1 //===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level if-conversion pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Passes.h"
15 #include "BranchFolding.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <algorithm>
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "ifcvt"
40
41 // Hidden options for help debugging.
42 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
43 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
44 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
45 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
46 cl::init(false), cl::Hidden);
47 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
48 cl::init(false), cl::Hidden);
49 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
50 cl::init(false), cl::Hidden);
51 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
52 cl::init(false), cl::Hidden);
53 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
54 cl::init(false), cl::Hidden);
55 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
56 cl::init(false), cl::Hidden);
57 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
58 cl::init(false), cl::Hidden);
59 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
60 cl::init(true), cl::Hidden);
61
62 STATISTIC(NumSimple, "Number of simple if-conversions performed");
63 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
64 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
65 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
66 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
67 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
68 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
69 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
70 STATISTIC(NumDupBBs, "Number of duplicated blocks");
71 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
72
73 namespace {
74 class IfConverter : public MachineFunctionPass {
75 enum IfcvtKind {
76 ICNotClassfied, // BB data valid, but not classified.
77 ICSimpleFalse, // Same as ICSimple, but on the false path.
78 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
79 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
80 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
81 ICTriangleFalse, // Same as ICTriangle, but on the false path.
82 ICTriangle, // BB is entry of a triangle sub-CFG.
83 ICDiamond // BB is entry of a diamond sub-CFG.
84 };
85
86 /// BBInfo - One per MachineBasicBlock, this is used to cache the result
87 /// if-conversion feasibility analysis. This includes results from
88 /// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its
89 /// classification, and common tail block of its successors (if it's a
90 /// diamond shape), its size, whether it's predicable, and whether any
91 /// instruction can clobber the 'would-be' predicate.
92 ///
93 /// IsDone - True if BB is not to be considered for ifcvt.
94 /// IsBeingAnalyzed - True if BB is currently being analyzed.
95 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
96 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
97 /// IsBrAnalyzable - True if AnalyzeBranch() returns false.
98 /// HasFallThrough - True if BB may fallthrough to the following BB.
99 /// IsUnpredicable - True if BB is known to be unpredicable.
100 /// ClobbersPred - True if BB could modify predicates (e.g. has
101 /// cmp, call, etc.)
102 /// NonPredSize - Number of non-predicated instructions.
103 /// ExtraCost - Extra cost for multi-cycle instructions.
104 /// ExtraCost2 - Some instructions are slower when predicated
105 /// BB - Corresponding MachineBasicBlock.
106 /// TrueBB / FalseBB- See AnalyzeBranch().
107 /// BrCond - Conditions for end of block conditional branches.
108 /// Predicate - Predicate used in the BB.
109 struct BBInfo {
110 bool IsDone : 1;
111 bool IsBeingAnalyzed : 1;
112 bool IsAnalyzed : 1;
113 bool IsEnqueued : 1;
114 bool IsBrAnalyzable : 1;
115 bool HasFallThrough : 1;
116 bool IsUnpredicable : 1;
117 bool CannotBeCopied : 1;
118 bool ClobbersPred : 1;
119 unsigned NonPredSize;
120 unsigned ExtraCost;
121 unsigned ExtraCost2;
122 MachineBasicBlock *BB;
123 MachineBasicBlock *TrueBB;
124 MachineBasicBlock *FalseBB;
125 SmallVector<MachineOperand, 4> BrCond;
126 SmallVector<MachineOperand, 4> Predicate;
BBInfo__anon959a42170111::IfConverter::BBInfo127 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
128 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
129 HasFallThrough(false), IsUnpredicable(false),
130 CannotBeCopied(false), ClobbersPred(false), NonPredSize(0),
131 ExtraCost(0), ExtraCost2(0), BB(nullptr), TrueBB(nullptr),
132 FalseBB(nullptr) {}
133 };
134
135 /// IfcvtToken - Record information about pending if-conversions to attempt:
136 /// BBI - Corresponding BBInfo.
137 /// Kind - Type of block. See IfcvtKind.
138 /// NeedSubsumption - True if the to-be-predicated BB has already been
139 /// predicated.
140 /// NumDups - Number of instructions that would be duplicated due
141 /// to this if-conversion. (For diamonds, the number of
142 /// identical instructions at the beginnings of both
143 /// paths).
144 /// NumDups2 - For diamonds, the number of identical instructions
145 /// at the ends of both paths.
146 struct IfcvtToken {
147 BBInfo &BBI;
148 IfcvtKind Kind;
149 bool NeedSubsumption;
150 unsigned NumDups;
151 unsigned NumDups2;
IfcvtToken__anon959a42170111::IfConverter::IfcvtToken152 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0)
153 : BBI(b), Kind(k), NeedSubsumption(s), NumDups(d), NumDups2(d2) {}
154 };
155
156 /// BBAnalysis - Results of if-conversion feasibility analysis indexed by
157 /// basic block number.
158 std::vector<BBInfo> BBAnalysis;
159 TargetSchedModel SchedModel;
160
161 const TargetLoweringBase *TLI;
162 const TargetInstrInfo *TII;
163 const TargetRegisterInfo *TRI;
164 const MachineBlockFrequencyInfo *MBFI;
165 const MachineBranchProbabilityInfo *MBPI;
166 MachineRegisterInfo *MRI;
167
168 LivePhysRegs Redefs;
169 LivePhysRegs DontKill;
170
171 bool PreRegAlloc;
172 bool MadeChange;
173 int FnNum;
174 std::function<bool(const Function &)> PredicateFtor;
175
176 public:
177 static char ID;
IfConverter(std::function<bool (const Function &)> Ftor=nullptr)178 IfConverter(std::function<bool(const Function &)> Ftor = nullptr)
179 : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(Ftor) {
180 initializeIfConverterPass(*PassRegistry::getPassRegistry());
181 }
182
getAnalysisUsage(AnalysisUsage & AU) const183 void getAnalysisUsage(AnalysisUsage &AU) const override {
184 AU.addRequired<MachineBlockFrequencyInfo>();
185 AU.addRequired<MachineBranchProbabilityInfo>();
186 MachineFunctionPass::getAnalysisUsage(AU);
187 }
188
189 bool runOnMachineFunction(MachineFunction &MF) override;
190
191 private:
192 bool ReverseBranchCondition(BBInfo &BBI);
193 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
194 BranchProbability Prediction) const;
195 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
196 bool FalseBranch, unsigned &Dups,
197 BranchProbability Prediction) const;
198 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
199 unsigned &Dups1, unsigned &Dups2) const;
200 void ScanInstructions(BBInfo &BBI);
201 void AnalyzeBlock(MachineBasicBlock *MBB, std::vector<IfcvtToken*> &Tokens);
202 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond,
203 bool isTriangle = false, bool RevBranch = false);
204 void AnalyzeBlocks(MachineFunction &MF, std::vector<IfcvtToken*> &Tokens);
205 void InvalidatePreds(MachineBasicBlock *BB);
206 void RemoveExtraEdges(BBInfo &BBI);
207 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
208 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
209 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
210 unsigned NumDups1, unsigned NumDups2);
211 void PredicateBlock(BBInfo &BBI,
212 MachineBasicBlock::iterator E,
213 SmallVectorImpl<MachineOperand> &Cond,
214 SmallSet<unsigned, 4> *LaterRedefs = nullptr);
215 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
216 SmallVectorImpl<MachineOperand> &Cond,
217 bool IgnoreBr = false);
218 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
219
MeetIfcvtSizeLimit(MachineBasicBlock & BB,unsigned Cycle,unsigned Extra,BranchProbability Prediction) const220 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
221 unsigned Cycle, unsigned Extra,
222 BranchProbability Prediction) const {
223 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
224 Prediction);
225 }
226
MeetIfcvtSizeLimit(MachineBasicBlock & TBB,unsigned TCycle,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycle,unsigned FExtra,BranchProbability Prediction) const227 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
228 unsigned TCycle, unsigned TExtra,
229 MachineBasicBlock &FBB,
230 unsigned FCycle, unsigned FExtra,
231 BranchProbability Prediction) const {
232 return TCycle > 0 && FCycle > 0 &&
233 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
234 Prediction);
235 }
236
237 // blockAlwaysFallThrough - Block ends without a terminator.
blockAlwaysFallThrough(BBInfo & BBI) const238 bool blockAlwaysFallThrough(BBInfo &BBI) const {
239 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
240 }
241
242 // IfcvtTokenCmp - Used to sort if-conversion candidates.
IfcvtTokenCmp(IfcvtToken * C1,IfcvtToken * C2)243 static bool IfcvtTokenCmp(IfcvtToken *C1, IfcvtToken *C2) {
244 int Incr1 = (C1->Kind == ICDiamond)
245 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
246 int Incr2 = (C2->Kind == ICDiamond)
247 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
248 if (Incr1 > Incr2)
249 return true;
250 else if (Incr1 == Incr2) {
251 // Favors subsumption.
252 if (!C1->NeedSubsumption && C2->NeedSubsumption)
253 return true;
254 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
255 // Favors diamond over triangle, etc.
256 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
257 return true;
258 else if (C1->Kind == C2->Kind)
259 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
260 }
261 }
262 return false;
263 }
264 };
265
266 char IfConverter::ID = 0;
267 }
268
269 char &llvm::IfConverterID = IfConverter::ID;
270
271 INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)272 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
273 INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false)
274
275 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
276 if (PredicateFtor && !PredicateFtor(*MF.getFunction()))
277 return false;
278
279 const TargetSubtargetInfo &ST = MF.getSubtarget();
280 TLI = ST.getTargetLowering();
281 TII = ST.getInstrInfo();
282 TRI = ST.getRegisterInfo();
283 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
284 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
285 MRI = &MF.getRegInfo();
286 SchedModel.init(ST.getSchedModel(), &ST, TII);
287
288 if (!TII) return false;
289
290 PreRegAlloc = MRI->isSSA();
291
292 bool BFChange = false;
293 if (!PreRegAlloc) {
294 // Tail merge tend to expose more if-conversion opportunities.
295 BranchFolder BF(true, false, *MBFI, *MBPI);
296 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
297 getAnalysisIfAvailable<MachineModuleInfo>());
298 }
299
300 DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
301 << MF.getName() << "\'");
302
303 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
304 DEBUG(dbgs() << " skipped\n");
305 return false;
306 }
307 DEBUG(dbgs() << "\n");
308
309 MF.RenumberBlocks();
310 BBAnalysis.resize(MF.getNumBlockIDs());
311
312 std::vector<IfcvtToken*> Tokens;
313 MadeChange = false;
314 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
315 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
316 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
317 // Do an initial analysis for each basic block and find all the potential
318 // candidates to perform if-conversion.
319 bool Change = false;
320 AnalyzeBlocks(MF, Tokens);
321 while (!Tokens.empty()) {
322 IfcvtToken *Token = Tokens.back();
323 Tokens.pop_back();
324 BBInfo &BBI = Token->BBI;
325 IfcvtKind Kind = Token->Kind;
326 unsigned NumDups = Token->NumDups;
327 unsigned NumDups2 = Token->NumDups2;
328
329 delete Token;
330
331 // If the block has been evicted out of the queue or it has already been
332 // marked dead (due to it being predicated), then skip it.
333 if (BBI.IsDone)
334 BBI.IsEnqueued = false;
335 if (!BBI.IsEnqueued)
336 continue;
337
338 BBI.IsEnqueued = false;
339
340 bool RetVal = false;
341 switch (Kind) {
342 default: llvm_unreachable("Unexpected!");
343 case ICSimple:
344 case ICSimpleFalse: {
345 bool isFalse = Kind == ICSimpleFalse;
346 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
347 DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ?
348 " false" : "")
349 << "): BB#" << BBI.BB->getNumber() << " ("
350 << ((Kind == ICSimpleFalse)
351 ? BBI.FalseBB->getNumber()
352 : BBI.TrueBB->getNumber()) << ") ");
353 RetVal = IfConvertSimple(BBI, Kind);
354 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
355 if (RetVal) {
356 if (isFalse) ++NumSimpleFalse;
357 else ++NumSimple;
358 }
359 break;
360 }
361 case ICTriangle:
362 case ICTriangleRev:
363 case ICTriangleFalse:
364 case ICTriangleFRev: {
365 bool isFalse = Kind == ICTriangleFalse;
366 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
367 if (DisableTriangle && !isFalse && !isRev) break;
368 if (DisableTriangleR && !isFalse && isRev) break;
369 if (DisableTriangleF && isFalse && !isRev) break;
370 if (DisableTriangleFR && isFalse && isRev) break;
371 DEBUG(dbgs() << "Ifcvt (Triangle");
372 if (isFalse)
373 DEBUG(dbgs() << " false");
374 if (isRev)
375 DEBUG(dbgs() << " rev");
376 DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:"
377 << BBI.TrueBB->getNumber() << ",F:"
378 << BBI.FalseBB->getNumber() << ") ");
379 RetVal = IfConvertTriangle(BBI, Kind);
380 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
381 if (RetVal) {
382 if (isFalse) {
383 if (isRev) ++NumTriangleFRev;
384 else ++NumTriangleFalse;
385 } else {
386 if (isRev) ++NumTriangleRev;
387 else ++NumTriangle;
388 }
389 }
390 break;
391 }
392 case ICDiamond: {
393 if (DisableDiamond) break;
394 DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:"
395 << BBI.TrueBB->getNumber() << ",F:"
396 << BBI.FalseBB->getNumber() << ") ");
397 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2);
398 DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
399 if (RetVal) ++NumDiamonds;
400 break;
401 }
402 }
403
404 Change |= RetVal;
405
406 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
407 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
408 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
409 break;
410 }
411
412 if (!Change)
413 break;
414 MadeChange |= Change;
415 }
416
417 // Delete tokens in case of early exit.
418 while (!Tokens.empty()) {
419 IfcvtToken *Token = Tokens.back();
420 Tokens.pop_back();
421 delete Token;
422 }
423
424 Tokens.clear();
425 BBAnalysis.clear();
426
427 if (MadeChange && IfCvtBranchFold) {
428 BranchFolder BF(false, false, *MBFI, *MBPI);
429 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
430 getAnalysisIfAvailable<MachineModuleInfo>());
431 }
432
433 MadeChange |= BFChange;
434 return MadeChange;
435 }
436
437 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
438 /// its 'true' successor.
findFalseBlock(MachineBasicBlock * BB,MachineBasicBlock * TrueBB)439 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
440 MachineBasicBlock *TrueBB) {
441 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
442 E = BB->succ_end(); SI != E; ++SI) {
443 MachineBasicBlock *SuccBB = *SI;
444 if (SuccBB != TrueBB)
445 return SuccBB;
446 }
447 return nullptr;
448 }
449
450 /// ReverseBranchCondition - Reverse the condition of the end of the block
451 /// branch. Swap block's 'true' and 'false' successors.
ReverseBranchCondition(BBInfo & BBI)452 bool IfConverter::ReverseBranchCondition(BBInfo &BBI) {
453 DebugLoc dl; // FIXME: this is nowhere
454 if (!TII->ReverseBranchCondition(BBI.BrCond)) {
455 TII->RemoveBranch(*BBI.BB);
456 TII->InsertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
457 std::swap(BBI.TrueBB, BBI.FalseBB);
458 return true;
459 }
460 return false;
461 }
462
463 /// getNextBlock - Returns the next block in the function blocks ordering. If
464 /// it is the end, returns NULL.
getNextBlock(MachineBasicBlock * BB)465 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock *BB) {
466 MachineFunction::iterator I = BB->getIterator();
467 MachineFunction::iterator E = BB->getParent()->end();
468 if (++I == E)
469 return nullptr;
470 return &*I;
471 }
472
473 /// ValidSimple - Returns true if the 'true' block (along with its
474 /// predecessor) forms a valid simple shape for ifcvt. It also returns the
475 /// number of instructions that the ifcvt would need to duplicate if performed
476 /// in Dups.
ValidSimple(BBInfo & TrueBBI,unsigned & Dups,BranchProbability Prediction) const477 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
478 BranchProbability Prediction) const {
479 Dups = 0;
480 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
481 return false;
482
483 if (TrueBBI.IsBrAnalyzable)
484 return false;
485
486 if (TrueBBI.BB->pred_size() > 1) {
487 if (TrueBBI.CannotBeCopied ||
488 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
489 Prediction))
490 return false;
491 Dups = TrueBBI.NonPredSize;
492 }
493
494 return true;
495 }
496
497 /// ValidTriangle - Returns true if the 'true' and 'false' blocks (along
498 /// with their common predecessor) forms a valid triangle shape for ifcvt.
499 /// If 'FalseBranch' is true, it checks if 'true' block's false branch
500 /// branches to the 'false' block rather than the other way around. It also
501 /// returns the number of instructions that the ifcvt would need to duplicate
502 /// if performed in 'Dups'.
ValidTriangle(BBInfo & TrueBBI,BBInfo & FalseBBI,bool FalseBranch,unsigned & Dups,BranchProbability Prediction) const503 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
504 bool FalseBranch, unsigned &Dups,
505 BranchProbability Prediction) const {
506 Dups = 0;
507 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
508 return false;
509
510 if (TrueBBI.BB->pred_size() > 1) {
511 if (TrueBBI.CannotBeCopied)
512 return false;
513
514 unsigned Size = TrueBBI.NonPredSize;
515 if (TrueBBI.IsBrAnalyzable) {
516 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
517 // Ends with an unconditional branch. It will be removed.
518 --Size;
519 else {
520 MachineBasicBlock *FExit = FalseBranch
521 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
522 if (FExit)
523 // Require a conditional branch
524 ++Size;
525 }
526 }
527 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
528 return false;
529 Dups = Size;
530 }
531
532 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
533 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
534 MachineFunction::iterator I = TrueBBI.BB->getIterator();
535 if (++I == TrueBBI.BB->getParent()->end())
536 return false;
537 TExit = &*I;
538 }
539 return TExit && TExit == FalseBBI.BB;
540 }
541
542 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
543 /// with their common predecessor) forms a valid diamond shape for ifcvt.
ValidDiamond(BBInfo & TrueBBI,BBInfo & FalseBBI,unsigned & Dups1,unsigned & Dups2) const544 bool IfConverter::ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
545 unsigned &Dups1, unsigned &Dups2) const {
546 Dups1 = Dups2 = 0;
547 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
548 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
549 return false;
550
551 MachineBasicBlock *TT = TrueBBI.TrueBB;
552 MachineBasicBlock *FT = FalseBBI.TrueBB;
553
554 if (!TT && blockAlwaysFallThrough(TrueBBI))
555 TT = getNextBlock(TrueBBI.BB);
556 if (!FT && blockAlwaysFallThrough(FalseBBI))
557 FT = getNextBlock(FalseBBI.BB);
558 if (TT != FT)
559 return false;
560 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
561 return false;
562 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
563 return false;
564
565 // FIXME: Allow true block to have an early exit?
566 if (TrueBBI.FalseBB || FalseBBI.FalseBB ||
567 (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred))
568 return false;
569
570 // Count duplicate instructions at the beginning of the true and false blocks.
571 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
572 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
573 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
574 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
575 while (TIB != TIE && FIB != FIE) {
576 // Skip dbg_value instructions. These do not count.
577 if (TIB->isDebugValue()) {
578 while (TIB != TIE && TIB->isDebugValue())
579 ++TIB;
580 if (TIB == TIE)
581 break;
582 }
583 if (FIB->isDebugValue()) {
584 while (FIB != FIE && FIB->isDebugValue())
585 ++FIB;
586 if (FIB == FIE)
587 break;
588 }
589 if (!TIB->isIdenticalTo(FIB))
590 break;
591 ++Dups1;
592 ++TIB;
593 ++FIB;
594 }
595
596 // Now, in preparation for counting duplicate instructions at the ends of the
597 // blocks, move the end iterators up past any branch instructions.
598 while (TIE != TIB) {
599 --TIE;
600 if (!TIE->isBranch())
601 break;
602 }
603 while (FIE != FIB) {
604 --FIE;
605 if (!FIE->isBranch())
606 break;
607 }
608
609 // If Dups1 includes all of a block, then don't count duplicate
610 // instructions at the end of the blocks.
611 if (TIB == TIE || FIB == FIE)
612 return true;
613
614 // Count duplicate instructions at the ends of the blocks.
615 while (TIE != TIB && FIE != FIB) {
616 // Skip dbg_value instructions. These do not count.
617 if (TIE->isDebugValue()) {
618 while (TIE != TIB && TIE->isDebugValue())
619 --TIE;
620 if (TIE == TIB)
621 break;
622 }
623 if (FIE->isDebugValue()) {
624 while (FIE != FIB && FIE->isDebugValue())
625 --FIE;
626 if (FIE == FIB)
627 break;
628 }
629 if (!TIE->isIdenticalTo(FIE))
630 break;
631 ++Dups2;
632 --TIE;
633 --FIE;
634 }
635
636 return true;
637 }
638
639 /// ScanInstructions - Scan all the instructions in the block to determine if
640 /// the block is predicable. In most cases, that means all the instructions
641 /// in the block are isPredicable(). Also checks if the block contains any
642 /// instruction which can clobber a predicate (e.g. condition code register).
643 /// If so, the block is not predicable unless it's the last instruction.
ScanInstructions(BBInfo & BBI)644 void IfConverter::ScanInstructions(BBInfo &BBI) {
645 if (BBI.IsDone)
646 return;
647
648 bool AlreadyPredicated = !BBI.Predicate.empty();
649 // First analyze the end of BB branches.
650 BBI.TrueBB = BBI.FalseBB = nullptr;
651 BBI.BrCond.clear();
652 BBI.IsBrAnalyzable =
653 !TII->AnalyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
654 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
655
656 if (BBI.BrCond.size()) {
657 // No false branch. This BB must end with a conditional branch and a
658 // fallthrough.
659 if (!BBI.FalseBB)
660 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
661 if (!BBI.FalseBB) {
662 // Malformed bcc? True and false blocks are the same?
663 BBI.IsUnpredicable = true;
664 return;
665 }
666 }
667
668 // Then scan all the instructions.
669 BBI.NonPredSize = 0;
670 BBI.ExtraCost = 0;
671 BBI.ExtraCost2 = 0;
672 BBI.ClobbersPred = false;
673 for (MachineBasicBlock::iterator I = BBI.BB->begin(), E = BBI.BB->end();
674 I != E; ++I) {
675 if (I->isDebugValue())
676 continue;
677
678 if (I->isNotDuplicable())
679 BBI.CannotBeCopied = true;
680
681 bool isPredicated = TII->isPredicated(I);
682 bool isCondBr = BBI.IsBrAnalyzable && I->isConditionalBranch();
683
684 // A conditional branch is not predicable, but it may be eliminated.
685 if (isCondBr)
686 continue;
687
688 if (!isPredicated) {
689 BBI.NonPredSize++;
690 unsigned ExtraPredCost = TII->getPredicationCost(&*I);
691 unsigned NumCycles = SchedModel.computeInstrLatency(&*I, false);
692 if (NumCycles > 1)
693 BBI.ExtraCost += NumCycles-1;
694 BBI.ExtraCost2 += ExtraPredCost;
695 } else if (!AlreadyPredicated) {
696 // FIXME: This instruction is already predicated before the
697 // if-conversion pass. It's probably something like a conditional move.
698 // Mark this block unpredicable for now.
699 BBI.IsUnpredicable = true;
700 return;
701 }
702
703 if (BBI.ClobbersPred && !isPredicated) {
704 // Predicate modification instruction should end the block (except for
705 // already predicated instructions and end of block branches).
706 // Predicate may have been modified, the subsequent (currently)
707 // unpredicated instructions cannot be correctly predicated.
708 BBI.IsUnpredicable = true;
709 return;
710 }
711
712 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
713 // still potentially predicable.
714 std::vector<MachineOperand> PredDefs;
715 if (TII->DefinesPredicate(I, PredDefs))
716 BBI.ClobbersPred = true;
717
718 if (!TII->isPredicable(I)) {
719 BBI.IsUnpredicable = true;
720 return;
721 }
722 }
723 }
724
725 /// FeasibilityAnalysis - Determine if the block is a suitable candidate to be
726 /// predicated by the specified predicate.
FeasibilityAnalysis(BBInfo & BBI,SmallVectorImpl<MachineOperand> & Pred,bool isTriangle,bool RevBranch)727 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
728 SmallVectorImpl<MachineOperand> &Pred,
729 bool isTriangle, bool RevBranch) {
730 // If the block is dead or unpredicable, then it cannot be predicated.
731 if (BBI.IsDone || BBI.IsUnpredicable)
732 return false;
733
734 // If it is already predicated but we couldn't analyze its terminator, the
735 // latter might fallthrough, but we can't determine where to.
736 // Conservatively avoid if-converting again.
737 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
738 return false;
739
740 // If it is already predicated, check if the new predicate subsumes
741 // its predicate.
742 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
743 return false;
744
745 if (BBI.BrCond.size()) {
746 if (!isTriangle)
747 return false;
748
749 // Test predicate subsumption.
750 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
751 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
752 if (RevBranch) {
753 if (TII->ReverseBranchCondition(Cond))
754 return false;
755 }
756 if (TII->ReverseBranchCondition(RevPred) ||
757 !TII->SubsumesPredicate(Cond, RevPred))
758 return false;
759 }
760
761 return true;
762 }
763
764 /// AnalyzeBlock - Analyze the structure of the sub-CFG starting from
765 /// the specified block. Record its successors and whether it looks like an
766 /// if-conversion candidate.
AnalyzeBlock(MachineBasicBlock * MBB,std::vector<IfcvtToken * > & Tokens)767 void IfConverter::AnalyzeBlock(MachineBasicBlock *MBB,
768 std::vector<IfcvtToken*> &Tokens) {
769 struct BBState {
770 BBState(MachineBasicBlock *BB) : MBB(BB), SuccsAnalyzed(false) {}
771 MachineBasicBlock *MBB;
772
773 /// This flag is true if MBB's successors have been analyzed.
774 bool SuccsAnalyzed;
775 };
776
777 // Push MBB to the stack.
778 SmallVector<BBState, 16> BBStack(1, MBB);
779
780 while (!BBStack.empty()) {
781 BBState &State = BBStack.back();
782 MachineBasicBlock *BB = State.MBB;
783 BBInfo &BBI = BBAnalysis[BB->getNumber()];
784
785 if (!State.SuccsAnalyzed) {
786 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
787 BBStack.pop_back();
788 continue;
789 }
790
791 BBI.BB = BB;
792 BBI.IsBeingAnalyzed = true;
793
794 ScanInstructions(BBI);
795
796 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
797 // not considered for ifcvt anymore.
798 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
799 BBI.IsBeingAnalyzed = false;
800 BBI.IsAnalyzed = true;
801 BBStack.pop_back();
802 continue;
803 }
804
805 // Do not ifcvt if either path is a back edge to the entry block.
806 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
807 BBI.IsBeingAnalyzed = false;
808 BBI.IsAnalyzed = true;
809 BBStack.pop_back();
810 continue;
811 }
812
813 // Do not ifcvt if true and false fallthrough blocks are the same.
814 if (!BBI.FalseBB) {
815 BBI.IsBeingAnalyzed = false;
816 BBI.IsAnalyzed = true;
817 BBStack.pop_back();
818 continue;
819 }
820
821 // Push the False and True blocks to the stack.
822 State.SuccsAnalyzed = true;
823 BBStack.push_back(BBI.FalseBB);
824 BBStack.push_back(BBI.TrueBB);
825 continue;
826 }
827
828 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
829 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
830
831 if (TrueBBI.IsDone && FalseBBI.IsDone) {
832 BBI.IsBeingAnalyzed = false;
833 BBI.IsAnalyzed = true;
834 BBStack.pop_back();
835 continue;
836 }
837
838 SmallVector<MachineOperand, 4>
839 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
840 bool CanRevCond = !TII->ReverseBranchCondition(RevCond);
841
842 unsigned Dups = 0;
843 unsigned Dups2 = 0;
844 bool TNeedSub = !TrueBBI.Predicate.empty();
845 bool FNeedSub = !FalseBBI.Predicate.empty();
846 bool Enqueued = false;
847
848 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
849
850 if (CanRevCond && ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2) &&
851 MeetIfcvtSizeLimit(*TrueBBI.BB, (TrueBBI.NonPredSize - (Dups + Dups2) +
852 TrueBBI.ExtraCost), TrueBBI.ExtraCost2,
853 *FalseBBI.BB, (FalseBBI.NonPredSize - (Dups + Dups2) +
854 FalseBBI.ExtraCost),FalseBBI.ExtraCost2,
855 Prediction) &&
856 FeasibilityAnalysis(TrueBBI, BBI.BrCond) &&
857 FeasibilityAnalysis(FalseBBI, RevCond)) {
858 // Diamond:
859 // EBB
860 // / \_
861 // | |
862 // TBB FBB
863 // \ /
864 // TailBB
865 // Note TailBB can be empty.
866 Tokens.push_back(new IfcvtToken(BBI, ICDiamond, TNeedSub|FNeedSub, Dups,
867 Dups2));
868 Enqueued = true;
869 }
870
871 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
872 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
873 TrueBBI.ExtraCost2, Prediction) &&
874 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
875 // Triangle:
876 // EBB
877 // | \_
878 // | |
879 // | TBB
880 // | /
881 // FBB
882 Tokens.push_back(new IfcvtToken(BBI, ICTriangle, TNeedSub, Dups));
883 Enqueued = true;
884 }
885
886 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
887 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
888 TrueBBI.ExtraCost2, Prediction) &&
889 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
890 Tokens.push_back(new IfcvtToken(BBI, ICTriangleRev, TNeedSub, Dups));
891 Enqueued = true;
892 }
893
894 if (ValidSimple(TrueBBI, Dups, Prediction) &&
895 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
896 TrueBBI.ExtraCost2, Prediction) &&
897 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
898 // Simple (split, no rejoin):
899 // EBB
900 // | \_
901 // | |
902 // | TBB---> exit
903 // |
904 // FBB
905 Tokens.push_back(new IfcvtToken(BBI, ICSimple, TNeedSub, Dups));
906 Enqueued = true;
907 }
908
909 if (CanRevCond) {
910 // Try the other path...
911 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
912 Prediction.getCompl()) &&
913 MeetIfcvtSizeLimit(*FalseBBI.BB,
914 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
915 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
916 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
917 Tokens.push_back(new IfcvtToken(BBI, ICTriangleFalse, FNeedSub, Dups));
918 Enqueued = true;
919 }
920
921 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
922 Prediction.getCompl()) &&
923 MeetIfcvtSizeLimit(*FalseBBI.BB,
924 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
925 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
926 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
927 Tokens.push_back(new IfcvtToken(BBI, ICTriangleFRev, FNeedSub, Dups));
928 Enqueued = true;
929 }
930
931 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
932 MeetIfcvtSizeLimit(*FalseBBI.BB,
933 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
934 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
935 FeasibilityAnalysis(FalseBBI, RevCond)) {
936 Tokens.push_back(new IfcvtToken(BBI, ICSimpleFalse, FNeedSub, Dups));
937 Enqueued = true;
938 }
939 }
940
941 BBI.IsEnqueued = Enqueued;
942 BBI.IsBeingAnalyzed = false;
943 BBI.IsAnalyzed = true;
944 BBStack.pop_back();
945 }
946 }
947
948 /// AnalyzeBlocks - Analyze all blocks and find entries for all if-conversion
949 /// candidates.
AnalyzeBlocks(MachineFunction & MF,std::vector<IfcvtToken * > & Tokens)950 void IfConverter::AnalyzeBlocks(MachineFunction &MF,
951 std::vector<IfcvtToken*> &Tokens) {
952 for (auto &BB : MF)
953 AnalyzeBlock(&BB, Tokens);
954
955 // Sort to favor more complex ifcvt scheme.
956 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
957 }
958
959 /// canFallThroughTo - Returns true either if ToBB is the next block after BB or
960 /// that all the intervening blocks are empty (given BB can fall through to its
961 /// next block).
canFallThroughTo(MachineBasicBlock * BB,MachineBasicBlock * ToBB)962 static bool canFallThroughTo(MachineBasicBlock *BB, MachineBasicBlock *ToBB) {
963 MachineFunction::iterator PI = BB->getIterator();
964 MachineFunction::iterator I = std::next(PI);
965 MachineFunction::iterator TI = ToBB->getIterator();
966 MachineFunction::iterator E = BB->getParent()->end();
967 while (I != TI) {
968 // Check isSuccessor to avoid case where the next block is empty, but
969 // it's not a successor.
970 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
971 return false;
972 PI = I++;
973 }
974 return true;
975 }
976
977 /// InvalidatePreds - Invalidate predecessor BB info so it would be re-analyzed
978 /// to determine if it can be if-converted. If predecessor is already enqueued,
979 /// dequeue it!
InvalidatePreds(MachineBasicBlock * BB)980 void IfConverter::InvalidatePreds(MachineBasicBlock *BB) {
981 for (const auto &Predecessor : BB->predecessors()) {
982 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
983 if (PBBI.IsDone || PBBI.BB == BB)
984 continue;
985 PBBI.IsAnalyzed = false;
986 PBBI.IsEnqueued = false;
987 }
988 }
989
990 /// InsertUncondBranch - Inserts an unconditional branch from BB to ToBB.
991 ///
InsertUncondBranch(MachineBasicBlock * BB,MachineBasicBlock * ToBB,const TargetInstrInfo * TII)992 static void InsertUncondBranch(MachineBasicBlock *BB, MachineBasicBlock *ToBB,
993 const TargetInstrInfo *TII) {
994 DebugLoc dl; // FIXME: this is nowhere
995 SmallVector<MachineOperand, 0> NoCond;
996 TII->InsertBranch(*BB, ToBB, nullptr, NoCond, dl);
997 }
998
999 /// RemoveExtraEdges - Remove true / false edges if either / both are no longer
1000 /// successors.
RemoveExtraEdges(BBInfo & BBI)1001 void IfConverter::RemoveExtraEdges(BBInfo &BBI) {
1002 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1003 SmallVector<MachineOperand, 4> Cond;
1004 if (!TII->AnalyzeBranch(*BBI.BB, TBB, FBB, Cond))
1005 BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
1006 }
1007
1008 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1009 /// values defined in MI which are not live/used by MI.
UpdatePredRedefs(MachineInstr * MI,LivePhysRegs & Redefs)1010 static void UpdatePredRedefs(MachineInstr *MI, LivePhysRegs &Redefs) {
1011 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1012 Redefs.stepForward(*MI, Clobbers);
1013
1014 // Now add the implicit uses for each of the clobbered values.
1015 for (auto Reg : Clobbers) {
1016 // FIXME: Const cast here is nasty, but better than making StepForward
1017 // take a mutable instruction instead of const.
1018 MachineOperand &Op = const_cast<MachineOperand&>(*Reg.second);
1019 MachineInstr *OpMI = Op.getParent();
1020 MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI);
1021 if (Op.isRegMask()) {
1022 // First handle regmasks. They clobber any entries in the mask which
1023 // means that we need a def for those registers.
1024 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1025
1026 // We also need to add an implicit def of this register for the later
1027 // use to read from.
1028 // For the register allocator to have allocated a register clobbered
1029 // by the call which is used later, it must be the case that
1030 // the call doesn't return.
1031 MIB.addReg(Reg.first, RegState::Implicit | RegState::Define);
1032 continue;
1033 }
1034 assert(Op.isReg() && "Register operand required");
1035 if (Op.isDead()) {
1036 // If we found a dead def, but it needs to be live, then remove the dead
1037 // flag.
1038 if (Redefs.contains(Op.getReg()))
1039 Op.setIsDead(false);
1040 }
1041 MIB.addReg(Reg.first, RegState::Implicit | RegState::Undef);
1042 }
1043 }
1044
1045 /**
1046 * Remove kill flags from operands with a registers in the @p DontKill set.
1047 */
RemoveKills(MachineInstr & MI,const LivePhysRegs & DontKill)1048 static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) {
1049 for (MIBundleOperands O(&MI); O.isValid(); ++O) {
1050 if (!O->isReg() || !O->isKill())
1051 continue;
1052 if (DontKill.contains(O->getReg()))
1053 O->setIsKill(false);
1054 }
1055 }
1056
1057 /**
1058 * Walks a range of machine instructions and removes kill flags for registers
1059 * in the @p DontKill set.
1060 */
RemoveKills(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E,const LivePhysRegs & DontKill,const MCRegisterInfo & MCRI)1061 static void RemoveKills(MachineBasicBlock::iterator I,
1062 MachineBasicBlock::iterator E,
1063 const LivePhysRegs &DontKill,
1064 const MCRegisterInfo &MCRI) {
1065 for ( ; I != E; ++I)
1066 RemoveKills(*I, DontKill);
1067 }
1068
1069 /// IfConvertSimple - If convert a simple (split, no rejoin) sub-CFG.
1070 ///
IfConvertSimple(BBInfo & BBI,IfcvtKind Kind)1071 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1072 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1073 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1074 BBInfo *CvtBBI = &TrueBBI;
1075 BBInfo *NextBBI = &FalseBBI;
1076
1077 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1078 if (Kind == ICSimpleFalse)
1079 std::swap(CvtBBI, NextBBI);
1080
1081 if (CvtBBI->IsDone ||
1082 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1083 // Something has changed. It's no longer safe to predicate this block.
1084 BBI.IsAnalyzed = false;
1085 CvtBBI->IsAnalyzed = false;
1086 return false;
1087 }
1088
1089 if (CvtBBI->BB->hasAddressTaken())
1090 // Conservatively abort if-conversion if BB's address is taken.
1091 return false;
1092
1093 if (Kind == ICSimpleFalse)
1094 if (TII->ReverseBranchCondition(Cond))
1095 llvm_unreachable("Unable to reverse branch condition!");
1096
1097 // Initialize liveins to the first BB. These are potentiall redefined by
1098 // predicated instructions.
1099 Redefs.init(TRI);
1100 Redefs.addLiveIns(CvtBBI->BB);
1101 Redefs.addLiveIns(NextBBI->BB);
1102
1103 // Compute a set of registers which must not be killed by instructions in
1104 // BB1: This is everything live-in to BB2.
1105 DontKill.init(TRI);
1106 DontKill.addLiveIns(NextBBI->BB);
1107
1108 if (CvtBBI->BB->pred_size() > 1) {
1109 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1110 // Copy instructions in the true block, predicate them, and add them to
1111 // the entry block.
1112 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1113
1114 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1115 // explicitly remove CvtBBI as a successor.
1116 BBI.BB->removeSuccessor(CvtBBI->BB, true);
1117 } else {
1118 RemoveKills(CvtBBI->BB->begin(), CvtBBI->BB->end(), DontKill, *TRI);
1119 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1120
1121 // Merge converted block into entry block.
1122 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1123 MergeBlocks(BBI, *CvtBBI);
1124 }
1125
1126 bool IterIfcvt = true;
1127 if (!canFallThroughTo(BBI.BB, NextBBI->BB)) {
1128 InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1129 BBI.HasFallThrough = false;
1130 // Now ifcvt'd block will look like this:
1131 // BB:
1132 // ...
1133 // t, f = cmp
1134 // if t op
1135 // b BBf
1136 //
1137 // We cannot further ifcvt this block because the unconditional branch
1138 // will have to be predicated on the new condition, that will not be
1139 // available if cmp executes.
1140 IterIfcvt = false;
1141 }
1142
1143 RemoveExtraEdges(BBI);
1144
1145 // Update block info. BB can be iteratively if-converted.
1146 if (!IterIfcvt)
1147 BBI.IsDone = true;
1148 InvalidatePreds(BBI.BB);
1149 CvtBBI->IsDone = true;
1150
1151 // FIXME: Must maintain LiveIns.
1152 return true;
1153 }
1154
1155 /// IfConvertTriangle - If convert a triangle sub-CFG.
1156 ///
IfConvertTriangle(BBInfo & BBI,IfcvtKind Kind)1157 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1158 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1159 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1160 BBInfo *CvtBBI = &TrueBBI;
1161 BBInfo *NextBBI = &FalseBBI;
1162 DebugLoc dl; // FIXME: this is nowhere
1163
1164 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1165 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1166 std::swap(CvtBBI, NextBBI);
1167
1168 if (CvtBBI->IsDone ||
1169 (CvtBBI->CannotBeCopied && CvtBBI->BB->pred_size() > 1)) {
1170 // Something has changed. It's no longer safe to predicate this block.
1171 BBI.IsAnalyzed = false;
1172 CvtBBI->IsAnalyzed = false;
1173 return false;
1174 }
1175
1176 if (CvtBBI->BB->hasAddressTaken())
1177 // Conservatively abort if-conversion if BB's address is taken.
1178 return false;
1179
1180 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1181 if (TII->ReverseBranchCondition(Cond))
1182 llvm_unreachable("Unable to reverse branch condition!");
1183
1184 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1185 if (ReverseBranchCondition(*CvtBBI)) {
1186 // BB has been changed, modify its predecessors (except for this
1187 // one) so they don't get ifcvt'ed based on bad intel.
1188 for (MachineBasicBlock::pred_iterator PI = CvtBBI->BB->pred_begin(),
1189 E = CvtBBI->BB->pred_end(); PI != E; ++PI) {
1190 MachineBasicBlock *PBB = *PI;
1191 if (PBB == BBI.BB)
1192 continue;
1193 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1194 if (PBBI.IsEnqueued) {
1195 PBBI.IsAnalyzed = false;
1196 PBBI.IsEnqueued = false;
1197 }
1198 }
1199 }
1200 }
1201
1202 // Initialize liveins to the first BB. These are potentially redefined by
1203 // predicated instructions.
1204 Redefs.init(TRI);
1205 Redefs.addLiveIns(CvtBBI->BB);
1206 Redefs.addLiveIns(NextBBI->BB);
1207
1208 DontKill.clear();
1209
1210 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1211 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1212
1213 if (HasEarlyExit) {
1214 // Get probabilities before modifying CvtBBI->BB and BBI.BB.
1215 CvtNext = MBPI->getEdgeProbability(CvtBBI->BB, NextBBI->BB);
1216 CvtFalse = MBPI->getEdgeProbability(CvtBBI->BB, CvtBBI->FalseBB);
1217 BBNext = MBPI->getEdgeProbability(BBI.BB, NextBBI->BB);
1218 BBCvt = MBPI->getEdgeProbability(BBI.BB, CvtBBI->BB);
1219 }
1220
1221 if (CvtBBI->BB->pred_size() > 1) {
1222 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1223 // Copy instructions in the true block, predicate them, and add them to
1224 // the entry block.
1225 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1226
1227 // RemoveExtraEdges won't work if the block has an unanalyzable branch, so
1228 // explicitly remove CvtBBI as a successor.
1229 BBI.BB->removeSuccessor(CvtBBI->BB, true);
1230 } else {
1231 // Predicate the 'true' block after removing its branch.
1232 CvtBBI->NonPredSize -= TII->RemoveBranch(*CvtBBI->BB);
1233 PredicateBlock(*CvtBBI, CvtBBI->BB->end(), Cond);
1234
1235 // Now merge the entry of the triangle with the true block.
1236 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1237 MergeBlocks(BBI, *CvtBBI, false);
1238 }
1239
1240 // If 'true' block has a 'false' successor, add an exit branch to it.
1241 if (HasEarlyExit) {
1242 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1243 CvtBBI->BrCond.end());
1244 if (TII->ReverseBranchCondition(RevCond))
1245 llvm_unreachable("Unable to reverse branch condition!");
1246
1247 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1248 // NewNext = New_Prob(BBI.BB, NextBBI->BB) =
1249 // Prob(BBI.BB, NextBBI->BB) +
1250 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, NextBBI->BB)
1251 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1252 // Prob(BBI.BB, CvtBBI->BB) * Prob(CvtBBI->BB, CvtBBI->FalseBB)
1253 auto NewTrueBB = getNextBlock(BBI.BB);
1254 auto NewNext = BBNext + BBCvt * CvtNext;
1255 auto NewTrueBBIter =
1256 std::find(BBI.BB->succ_begin(), BBI.BB->succ_end(), NewTrueBB);
1257 if (NewTrueBBIter != BBI.BB->succ_end())
1258 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1259
1260 auto NewFalse = BBCvt * CvtFalse;
1261 TII->InsertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1262 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1263 }
1264
1265 // Merge in the 'false' block if the 'false' block has no other
1266 // predecessors. Otherwise, add an unconditional branch to 'false'.
1267 bool FalseBBDead = false;
1268 bool IterIfcvt = true;
1269 bool isFallThrough = canFallThroughTo(BBI.BB, NextBBI->BB);
1270 if (!isFallThrough) {
1271 // Only merge them if the true block does not fallthrough to the false
1272 // block. By not merging them, we make it possible to iteratively
1273 // ifcvt the blocks.
1274 if (!HasEarlyExit &&
1275 NextBBI->BB->pred_size() == 1 && !NextBBI->HasFallThrough &&
1276 !NextBBI->BB->hasAddressTaken()) {
1277 MergeBlocks(BBI, *NextBBI);
1278 FalseBBDead = true;
1279 } else {
1280 InsertUncondBranch(BBI.BB, NextBBI->BB, TII);
1281 BBI.HasFallThrough = false;
1282 }
1283 // Mixed predicated and unpredicated code. This cannot be iteratively
1284 // predicated.
1285 IterIfcvt = false;
1286 }
1287
1288 RemoveExtraEdges(BBI);
1289
1290 // Update block info. BB can be iteratively if-converted.
1291 if (!IterIfcvt)
1292 BBI.IsDone = true;
1293 InvalidatePreds(BBI.BB);
1294 CvtBBI->IsDone = true;
1295 if (FalseBBDead)
1296 NextBBI->IsDone = true;
1297
1298 // FIXME: Must maintain LiveIns.
1299 return true;
1300 }
1301
1302 /// IfConvertDiamond - If convert a diamond sub-CFG.
1303 ///
IfConvertDiamond(BBInfo & BBI,IfcvtKind Kind,unsigned NumDups1,unsigned NumDups2)1304 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1305 unsigned NumDups1, unsigned NumDups2) {
1306 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1307 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1308 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1309 // True block must fall through or end with an unanalyzable terminator.
1310 if (!TailBB) {
1311 if (blockAlwaysFallThrough(TrueBBI))
1312 TailBB = FalseBBI.TrueBB;
1313 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1314 }
1315
1316 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1317 TrueBBI.BB->pred_size() > 1 ||
1318 FalseBBI.BB->pred_size() > 1) {
1319 // Something has changed. It's no longer safe to predicate these blocks.
1320 BBI.IsAnalyzed = false;
1321 TrueBBI.IsAnalyzed = false;
1322 FalseBBI.IsAnalyzed = false;
1323 return false;
1324 }
1325
1326 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1327 // Conservatively abort if-conversion if either BB has its address taken.
1328 return false;
1329
1330 // Put the predicated instructions from the 'true' block before the
1331 // instructions from the 'false' block, unless the true block would clobber
1332 // the predicate, in which case, do the opposite.
1333 BBInfo *BBI1 = &TrueBBI;
1334 BBInfo *BBI2 = &FalseBBI;
1335 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1336 if (TII->ReverseBranchCondition(RevCond))
1337 llvm_unreachable("Unable to reverse branch condition!");
1338 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1339 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1340
1341 // Figure out the more profitable ordering.
1342 bool DoSwap = false;
1343 if (TrueBBI.ClobbersPred && !FalseBBI.ClobbersPred)
1344 DoSwap = true;
1345 else if (TrueBBI.ClobbersPred == FalseBBI.ClobbersPred) {
1346 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1347 DoSwap = true;
1348 }
1349 if (DoSwap) {
1350 std::swap(BBI1, BBI2);
1351 std::swap(Cond1, Cond2);
1352 }
1353
1354 // Remove the conditional branch from entry to the blocks.
1355 BBI.NonPredSize -= TII->RemoveBranch(*BBI.BB);
1356
1357 // Initialize liveins to the first BB. These are potentially redefined by
1358 // predicated instructions.
1359 Redefs.init(TRI);
1360 Redefs.addLiveIns(BBI1->BB);
1361
1362 // Remove the duplicated instructions at the beginnings of both paths.
1363 // Skip dbg_value instructions
1364 MachineBasicBlock::iterator DI1 = BBI1->BB->getFirstNonDebugInstr();
1365 MachineBasicBlock::iterator DI2 = BBI2->BB->getFirstNonDebugInstr();
1366 BBI1->NonPredSize -= NumDups1;
1367 BBI2->NonPredSize -= NumDups1;
1368
1369 // Skip past the dups on each side separately since there may be
1370 // differing dbg_value entries.
1371 for (unsigned i = 0; i < NumDups1; ++DI1) {
1372 if (!DI1->isDebugValue())
1373 ++i;
1374 }
1375 while (NumDups1 != 0) {
1376 ++DI2;
1377 if (!DI2->isDebugValue())
1378 --NumDups1;
1379 }
1380
1381 // Compute a set of registers which must not be killed by instructions in BB1:
1382 // This is everything used+live in BB2 after the duplicated instructions. We
1383 // can compute this set by simulating liveness backwards from the end of BB2.
1384 DontKill.init(TRI);
1385 for (MachineBasicBlock::reverse_iterator I = BBI2->BB->rbegin(),
1386 E = MachineBasicBlock::reverse_iterator(DI2); I != E; ++I) {
1387 DontKill.stepBackward(*I);
1388 }
1389
1390 for (MachineBasicBlock::const_iterator I = BBI1->BB->begin(), E = DI1; I != E;
1391 ++I) {
1392 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> IgnoredClobbers;
1393 Redefs.stepForward(*I, IgnoredClobbers);
1394 }
1395 BBI.BB->splice(BBI.BB->end(), BBI1->BB, BBI1->BB->begin(), DI1);
1396 BBI2->BB->erase(BBI2->BB->begin(), DI2);
1397
1398 // Remove branch from 'true' block and remove duplicated instructions.
1399 BBI1->NonPredSize -= TII->RemoveBranch(*BBI1->BB);
1400 DI1 = BBI1->BB->end();
1401 for (unsigned i = 0; i != NumDups2; ) {
1402 // NumDups2 only counted non-dbg_value instructions, so this won't
1403 // run off the head of the list.
1404 assert (DI1 != BBI1->BB->begin());
1405 --DI1;
1406 // skip dbg_value instructions
1407 if (!DI1->isDebugValue())
1408 ++i;
1409 }
1410 BBI1->BB->erase(DI1, BBI1->BB->end());
1411
1412 // Kill flags in the true block for registers living into the false block
1413 // must be removed.
1414 RemoveKills(BBI1->BB->begin(), BBI1->BB->end(), DontKill, *TRI);
1415
1416 // Remove 'false' block branch and find the last instruction to predicate.
1417 BBI2->NonPredSize -= TII->RemoveBranch(*BBI2->BB);
1418 DI2 = BBI2->BB->end();
1419 while (NumDups2 != 0) {
1420 // NumDups2 only counted non-dbg_value instructions, so this won't
1421 // run off the head of the list.
1422 assert (DI2 != BBI2->BB->begin());
1423 --DI2;
1424 // skip dbg_value instructions
1425 if (!DI2->isDebugValue())
1426 --NumDups2;
1427 }
1428
1429 // Remember which registers would later be defined by the false block.
1430 // This allows us not to predicate instructions in the true block that would
1431 // later be re-defined. That is, rather than
1432 // subeq r0, r1, #1
1433 // addne r0, r1, #1
1434 // generate:
1435 // sub r0, r1, #1
1436 // addne r0, r1, #1
1437 SmallSet<unsigned, 4> RedefsByFalse;
1438 SmallSet<unsigned, 4> ExtUses;
1439 if (TII->isProfitableToUnpredicate(*BBI1->BB, *BBI2->BB)) {
1440 for (MachineBasicBlock::iterator FI = BBI2->BB->begin(); FI != DI2; ++FI) {
1441 if (FI->isDebugValue())
1442 continue;
1443 SmallVector<unsigned, 4> Defs;
1444 for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
1445 const MachineOperand &MO = FI->getOperand(i);
1446 if (!MO.isReg())
1447 continue;
1448 unsigned Reg = MO.getReg();
1449 if (!Reg)
1450 continue;
1451 if (MO.isDef()) {
1452 Defs.push_back(Reg);
1453 } else if (!RedefsByFalse.count(Reg)) {
1454 // These are defined before ctrl flow reach the 'false' instructions.
1455 // They cannot be modified by the 'true' instructions.
1456 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1457 SubRegs.isValid(); ++SubRegs)
1458 ExtUses.insert(*SubRegs);
1459 }
1460 }
1461
1462 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1463 unsigned Reg = Defs[i];
1464 if (!ExtUses.count(Reg)) {
1465 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1466 SubRegs.isValid(); ++SubRegs)
1467 RedefsByFalse.insert(*SubRegs);
1468 }
1469 }
1470 }
1471 }
1472
1473 // Predicate the 'true' block.
1474 PredicateBlock(*BBI1, BBI1->BB->end(), *Cond1, &RedefsByFalse);
1475
1476 // Predicate the 'false' block.
1477 PredicateBlock(*BBI2, DI2, *Cond2);
1478
1479 // Merge the true block into the entry of the diamond.
1480 MergeBlocks(BBI, *BBI1, TailBB == nullptr);
1481 MergeBlocks(BBI, *BBI2, TailBB == nullptr);
1482
1483 // If the if-converted block falls through or unconditionally branches into
1484 // the tail block, and the tail block does not have other predecessors, then
1485 // fold the tail block in as well. Otherwise, unless it falls through to the
1486 // tail, add a unconditional branch to it.
1487 if (TailBB) {
1488 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1489 bool CanMergeTail = !TailBBI.HasFallThrough &&
1490 !TailBBI.BB->hasAddressTaken();
1491 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1492 // check if there are any other predecessors besides those.
1493 unsigned NumPreds = TailBB->pred_size();
1494 if (NumPreds > 1)
1495 CanMergeTail = false;
1496 else if (NumPreds == 1 && CanMergeTail) {
1497 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1498 if (*PI != BBI1->BB && *PI != BBI2->BB)
1499 CanMergeTail = false;
1500 }
1501 if (CanMergeTail) {
1502 MergeBlocks(BBI, TailBBI);
1503 TailBBI.IsDone = true;
1504 } else {
1505 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1506 InsertUncondBranch(BBI.BB, TailBB, TII);
1507 BBI.HasFallThrough = false;
1508 }
1509 }
1510
1511 // RemoveExtraEdges won't work if the block has an unanalyzable branch,
1512 // which can happen here if TailBB is unanalyzable and is merged, so
1513 // explicitly remove BBI1 and BBI2 as successors.
1514 BBI.BB->removeSuccessor(BBI1->BB);
1515 BBI.BB->removeSuccessor(BBI2->BB, true);
1516 RemoveExtraEdges(BBI);
1517
1518 // Update block info.
1519 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1520 InvalidatePreds(BBI.BB);
1521
1522 // FIXME: Must maintain LiveIns.
1523 return true;
1524 }
1525
MaySpeculate(const MachineInstr * MI,SmallSet<unsigned,4> & LaterRedefs)1526 static bool MaySpeculate(const MachineInstr *MI,
1527 SmallSet<unsigned, 4> &LaterRedefs) {
1528 bool SawStore = true;
1529 if (!MI->isSafeToMove(nullptr, SawStore))
1530 return false;
1531
1532 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1533 const MachineOperand &MO = MI->getOperand(i);
1534 if (!MO.isReg())
1535 continue;
1536 unsigned Reg = MO.getReg();
1537 if (!Reg)
1538 continue;
1539 if (MO.isDef() && !LaterRedefs.count(Reg))
1540 return false;
1541 }
1542
1543 return true;
1544 }
1545
1546 /// PredicateBlock - Predicate instructions from the start of the block to the
1547 /// specified end with the specified condition.
PredicateBlock(BBInfo & BBI,MachineBasicBlock::iterator E,SmallVectorImpl<MachineOperand> & Cond,SmallSet<unsigned,4> * LaterRedefs)1548 void IfConverter::PredicateBlock(BBInfo &BBI,
1549 MachineBasicBlock::iterator E,
1550 SmallVectorImpl<MachineOperand> &Cond,
1551 SmallSet<unsigned, 4> *LaterRedefs) {
1552 bool AnyUnpred = false;
1553 bool MaySpec = LaterRedefs != nullptr;
1554 for (MachineBasicBlock::iterator I = BBI.BB->begin(); I != E; ++I) {
1555 if (I->isDebugValue() || TII->isPredicated(I))
1556 continue;
1557 // It may be possible not to predicate an instruction if it's the 'true'
1558 // side of a diamond and the 'false' side may re-define the instruction's
1559 // defs.
1560 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
1561 AnyUnpred = true;
1562 continue;
1563 }
1564 // If any instruction is predicated, then every instruction after it must
1565 // be predicated.
1566 MaySpec = false;
1567 if (!TII->PredicateInstruction(I, Cond)) {
1568 #ifndef NDEBUG
1569 dbgs() << "Unable to predicate " << *I << "!\n";
1570 #endif
1571 llvm_unreachable(nullptr);
1572 }
1573
1574 // If the predicated instruction now redefines a register as the result of
1575 // if-conversion, add an implicit kill.
1576 UpdatePredRedefs(I, Redefs);
1577 }
1578
1579 BBI.Predicate.append(Cond.begin(), Cond.end());
1580
1581 BBI.IsAnalyzed = false;
1582 BBI.NonPredSize = 0;
1583
1584 ++NumIfConvBBs;
1585 if (AnyUnpred)
1586 ++NumUnpred;
1587 }
1588
1589 /// CopyAndPredicateBlock - Copy and predicate instructions from source BB to
1590 /// the destination block. Skip end of block branches if IgnoreBr is true.
CopyAndPredicateBlock(BBInfo & ToBBI,BBInfo & FromBBI,SmallVectorImpl<MachineOperand> & Cond,bool IgnoreBr)1591 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
1592 SmallVectorImpl<MachineOperand> &Cond,
1593 bool IgnoreBr) {
1594 MachineFunction &MF = *ToBBI.BB->getParent();
1595
1596 for (MachineBasicBlock::iterator I = FromBBI.BB->begin(),
1597 E = FromBBI.BB->end(); I != E; ++I) {
1598 // Do not copy the end of the block branches.
1599 if (IgnoreBr && I->isBranch())
1600 break;
1601
1602 MachineInstr *MI = MF.CloneMachineInstr(I);
1603 ToBBI.BB->insert(ToBBI.BB->end(), MI);
1604 ToBBI.NonPredSize++;
1605 unsigned ExtraPredCost = TII->getPredicationCost(&*I);
1606 unsigned NumCycles = SchedModel.computeInstrLatency(&*I, false);
1607 if (NumCycles > 1)
1608 ToBBI.ExtraCost += NumCycles-1;
1609 ToBBI.ExtraCost2 += ExtraPredCost;
1610
1611 if (!TII->isPredicated(I) && !MI->isDebugValue()) {
1612 if (!TII->PredicateInstruction(MI, Cond)) {
1613 #ifndef NDEBUG
1614 dbgs() << "Unable to predicate " << *I << "!\n";
1615 #endif
1616 llvm_unreachable(nullptr);
1617 }
1618 }
1619
1620 // If the predicated instruction now redefines a register as the result of
1621 // if-conversion, add an implicit kill.
1622 UpdatePredRedefs(MI, Redefs);
1623
1624 // Some kill flags may not be correct anymore.
1625 if (!DontKill.empty())
1626 RemoveKills(*MI, DontKill);
1627 }
1628
1629 if (!IgnoreBr) {
1630 std::vector<MachineBasicBlock *> Succs(FromBBI.BB->succ_begin(),
1631 FromBBI.BB->succ_end());
1632 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1633 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1634
1635 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1636 MachineBasicBlock *Succ = Succs[i];
1637 // Fallthrough edge can't be transferred.
1638 if (Succ == FallThrough)
1639 continue;
1640 ToBBI.BB->addSuccessor(Succ);
1641 }
1642 }
1643
1644 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1645 ToBBI.Predicate.append(Cond.begin(), Cond.end());
1646
1647 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1648 ToBBI.IsAnalyzed = false;
1649
1650 ++NumDupBBs;
1651 }
1652
1653 /// MergeBlocks - Move all instructions from FromBB to the end of ToBB.
1654 /// This will leave FromBB as an empty block, so remove all of its
1655 /// successor edges except for the fall-through edge. If AddEdges is true,
1656 /// i.e., when FromBBI's branch is being moved, add those successor edges to
1657 /// ToBBI.
MergeBlocks(BBInfo & ToBBI,BBInfo & FromBBI,bool AddEdges)1658 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
1659 assert(!FromBBI.BB->hasAddressTaken() &&
1660 "Removing a BB whose address is taken!");
1661
1662 ToBBI.BB->splice(ToBBI.BB->end(),
1663 FromBBI.BB, FromBBI.BB->begin(), FromBBI.BB->end());
1664
1665 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
1666 // unknown probabilities into known ones.
1667 // FIXME: This usage is too tricky and in the future we would like to
1668 // eliminate all unknown probabilities in MBB.
1669 ToBBI.BB->normalizeSuccProbs();
1670
1671 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromBBI.BB->succ_begin(),
1672 FromBBI.BB->succ_end());
1673 MachineBasicBlock *NBB = getNextBlock(FromBBI.BB);
1674 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
1675 // The edge probability from ToBBI.BB to FromBBI.BB, which is only needed when
1676 // AddEdges is true and FromBBI.BB is a successor of ToBBI.BB.
1677 auto To2FromProb = BranchProbability::getZero();
1678 if (AddEdges && ToBBI.BB->isSuccessor(FromBBI.BB)) {
1679 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, FromBBI.BB);
1680 // Set the edge probability from ToBBI.BB to FromBBI.BB to zero to avoid the
1681 // edge probability being merged to other edges when this edge is removed
1682 // later.
1683 ToBBI.BB->setSuccProbability(
1684 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), FromBBI.BB),
1685 BranchProbability::getZero());
1686 }
1687
1688 for (unsigned i = 0, e = FromSuccs.size(); i != e; ++i) {
1689 MachineBasicBlock *Succ = FromSuccs[i];
1690 // Fallthrough edge can't be transferred.
1691 if (Succ == FallThrough)
1692 continue;
1693
1694 auto NewProb = BranchProbability::getZero();
1695 if (AddEdges) {
1696 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
1697 // which is a portion of the edge probability from FromBBI.BB to Succ. The
1698 // portion ratio is the edge probability from ToBBI.BB to FromBBI.BB (if
1699 // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
1700 NewProb = MBPI->getEdgeProbability(FromBBI.BB, Succ);
1701
1702 // To2FromProb is 0 when FromBBI.BB is not a successor of ToBBI.BB. This
1703 // only happens when if-converting a diamond CFG and FromBBI.BB is the
1704 // tail BB. In this case FromBBI.BB post-dominates ToBBI.BB and hence we
1705 // could just use the probabilities on FromBBI.BB's out-edges when adding
1706 // new successors.
1707 if (!To2FromProb.isZero())
1708 NewProb *= To2FromProb;
1709 }
1710
1711 FromBBI.BB->removeSuccessor(Succ);
1712
1713 if (AddEdges) {
1714 // If the edge from ToBBI.BB to Succ already exists, update the
1715 // probability of this edge by adding NewProb to it. An example is shown
1716 // below, in which A is ToBBI.BB and B is FromBBI.BB. In this case we
1717 // don't have to set C as A's successor as it already is. We only need to
1718 // update the edge probability on A->C. Note that B will not be
1719 // immediately removed from A's successors. It is possible that B->D is
1720 // not removed either if D is a fallthrough of B. Later the edge A->D
1721 // (generated here) and B->D will be combined into one edge. To maintain
1722 // correct edge probability of this combined edge, we need to set the edge
1723 // probability of A->B to zero, which is already done above. The edge
1724 // probability on A->D is calculated by scaling the original probability
1725 // on A->B by the probability of B->D.
1726 //
1727 // Before ifcvt: After ifcvt (assume B->D is kept):
1728 //
1729 // A A
1730 // /| /|\
1731 // / B / B|
1732 // | /| | ||
1733 // |/ | | |/
1734 // C D C D
1735 //
1736 if (ToBBI.BB->isSuccessor(Succ))
1737 ToBBI.BB->setSuccProbability(
1738 std::find(ToBBI.BB->succ_begin(), ToBBI.BB->succ_end(), Succ),
1739 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
1740 else
1741 ToBBI.BB->addSuccessor(Succ, NewProb);
1742 }
1743 }
1744
1745 // Now FromBBI always falls through to the next block!
1746 if (NBB && !FromBBI.BB->isSuccessor(NBB))
1747 FromBBI.BB->addSuccessor(NBB);
1748
1749 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
1750 // we've done above.
1751 ToBBI.BB->normalizeSuccProbs();
1752
1753 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
1754 FromBBI.Predicate.clear();
1755
1756 ToBBI.NonPredSize += FromBBI.NonPredSize;
1757 ToBBI.ExtraCost += FromBBI.ExtraCost;
1758 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
1759 FromBBI.NonPredSize = 0;
1760 FromBBI.ExtraCost = 0;
1761 FromBBI.ExtraCost2 = 0;
1762
1763 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
1764 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
1765 ToBBI.IsAnalyzed = false;
1766 FromBBI.IsAnalyzed = false;
1767 }
1768
1769 FunctionPass *
createIfConverter(std::function<bool (const Function &)> Ftor)1770 llvm::createIfConverter(std::function<bool(const Function &)> Ftor) {
1771 return new IfConverter(Ftor);
1772 }
1773