• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 // Primary authors:
36 //     Florian Kainz <kainz@ilm.com>
37 //     Rod Bogart <rgb@ilm.com>
38 
39 //---------------------------------------------------------------------------
40 //
41 //	half -- a 16-bit floating point number class:
42 //
43 //	Type half can represent positive and negative numbers whose
44 //	magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
45 //	error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
46 //	with an absolute error of 6.0e-8.  All integers from -2048 to
47 //	+2048 can be represented exactly.
48 //
49 //	Type half behaves (almost) like the built-in C++ floating point
50 //	types.  In arithmetic expressions, half, float and double can be
51 //	mixed freely.  Here are a few examples:
52 //
53 //	    half a (3.5);
54 //	    float b (a + sqrt (a));
55 //	    a += b;
56 //	    b += a;
57 //	    b = a + 7;
58 //
59 //	Conversions from half to float are lossless; all half numbers
60 //	are exactly representable as floats.
61 //
62 //	Conversions from float to half may not preserve a float's value
63 //	exactly.  If a float is not representable as a half, then the
64 //	float value is rounded to the nearest representable half.  If a
65 //	float value is exactly in the middle between the two closest
66 //	representable half values, then the float value is rounded to
67 //	the closest half whose least significant bit is zero.
68 //
69 //	Overflows during float-to-half conversions cause arithmetic
70 //	exceptions.  An overflow occurs when the float value to be
71 //	converted is too large to be represented as a half, or if the
72 //	float value is an infinity or a NAN.
73 //
74 //	The implementation of type half makes the following assumptions
75 //	about the implementation of the built-in C++ types:
76 //
77 //	    float is an IEEE 754 single-precision number
78 //	    sizeof (float) == 4
79 //	    sizeof (unsigned int) == sizeof (float)
80 //	    alignof (unsigned int) == alignof (float)
81 //	    sizeof (unsigned short) == 2
82 //
83 //---------------------------------------------------------------------------
84 
85 #ifndef _HALF_H_
86 #define _HALF_H_
87 
88 #include <iostream>
89 
90 #if defined(OPENEXR_DLL)
91     #if defined(HALF_EXPORTS)
92     #define HALF_EXPORT __declspec(dllexport)
93     #else
94     #define HALF_EXPORT __declspec(dllimport)
95     #endif
96     #define HALF_EXPORT_CONST
97 #else
98     #define HALF_EXPORT
99     #define HALF_EXPORT_CONST const
100 #endif
101 
102 class HALF_EXPORT half
103 {
104   public:
105 
106     //-------------
107     // Constructors
108     //-------------
109 
110     half ();			// no initialization
111     half (float f);
112 
113 
114     //--------------------
115     // Conversion to float
116     //--------------------
117 
118     operator		float () const;
119 
120 
121     //------------
122     // Unary minus
123     //------------
124 
125     half		operator - () const;
126 
127 
128     //-----------
129     // Assignment
130     //-----------
131 
132     half &		operator = (half  h);
133     half &		operator = (float f);
134 
135     half &		operator += (half  h);
136     half &		operator += (float f);
137 
138     half &		operator -= (half  h);
139     half &		operator -= (float f);
140 
141     half &		operator *= (half  h);
142     half &		operator *= (float f);
143 
144     half &		operator /= (half  h);
145     half &		operator /= (float f);
146 
147 
148     //---------------------------------------------------------
149     // Round to n-bit precision (n should be between 0 and 10).
150     // After rounding, the significand's 10-n least significant
151     // bits will be zero.
152     //---------------------------------------------------------
153 
154     half		round (unsigned int n) const;
155 
156 
157     //--------------------------------------------------------------------
158     // Classification:
159     //
160     //	h.isFinite()		returns true if h is a normalized number,
161     //				a denormalized number or zero
162     //
163     //	h.isNormalized()	returns true if h is a normalized number
164     //
165     //	h.isDenormalized()	returns true if h is a denormalized number
166     //
167     //	h.isZero()		returns true if h is zero
168     //
169     //	h.isNan()		returns true if h is a NAN
170     //
171     //	h.isInfinity()		returns true if h is a positive
172     //				or a negative infinity
173     //
174     //	h.isNegative()		returns true if the sign bit of h
175     //				is set (negative)
176     //--------------------------------------------------------------------
177 
178     bool		isFinite () const;
179     bool		isNormalized () const;
180     bool		isDenormalized () const;
181     bool		isZero () const;
182     bool		isNan () const;
183     bool		isInfinity () const;
184     bool		isNegative () const;
185 
186 
187     //--------------------------------------------
188     // Special values
189     //
190     //	posInf()	returns +infinity
191     //
192     //	negInf()	returns -infinity
193     //
194     //	qNan()		returns a NAN with the bit
195     //			pattern 0111111111111111
196     //
197     //	sNan()		returns a NAN with the bit
198     //			pattern 0111110111111111
199     //--------------------------------------------
200 
201     static half		posInf ();
202     static half		negInf ();
203     static half		qNan ();
204     static half		sNan ();
205 
206 
207     //--------------------------------------
208     // Access to the internal representation
209     //--------------------------------------
210 
211     unsigned short	bits () const;
212     void		setBits (unsigned short bits);
213 
214 
215   public:
216 
217     union uif
218     {
219     unsigned int	i;
220     float		f;
221     };
222 
223   private:
224 
225     static short	convert (int i);
226     static float	overflow ();
227 
228     unsigned short	_h;
229 
230     static HALF_EXPORT_CONST uif		_toFloat[1 << 16];
231     static HALF_EXPORT_CONST unsigned short _eLut[1 << 9];
232 };
233 
234 //-----------
235 // Stream I/O
236 //-----------
237 
238 HALF_EXPORT std::ostream &		operator << (std::ostream &os, half  h);
239 HALF_EXPORT std::istream &		operator >> (std::istream &is, half &h);
240 
241 
242 //----------
243 // Debugging
244 //----------
245 
246 HALF_EXPORT void			printBits   (std::ostream &os, half  h);
247 HALF_EXPORT void			printBits   (std::ostream &os, float f);
248 HALF_EXPORT void			printBits   (char  c[19], half  h);
249 HALF_EXPORT void			printBits   (char  c[35], float f);
250 
251 
252 //-------------------------------------------------------------------------
253 // Limits
254 //
255 // Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
256 // constants, but at least one other compiler (gcc 2.96) produces incorrect
257 // results if they are.
258 //-------------------------------------------------------------------------
259 
260 #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
261 
262   #define HALF_MIN	5.96046448e-08f	// Smallest positive half
263 
264   #define HALF_NRM_MIN	6.10351562e-05f	// Smallest positive normalized half
265 
266   #define HALF_MAX	65504.0f	// Largest positive half
267 
268   #define HALF_EPSILON	0.00097656f	// Smallest positive e for which
269                     // half (1.0 + e) != half (1.0)
270 #else
271 
272   #define HALF_MIN	5.96046448e-08	// Smallest positive half
273 
274   #define HALF_NRM_MIN	6.10351562e-05	// Smallest positive normalized half
275 
276   #define HALF_MAX	65504.0		// Largest positive half
277 
278   #define HALF_EPSILON	0.00097656	// Smallest positive e for which
279                     // half (1.0 + e) != half (1.0)
280 #endif
281 
282 
283 #define HALF_MANT_DIG	11		// Number of digits in mantissa
284                     // (significand + hidden leading 1)
285 
286 #define HALF_DIG	2		// Number of base 10 digits that
287                     // can be represented without change
288 
289 #define HALF_RADIX	2		// Base of the exponent
290 
291 #define HALF_MIN_EXP	-13		// Minimum negative integer such that
292                     // HALF_RADIX raised to the power of
293                     // one less than that integer is a
294                     // normalized half
295 
296 #define HALF_MAX_EXP	16		// Maximum positive integer such that
297                     // HALF_RADIX raised to the power of
298                     // one less than that integer is a
299                     // normalized half
300 
301 #define HALF_MIN_10_EXP	-4		// Minimum positive integer such
302                     // that 10 raised to that power is
303                     // a normalized half
304 
305 #define HALF_MAX_10_EXP	4		// Maximum positive integer such
306                     // that 10 raised to that power is
307                     // a normalized half
308 
309 
310 //---------------------------------------------------------------------------
311 //
312 // Implementation --
313 //
314 // Representation of a float:
315 //
316 //	We assume that a float, f, is an IEEE 754 single-precision
317 //	floating point number, whose bits are arranged as follows:
318 //
319 //	    31 (msb)
320 //	    |
321 //	    | 30     23
322 //	    | |      |
323 //	    | |      | 22                    0 (lsb)
324 //	    | |      | |                     |
325 //	    X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
326 //
327 //	    s e        m
328 //
329 //	S is the sign-bit, e is the exponent and m is the significand.
330 //
331 //	If e is between 1 and 254, f is a normalized number:
332 //
333 //	            s    e-127
334 //	    f = (-1)  * 2      * 1.m
335 //
336 //	If e is 0, and m is not zero, f is a denormalized number:
337 //
338 //	            s    -126
339 //	    f = (-1)  * 2      * 0.m
340 //
341 //	If e and m are both zero, f is zero:
342 //
343 //	    f = 0.0
344 //
345 //	If e is 255, f is an "infinity" or "not a number" (NAN),
346 //	depending on whether m is zero or not.
347 //
348 //	Examples:
349 //
350 //	    0 00000000 00000000000000000000000 = 0.0
351 //	    0 01111110 00000000000000000000000 = 0.5
352 //	    0 01111111 00000000000000000000000 = 1.0
353 //	    0 10000000 00000000000000000000000 = 2.0
354 //	    0 10000000 10000000000000000000000 = 3.0
355 //	    1 10000101 11110000010000000000000 = -124.0625
356 //	    0 11111111 00000000000000000000000 = +infinity
357 //	    1 11111111 00000000000000000000000 = -infinity
358 //	    0 11111111 10000000000000000000000 = NAN
359 //	    1 11111111 11111111111111111111111 = NAN
360 //
361 // Representation of a half:
362 //
363 //	Here is the bit-layout for a half number, h:
364 //
365 //	    15 (msb)
366 //	    |
367 //	    | 14  10
368 //	    | |   |
369 //	    | |   | 9        0 (lsb)
370 //	    | |   | |        |
371 //	    X XXXXX XXXXXXXXXX
372 //
373 //	    s e     m
374 //
375 //	S is the sign-bit, e is the exponent and m is the significand.
376 //
377 //	If e is between 1 and 30, h is a normalized number:
378 //
379 //	            s    e-15
380 //	    h = (-1)  * 2     * 1.m
381 //
382 //	If e is 0, and m is not zero, h is a denormalized number:
383 //
384 //	            S    -14
385 //	    h = (-1)  * 2     * 0.m
386 //
387 //	If e and m are both zero, h is zero:
388 //
389 //	    h = 0.0
390 //
391 //	If e is 31, h is an "infinity" or "not a number" (NAN),
392 //	depending on whether m is zero or not.
393 //
394 //	Examples:
395 //
396 //	    0 00000 0000000000 = 0.0
397 //	    0 01110 0000000000 = 0.5
398 //	    0 01111 0000000000 = 1.0
399 //	    0 10000 0000000000 = 2.0
400 //	    0 10000 1000000000 = 3.0
401 //	    1 10101 1111000001 = -124.0625
402 //	    0 11111 0000000000 = +infinity
403 //	    1 11111 0000000000 = -infinity
404 //	    0 11111 1000000000 = NAN
405 //	    1 11111 1111111111 = NAN
406 //
407 // Conversion:
408 //
409 //	Converting from a float to a half requires some non-trivial bit
410 //	manipulations.  In some cases, this makes conversion relatively
411 //	slow, but the most common case is accelerated via table lookups.
412 //
413 //	Converting back from a half to a float is easier because we don't
414 //	have to do any rounding.  In addition, there are only 65536
415 //	different half numbers; we can convert each of those numbers once
416 //	and store the results in a table.  Later, all conversions can be
417 //	done using only simple table lookups.
418 //
419 //---------------------------------------------------------------------------
420 
421 
422 //--------------------
423 // Simple constructors
424 //--------------------
425 
426 inline
half()427 half::half ()
428 {
429     // no initialization
430 }
431 
432 
433 //----------------------------
434 // Half-from-float constructor
435 //----------------------------
436 
437 inline
half(float f)438 half::half (float f)
439 {
440     uif x;
441 
442     x.f = f;
443 
444     if (f == 0)
445     {
446     //
447     // Common special case - zero.
448     // Preserve the zero's sign bit.
449     //
450 
451     _h = (x.i >> 16);
452     }
453     else
454     {
455     //
456     // We extract the combined sign and exponent, e, from our
457     // floating-point number, f.  Then we convert e to the sign
458     // and exponent of the half number via a table lookup.
459     //
460     // For the most common case, where a normalized half is produced,
461     // the table lookup returns a non-zero value; in this case, all
462     // we have to do is round f's significand to 10 bits and combine
463     // the result with e.
464     //
465     // For all other cases (overflow, zeroes, denormalized numbers
466     // resulting from underflow, infinities and NANs), the table
467     // lookup returns zero, and we call a longer, non-inline function
468     // to do the float-to-half conversion.
469     //
470 
471     register int e = (x.i >> 23) & 0x000001ff;
472 
473     e = _eLut[e];
474 
475     if (e)
476     {
477         //
478         // Simple case - round the significand, m, to 10
479         // bits and combine it with the sign and exponent.
480         //
481 
482         register int m = x.i & 0x007fffff;
483         _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
484     }
485     else
486     {
487         //
488         // Difficult case - call a function.
489         //
490 
491         _h = convert (x.i);
492     }
493     }
494 }
495 
496 
497 //------------------------------------------
498 // Half-to-float conversion via table lookup
499 //------------------------------------------
500 
501 inline
502 half::operator float () const
503 {
504     return _toFloat[_h].f;
505 }
506 
507 
508 //-------------------------
509 // Round to n-bit precision
510 //-------------------------
511 
512 inline half
round(unsigned int n)513 half::round (unsigned int n) const
514 {
515     //
516     // Parameter check.
517     //
518 
519     if (n >= 10)
520     return *this;
521 
522     //
523     // Disassemble h into the sign, s,
524     // and the combined exponent and significand, e.
525     //
526 
527     unsigned short s = _h & 0x8000;
528     unsigned short e = _h & 0x7fff;
529 
530     //
531     // Round the exponent and significand to the nearest value
532     // where ones occur only in the (10-n) most significant bits.
533     // Note that the exponent adjusts automatically if rounding
534     // up causes the significand to overflow.
535     //
536 
537     e >>= 9 - n;
538     e  += e & 1;
539     e <<= 9 - n;
540 
541     //
542     // Check for exponent overflow.
543     //
544 
545     if (e >= 0x7c00)
546     {
547     //
548     // Overflow occurred -- truncate instead of rounding.
549     //
550 
551     e = _h;
552     e >>= 10 - n;
553     e <<= 10 - n;
554     }
555 
556     //
557     // Put the original sign bit back.
558     //
559 
560     half h;
561     h._h = s | e;
562 
563     return h;
564 }
565 
566 
567 //-----------------------
568 // Other inline functions
569 //-----------------------
570 
571 inline half
572 half::operator - () const
573 {
574     half h;
575     h._h = _h ^ 0x8000;
576     return h;
577 }
578 
579 
580 inline half &
581 half::operator = (half h)
582 {
583     _h = h._h;
584     return *this;
585 }
586 
587 
588 inline half &
589 half::operator = (float f)
590 {
591     *this = half (f);
592     return *this;
593 }
594 
595 
596 inline half &
597 half::operator += (half h)
598 {
599     *this = half (float (*this) + float (h));
600     return *this;
601 }
602 
603 
604 inline half &
605 half::operator += (float f)
606 {
607     *this = half (float (*this) + f);
608     return *this;
609 }
610 
611 
612 inline half &
613 half::operator -= (half h)
614 {
615     *this = half (float (*this) - float (h));
616     return *this;
617 }
618 
619 
620 inline half &
621 half::operator -= (float f)
622 {
623     *this = half (float (*this) - f);
624     return *this;
625 }
626 
627 
628 inline half &
629 half::operator *= (half h)
630 {
631     *this = half (float (*this) * float (h));
632     return *this;
633 }
634 
635 
636 inline half &
637 half::operator *= (float f)
638 {
639     *this = half (float (*this) * f);
640     return *this;
641 }
642 
643 
644 inline half &
645 half::operator /= (half h)
646 {
647     *this = half (float (*this) / float (h));
648     return *this;
649 }
650 
651 
652 inline half &
653 half::operator /= (float f)
654 {
655     *this = half (float (*this) / f);
656     return *this;
657 }
658 
659 
660 inline bool
isFinite()661 half::isFinite () const
662 {
663     unsigned short e = (_h >> 10) & 0x001f;
664     return e < 31;
665 }
666 
667 
668 inline bool
isNormalized()669 half::isNormalized () const
670 {
671     unsigned short e = (_h >> 10) & 0x001f;
672     return e > 0 && e < 31;
673 }
674 
675 
676 inline bool
isDenormalized()677 half::isDenormalized () const
678 {
679     unsigned short e = (_h >> 10) & 0x001f;
680     unsigned short m =  _h & 0x3ff;
681     return e == 0 && m != 0;
682 }
683 
684 
685 inline bool
isZero()686 half::isZero () const
687 {
688     return (_h & 0x7fff) == 0;
689 }
690 
691 
692 inline bool
isNan()693 half::isNan () const
694 {
695     unsigned short e = (_h >> 10) & 0x001f;
696     unsigned short m =  _h & 0x3ff;
697     return e == 31 && m != 0;
698 }
699 
700 
701 inline bool
isInfinity()702 half::isInfinity () const
703 {
704     unsigned short e = (_h >> 10) & 0x001f;
705     unsigned short m =  _h & 0x3ff;
706     return e == 31 && m == 0;
707 }
708 
709 
710 inline bool
isNegative()711 half::isNegative () const
712 {
713     return (_h & 0x8000) != 0;
714 }
715 
716 
717 inline half
posInf()718 half::posInf ()
719 {
720     half h;
721     h._h = 0x7c00;
722     return h;
723 }
724 
725 
726 inline half
negInf()727 half::negInf ()
728 {
729     half h;
730     h._h = 0xfc00;
731     return h;
732 }
733 
734 
735 inline half
qNan()736 half::qNan ()
737 {
738     half h;
739     h._h = 0x7fff;
740     return h;
741 }
742 
743 
744 inline half
sNan()745 half::sNan ()
746 {
747     half h;
748     h._h = 0x7dff;
749     return h;
750 }
751 
752 
753 inline unsigned short
bits()754 half::bits () const
755 {
756     return _h;
757 }
758 
759 
760 inline void
setBits(unsigned short bits)761 half::setBits (unsigned short bits)
762 {
763     _h = bits;
764 }
765 
766 #endif
767