetInAt(1, Location::Any());
6594   locations->SetOut(Location::SameAsFirstInput());
6595 }
6596 
VisitAnd(HAnd * instruction)6597 void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
6598   HandleBitwiseOperation(instruction);
6599 }
6600 
VisitOr(HOr * instruction)6601 void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
6602   HandleBitwiseOperation(instruction);
6603 }
6604 
VisitXor(HXor * instruction)6605 void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
6606   HandleBitwiseOperation(instruction);
6607 }
6608 
HandleBitwiseOperation(HBinaryOperation * instruction)6609 void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6610   LocationSummary* locations = instruction->GetLocations();
6611   Location first = locations->InAt(0);
6612   Location second = locations->InAt(1);
6613   DCHECK(first.Equals(locations->Out()));
6614 
6615   if (instruction->GetResultType() == Primitive::kPrimInt) {
6616     if (second.IsRegister()) {
6617       if (instruction->IsAnd()) {
6618         __ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
6619       } else if (instruction->IsOr()) {
6620         __ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
6621       } else {
6622         DCHECK(instruction->IsXor());
6623         __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
6624       }
6625     } else if (second.IsConstant()) {
6626       if (instruction->IsAnd()) {
6627         __ andl(first.AsRegister<Register>(),
6628                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6629       } else if (instruction->IsOr()) {
6630         __ orl(first.AsRegister<Register>(),
6631                Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6632       } else {
6633         DCHECK(instruction->IsXor());
6634         __ xorl(first.AsRegister<Register>(),
6635                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6636       }
6637     } else {
6638       if (instruction->IsAnd()) {
6639         __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6640       } else if (instruction->IsOr()) {
6641         __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6642       } else {
6643         DCHECK(instruction->IsXor());
6644         __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6645       }
6646     }
6647   } else {
6648     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6649     if (second.IsRegisterPair()) {
6650       if (instruction->IsAnd()) {
6651         __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6652         __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6653       } else if (instruction->IsOr()) {
6654         __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6655         __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6656       } else {
6657         DCHECK(instruction->IsXor());
6658         __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6659         __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6660       }
6661     } else if (second.IsDoubleStackSlot()) {
6662       if (instruction->IsAnd()) {
6663         __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6664         __ andl(first.AsRegisterPairHigh<Register>(),
6665                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6666       } else if (instruction->IsOr()) {
6667         __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6668         __ orl(first.AsRegisterPairHigh<Register>(),
6669                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6670       } else {
6671         DCHECK(instruction->IsXor());
6672         __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6673         __ xorl(first.AsRegisterPairHigh<Register>(),
6674                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6675       }
6676     } else {
6677       DCHECK(second.IsConstant()) << second;
6678       int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
6679       int32_t low_value = Low32Bits(value);
6680       int32_t high_value = High32Bits(value);
6681       Immediate low(low_value);
6682       Immediate high(high_value);
6683       Register first_low = first.AsRegisterPairLow<Register>();
6684       Register first_high = first.AsRegisterPairHigh<Register>();
6685       if (instruction->IsAnd()) {
6686         if (low_value == 0) {
6687           __ xorl(first_low, first_low);
6688         } else if (low_value != -1) {
6689           __ andl(first_low, low);
6690         }
6691         if (high_value == 0) {
6692           __ xorl(first_high, first_high);
6693         } else if (high_value != -1) {
6694           __ andl(first_high, high);
6695         }
6696       } else if (instruction->IsOr()) {
6697         if (low_value != 0) {
6698           __ orl(first_low, low);
6699         }
6700         if (high_value != 0) {
6701           __ orl(first_high, high);
6702         }
6703       } else {
6704         DCHECK(instruction->IsXor());
6705         if (low_value != 0) {
6706           __ xorl(first_low, low);
6707         }
6708         if (high_value != 0) {
6709           __ xorl(first_high, high);
6710         }
6711       }
6712     }
6713   }
6714 }
6715 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp)6716 void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction,
6717                                                                    Location out,
6718                                                                    uint32_t offset,
6719                                                                    Location maybe_temp) {
6720   Register out_reg = out.AsRegister<Register>();
6721   if (kEmitCompilerReadBarrier) {
6722     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6723     if (kUseBakerReadBarrier) {
6724       // Load with fast path based Baker's read barrier.
6725       // /* HeapReference<Object> */ out = *(out + offset)
6726       codegen_->GenerateFieldLoadWithBakerReadBarrier(
6727           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6728     } else {
6729       // Load with slow path based read barrier.
6730       // Save the value of `out` into `maybe_temp` before overwriting it
6731       // in the following move operation, as we will need it for the
6732       // read barrier below.
6733       __ movl(maybe_temp.AsRegister<Register>(), out_reg);
6734       // /* HeapReference<Object> */ out = *(out + offset)
6735       __ movl(out_reg, Address(out_reg, offset));
6736       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6737     }
6738   } else {
6739     // Plain load with no read barrier.
6740     // /* HeapReference<Object> */ out = *(out + offset)
6741     __ movl(out_reg, Address(out_reg, offset));
6742     __ MaybeUnpoisonHeapReference(out_reg);
6743   }
6744 }
6745 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp)6746 void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
6747                                                                     Location out,
6748                                                                     Location obj,
6749                                                                     uint32_t offset,
6750                                                                     Location maybe_temp) {
6751   Register out_reg = out.AsRegister<Register>();
6752   Register obj_reg = obj.AsRegister<Register>();
6753   if (kEmitCompilerReadBarrier) {
6754     if (kUseBakerReadBarrier) {
6755       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6756       // Load with fast path based Baker's read barrier.
6757       // /* HeapReference<Object> */ out = *(obj + offset)
6758       codegen_->GenerateFieldLoadWithBakerReadBarrier(
6759           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6760     } else {
6761       // Load with slow path based read barrier.
6762       // /* HeapReference<Object> */ out = *(obj + offset)
6763       __ movl(out_reg, Address(obj_reg, offset));
6764       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6765     }
6766   } else {
6767     // Plain load with no read barrier.
6768     // /* HeapReference<Object> */ out = *(obj + offset)
6769     __ movl(out_reg, Address(obj_reg, offset));
6770     __ MaybeUnpoisonHeapReference(out_reg);
6771   }
6772 }
6773 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,const Address & address,Label * fixup_label)6774 void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction,
6775                                                           Location root,
6776                                                           const Address& address,
6777                                                           Label* fixup_label) {
6778   Register root_reg = root.AsRegister<Register>();
6779   if (kEmitCompilerReadBarrier) {
6780     if (kUseBakerReadBarrier) {
6781       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6782       // Baker's read barrier are used:
6783       //
6784       //   root = *address;
6785       //   if (Thread::Current()->GetIsGcMarking()) {
6786       //     root = ReadBarrier::Mark(root)
6787       //   }
6788 
6789       // /* GcRoot<mirror::Object> */ root = *address
6790       __ movl(root_reg, address);
6791       if (fixup_label != nullptr) {
6792         __ Bind(fixup_label);
6793       }
6794       static_assert(
6795           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6796           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6797           "have different sizes.");
6798       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6799                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
6800                     "have different sizes.");
6801 
6802       // Slow path used to mark the GC root `root`.
6803       SlowPathCode* slow_path =
6804           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root, root);
6805       codegen_->AddSlowPath(slow_path);
6806 
6807       __ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86WordSize>().Int32Value()),
6808                     Immediate(0));
6809       __ j(kNotEqual, slow_path->GetEntryLabel());
6810       __ Bind(slow_path->GetExitLabel());
6811     } else {
6812       // GC root loaded through a slow path for read barriers other
6813       // than Baker's.
6814       // /* GcRoot<mirror::Object>* */ root = address
6815       __ leal(root_reg, address);
6816       if (fixup_label != nullptr) {
6817         __ Bind(fixup_label);
6818       }
6819       // /* mirror::Object* */ root = root->Read()
6820       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6821     }
6822   } else {
6823     // Plain GC root load with no read barrier.
6824     // /* GcRoot<mirror::Object> */ root = *address
6825     __ movl(root_reg, address);
6826     if (fixup_label != nullptr) {
6827       __ Bind(fixup_label);
6828     }
6829     // Note that GC roots are not affected by heap poisoning, thus we
6830     // do not have to unpoison `root_reg` here.
6831   }
6832 }
6833 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location temp,bool needs_null_check)6834 void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6835                                                              Location ref,
6836                                                              Register obj,
6837                                                              uint32_t offset,
6838                                                              Location temp,
6839                                                              bool needs_null_check) {
6840   DCHECK(kEmitCompilerReadBarrier);
6841   DCHECK(kUseBakerReadBarrier);
6842 
6843   // /* HeapReference<Object> */ ref = *(obj + offset)
6844   Address src(obj, offset);
6845   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6846 }
6847 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)6848 void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6849                                                              Location ref,
6850                                                              Register obj,
6851                                                              uint32_t data_offset,
6852                                                              Location index,
6853                                                              Location temp,
6854                                                              bool needs_null_check) {
6855   DCHECK(kEmitCompilerReadBarrier);
6856   DCHECK(kUseBakerReadBarrier);
6857 
6858   // /* HeapReference<Object> */ ref =
6859   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6860   Address src = index.IsConstant() ?
6861       Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) :
6862       Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset);
6863   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6864 }
6865 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,const Address & src,Location temp,bool needs_null_check)6866 void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6867                                                                  Location ref,
6868                                                                  Register obj,
6869                                                                  const Address& src,
6870                                                                  Location temp,
6871                                                                  bool needs_null_check) {
6872   DCHECK(kEmitCompilerReadBarrier);
6873   DCHECK(kUseBakerReadBarrier);
6874 
6875   // In slow path based read barriers, the read barrier call is
6876   // inserted after the original load. However, in fast path based
6877   // Baker's read barriers, we need to perform the load of
6878   // mirror::Object::monitor_ *before* the original reference load.
6879   // This load-load ordering is required by the read barrier.
6880   // The fast path/slow path (for Baker's algorithm) should look like:
6881   //
6882   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6883   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6884   //   HeapReference<Object> ref = *src;  // Original reference load.
6885   //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
6886   //   if (is_gray) {
6887   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6888   //   }
6889   //
6890   // Note: the original implementation in ReadBarrier::Barrier is
6891   // slightly more complex as:
6892   // - it implements the load-load fence using a data dependency on
6893   //   the high-bits of rb_state, which are expected to be all zeroes
6894   //   (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
6895   //   which is a no-op thanks to the x86 memory model);
6896   // - it performs additional checks that we do not do here for
6897   //   performance reasons.
6898 
6899   Register ref_reg = ref.AsRegister<Register>();
6900   Register temp_reg = temp.AsRegister<Register>();
6901   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6902 
6903   // /* int32_t */ monitor = obj->monitor_
6904   __ movl(temp_reg, Address(obj, monitor_offset));
6905   if (needs_null_check) {
6906     MaybeRecordImplicitNullCheck(instruction);
6907   }
6908   // /* LockWord */ lock_word = LockWord(monitor)
6909   static_assert(sizeof(LockWord) == sizeof(int32_t),
6910                 "art::LockWord and int32_t have different sizes.");
6911   // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
6912   __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift));
6913   __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask));
6914   static_assert(
6915       LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
6916       "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
6917 
6918   // Load fence to prevent load-load reordering.
6919   // Note that this is a no-op, thanks to the x86 memory model.
6920   GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6921 
6922   // The actual reference load.
6923   // /* HeapReference<Object> */ ref = *src
6924   __ movl(ref_reg, src);
6925 
6926   // Object* ref = ref_addr->AsMirrorPtr()
6927   __ MaybeUnpoisonHeapReference(ref_reg);
6928 
6929   // Slow path used to mark the object `ref` when it is gray.
6930   SlowPathCode* slow_path =
6931       new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref, ref);
6932   AddSlowPath(slow_path);
6933 
6934   // if (rb_state == ReadBarrier::gray_ptr_)
6935   //   ref = ReadBarrier::Mark(ref);
6936   __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_));
6937   __ j(kEqual, slow_path->GetEntryLabel());
6938   __ Bind(slow_path->GetExitLabel());
6939 }
6940 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6941 void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
6942                                                Location out,
6943                                                Location ref,
6944                                                Location obj,
6945                                                uint32_t offset,
6946                                                Location index) {
6947   DCHECK(kEmitCompilerReadBarrier);
6948 
6949   // Insert a slow path based read barrier *after* the reference load.
6950   //
6951   // If heap poisoning is enabled, the unpoisoning of the loaded
6952   // reference will be carried out by the runtime within the slow
6953   // path.
6954   //
6955   // Note that `ref` currently does not get unpoisoned (when heap
6956   // poisoning is enabled), which is alright as the `ref` argument is
6957   // not used by the artReadBarrierSlow entry point.
6958   //
6959   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6960   SlowPathCode* slow_path = new (GetGraph()->GetArena())
6961       ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
6962   AddSlowPath(slow_path);
6963 
6964   __ jmp(slow_path->GetEntryLabel());
6965   __ Bind(slow_path->GetExitLabel());
6966 }
6967 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6968 void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6969                                                     Location out,
6970                                                     Location ref,
6971                                                     Location obj,
6972                                                     uint32_t offset,
6973                                                     Location index) {
6974   if (kEmitCompilerReadBarrier) {
6975     // Baker's read barriers shall be handled by the fast path
6976     // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
6977     DCHECK(!kUseBakerReadBarrier);
6978     // If heap poisoning is enabled, unpoisoning will be taken care of
6979     // by the runtime within the slow path.
6980     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6981   } else if (kPoisonHeapReferences) {
6982     __ UnpoisonHeapReference(out.AsRegister<Register>());
6983   }
6984 }
6985 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6986 void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6987                                                       Location out,
6988                                                       Location root) {
6989   DCHECK(kEmitCompilerReadBarrier);
6990 
6991   // Insert a slow path based read barrier *after* the GC root load.
6992   //
6993   // Note that GC roots are not affected by heap poisoning, so we do
6994   // not need to do anything special for this here.
6995   SlowPathCode* slow_path =
6996       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
6997   AddSlowPath(slow_path);
6998 
6999   __ jmp(slow_path->GetEntryLabel());
7000   __ Bind(slow_path->GetExitLabel());
7001 }
7002 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7003 void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7004   // Nothing to do, this should be removed during prepare for register allocator.
7005   LOG(FATAL) << "Unreachable";
7006 }
7007 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7008 void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7009   // Nothing to do, this should be removed during prepare for register allocator.
7010   LOG(FATAL) << "Unreachable";
7011 }
7012 
7013 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)7014 void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7015   LocationSummary* locations =
7016       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7017   locations->SetInAt(0, Location::RequiresRegister());
7018 }
7019 
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)7020 void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
7021                                                               int32_t lower_bound,
7022                                                               uint32_t num_entries,
7023                                                               HBasicBlock* switch_block,
7024                                                               HBasicBlock* default_block) {
7025   // Figure out the correct compare values and jump conditions.
7026   // Handle the first compare/branch as a special case because it might
7027   // jump to the default case.
7028   DCHECK_GT(num_entries, 2u);
7029   Condition first_condition;
7030   uint32_t index;
7031   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
7032   if (lower_bound != 0) {
7033     first_condition = kLess;
7034     __ cmpl(value_reg, Immediate(lower_bound));
7035     __ j(first_condition, codegen_->GetLabelOf(default_block));
7036     __ j(kEqual, codegen_->GetLabelOf(successors[0]));
7037 
7038     index = 1;
7039   } else {
7040     // Handle all the compare/jumps below.
7041     first_condition = kBelow;
7042     index = 0;
7043   }
7044 
7045   // Handle the rest of the compare/jumps.
7046   for (; index + 1 < num_entries; index += 2) {
7047     int32_t compare_to_value = lower_bound + index + 1;
7048     __ cmpl(value_reg, Immediate(compare_to_value));
7049     // Jump to successors[index] if value < case_value[index].
7050     __ j(first_condition, codegen_->GetLabelOf(successors[index]));
7051     // Jump to successors[index + 1] if value == case_value[index + 1].
7052     __ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
7053   }
7054 
7055   if (index != num_entries) {
7056     // There are an odd number of entries. Handle the last one.
7057     DCHECK_EQ(index + 1, num_entries);
7058     __ cmpl(value_reg, Immediate(lower_bound + index));
7059     __ j(kEqual, codegen_->GetLabelOf(successors[index]));
7060   }
7061 
7062   // And the default for any other value.
7063   if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
7064     __ jmp(codegen_->GetLabelOf(default_block));
7065   }
7066 }
7067 
VisitPackedSwitch(HPackedSwitch * switch_instr)7068 void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7069   int32_t lower_bound = switch_instr->GetStartValue();
7070   uint32_t num_entries = switch_instr->GetNumEntries();
7071   LocationSummary* locations = switch_instr->GetLocations();
7072   Register value_reg = locations->InAt(0).AsRegister<Register>();
7073 
7074   GenPackedSwitchWithCompares(value_reg,
7075                               lower_bound,
7076                               num_entries,
7077                               switch_instr->GetBlock(),
7078                               switch_instr->GetDefaultBlock());
7079 }
7080 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7081 void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7082   LocationSummary* locations =
7083       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7084   locations->SetInAt(0, Location::RequiresRegister());
7085 
7086   // Constant area pointer.
7087   locations->SetInAt(1, Location::RequiresRegister());
7088 
7089   // And the temporary we need.
7090   locations->AddTemp(Location::RequiresRegister());
7091 }
7092 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7093 void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7094   int32_t lower_bound = switch_instr->GetStartValue();
7095   uint32_t num_entries = switch_instr->GetNumEntries();
7096   LocationSummary* locations = switch_instr->GetLocations();
7097   Register value_reg = locations->InAt(0).AsRegister<Register>();
7098   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7099 
7100   if (num_entries <= kPackedSwitchJumpTableThreshold) {
7101     GenPackedSwitchWithCompares(value_reg,
7102                                 lower_bound,
7103                                 num_entries,
7104                                 switch_instr->GetBlock(),
7105                                 default_block);
7106     return;
7107   }
7108 
7109   // Optimizing has a jump area.
7110   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7111   Register constant_area = locations->InAt(1).AsRegister<Register>();
7112 
7113   // Remove the bias, if needed.
7114   if (lower_bound != 0) {
7115     __ leal(temp_reg, Address(value_reg, -lower_bound));
7116     value_reg = temp_reg;
7117   }
7118 
7119   // Is the value in range?
7120   DCHECK_GE(num_entries, 1u);
7121   __ cmpl(value_reg, Immediate(num_entries - 1));
7122   __ j(kAbove, codegen_->GetLabelOf(default_block));
7123 
7124   // We are in the range of the table.
7125   // Load (target-constant_area) from the jump table, indexing by the value.
7126   __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
7127 
7128   // Compute the actual target address by adding in constant_area.
7129   __ addl(temp_reg, constant_area);
7130 
7131   // And jump.
7132   __ jmp(temp_reg);
7133 }
7134 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7135 void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
7136     HX86ComputeBaseMethodAddress* insn) {
7137   LocationSummary* locations =
7138       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7139   locations->SetOut(Location::RequiresRegister());
7140 }
7141 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7142 void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
7143     HX86ComputeBaseMethodAddress* insn) {
7144   LocationSummary* locations = insn->GetLocations();
7145   Register reg = locations->Out().AsRegister<Register>();
7146 
7147   // Generate call to next instruction.
7148   Label next_instruction;
7149   __ call(&next_instruction);
7150   __ Bind(&next_instruction);
7151 
7152   // Remember this offset for later use with constant area.
7153   codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize());
7154 
7155   // Grab the return address off the stack.
7156   __ popl(reg);
7157 }
7158 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7159 void LocationsBuilderX86::VisitX86LoadFromConstantTable(
7160     HX86LoadFromConstantTable* insn) {
7161   LocationSummary* locations =
7162       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7163 
7164   locations->SetInAt(0, Location::RequiresRegister());
7165   locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
7166 
7167   // If we don't need to be materialized, we only need the inputs to be set.
7168   if (insn->IsEmittedAtUseSite()) {
7169     return;
7170   }
7171 
7172   switch (insn->GetType()) {
7173     case Primitive::kPrimFloat:
7174     case Primitive::kPrimDouble:
7175       locations->SetOut(Location::RequiresFpuRegister());
7176       break;
7177 
7178     case Primitive::kPrimInt:
7179       locations->SetOut(Location::RequiresRegister());
7180       break;
7181 
7182     default:
7183       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7184   }
7185 }
7186 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7187 void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
7188   if (insn->IsEmittedAtUseSite()) {
7189     return;
7190   }
7191 
7192   LocationSummary* locations = insn->GetLocations();
7193   Location out = locations->Out();
7194   Register const_area = locations->InAt(0).AsRegister<Register>();
7195   HConstant *value = insn->GetConstant();
7196 
7197   switch (insn->GetType()) {
7198     case Primitive::kPrimFloat:
7199       __ movss(out.AsFpuRegister<XmmRegister>(),
7200                codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area));
7201       break;
7202 
7203     case Primitive::kPrimDouble:
7204       __ movsd(out.AsFpuRegister<XmmRegister>(),
7205                codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area));
7206       break;
7207 
7208     case Primitive::kPrimInt:
7209       __ movl(out.AsRegister<Register>(),
7210               codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area));
7211       break;
7212 
7213     default:
7214       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7215   }
7216 }
7217 
7218 /**
7219  * Class to handle late fixup of offsets into constant area.
7220  */
7221 class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
7222  public:
RIPFixup(CodeGeneratorX86 & codegen,size_t offset)7223   RIPFixup(CodeGeneratorX86& codegen, size_t offset)
7224       : codegen_(&codegen), offset_into_constant_area_(offset) {}
7225 
7226  protected:
SetOffset(size_t offset)7227   void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
7228 
7229   CodeGeneratorX86* codegen_;
7230 
7231  private:
Process(const MemoryRegion & region,int pos)7232   void Process(const MemoryRegion& region, int pos) OVERRIDE {
7233     // Patch the correct offset for the instruction.  The place to patch is the
7234     // last 4 bytes of the instruction.
7235     // The value to patch is the distance from the offset in the constant area
7236     // from the address computed by the HX86ComputeBaseMethodAddress instruction.
7237     int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
7238     int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();;
7239 
7240     // Patch in the right value.
7241     region.StoreUnaligned<int32_t>(pos - 4, relative_position);
7242   }
7243 
7244   // Location in constant area that the fixup refers to.
7245   int32_t offset_into_constant_area_;
7246 };
7247 
7248 /**
7249  * Class to handle late fixup of offsets to a jump table that will be created in the
7250  * constant area.
7251  */
7252 class JumpTableRIPFixup : public RIPFixup {
7253  public:
JumpTableRIPFixup(CodeGeneratorX86 & codegen,HX86PackedSwitch * switch_instr)7254   JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
7255       : RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {}
7256 
CreateJumpTable()7257   void CreateJumpTable() {
7258     X86Assembler* assembler = codegen_->GetAssembler();
7259 
7260     // Ensure that the reference to the jump table has the correct offset.
7261     const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
7262     SetOffset(offset_in_constant_table);
7263 
7264     // The label values in the jump table are computed relative to the
7265     // instruction addressing the constant area.
7266     const int32_t relative_offset = codegen_->GetMethodAddressOffset();
7267 
7268     // Populate the jump table with the correct values for the jump table.
7269     int32_t num_entries = switch_instr_->GetNumEntries();
7270     HBasicBlock* block = switch_instr_->GetBlock();
7271     const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
7272     // The value that we want is the target offset - the position of the table.
7273     for (int32_t i = 0; i < num_entries; i++) {
7274       HBasicBlock* b = successors[i];
7275       Label* l = codegen_->GetLabelOf(b);
7276       DCHECK(l->IsBound());
7277       int32_t offset_to_block = l->Position() - relative_offset;
7278       assembler->AppendInt32(offset_to_block);
7279     }
7280   }
7281 
7282  private:
7283   const HX86PackedSwitch* switch_instr_;
7284 };
7285 
Finalize(CodeAllocator * allocator)7286 void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
7287   // Generate the constant area if needed.
7288   X86Assembler* assembler = GetAssembler();
7289   if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
7290     // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
7291     // byte values.
7292     assembler->Align(4, 0);
7293     constant_area_start_ = assembler->CodeSize();
7294 
7295     // Populate any jump tables.
7296     for (auto jump_table : fixups_to_jump_tables_) {
7297       jump_table->CreateJumpTable();
7298     }
7299 
7300     // And now add the constant area to the generated code.
7301     assembler->AddConstantArea();
7302   }
7303 
7304   // And finish up.
7305   CodeGenerator::Finalize(allocator);
7306 }
7307 
LiteralDoubleAddress(double v,Register reg)7308 Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) {
7309   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v));
7310   return Address(reg, kDummy32BitOffset, fixup);
7311 }
7312 
LiteralFloatAddress(float v,Register reg)7313 Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) {
7314   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v));
7315   return Address(reg, kDummy32BitOffset, fixup);
7316 }
7317 
LiteralInt32Address(int32_t v,Register reg)7318 Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) {
7319   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v));
7320   return Address(reg, kDummy32BitOffset, fixup);
7321 }
7322 
LiteralInt64Address(int64_t v,Register reg)7323 Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) {
7324   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v));
7325   return Address(reg, kDummy32BitOffset, fixup);
7326 }
7327 
Load32BitValue(Register dest,int32_t value)7328 void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
7329   if (value == 0) {
7330     __ xorl(dest, dest);
7331   } else {
7332     __ movl(dest, Immediate(value));
7333   }
7334 }
7335 
Compare32BitValue(Register dest,int32_t value)7336 void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
7337   if (value == 0) {
7338     __ testl(dest, dest);
7339   } else {
7340     __ cmpl(dest, Immediate(value));
7341   }
7342 }
7343 
LiteralCaseTable(HX86PackedSwitch * switch_instr,Register reg,Register value)7344 Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
7345                                            Register reg,
7346                                            Register value) {
7347   // Create a fixup to be used to create and address the jump table.
7348   JumpTableRIPFixup* table_fixup =
7349       new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
7350 
7351   // We have to populate the jump tables.
7352   fixups_to_jump_tables_.push_back(table_fixup);
7353 
7354   // We want a scaled address, as we are extracting the correct offset from the table.
7355   return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
7356 }
7357 
7358 // TODO: target as memory.
MoveFromReturnRegister(Location target,Primitive::Type type)7359 void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
7360   if (!target.IsValid()) {
7361     DCHECK_EQ(type, Primitive::kPrimVoid);
7362     return;
7363   }
7364 
7365   DCHECK_NE(type, Primitive::kPrimVoid);
7366 
7367   Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
7368   if (target.Equals(return_loc)) {
7369     return;
7370   }
7371 
7372   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7373   //       with the else branch.
7374   if (type == Primitive::kPrimLong) {
7375     HParallelMove parallel_move(GetGraph()->GetArena());
7376     parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
7377     parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
7378     GetMoveResolver()->EmitNativeCode(&parallel_move);
7379   } else {
7380     // Let the parallel move resolver take care of all of this.
7381     HParallelMove parallel_move(GetGraph()->GetArena());
7382     parallel_move.AddMove(return_loc, target, type, nullptr);
7383     GetMoveResolver()->EmitNativeCode(&parallel_move);
7384   }
7385 }
7386 
7387 #undef __
7388 
7389 }  // namespace x86
7390 }  // namespace art
7391