1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_x86.h"
18
19 #include "art_method.h"
20 #include "code_generator_utils.h"
21 #include "compiled_method.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "entrypoints/quick/quick_entrypoints_enum.h"
24 #include "gc/accounting/card_table.h"
25 #include "intrinsics.h"
26 #include "intrinsics_x86.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/class-inl.h"
29 #include "thread.h"
30 #include "utils/assembler.h"
31 #include "utils/stack_checks.h"
32 #include "utils/x86/assembler_x86.h"
33 #include "utils/x86/managed_register_x86.h"
34
35 namespace art {
36
37 template<class MirrorType>
38 class GcRoot;
39
40 namespace x86 {
41
42 static constexpr int kCurrentMethodStackOffset = 0;
43 static constexpr Register kMethodRegisterArgument = EAX;
44 static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
45
46 static constexpr int kC2ConditionMask = 0x400;
47
48 static constexpr int kFakeReturnRegister = Register(8);
49
50 #define __ down_cast<X86Assembler*>(codegen->GetAssembler())->
51 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x).Int32Value()
52
53 class NullCheckSlowPathX86 : public SlowPathCode {
54 public:
NullCheckSlowPathX86(HNullCheck * instruction)55 explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
56
EmitNativeCode(CodeGenerator * codegen)57 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
58 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
59 __ Bind(GetEntryLabel());
60 if (instruction_->CanThrowIntoCatchBlock()) {
61 // Live registers will be restored in the catch block if caught.
62 SaveLiveRegisters(codegen, instruction_->GetLocations());
63 }
64 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
65 instruction_,
66 instruction_->GetDexPc(),
67 this);
68 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
69 }
70
IsFatal() const71 bool IsFatal() const OVERRIDE { return true; }
72
GetDescription() const73 const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
74
75 private:
76 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
77 };
78
79 class DivZeroCheckSlowPathX86 : public SlowPathCode {
80 public:
DivZeroCheckSlowPathX86(HDivZeroCheck * instruction)81 explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
82
EmitNativeCode(CodeGenerator * codegen)83 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
84 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
85 __ Bind(GetEntryLabel());
86 if (instruction_->CanThrowIntoCatchBlock()) {
87 // Live registers will be restored in the catch block if caught.
88 SaveLiveRegisters(codegen, instruction_->GetLocations());
89 }
90 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
91 instruction_,
92 instruction_->GetDexPc(),
93 this);
94 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
95 }
96
IsFatal() const97 bool IsFatal() const OVERRIDE { return true; }
98
GetDescription() const99 const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
100
101 private:
102 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
103 };
104
105 class DivRemMinusOneSlowPathX86 : public SlowPathCode {
106 public:
DivRemMinusOneSlowPathX86(HInstruction * instruction,Register reg,bool is_div)107 DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
108 : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
109
EmitNativeCode(CodeGenerator * codegen)110 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
111 __ Bind(GetEntryLabel());
112 if (is_div_) {
113 __ negl(reg_);
114 } else {
115 __ movl(reg_, Immediate(0));
116 }
117 __ jmp(GetExitLabel());
118 }
119
GetDescription() const120 const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
121
122 private:
123 Register reg_;
124 bool is_div_;
125 DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
126 };
127
128 class BoundsCheckSlowPathX86 : public SlowPathCode {
129 public:
BoundsCheckSlowPathX86(HBoundsCheck * instruction)130 explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
131
EmitNativeCode(CodeGenerator * codegen)132 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
133 LocationSummary* locations = instruction_->GetLocations();
134 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
135 __ Bind(GetEntryLabel());
136 // We're moving two locations to locations that could overlap, so we need a parallel
137 // move resolver.
138 if (instruction_->CanThrowIntoCatchBlock()) {
139 // Live registers will be restored in the catch block if caught.
140 SaveLiveRegisters(codegen, instruction_->GetLocations());
141 }
142 InvokeRuntimeCallingConvention calling_convention;
143 x86_codegen->EmitParallelMoves(
144 locations->InAt(0),
145 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
146 Primitive::kPrimInt,
147 locations->InAt(1),
148 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
149 Primitive::kPrimInt);
150 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
151 instruction_,
152 instruction_->GetDexPc(),
153 this);
154 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
155 }
156
IsFatal() const157 bool IsFatal() const OVERRIDE { return true; }
158
GetDescription() const159 const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
160
161 private:
162 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
163 };
164
165 class SuspendCheckSlowPathX86 : public SlowPathCode {
166 public:
SuspendCheckSlowPathX86(HSuspendCheck * instruction,HBasicBlock * successor)167 SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
168 : SlowPathCode(instruction), successor_(successor) {}
169
EmitNativeCode(CodeGenerator * codegen)170 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
171 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
172 __ Bind(GetEntryLabel());
173 SaveLiveRegisters(codegen, instruction_->GetLocations());
174 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
175 instruction_,
176 instruction_->GetDexPc(),
177 this);
178 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
179 RestoreLiveRegisters(codegen, instruction_->GetLocations());
180 if (successor_ == nullptr) {
181 __ jmp(GetReturnLabel());
182 } else {
183 __ jmp(x86_codegen->GetLabelOf(successor_));
184 }
185 }
186
GetReturnLabel()187 Label* GetReturnLabel() {
188 DCHECK(successor_ == nullptr);
189 return &return_label_;
190 }
191
GetSuccessor() const192 HBasicBlock* GetSuccessor() const {
193 return successor_;
194 }
195
GetDescription() const196 const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
197
198 private:
199 HBasicBlock* const successor_;
200 Label return_label_;
201
202 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
203 };
204
205 class LoadStringSlowPathX86 : public SlowPathCode {
206 public:
LoadStringSlowPathX86(HLoadString * instruction)207 explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
208
EmitNativeCode(CodeGenerator * codegen)209 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
210 LocationSummary* locations = instruction_->GetLocations();
211 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
212
213 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
214 __ Bind(GetEntryLabel());
215 SaveLiveRegisters(codegen, locations);
216
217 InvokeRuntimeCallingConvention calling_convention;
218 const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
219 __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index));
220 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
221 instruction_,
222 instruction_->GetDexPc(),
223 this);
224 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
225 x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
226 RestoreLiveRegisters(codegen, locations);
227
228 __ jmp(GetExitLabel());
229 }
230
GetDescription() const231 const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
232
233 private:
234 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
235 };
236
237 class LoadClassSlowPathX86 : public SlowPathCode {
238 public:
LoadClassSlowPathX86(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)239 LoadClassSlowPathX86(HLoadClass* cls,
240 HInstruction* at,
241 uint32_t dex_pc,
242 bool do_clinit)
243 : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
244 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
245 }
246
EmitNativeCode(CodeGenerator * codegen)247 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
248 LocationSummary* locations = at_->GetLocations();
249 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
250 __ Bind(GetEntryLabel());
251 SaveLiveRegisters(codegen, locations);
252
253 InvokeRuntimeCallingConvention calling_convention;
254 __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex()));
255 x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
256 : QUICK_ENTRY_POINT(pInitializeType),
257 at_, dex_pc_, this);
258 if (do_clinit_) {
259 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
260 } else {
261 CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
262 }
263
264 // Move the class to the desired location.
265 Location out = locations->Out();
266 if (out.IsValid()) {
267 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
268 x86_codegen->Move32(out, Location::RegisterLocation(EAX));
269 }
270
271 RestoreLiveRegisters(codegen, locations);
272 __ jmp(GetExitLabel());
273 }
274
GetDescription() const275 const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
276
277 private:
278 // The class this slow path will load.
279 HLoadClass* const cls_;
280
281 // The instruction where this slow path is happening.
282 // (Might be the load class or an initialization check).
283 HInstruction* const at_;
284
285 // The dex PC of `at_`.
286 const uint32_t dex_pc_;
287
288 // Whether to initialize the class.
289 const bool do_clinit_;
290
291 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
292 };
293
294 class TypeCheckSlowPathX86 : public SlowPathCode {
295 public:
TypeCheckSlowPathX86(HInstruction * instruction,bool is_fatal)296 TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
297 : SlowPathCode(instruction), is_fatal_(is_fatal) {}
298
EmitNativeCode(CodeGenerator * codegen)299 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
300 LocationSummary* locations = instruction_->GetLocations();
301 Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
302 : locations->Out();
303 DCHECK(instruction_->IsCheckCast()
304 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
305
306 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
307 __ Bind(GetEntryLabel());
308
309 if (!is_fatal_) {
310 SaveLiveRegisters(codegen, locations);
311 }
312
313 // We're moving two locations to locations that could overlap, so we need a parallel
314 // move resolver.
315 InvokeRuntimeCallingConvention calling_convention;
316 x86_codegen->EmitParallelMoves(
317 locations->InAt(1),
318 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
319 Primitive::kPrimNot,
320 object_class,
321 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
322 Primitive::kPrimNot);
323
324 if (instruction_->IsInstanceOf()) {
325 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
326 instruction_,
327 instruction_->GetDexPc(),
328 this);
329 CheckEntrypointTypes<
330 kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
331 } else {
332 DCHECK(instruction_->IsCheckCast());
333 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
334 instruction_,
335 instruction_->GetDexPc(),
336 this);
337 CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
338 }
339
340 if (!is_fatal_) {
341 if (instruction_->IsInstanceOf()) {
342 x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
343 }
344 RestoreLiveRegisters(codegen, locations);
345
346 __ jmp(GetExitLabel());
347 }
348 }
349
GetDescription() const350 const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
IsFatal() const351 bool IsFatal() const OVERRIDE { return is_fatal_; }
352
353 private:
354 const bool is_fatal_;
355
356 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
357 };
358
359 class DeoptimizationSlowPathX86 : public SlowPathCode {
360 public:
DeoptimizationSlowPathX86(HDeoptimize * instruction)361 explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
362 : SlowPathCode(instruction) {}
363
EmitNativeCode(CodeGenerator * codegen)364 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
365 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
366 __ Bind(GetEntryLabel());
367 SaveLiveRegisters(codegen, instruction_->GetLocations());
368 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
369 instruction_,
370 instruction_->GetDexPc(),
371 this);
372 CheckEntrypointTypes<kQuickDeoptimize, void, void>();
373 }
374
GetDescription() const375 const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
376
377 private:
378 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
379 };
380
381 class ArraySetSlowPathX86 : public SlowPathCode {
382 public:
ArraySetSlowPathX86(HInstruction * instruction)383 explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
384
EmitNativeCode(CodeGenerator * codegen)385 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
386 LocationSummary* locations = instruction_->GetLocations();
387 __ Bind(GetEntryLabel());
388 SaveLiveRegisters(codegen, locations);
389
390 InvokeRuntimeCallingConvention calling_convention;
391 HParallelMove parallel_move(codegen->GetGraph()->GetArena());
392 parallel_move.AddMove(
393 locations->InAt(0),
394 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
395 Primitive::kPrimNot,
396 nullptr);
397 parallel_move.AddMove(
398 locations->InAt(1),
399 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
400 Primitive::kPrimInt,
401 nullptr);
402 parallel_move.AddMove(
403 locations->InAt(2),
404 Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
405 Primitive::kPrimNot,
406 nullptr);
407 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
408
409 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
410 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
411 instruction_,
412 instruction_->GetDexPc(),
413 this);
414 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
415 RestoreLiveRegisters(codegen, locations);
416 __ jmp(GetExitLabel());
417 }
418
GetDescription() const419 const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
420
421 private:
422 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
423 };
424
425 // Slow path marking an object during a read barrier.
426 class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
427 public:
ReadBarrierMarkSlowPathX86(HInstruction * instruction,Location out,Location obj)428 ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location out, Location obj)
429 : SlowPathCode(instruction), out_(out), obj_(obj) {
430 DCHECK(kEmitCompilerReadBarrier);
431 }
432
GetDescription() const433 const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
434
EmitNativeCode(CodeGenerator * codegen)435 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
436 LocationSummary* locations = instruction_->GetLocations();
437 Register reg_out = out_.AsRegister<Register>();
438 DCHECK(locations->CanCall());
439 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
440 DCHECK(instruction_->IsInstanceFieldGet() ||
441 instruction_->IsStaticFieldGet() ||
442 instruction_->IsArrayGet() ||
443 instruction_->IsLoadClass() ||
444 instruction_->IsLoadString() ||
445 instruction_->IsInstanceOf() ||
446 instruction_->IsCheckCast())
447 << "Unexpected instruction in read barrier marking slow path: "
448 << instruction_->DebugName();
449
450 __ Bind(GetEntryLabel());
451 SaveLiveRegisters(codegen, locations);
452
453 InvokeRuntimeCallingConvention calling_convention;
454 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
455 x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
456 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
457 instruction_,
458 instruction_->GetDexPc(),
459 this);
460 CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
461 x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
462
463 RestoreLiveRegisters(codegen, locations);
464 __ jmp(GetExitLabel());
465 }
466
467 private:
468 const Location out_;
469 const Location obj_;
470
471 DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
472 };
473
474 // Slow path generating a read barrier for a heap reference.
475 class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
476 public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)477 ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
478 Location out,
479 Location ref,
480 Location obj,
481 uint32_t offset,
482 Location index)
483 : SlowPathCode(instruction),
484 out_(out),
485 ref_(ref),
486 obj_(obj),
487 offset_(offset),
488 index_(index) {
489 DCHECK(kEmitCompilerReadBarrier);
490 // If `obj` is equal to `out` or `ref`, it means the initial object
491 // has been overwritten by (or after) the heap object reference load
492 // to be instrumented, e.g.:
493 //
494 // __ movl(out, Address(out, offset));
495 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
496 //
497 // In that case, we have lost the information about the original
498 // object, and the emitted read barrier cannot work properly.
499 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
500 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
501 }
502
EmitNativeCode(CodeGenerator * codegen)503 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
504 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
505 LocationSummary* locations = instruction_->GetLocations();
506 Register reg_out = out_.AsRegister<Register>();
507 DCHECK(locations->CanCall());
508 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
509 DCHECK(!instruction_->IsInvoke() ||
510 (instruction_->IsInvokeStaticOrDirect() &&
511 instruction_->GetLocations()->Intrinsified()))
512 << "Unexpected instruction in read barrier for heap reference slow path: "
513 << instruction_->DebugName();
514
515 __ Bind(GetEntryLabel());
516 SaveLiveRegisters(codegen, locations);
517
518 // We may have to change the index's value, but as `index_` is a
519 // constant member (like other "inputs" of this slow path),
520 // introduce a copy of it, `index`.
521 Location index = index_;
522 if (index_.IsValid()) {
523 // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
524 if (instruction_->IsArrayGet()) {
525 // Compute the actual memory offset and store it in `index`.
526 Register index_reg = index_.AsRegister<Register>();
527 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
528 if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
529 // We are about to change the value of `index_reg` (see the
530 // calls to art::x86::X86Assembler::shll and
531 // art::x86::X86Assembler::AddImmediate below), but it has
532 // not been saved by the previous call to
533 // art::SlowPathCode::SaveLiveRegisters, as it is a
534 // callee-save register --
535 // art::SlowPathCode::SaveLiveRegisters does not consider
536 // callee-save registers, as it has been designed with the
537 // assumption that callee-save registers are supposed to be
538 // handled by the called function. So, as a callee-save
539 // register, `index_reg` _would_ eventually be saved onto
540 // the stack, but it would be too late: we would have
541 // changed its value earlier. Therefore, we manually save
542 // it here into another freely available register,
543 // `free_reg`, chosen of course among the caller-save
544 // registers (as a callee-save `free_reg` register would
545 // exhibit the same problem).
546 //
547 // Note we could have requested a temporary register from
548 // the register allocator instead; but we prefer not to, as
549 // this is a slow path, and we know we can find a
550 // caller-save register that is available.
551 Register free_reg = FindAvailableCallerSaveRegister(codegen);
552 __ movl(free_reg, index_reg);
553 index_reg = free_reg;
554 index = Location::RegisterLocation(index_reg);
555 } else {
556 // The initial register stored in `index_` has already been
557 // saved in the call to art::SlowPathCode::SaveLiveRegisters
558 // (as it is not a callee-save register), so we can freely
559 // use it.
560 }
561 // Shifting the index value contained in `index_reg` by the scale
562 // factor (2) cannot overflow in practice, as the runtime is
563 // unable to allocate object arrays with a size larger than
564 // 2^26 - 1 (that is, 2^28 - 4 bytes).
565 __ shll(index_reg, Immediate(TIMES_4));
566 static_assert(
567 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
568 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
569 __ AddImmediate(index_reg, Immediate(offset_));
570 } else {
571 DCHECK(instruction_->IsInvoke());
572 DCHECK(instruction_->GetLocations()->Intrinsified());
573 DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
574 (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
575 << instruction_->AsInvoke()->GetIntrinsic();
576 DCHECK_EQ(offset_, 0U);
577 DCHECK(index_.IsRegisterPair());
578 // UnsafeGet's offset location is a register pair, the low
579 // part contains the correct offset.
580 index = index_.ToLow();
581 }
582 }
583
584 // We're moving two or three locations to locations that could
585 // overlap, so we need a parallel move resolver.
586 InvokeRuntimeCallingConvention calling_convention;
587 HParallelMove parallel_move(codegen->GetGraph()->GetArena());
588 parallel_move.AddMove(ref_,
589 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
590 Primitive::kPrimNot,
591 nullptr);
592 parallel_move.AddMove(obj_,
593 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
594 Primitive::kPrimNot,
595 nullptr);
596 if (index.IsValid()) {
597 parallel_move.AddMove(index,
598 Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
599 Primitive::kPrimInt,
600 nullptr);
601 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
602 } else {
603 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
604 __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
605 }
606 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
607 instruction_,
608 instruction_->GetDexPc(),
609 this);
610 CheckEntrypointTypes<
611 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
612 x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
613
614 RestoreLiveRegisters(codegen, locations);
615 __ jmp(GetExitLabel());
616 }
617
GetDescription() const618 const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
619
620 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)621 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
622 size_t ref = static_cast<int>(ref_.AsRegister<Register>());
623 size_t obj = static_cast<int>(obj_.AsRegister<Register>());
624 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
625 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
626 return static_cast<Register>(i);
627 }
628 }
629 // We shall never fail to find a free caller-save register, as
630 // there are more than two core caller-save registers on x86
631 // (meaning it is possible to find one which is different from
632 // `ref` and `obj`).
633 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
634 LOG(FATAL) << "Could not find a free caller-save register";
635 UNREACHABLE();
636 }
637
638 const Location out_;
639 const Location ref_;
640 const Location obj_;
641 const uint32_t offset_;
642 // An additional location containing an index to an array.
643 // Only used for HArrayGet and the UnsafeGetObject &
644 // UnsafeGetObjectVolatile intrinsics.
645 const Location index_;
646
647 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
648 };
649
650 // Slow path generating a read barrier for a GC root.
651 class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
652 public:
ReadBarrierForRootSlowPathX86(HInstruction * instruction,Location out,Location root)653 ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
654 : SlowPathCode(instruction), out_(out), root_(root) {
655 DCHECK(kEmitCompilerReadBarrier);
656 }
657
EmitNativeCode(CodeGenerator * codegen)658 void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
659 LocationSummary* locations = instruction_->GetLocations();
660 Register reg_out = out_.AsRegister<Register>();
661 DCHECK(locations->CanCall());
662 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
663 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
664 << "Unexpected instruction in read barrier for GC root slow path: "
665 << instruction_->DebugName();
666
667 __ Bind(GetEntryLabel());
668 SaveLiveRegisters(codegen, locations);
669
670 InvokeRuntimeCallingConvention calling_convention;
671 CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
672 x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
673 x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
674 instruction_,
675 instruction_->GetDexPc(),
676 this);
677 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
678 x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
679
680 RestoreLiveRegisters(codegen, locations);
681 __ jmp(GetExitLabel());
682 }
683
GetDescription() const684 const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
685
686 private:
687 const Location out_;
688 const Location root_;
689
690 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
691 };
692
693 #undef __
694 #define __ down_cast<X86Assembler*>(GetAssembler())->
695
X86Condition(IfCondition cond)696 inline Condition X86Condition(IfCondition cond) {
697 switch (cond) {
698 case kCondEQ: return kEqual;
699 case kCondNE: return kNotEqual;
700 case kCondLT: return kLess;
701 case kCondLE: return kLessEqual;
702 case kCondGT: return kGreater;
703 case kCondGE: return kGreaterEqual;
704 case kCondB: return kBelow;
705 case kCondBE: return kBelowEqual;
706 case kCondA: return kAbove;
707 case kCondAE: return kAboveEqual;
708 }
709 LOG(FATAL) << "Unreachable";
710 UNREACHABLE();
711 }
712
713 // Maps signed condition to unsigned condition and FP condition to x86 name.
X86UnsignedOrFPCondition(IfCondition cond)714 inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
715 switch (cond) {
716 case kCondEQ: return kEqual;
717 case kCondNE: return kNotEqual;
718 // Signed to unsigned, and FP to x86 name.
719 case kCondLT: return kBelow;
720 case kCondLE: return kBelowEqual;
721 case kCondGT: return kAbove;
722 case kCondGE: return kAboveEqual;
723 // Unsigned remain unchanged.
724 case kCondB: return kBelow;
725 case kCondBE: return kBelowEqual;
726 case kCondA: return kAbove;
727 case kCondAE: return kAboveEqual;
728 }
729 LOG(FATAL) << "Unreachable";
730 UNREACHABLE();
731 }
732
DumpCoreRegister(std::ostream & stream,int reg) const733 void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
734 stream << Register(reg);
735 }
736
DumpFloatingPointRegister(std::ostream & stream,int reg) const737 void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
738 stream << XmmRegister(reg);
739 }
740
SaveCoreRegister(size_t stack_index,uint32_t reg_id)741 size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
742 __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
743 return kX86WordSize;
744 }
745
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)746 size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
747 __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
748 return kX86WordSize;
749 }
750
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)751 size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
752 __ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
753 return GetFloatingPointSpillSlotSize();
754 }
755
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)756 size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
757 __ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
758 return GetFloatingPointSpillSlotSize();
759 }
760
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)761 void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
762 HInstruction* instruction,
763 uint32_t dex_pc,
764 SlowPathCode* slow_path) {
765 InvokeRuntime(GetThreadOffset<kX86WordSize>(entrypoint).Int32Value(),
766 instruction,
767 dex_pc,
768 slow_path);
769 }
770
InvokeRuntime(int32_t entry_point_offset,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)771 void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset,
772 HInstruction* instruction,
773 uint32_t dex_pc,
774 SlowPathCode* slow_path) {
775 ValidateInvokeRuntime(instruction, slow_path);
776 __ fs()->call(Address::Absolute(entry_point_offset));
777 RecordPcInfo(instruction, dex_pc, slow_path);
778 }
779
CodeGeneratorX86(HGraph * graph,const X86InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)780 CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
781 const X86InstructionSetFeatures& isa_features,
782 const CompilerOptions& compiler_options,
783 OptimizingCompilerStats* stats)
784 : CodeGenerator(graph,
785 kNumberOfCpuRegisters,
786 kNumberOfXmmRegisters,
787 kNumberOfRegisterPairs,
788 ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
789 arraysize(kCoreCalleeSaves))
790 | (1 << kFakeReturnRegister),
791 0,
792 compiler_options,
793 stats),
794 block_labels_(nullptr),
795 location_builder_(graph, this),
796 instruction_visitor_(graph, this),
797 move_resolver_(graph->GetArena(), this),
798 assembler_(graph->GetArena()),
799 isa_features_(isa_features),
800 method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
801 relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
802 pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
803 simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
804 string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
805 constant_area_start_(-1),
806 fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
807 method_address_offset_(-1) {
808 // Use a fake return address register to mimic Quick.
809 AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
810 }
811
SetupBlockedRegisters() const812 void CodeGeneratorX86::SetupBlockedRegisters() const {
813 // Don't allocate the dalvik style register pair passing.
814 blocked_register_pairs_[ECX_EDX] = true;
815
816 // Stack register is always reserved.
817 blocked_core_registers_[ESP] = true;
818
819 UpdateBlockedPairRegisters();
820 }
821
UpdateBlockedPairRegisters() const822 void CodeGeneratorX86::UpdateBlockedPairRegisters() const {
823 for (int i = 0; i < kNumberOfRegisterPairs; i++) {
824 X86ManagedRegister current =
825 X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
826 if (blocked_core_registers_[current.AsRegisterPairLow()]
827 || blocked_core_registers_[current.AsRegisterPairHigh()]) {
828 blocked_register_pairs_[i] = true;
829 }
830 }
831 }
832
InstructionCodeGeneratorX86(HGraph * graph,CodeGeneratorX86 * codegen)833 InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
834 : InstructionCodeGenerator(graph, codegen),
835 assembler_(codegen->GetAssembler()),
836 codegen_(codegen) {}
837
DWARFReg(Register reg)838 static dwarf::Reg DWARFReg(Register reg) {
839 return dwarf::Reg::X86Core(static_cast<int>(reg));
840 }
841
GenerateFrameEntry()842 void CodeGeneratorX86::GenerateFrameEntry() {
843 __ cfi().SetCurrentCFAOffset(kX86WordSize); // return address
844 __ Bind(&frame_entry_label_);
845 bool skip_overflow_check =
846 IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
847 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
848
849 if (!skip_overflow_check) {
850 __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
851 RecordPcInfo(nullptr, 0);
852 }
853
854 if (HasEmptyFrame()) {
855 return;
856 }
857
858 for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
859 Register reg = kCoreCalleeSaves[i];
860 if (allocated_registers_.ContainsCoreRegister(reg)) {
861 __ pushl(reg);
862 __ cfi().AdjustCFAOffset(kX86WordSize);
863 __ cfi().RelOffset(DWARFReg(reg), 0);
864 }
865 }
866
867 int adjust = GetFrameSize() - FrameEntrySpillSize();
868 __ subl(ESP, Immediate(adjust));
869 __ cfi().AdjustCFAOffset(adjust);
870 __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
871 }
872
GenerateFrameExit()873 void CodeGeneratorX86::GenerateFrameExit() {
874 __ cfi().RememberState();
875 if (!HasEmptyFrame()) {
876 int adjust = GetFrameSize() - FrameEntrySpillSize();
877 __ addl(ESP, Immediate(adjust));
878 __ cfi().AdjustCFAOffset(-adjust);
879
880 for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
881 Register reg = kCoreCalleeSaves[i];
882 if (allocated_registers_.ContainsCoreRegister(reg)) {
883 __ popl(reg);
884 __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
885 __ cfi().Restore(DWARFReg(reg));
886 }
887 }
888 }
889 __ ret();
890 __ cfi().RestoreState();
891 __ cfi().DefCFAOffset(GetFrameSize());
892 }
893
Bind(HBasicBlock * block)894 void CodeGeneratorX86::Bind(HBasicBlock* block) {
895 __ Bind(GetLabelOf(block));
896 }
897
GetReturnLocation(Primitive::Type type) const898 Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
899 switch (type) {
900 case Primitive::kPrimBoolean:
901 case Primitive::kPrimByte:
902 case Primitive::kPrimChar:
903 case Primitive::kPrimShort:
904 case Primitive::kPrimInt:
905 case Primitive::kPrimNot:
906 return Location::RegisterLocation(EAX);
907
908 case Primitive::kPrimLong:
909 return Location::RegisterPairLocation(EAX, EDX);
910
911 case Primitive::kPrimVoid:
912 return Location::NoLocation();
913
914 case Primitive::kPrimDouble:
915 case Primitive::kPrimFloat:
916 return Location::FpuRegisterLocation(XMM0);
917 }
918
919 UNREACHABLE();
920 }
921
GetMethodLocation() const922 Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
923 return Location::RegisterLocation(kMethodRegisterArgument);
924 }
925
GetNextLocation(Primitive::Type type)926 Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
927 switch (type) {
928 case Primitive::kPrimBoolean:
929 case Primitive::kPrimByte:
930 case Primitive::kPrimChar:
931 case Primitive::kPrimShort:
932 case Primitive::kPrimInt:
933 case Primitive::kPrimNot: {
934 uint32_t index = gp_index_++;
935 stack_index_++;
936 if (index < calling_convention.GetNumberOfRegisters()) {
937 return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
938 } else {
939 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
940 }
941 }
942
943 case Primitive::kPrimLong: {
944 uint32_t index = gp_index_;
945 gp_index_ += 2;
946 stack_index_ += 2;
947 if (index + 1 < calling_convention.GetNumberOfRegisters()) {
948 X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
949 calling_convention.GetRegisterPairAt(index));
950 return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
951 } else {
952 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
953 }
954 }
955
956 case Primitive::kPrimFloat: {
957 uint32_t index = float_index_++;
958 stack_index_++;
959 if (index < calling_convention.GetNumberOfFpuRegisters()) {
960 return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
961 } else {
962 return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
963 }
964 }
965
966 case Primitive::kPrimDouble: {
967 uint32_t index = float_index_++;
968 stack_index_ += 2;
969 if (index < calling_convention.GetNumberOfFpuRegisters()) {
970 return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
971 } else {
972 return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
973 }
974 }
975
976 case Primitive::kPrimVoid:
977 LOG(FATAL) << "Unexpected parameter type " << type;
978 break;
979 }
980 return Location::NoLocation();
981 }
982
Move32(Location destination,Location source)983 void CodeGeneratorX86::Move32(Location destination, Location source) {
984 if (source.Equals(destination)) {
985 return;
986 }
987 if (destination.IsRegister()) {
988 if (source.IsRegister()) {
989 __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
990 } else if (source.IsFpuRegister()) {
991 __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
992 } else {
993 DCHECK(source.IsStackSlot());
994 __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
995 }
996 } else if (destination.IsFpuRegister()) {
997 if (source.IsRegister()) {
998 __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
999 } else if (source.IsFpuRegister()) {
1000 __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1001 } else {
1002 DCHECK(source.IsStackSlot());
1003 __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1004 }
1005 } else {
1006 DCHECK(destination.IsStackSlot()) << destination;
1007 if (source.IsRegister()) {
1008 __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
1009 } else if (source.IsFpuRegister()) {
1010 __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1011 } else if (source.IsConstant()) {
1012 HConstant* constant = source.GetConstant();
1013 int32_t value = GetInt32ValueOf(constant);
1014 __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
1015 } else {
1016 DCHECK(source.IsStackSlot());
1017 __ pushl(Address(ESP, source.GetStackIndex()));
1018 __ popl(Address(ESP, destination.GetStackIndex()));
1019 }
1020 }
1021 }
1022
Move64(Location destination,Location source)1023 void CodeGeneratorX86::Move64(Location destination, Location source) {
1024 if (source.Equals(destination)) {
1025 return;
1026 }
1027 if (destination.IsRegisterPair()) {
1028 if (source.IsRegisterPair()) {
1029 EmitParallelMoves(
1030 Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1031 Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1032 Primitive::kPrimInt,
1033 Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1034 Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1035 Primitive::kPrimInt);
1036 } else if (source.IsFpuRegister()) {
1037 XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
1038 __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
1039 __ psrlq(src_reg, Immediate(32));
1040 __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
1041 } else {
1042 // No conflict possible, so just do the moves.
1043 DCHECK(source.IsDoubleStackSlot());
1044 __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
1045 __ movl(destination.AsRegisterPairHigh<Register>(),
1046 Address(ESP, source.GetHighStackIndex(kX86WordSize)));
1047 }
1048 } else if (destination.IsFpuRegister()) {
1049 if (source.IsFpuRegister()) {
1050 __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1051 } else if (source.IsDoubleStackSlot()) {
1052 __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1053 } else if (source.IsRegisterPair()) {
1054 size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
1055 // Create stack space for 2 elements.
1056 __ subl(ESP, Immediate(2 * elem_size));
1057 __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
1058 __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
1059 __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
1060 // And remove the temporary stack space we allocated.
1061 __ addl(ESP, Immediate(2 * elem_size));
1062 } else {
1063 LOG(FATAL) << "Unimplemented";
1064 }
1065 } else {
1066 DCHECK(destination.IsDoubleStackSlot()) << destination;
1067 if (source.IsRegisterPair()) {
1068 // No conflict possible, so just do the moves.
1069 __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
1070 __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1071 source.AsRegisterPairHigh<Register>());
1072 } else if (source.IsFpuRegister()) {
1073 __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1074 } else if (source.IsConstant()) {
1075 HConstant* constant = source.GetConstant();
1076 int64_t value;
1077 if (constant->IsLongConstant()) {
1078 value = constant->AsLongConstant()->GetValue();
1079 } else {
1080 DCHECK(constant->IsDoubleConstant());
1081 value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
1082 }
1083 __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
1084 __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value)));
1085 } else {
1086 DCHECK(source.IsDoubleStackSlot()) << source;
1087 EmitParallelMoves(
1088 Location::StackSlot(source.GetStackIndex()),
1089 Location::StackSlot(destination.GetStackIndex()),
1090 Primitive::kPrimInt,
1091 Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
1092 Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
1093 Primitive::kPrimInt);
1094 }
1095 }
1096 }
1097
MoveConstant(Location location,int32_t value)1098 void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
1099 DCHECK(location.IsRegister());
1100 __ movl(location.AsRegister<Register>(), Immediate(value));
1101 }
1102
MoveLocation(Location dst,Location src,Primitive::Type dst_type)1103 void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1104 HParallelMove move(GetGraph()->GetArena());
1105 if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
1106 move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
1107 move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
1108 } else {
1109 move.AddMove(src, dst, dst_type, nullptr);
1110 }
1111 GetMoveResolver()->EmitNativeCode(&move);
1112 }
1113
AddLocationAsTemp(Location location,LocationSummary * locations)1114 void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
1115 if (location.IsRegister()) {
1116 locations->AddTemp(location);
1117 } else if (location.IsRegisterPair()) {
1118 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1119 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1120 } else {
1121 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1122 }
1123 }
1124
HandleGoto(HInstruction * got,HBasicBlock * successor)1125 void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1126 DCHECK(!successor->IsExitBlock());
1127
1128 HBasicBlock* block = got->GetBlock();
1129 HInstruction* previous = got->GetPrevious();
1130
1131 HLoopInformation* info = block->GetLoopInformation();
1132 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1133 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1134 return;
1135 }
1136
1137 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1138 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1139 }
1140 if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1141 __ jmp(codegen_->GetLabelOf(successor));
1142 }
1143 }
1144
VisitGoto(HGoto * got)1145 void LocationsBuilderX86::VisitGoto(HGoto* got) {
1146 got->SetLocations(nullptr);
1147 }
1148
VisitGoto(HGoto * got)1149 void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
1150 HandleGoto(got, got->GetSuccessor());
1151 }
1152
VisitTryBoundary(HTryBoundary * try_boundary)1153 void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1154 try_boundary->SetLocations(nullptr);
1155 }
1156
VisitTryBoundary(HTryBoundary * try_boundary)1157 void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1158 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1159 if (!successor->IsExitBlock()) {
1160 HandleGoto(try_boundary, successor);
1161 }
1162 }
1163
VisitExit(HExit * exit)1164 void LocationsBuilderX86::VisitExit(HExit* exit) {
1165 exit->SetLocations(nullptr);
1166 }
1167
VisitExit(HExit * exit ATTRIBUTE_UNUSED)1168 void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1169 }
1170
1171 template<class LabelType>
GenerateFPJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1172 void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
1173 LabelType* true_label,
1174 LabelType* false_label) {
1175 if (cond->IsFPConditionTrueIfNaN()) {
1176 __ j(kUnordered, true_label);
1177 } else if (cond->IsFPConditionFalseIfNaN()) {
1178 __ j(kUnordered, false_label);
1179 }
1180 __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
1181 }
1182
1183 template<class LabelType>
GenerateLongComparesAndJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1184 void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
1185 LabelType* true_label,
1186 LabelType* false_label) {
1187 LocationSummary* locations = cond->GetLocations();
1188 Location left = locations->InAt(0);
1189 Location right = locations->InAt(1);
1190 IfCondition if_cond = cond->GetCondition();
1191
1192 Register left_high = left.AsRegisterPairHigh<Register>();
1193 Register left_low = left.AsRegisterPairLow<Register>();
1194 IfCondition true_high_cond = if_cond;
1195 IfCondition false_high_cond = cond->GetOppositeCondition();
1196 Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part
1197
1198 // Set the conditions for the test, remembering that == needs to be
1199 // decided using the low words.
1200 switch (if_cond) {
1201 case kCondEQ:
1202 case kCondNE:
1203 // Nothing to do.
1204 break;
1205 case kCondLT:
1206 false_high_cond = kCondGT;
1207 break;
1208 case kCondLE:
1209 true_high_cond = kCondLT;
1210 break;
1211 case kCondGT:
1212 false_high_cond = kCondLT;
1213 break;
1214 case kCondGE:
1215 true_high_cond = kCondGT;
1216 break;
1217 case kCondB:
1218 false_high_cond = kCondA;
1219 break;
1220 case kCondBE:
1221 true_high_cond = kCondB;
1222 break;
1223 case kCondA:
1224 false_high_cond = kCondB;
1225 break;
1226 case kCondAE:
1227 true_high_cond = kCondA;
1228 break;
1229 }
1230
1231 if (right.IsConstant()) {
1232 int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1233 int32_t val_high = High32Bits(value);
1234 int32_t val_low = Low32Bits(value);
1235
1236 codegen_->Compare32BitValue(left_high, val_high);
1237 if (if_cond == kCondNE) {
1238 __ j(X86Condition(true_high_cond), true_label);
1239 } else if (if_cond == kCondEQ) {
1240 __ j(X86Condition(false_high_cond), false_label);
1241 } else {
1242 __ j(X86Condition(true_high_cond), true_label);
1243 __ j(X86Condition(false_high_cond), false_label);
1244 }
1245 // Must be equal high, so compare the lows.
1246 codegen_->Compare32BitValue(left_low, val_low);
1247 } else if (right.IsRegisterPair()) {
1248 Register right_high = right.AsRegisterPairHigh<Register>();
1249 Register right_low = right.AsRegisterPairLow<Register>();
1250
1251 __ cmpl(left_high, right_high);
1252 if (if_cond == kCondNE) {
1253 __ j(X86Condition(true_high_cond), true_label);
1254 } else if (if_cond == kCondEQ) {
1255 __ j(X86Condition(false_high_cond), false_label);
1256 } else {
1257 __ j(X86Condition(true_high_cond), true_label);
1258 __ j(X86Condition(false_high_cond), false_label);
1259 }
1260 // Must be equal high, so compare the lows.
1261 __ cmpl(left_low, right_low);
1262 } else {
1263 DCHECK(right.IsDoubleStackSlot());
1264 __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
1265 if (if_cond == kCondNE) {
1266 __ j(X86Condition(true_high_cond), true_label);
1267 } else if (if_cond == kCondEQ) {
1268 __ j(X86Condition(false_high_cond), false_label);
1269 } else {
1270 __ j(X86Condition(true_high_cond), true_label);
1271 __ j(X86Condition(false_high_cond), false_label);
1272 }
1273 // Must be equal high, so compare the lows.
1274 __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
1275 }
1276 // The last comparison might be unsigned.
1277 __ j(final_condition, true_label);
1278 }
1279
GenerateFPCompare(Location lhs,Location rhs,HInstruction * insn,bool is_double)1280 void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
1281 Location rhs,
1282 HInstruction* insn,
1283 bool is_double) {
1284 HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
1285 if (is_double) {
1286 if (rhs.IsFpuRegister()) {
1287 __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1288 } else if (const_area != nullptr) {
1289 DCHECK(const_area->IsEmittedAtUseSite());
1290 __ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
1291 codegen_->LiteralDoubleAddress(
1292 const_area->GetConstant()->AsDoubleConstant()->GetValue(),
1293 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1294 } else {
1295 DCHECK(rhs.IsDoubleStackSlot());
1296 __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1297 }
1298 } else {
1299 if (rhs.IsFpuRegister()) {
1300 __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1301 } else if (const_area != nullptr) {
1302 DCHECK(const_area->IsEmittedAtUseSite());
1303 __ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
1304 codegen_->LiteralFloatAddress(
1305 const_area->GetConstant()->AsFloatConstant()->GetValue(),
1306 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1307 } else {
1308 DCHECK(rhs.IsStackSlot());
1309 __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1310 }
1311 }
1312 }
1313
1314 template<class LabelType>
GenerateCompareTestAndBranch(HCondition * condition,LabelType * true_target_in,LabelType * false_target_in)1315 void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
1316 LabelType* true_target_in,
1317 LabelType* false_target_in) {
1318 // Generated branching requires both targets to be explicit. If either of the
1319 // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1320 LabelType fallthrough_target;
1321 LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1322 LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1323
1324 LocationSummary* locations = condition->GetLocations();
1325 Location left = locations->InAt(0);
1326 Location right = locations->InAt(1);
1327
1328 Primitive::Type type = condition->InputAt(0)->GetType();
1329 switch (type) {
1330 case Primitive::kPrimLong:
1331 GenerateLongComparesAndJumps(condition, true_target, false_target);
1332 break;
1333 case Primitive::kPrimFloat:
1334 GenerateFPCompare(left, right, condition, false);
1335 GenerateFPJumps(condition, true_target, false_target);
1336 break;
1337 case Primitive::kPrimDouble:
1338 GenerateFPCompare(left, right, condition, true);
1339 GenerateFPJumps(condition, true_target, false_target);
1340 break;
1341 default:
1342 LOG(FATAL) << "Unexpected compare type " << type;
1343 }
1344
1345 if (false_target != &fallthrough_target) {
1346 __ jmp(false_target);
1347 }
1348
1349 if (fallthrough_target.IsLinked()) {
1350 __ Bind(&fallthrough_target);
1351 }
1352 }
1353
AreEflagsSetFrom(HInstruction * cond,HInstruction * branch)1354 static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
1355 // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
1356 // are set only strictly before `branch`. We can't use the eflags on long/FP
1357 // conditions if they are materialized due to the complex branching.
1358 return cond->IsCondition() &&
1359 cond->GetNext() == branch &&
1360 cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
1361 !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
1362 }
1363
1364 template<class LabelType>
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,LabelType * true_target,LabelType * false_target)1365 void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
1366 size_t condition_input_index,
1367 LabelType* true_target,
1368 LabelType* false_target) {
1369 HInstruction* cond = instruction->InputAt(condition_input_index);
1370
1371 if (true_target == nullptr && false_target == nullptr) {
1372 // Nothing to do. The code always falls through.
1373 return;
1374 } else if (cond->IsIntConstant()) {
1375 // Constant condition, statically compared against "true" (integer value 1).
1376 if (cond->AsIntConstant()->IsTrue()) {
1377 if (true_target != nullptr) {
1378 __ jmp(true_target);
1379 }
1380 } else {
1381 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1382 if (false_target != nullptr) {
1383 __ jmp(false_target);
1384 }
1385 }
1386 return;
1387 }
1388
1389 // The following code generates these patterns:
1390 // (1) true_target == nullptr && false_target != nullptr
1391 // - opposite condition true => branch to false_target
1392 // (2) true_target != nullptr && false_target == nullptr
1393 // - condition true => branch to true_target
1394 // (3) true_target != nullptr && false_target != nullptr
1395 // - condition true => branch to true_target
1396 // - branch to false_target
1397 if (IsBooleanValueOrMaterializedCondition(cond)) {
1398 if (AreEflagsSetFrom(cond, instruction)) {
1399 if (true_target == nullptr) {
1400 __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
1401 } else {
1402 __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
1403 }
1404 } else {
1405 // Materialized condition, compare against 0.
1406 Location lhs = instruction->GetLocations()->InAt(condition_input_index);
1407 if (lhs.IsRegister()) {
1408 __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
1409 } else {
1410 __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
1411 }
1412 if (true_target == nullptr) {
1413 __ j(kEqual, false_target);
1414 } else {
1415 __ j(kNotEqual, true_target);
1416 }
1417 }
1418 } else {
1419 // Condition has not been materialized, use its inputs as the comparison and
1420 // its condition as the branch condition.
1421 HCondition* condition = cond->AsCondition();
1422
1423 // If this is a long or FP comparison that has been folded into
1424 // the HCondition, generate the comparison directly.
1425 Primitive::Type type = condition->InputAt(0)->GetType();
1426 if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1427 GenerateCompareTestAndBranch(condition, true_target, false_target);
1428 return;
1429 }
1430
1431 Location lhs = condition->GetLocations()->InAt(0);
1432 Location rhs = condition->GetLocations()->InAt(1);
1433 // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
1434 if (rhs.IsRegister()) {
1435 __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
1436 } else if (rhs.IsConstant()) {
1437 int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1438 codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant);
1439 } else {
1440 __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
1441 }
1442 if (true_target == nullptr) {
1443 __ j(X86Condition(condition->GetOppositeCondition()), false_target);
1444 } else {
1445 __ j(X86Condition(condition->GetCondition()), true_target);
1446 }
1447 }
1448
1449 // If neither branch falls through (case 3), the conditional branch to `true_target`
1450 // was already emitted (case 2) and we need to emit a jump to `false_target`.
1451 if (true_target != nullptr && false_target != nullptr) {
1452 __ jmp(false_target);
1453 }
1454 }
1455
VisitIf(HIf * if_instr)1456 void LocationsBuilderX86::VisitIf(HIf* if_instr) {
1457 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1458 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1459 locations->SetInAt(0, Location::Any());
1460 }
1461 }
1462
VisitIf(HIf * if_instr)1463 void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
1464 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1465 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1466 Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1467 nullptr : codegen_->GetLabelOf(true_successor);
1468 Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1469 nullptr : codegen_->GetLabelOf(false_successor);
1470 GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1471 }
1472
VisitDeoptimize(HDeoptimize * deoptimize)1473 void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1474 LocationSummary* locations = new (GetGraph()->GetArena())
1475 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1476 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1477 locations->SetInAt(0, Location::Any());
1478 }
1479 }
1480
VisitDeoptimize(HDeoptimize * deoptimize)1481 void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1482 SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
1483 GenerateTestAndBranch<Label>(deoptimize,
1484 /* condition_input_index */ 0,
1485 slow_path->GetEntryLabel(),
1486 /* false_target */ nullptr);
1487 }
1488
SelectCanUseCMOV(HSelect * select)1489 static bool SelectCanUseCMOV(HSelect* select) {
1490 // There are no conditional move instructions for XMMs.
1491 if (Primitive::IsFloatingPointType(select->GetType())) {
1492 return false;
1493 }
1494
1495 // A FP condition doesn't generate the single CC that we need.
1496 // In 32 bit mode, a long condition doesn't generate a single CC either.
1497 HInstruction* condition = select->GetCondition();
1498 if (condition->IsCondition()) {
1499 Primitive::Type compare_type = condition->InputAt(0)->GetType();
1500 if (compare_type == Primitive::kPrimLong ||
1501 Primitive::IsFloatingPointType(compare_type)) {
1502 return false;
1503 }
1504 }
1505
1506 // We can generate a CMOV for this Select.
1507 return true;
1508 }
1509
VisitSelect(HSelect * select)1510 void LocationsBuilderX86::VisitSelect(HSelect* select) {
1511 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1512 if (Primitive::IsFloatingPointType(select->GetType())) {
1513 locations->SetInAt(0, Location::RequiresFpuRegister());
1514 locations->SetInAt(1, Location::Any());
1515 } else {
1516 locations->SetInAt(0, Location::RequiresRegister());
1517 if (SelectCanUseCMOV(select)) {
1518 if (select->InputAt(1)->IsConstant()) {
1519 // Cmov can't handle a constant value.
1520 locations->SetInAt(1, Location::RequiresRegister());
1521 } else {
1522 locations->SetInAt(1, Location::Any());
1523 }
1524 } else {
1525 locations->SetInAt(1, Location::Any());
1526 }
1527 }
1528 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1529 locations->SetInAt(2, Location::RequiresRegister());
1530 }
1531 locations->SetOut(Location::SameAsFirstInput());
1532 }
1533
GenerateIntCompare(Location lhs,Location rhs)1534 void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
1535 Register lhs_reg = lhs.AsRegister<Register>();
1536 if (rhs.IsConstant()) {
1537 int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
1538 codegen_->Compare32BitValue(lhs_reg, value);
1539 } else if (rhs.IsStackSlot()) {
1540 __ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex()));
1541 } else {
1542 __ cmpl(lhs_reg, rhs.AsRegister<Register>());
1543 }
1544 }
1545
VisitSelect(HSelect * select)1546 void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
1547 LocationSummary* locations = select->GetLocations();
1548 DCHECK(locations->InAt(0).Equals(locations->Out()));
1549 if (SelectCanUseCMOV(select)) {
1550 // If both the condition and the source types are integer, we can generate
1551 // a CMOV to implement Select.
1552
1553 HInstruction* select_condition = select->GetCondition();
1554 Condition cond = kNotEqual;
1555
1556 // Figure out how to test the 'condition'.
1557 if (select_condition->IsCondition()) {
1558 HCondition* condition = select_condition->AsCondition();
1559 if (!condition->IsEmittedAtUseSite()) {
1560 // This was a previously materialized condition.
1561 // Can we use the existing condition code?
1562 if (AreEflagsSetFrom(condition, select)) {
1563 // Materialization was the previous instruction. Condition codes are right.
1564 cond = X86Condition(condition->GetCondition());
1565 } else {
1566 // No, we have to recreate the condition code.
1567 Register cond_reg = locations->InAt(2).AsRegister<Register>();
1568 __ testl(cond_reg, cond_reg);
1569 }
1570 } else {
1571 // We can't handle FP or long here.
1572 DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
1573 DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
1574 LocationSummary* cond_locations = condition->GetLocations();
1575 GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
1576 cond = X86Condition(condition->GetCondition());
1577 }
1578 } else {
1579 // Must be a boolean condition, which needs to be compared to 0.
1580 Register cond_reg = locations->InAt(2).AsRegister<Register>();
1581 __ testl(cond_reg, cond_reg);
1582 }
1583
1584 // If the condition is true, overwrite the output, which already contains false.
1585 Location false_loc = locations->InAt(0);
1586 Location true_loc = locations->InAt(1);
1587 if (select->GetType() == Primitive::kPrimLong) {
1588 // 64 bit conditional move.
1589 Register false_high = false_loc.AsRegisterPairHigh<Register>();
1590 Register false_low = false_loc.AsRegisterPairLow<Register>();
1591 if (true_loc.IsRegisterPair()) {
1592 __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
1593 __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
1594 } else {
1595 __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
1596 __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
1597 }
1598 } else {
1599 // 32 bit conditional move.
1600 Register false_reg = false_loc.AsRegister<Register>();
1601 if (true_loc.IsRegister()) {
1602 __ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
1603 } else {
1604 __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
1605 }
1606 }
1607 } else {
1608 NearLabel false_target;
1609 GenerateTestAndBranch<NearLabel>(
1610 select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
1611 codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1612 __ Bind(&false_target);
1613 }
1614 }
1615
VisitNativeDebugInfo(HNativeDebugInfo * info)1616 void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1617 new (GetGraph()->GetArena()) LocationSummary(info);
1618 }
1619
VisitNativeDebugInfo(HNativeDebugInfo *)1620 void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
1621 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1622 }
1623
GenerateNop()1624 void CodeGeneratorX86::GenerateNop() {
1625 __ nop();
1626 }
1627
HandleCondition(HCondition * cond)1628 void LocationsBuilderX86::HandleCondition(HCondition* cond) {
1629 LocationSummary* locations =
1630 new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1631 // Handle the long/FP comparisons made in instruction simplification.
1632 switch (cond->InputAt(0)->GetType()) {
1633 case Primitive::kPrimLong: {
1634 locations->SetInAt(0, Location::RequiresRegister());
1635 locations->SetInAt(1, Location::Any());
1636 if (!cond->IsEmittedAtUseSite()) {
1637 locations->SetOut(Location::RequiresRegister());
1638 }
1639 break;
1640 }
1641 case Primitive::kPrimFloat:
1642 case Primitive::kPrimDouble: {
1643 locations->SetInAt(0, Location::RequiresFpuRegister());
1644 if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
1645 DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
1646 } else if (cond->InputAt(1)->IsConstant()) {
1647 locations->SetInAt(1, Location::RequiresFpuRegister());
1648 } else {
1649 locations->SetInAt(1, Location::Any());
1650 }
1651 if (!cond->IsEmittedAtUseSite()) {
1652 locations->SetOut(Location::RequiresRegister());
1653 }
1654 break;
1655 }
1656 default:
1657 locations->SetInAt(0, Location::RequiresRegister());
1658 locations->SetInAt(1, Location::Any());
1659 if (!cond->IsEmittedAtUseSite()) {
1660 // We need a byte register.
1661 locations->SetOut(Location::RegisterLocation(ECX));
1662 }
1663 break;
1664 }
1665 }
1666
HandleCondition(HCondition * cond)1667 void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
1668 if (cond->IsEmittedAtUseSite()) {
1669 return;
1670 }
1671
1672 LocationSummary* locations = cond->GetLocations();
1673 Location lhs = locations->InAt(0);
1674 Location rhs = locations->InAt(1);
1675 Register reg = locations->Out().AsRegister<Register>();
1676 NearLabel true_label, false_label;
1677
1678 switch (cond->InputAt(0)->GetType()) {
1679 default: {
1680 // Integer case.
1681
1682 // Clear output register: setb only sets the low byte.
1683 __ xorl(reg, reg);
1684 GenerateIntCompare(lhs, rhs);
1685 __ setb(X86Condition(cond->GetCondition()), reg);
1686 return;
1687 }
1688 case Primitive::kPrimLong:
1689 GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1690 break;
1691 case Primitive::kPrimFloat:
1692 GenerateFPCompare(lhs, rhs, cond, false);
1693 GenerateFPJumps(cond, &true_label, &false_label);
1694 break;
1695 case Primitive::kPrimDouble:
1696 GenerateFPCompare(lhs, rhs, cond, true);
1697 GenerateFPJumps(cond, &true_label, &false_label);
1698 break;
1699 }
1700
1701 // Convert the jumps into the result.
1702 NearLabel done_label;
1703
1704 // False case: result = 0.
1705 __ Bind(&false_label);
1706 __ xorl(reg, reg);
1707 __ jmp(&done_label);
1708
1709 // True case: result = 1.
1710 __ Bind(&true_label);
1711 __ movl(reg, Immediate(1));
1712 __ Bind(&done_label);
1713 }
1714
VisitEqual(HEqual * comp)1715 void LocationsBuilderX86::VisitEqual(HEqual* comp) {
1716 HandleCondition(comp);
1717 }
1718
VisitEqual(HEqual * comp)1719 void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
1720 HandleCondition(comp);
1721 }
1722
VisitNotEqual(HNotEqual * comp)1723 void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
1724 HandleCondition(comp);
1725 }
1726
VisitNotEqual(HNotEqual * comp)1727 void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
1728 HandleCondition(comp);
1729 }
1730
VisitLessThan(HLessThan * comp)1731 void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
1732 HandleCondition(comp);
1733 }
1734
VisitLessThan(HLessThan * comp)1735 void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
1736 HandleCondition(comp);
1737 }
1738
VisitLessThanOrEqual(HLessThanOrEqual * comp)1739 void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1740 HandleCondition(comp);
1741 }
1742
VisitLessThanOrEqual(HLessThanOrEqual * comp)1743 void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1744 HandleCondition(comp);
1745 }
1746
VisitGreaterThan(HGreaterThan * comp)1747 void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
1748 HandleCondition(comp);
1749 }
1750
VisitGreaterThan(HGreaterThan * comp)1751 void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
1752 HandleCondition(comp);
1753 }
1754
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1755 void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1756 HandleCondition(comp);
1757 }
1758
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1759 void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1760 HandleCondition(comp);
1761 }
1762
VisitBelow(HBelow * comp)1763 void LocationsBuilderX86::VisitBelow(HBelow* comp) {
1764 HandleCondition(comp);
1765 }
1766
VisitBelow(HBelow * comp)1767 void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
1768 HandleCondition(comp);
1769 }
1770
VisitBelowOrEqual(HBelowOrEqual * comp)1771 void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1772 HandleCondition(comp);
1773 }
1774
VisitBelowOrEqual(HBelowOrEqual * comp)1775 void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1776 HandleCondition(comp);
1777 }
1778
VisitAbove(HAbove * comp)1779 void LocationsBuilderX86::VisitAbove(HAbove* comp) {
1780 HandleCondition(comp);
1781 }
1782
VisitAbove(HAbove * comp)1783 void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
1784 HandleCondition(comp);
1785 }
1786
VisitAboveOrEqual(HAboveOrEqual * comp)1787 void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1788 HandleCondition(comp);
1789 }
1790
VisitAboveOrEqual(HAboveOrEqual * comp)1791 void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
1792 HandleCondition(comp);
1793 }
1794
VisitIntConstant(HIntConstant * constant)1795 void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
1796 LocationSummary* locations =
1797 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1798 locations->SetOut(Location::ConstantLocation(constant));
1799 }
1800
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)1801 void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
1802 // Will be generated at use site.
1803 }
1804
VisitNullConstant(HNullConstant * constant)1805 void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
1806 LocationSummary* locations =
1807 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1808 locations->SetOut(Location::ConstantLocation(constant));
1809 }
1810
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)1811 void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
1812 // Will be generated at use site.
1813 }
1814
VisitLongConstant(HLongConstant * constant)1815 void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
1816 LocationSummary* locations =
1817 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1818 locations->SetOut(Location::ConstantLocation(constant));
1819 }
1820
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)1821 void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
1822 // Will be generated at use site.
1823 }
1824
VisitFloatConstant(HFloatConstant * constant)1825 void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
1826 LocationSummary* locations =
1827 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1828 locations->SetOut(Location::ConstantLocation(constant));
1829 }
1830
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)1831 void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
1832 // Will be generated at use site.
1833 }
1834
VisitDoubleConstant(HDoubleConstant * constant)1835 void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
1836 LocationSummary* locations =
1837 new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1838 locations->SetOut(Location::ConstantLocation(constant));
1839 }
1840
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)1841 void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
1842 // Will be generated at use site.
1843 }
1844
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1845 void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1846 memory_barrier->SetLocations(nullptr);
1847 }
1848
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)1849 void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1850 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
1851 }
1852
VisitReturnVoid(HReturnVoid * ret)1853 void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
1854 ret->SetLocations(nullptr);
1855 }
1856
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)1857 void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
1858 codegen_->GenerateFrameExit();
1859 }
1860
VisitReturn(HReturn * ret)1861 void LocationsBuilderX86::VisitReturn(HReturn* ret) {
1862 LocationSummary* locations =
1863 new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
1864 switch (ret->InputAt(0)->GetType()) {
1865 case Primitive::kPrimBoolean:
1866 case Primitive::kPrimByte:
1867 case Primitive::kPrimChar:
1868 case Primitive::kPrimShort:
1869 case Primitive::kPrimInt:
1870 case Primitive::kPrimNot:
1871 locations->SetInAt(0, Location::RegisterLocation(EAX));
1872 break;
1873
1874 case Primitive::kPrimLong:
1875 locations->SetInAt(
1876 0, Location::RegisterPairLocation(EAX, EDX));
1877 break;
1878
1879 case Primitive::kPrimFloat:
1880 case Primitive::kPrimDouble:
1881 locations->SetInAt(
1882 0, Location::FpuRegisterLocation(XMM0));
1883 break;
1884
1885 default:
1886 LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1887 }
1888 }
1889
VisitReturn(HReturn * ret)1890 void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
1891 if (kIsDebugBuild) {
1892 switch (ret->InputAt(0)->GetType()) {
1893 case Primitive::kPrimBoolean:
1894 case Primitive::kPrimByte:
1895 case Primitive::kPrimChar:
1896 case Primitive::kPrimShort:
1897 case Primitive::kPrimInt:
1898 case Primitive::kPrimNot:
1899 DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
1900 break;
1901
1902 case Primitive::kPrimLong:
1903 DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
1904 DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
1905 break;
1906
1907 case Primitive::kPrimFloat:
1908 case Primitive::kPrimDouble:
1909 DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
1910 break;
1911
1912 default:
1913 LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
1914 }
1915 }
1916 codegen_->GenerateFrameExit();
1917 }
1918
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1919 void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1920 // The trampoline uses the same calling convention as dex calling conventions,
1921 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
1922 // the method_idx.
1923 HandleInvoke(invoke);
1924 }
1925
VisitInvokeUnresolved(HInvokeUnresolved * invoke)1926 void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1927 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
1928 }
1929
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1930 void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1931 // Explicit clinit checks triggered by static invokes must have been pruned by
1932 // art::PrepareForRegisterAllocation.
1933 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1934
1935 IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1936 if (intrinsic.TryDispatch(invoke)) {
1937 if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
1938 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
1939 }
1940 return;
1941 }
1942
1943 HandleInvoke(invoke);
1944
1945 // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
1946 if (invoke->HasPcRelativeDexCache()) {
1947 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
1948 }
1949 }
1950
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorX86 * codegen)1951 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
1952 if (invoke->GetLocations()->Intrinsified()) {
1953 IntrinsicCodeGeneratorX86 intrinsic(codegen);
1954 intrinsic.Dispatch(invoke);
1955 return true;
1956 }
1957 return false;
1958 }
1959
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)1960 void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1961 // Explicit clinit checks triggered by static invokes must have been pruned by
1962 // art::PrepareForRegisterAllocation.
1963 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1964
1965 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1966 return;
1967 }
1968
1969 LocationSummary* locations = invoke->GetLocations();
1970 codegen_->GenerateStaticOrDirectCall(
1971 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
1972 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1973 }
1974
VisitInvokeVirtual(HInvokeVirtual * invoke)1975 void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1976 IntrinsicLocationsBuilderX86 intrinsic(codegen_);
1977 if (intrinsic.TryDispatch(invoke)) {
1978 return;
1979 }
1980
1981 HandleInvoke(invoke);
1982 }
1983
HandleInvoke(HInvoke * invoke)1984 void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
1985 InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
1986 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
1987 }
1988
VisitInvokeVirtual(HInvokeVirtual * invoke)1989 void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1990 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1991 return;
1992 }
1993
1994 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
1995 DCHECK(!codegen_->IsLeafMethod());
1996 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1997 }
1998
VisitInvokeInterface(HInvokeInterface * invoke)1999 void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2000 // This call to HandleInvoke allocates a temporary (core) register
2001 // which is also used to transfer the hidden argument from FP to
2002 // core register.
2003 HandleInvoke(invoke);
2004 // Add the hidden argument.
2005 invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
2006 }
2007
VisitInvokeInterface(HInvokeInterface * invoke)2008 void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2009 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2010 LocationSummary* locations = invoke->GetLocations();
2011 Register temp = locations->GetTemp(0).AsRegister<Register>();
2012 XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2013 Location receiver = locations->InAt(0);
2014 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2015
2016 // Set the hidden argument. This is safe to do this here, as XMM7
2017 // won't be modified thereafter, before the `call` instruction.
2018 DCHECK_EQ(XMM7, hidden_reg);
2019 __ movl(temp, Immediate(invoke->GetDexMethodIndex()));
2020 __ movd(hidden_reg, temp);
2021
2022 if (receiver.IsStackSlot()) {
2023 __ movl(temp, Address(ESP, receiver.GetStackIndex()));
2024 // /* HeapReference<Class> */ temp = temp->klass_
2025 __ movl(temp, Address(temp, class_offset));
2026 } else {
2027 // /* HeapReference<Class> */ temp = receiver->klass_
2028 __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
2029 }
2030 codegen_->MaybeRecordImplicitNullCheck(invoke);
2031 // Instead of simply (possibly) unpoisoning `temp` here, we should
2032 // emit a read barrier for the previous class reference load.
2033 // However this is not required in practice, as this is an
2034 // intermediate/temporary reference and because the current
2035 // concurrent copying collector keeps the from-space memory
2036 // intact/accessible until the end of the marking phase (the
2037 // concurrent copying collector may not in the future).
2038 __ MaybeUnpoisonHeapReference(temp);
2039 // temp = temp->GetAddressOfIMT()
2040 __ movl(temp,
2041 Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
2042 // temp = temp->GetImtEntryAt(method_offset);
2043 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2044 invoke->GetImtIndex() % ImTable::kSize, kX86PointerSize));
2045 __ movl(temp, Address(temp, method_offset));
2046 // call temp->GetEntryPoint();
2047 __ call(Address(temp,
2048 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
2049
2050 DCHECK(!codegen_->IsLeafMethod());
2051 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2052 }
2053
VisitNeg(HNeg * neg)2054 void LocationsBuilderX86::VisitNeg(HNeg* neg) {
2055 LocationSummary* locations =
2056 new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2057 switch (neg->GetResultType()) {
2058 case Primitive::kPrimInt:
2059 case Primitive::kPrimLong:
2060 locations->SetInAt(0, Location::RequiresRegister());
2061 locations->SetOut(Location::SameAsFirstInput());
2062 break;
2063
2064 case Primitive::kPrimFloat:
2065 locations->SetInAt(0, Location::RequiresFpuRegister());
2066 locations->SetOut(Location::SameAsFirstInput());
2067 locations->AddTemp(Location::RequiresRegister());
2068 locations->AddTemp(Location::RequiresFpuRegister());
2069 break;
2070
2071 case Primitive::kPrimDouble:
2072 locations->SetInAt(0, Location::RequiresFpuRegister());
2073 locations->SetOut(Location::SameAsFirstInput());
2074 locations->AddTemp(Location::RequiresFpuRegister());
2075 break;
2076
2077 default:
2078 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2079 }
2080 }
2081
VisitNeg(HNeg * neg)2082 void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
2083 LocationSummary* locations = neg->GetLocations();
2084 Location out = locations->Out();
2085 Location in = locations->InAt(0);
2086 switch (neg->GetResultType()) {
2087 case Primitive::kPrimInt:
2088 DCHECK(in.IsRegister());
2089 DCHECK(in.Equals(out));
2090 __ negl(out.AsRegister<Register>());
2091 break;
2092
2093 case Primitive::kPrimLong:
2094 DCHECK(in.IsRegisterPair());
2095 DCHECK(in.Equals(out));
2096 __ negl(out.AsRegisterPairLow<Register>());
2097 // Negation is similar to subtraction from zero. The least
2098 // significant byte triggers a borrow when it is different from
2099 // zero; to take it into account, add 1 to the most significant
2100 // byte if the carry flag (CF) is set to 1 after the first NEGL
2101 // operation.
2102 __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
2103 __ negl(out.AsRegisterPairHigh<Register>());
2104 break;
2105
2106 case Primitive::kPrimFloat: {
2107 DCHECK(in.Equals(out));
2108 Register constant = locations->GetTemp(0).AsRegister<Register>();
2109 XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2110 // Implement float negation with an exclusive or with value
2111 // 0x80000000 (mask for bit 31, representing the sign of a
2112 // single-precision floating-point number).
2113 __ movl(constant, Immediate(INT32_C(0x80000000)));
2114 __ movd(mask, constant);
2115 __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2116 break;
2117 }
2118
2119 case Primitive::kPrimDouble: {
2120 DCHECK(in.Equals(out));
2121 XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2122 // Implement double negation with an exclusive or with value
2123 // 0x8000000000000000 (mask for bit 63, representing the sign of
2124 // a double-precision floating-point number).
2125 __ LoadLongConstant(mask, INT64_C(0x8000000000000000));
2126 __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2127 break;
2128 }
2129
2130 default:
2131 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2132 }
2133 }
2134
VisitX86FPNeg(HX86FPNeg * neg)2135 void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
2136 LocationSummary* locations =
2137 new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2138 DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
2139 locations->SetInAt(0, Location::RequiresFpuRegister());
2140 locations->SetInAt(1, Location::RequiresRegister());
2141 locations->SetOut(Location::SameAsFirstInput());
2142 locations->AddTemp(Location::RequiresFpuRegister());
2143 }
2144
VisitX86FPNeg(HX86FPNeg * neg)2145 void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
2146 LocationSummary* locations = neg->GetLocations();
2147 Location out = locations->Out();
2148 DCHECK(locations->InAt(0).Equals(out));
2149
2150 Register constant_area = locations->InAt(1).AsRegister<Register>();
2151 XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2152 if (neg->GetType() == Primitive::kPrimFloat) {
2153 __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area));
2154 __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2155 } else {
2156 __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area));
2157 __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2158 }
2159 }
2160
VisitTypeConversion(HTypeConversion * conversion)2161 void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
2162 Primitive::Type result_type = conversion->GetResultType();
2163 Primitive::Type input_type = conversion->GetInputType();
2164 DCHECK_NE(result_type, input_type);
2165
2166 // The float-to-long and double-to-long type conversions rely on a
2167 // call to the runtime.
2168 LocationSummary::CallKind call_kind =
2169 ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2170 && result_type == Primitive::kPrimLong)
2171 ? LocationSummary::kCall
2172 : LocationSummary::kNoCall;
2173 LocationSummary* locations =
2174 new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2175
2176 // The Java language does not allow treating boolean as an integral type but
2177 // our bit representation makes it safe.
2178
2179 switch (result_type) {
2180 case Primitive::kPrimByte:
2181 switch (input_type) {
2182 case Primitive::kPrimLong: {
2183 // Type conversion from long to byte is a result of code transformations.
2184 HInstruction* input = conversion->InputAt(0);
2185 Location input_location = input->IsConstant()
2186 ? Location::ConstantLocation(input->AsConstant())
2187 : Location::RegisterPairLocation(EAX, EDX);
2188 locations->SetInAt(0, input_location);
2189 // Make the output overlap to please the register allocator. This greatly simplifies
2190 // the validation of the linear scan implementation
2191 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2192 break;
2193 }
2194 case Primitive::kPrimBoolean:
2195 // Boolean input is a result of code transformations.
2196 case Primitive::kPrimShort:
2197 case Primitive::kPrimInt:
2198 case Primitive::kPrimChar:
2199 // Processing a Dex `int-to-byte' instruction.
2200 locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
2201 // Make the output overlap to please the register allocator. This greatly simplifies
2202 // the validation of the linear scan implementation
2203 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2204 break;
2205
2206 default:
2207 LOG(FATAL) << "Unexpected type conversion from " << input_type
2208 << " to " << result_type;
2209 }
2210 break;
2211
2212 case Primitive::kPrimShort:
2213 switch (input_type) {
2214 case Primitive::kPrimLong:
2215 // Type conversion from long to short is a result of code transformations.
2216 case Primitive::kPrimBoolean:
2217 // Boolean input is a result of code transformations.
2218 case Primitive::kPrimByte:
2219 case Primitive::kPrimInt:
2220 case Primitive::kPrimChar:
2221 // Processing a Dex `int-to-short' instruction.
2222 locations->SetInAt(0, Location::Any());
2223 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2224 break;
2225
2226 default:
2227 LOG(FATAL) << "Unexpected type conversion from " << input_type
2228 << " to " << result_type;
2229 }
2230 break;
2231
2232 case Primitive::kPrimInt:
2233 switch (input_type) {
2234 case Primitive::kPrimLong:
2235 // Processing a Dex `long-to-int' instruction.
2236 locations->SetInAt(0, Location::Any());
2237 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2238 break;
2239
2240 case Primitive::kPrimFloat:
2241 // Processing a Dex `float-to-int' instruction.
2242 locations->SetInAt(0, Location::RequiresFpuRegister());
2243 locations->SetOut(Location::RequiresRegister());
2244 locations->AddTemp(Location::RequiresFpuRegister());
2245 break;
2246
2247 case Primitive::kPrimDouble:
2248 // Processing a Dex `double-to-int' instruction.
2249 locations->SetInAt(0, Location::RequiresFpuRegister());
2250 locations->SetOut(Location::RequiresRegister());
2251 locations->AddTemp(Location::RequiresFpuRegister());
2252 break;
2253
2254 default:
2255 LOG(FATAL) << "Unexpected type conversion from " << input_type
2256 << " to " << result_type;
2257 }
2258 break;
2259
2260 case Primitive::kPrimLong:
2261 switch (input_type) {
2262 case Primitive::kPrimBoolean:
2263 // Boolean input is a result of code transformations.
2264 case Primitive::kPrimByte:
2265 case Primitive::kPrimShort:
2266 case Primitive::kPrimInt:
2267 case Primitive::kPrimChar:
2268 // Processing a Dex `int-to-long' instruction.
2269 locations->SetInAt(0, Location::RegisterLocation(EAX));
2270 locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2271 break;
2272
2273 case Primitive::kPrimFloat:
2274 case Primitive::kPrimDouble: {
2275 // Processing a Dex `float-to-long' or 'double-to-long' instruction.
2276 InvokeRuntimeCallingConvention calling_convention;
2277 XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
2278 locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
2279
2280 // The runtime helper puts the result in EAX, EDX.
2281 locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2282 }
2283 break;
2284
2285 default:
2286 LOG(FATAL) << "Unexpected type conversion from " << input_type
2287 << " to " << result_type;
2288 }
2289 break;
2290
2291 case Primitive::kPrimChar:
2292 switch (input_type) {
2293 case Primitive::kPrimLong:
2294 // Type conversion from long to char is a result of code transformations.
2295 case Primitive::kPrimBoolean:
2296 // Boolean input is a result of code transformations.
2297 case Primitive::kPrimByte:
2298 case Primitive::kPrimShort:
2299 case Primitive::kPrimInt:
2300 // Processing a Dex `int-to-char' instruction.
2301 locations->SetInAt(0, Location::Any());
2302 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2303 break;
2304
2305 default:
2306 LOG(FATAL) << "Unexpected type conversion from " << input_type
2307 << " to " << result_type;
2308 }
2309 break;
2310
2311 case Primitive::kPrimFloat:
2312 switch (input_type) {
2313 case Primitive::kPrimBoolean:
2314 // Boolean input is a result of code transformations.
2315 case Primitive::kPrimByte:
2316 case Primitive::kPrimShort:
2317 case Primitive::kPrimInt:
2318 case Primitive::kPrimChar:
2319 // Processing a Dex `int-to-float' instruction.
2320 locations->SetInAt(0, Location::RequiresRegister());
2321 locations->SetOut(Location::RequiresFpuRegister());
2322 break;
2323
2324 case Primitive::kPrimLong:
2325 // Processing a Dex `long-to-float' instruction.
2326 locations->SetInAt(0, Location::Any());
2327 locations->SetOut(Location::Any());
2328 break;
2329
2330 case Primitive::kPrimDouble:
2331 // Processing a Dex `double-to-float' instruction.
2332 locations->SetInAt(0, Location::RequiresFpuRegister());
2333 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2334 break;
2335
2336 default:
2337 LOG(FATAL) << "Unexpected type conversion from " << input_type
2338 << " to " << result_type;
2339 };
2340 break;
2341
2342 case Primitive::kPrimDouble:
2343 switch (input_type) {
2344 case Primitive::kPrimBoolean:
2345 // Boolean input is a result of code transformations.
2346 case Primitive::kPrimByte:
2347 case Primitive::kPrimShort:
2348 case Primitive::kPrimInt:
2349 case Primitive::kPrimChar:
2350 // Processing a Dex `int-to-double' instruction.
2351 locations->SetInAt(0, Location::RequiresRegister());
2352 locations->SetOut(Location::RequiresFpuRegister());
2353 break;
2354
2355 case Primitive::kPrimLong:
2356 // Processing a Dex `long-to-double' instruction.
2357 locations->SetInAt(0, Location::Any());
2358 locations->SetOut(Location::Any());
2359 break;
2360
2361 case Primitive::kPrimFloat:
2362 // Processing a Dex `float-to-double' instruction.
2363 locations->SetInAt(0, Location::RequiresFpuRegister());
2364 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2365 break;
2366
2367 default:
2368 LOG(FATAL) << "Unexpected type conversion from " << input_type
2369 << " to " << result_type;
2370 }
2371 break;
2372
2373 default:
2374 LOG(FATAL) << "Unexpected type conversion from " << input_type
2375 << " to " << result_type;
2376 }
2377 }
2378
VisitTypeConversion(HTypeConversion * conversion)2379 void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
2380 LocationSummary* locations = conversion->GetLocations();
2381 Location out = locations->Out();
2382 Location in = locations->InAt(0);
2383 Primitive::Type result_type = conversion->GetResultType();
2384 Primitive::Type input_type = conversion->GetInputType();
2385 DCHECK_NE(result_type, input_type);
2386 switch (result_type) {
2387 case Primitive::kPrimByte:
2388 switch (input_type) {
2389 case Primitive::kPrimLong:
2390 // Type conversion from long to byte is a result of code transformations.
2391 if (in.IsRegisterPair()) {
2392 __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
2393 } else {
2394 DCHECK(in.GetConstant()->IsLongConstant());
2395 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2396 __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2397 }
2398 break;
2399 case Primitive::kPrimBoolean:
2400 // Boolean input is a result of code transformations.
2401 case Primitive::kPrimShort:
2402 case Primitive::kPrimInt:
2403 case Primitive::kPrimChar:
2404 // Processing a Dex `int-to-byte' instruction.
2405 if (in.IsRegister()) {
2406 __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
2407 } else {
2408 DCHECK(in.GetConstant()->IsIntConstant());
2409 int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2410 __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2411 }
2412 break;
2413
2414 default:
2415 LOG(FATAL) << "Unexpected type conversion from " << input_type
2416 << " to " << result_type;
2417 }
2418 break;
2419
2420 case Primitive::kPrimShort:
2421 switch (input_type) {
2422 case Primitive::kPrimLong:
2423 // Type conversion from long to short is a result of code transformations.
2424 if (in.IsRegisterPair()) {
2425 __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2426 } else if (in.IsDoubleStackSlot()) {
2427 __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2428 } else {
2429 DCHECK(in.GetConstant()->IsLongConstant());
2430 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2431 __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2432 }
2433 break;
2434 case Primitive::kPrimBoolean:
2435 // Boolean input is a result of code transformations.
2436 case Primitive::kPrimByte:
2437 case Primitive::kPrimInt:
2438 case Primitive::kPrimChar:
2439 // Processing a Dex `int-to-short' instruction.
2440 if (in.IsRegister()) {
2441 __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2442 } else if (in.IsStackSlot()) {
2443 __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2444 } else {
2445 DCHECK(in.GetConstant()->IsIntConstant());
2446 int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2447 __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2448 }
2449 break;
2450
2451 default:
2452 LOG(FATAL) << "Unexpected type conversion from " << input_type
2453 << " to " << result_type;
2454 }
2455 break;
2456
2457 case Primitive::kPrimInt:
2458 switch (input_type) {
2459 case Primitive::kPrimLong:
2460 // Processing a Dex `long-to-int' instruction.
2461 if (in.IsRegisterPair()) {
2462 __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2463 } else if (in.IsDoubleStackSlot()) {
2464 __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2465 } else {
2466 DCHECK(in.IsConstant());
2467 DCHECK(in.GetConstant()->IsLongConstant());
2468 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2469 __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
2470 }
2471 break;
2472
2473 case Primitive::kPrimFloat: {
2474 // Processing a Dex `float-to-int' instruction.
2475 XmmRegister input = in.AsFpuRegister<XmmRegister>();
2476 Register output = out.AsRegister<Register>();
2477 XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2478 NearLabel done, nan;
2479
2480 __ movl(output, Immediate(kPrimIntMax));
2481 // temp = int-to-float(output)
2482 __ cvtsi2ss(temp, output);
2483 // if input >= temp goto done
2484 __ comiss(input, temp);
2485 __ j(kAboveEqual, &done);
2486 // if input == NaN goto nan
2487 __ j(kUnordered, &nan);
2488 // output = float-to-int-truncate(input)
2489 __ cvttss2si(output, input);
2490 __ jmp(&done);
2491 __ Bind(&nan);
2492 // output = 0
2493 __ xorl(output, output);
2494 __ Bind(&done);
2495 break;
2496 }
2497
2498 case Primitive::kPrimDouble: {
2499 // Processing a Dex `double-to-int' instruction.
2500 XmmRegister input = in.AsFpuRegister<XmmRegister>();
2501 Register output = out.AsRegister<Register>();
2502 XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2503 NearLabel done, nan;
2504
2505 __ movl(output, Immediate(kPrimIntMax));
2506 // temp = int-to-double(output)
2507 __ cvtsi2sd(temp, output);
2508 // if input >= temp goto done
2509 __ comisd(input, temp);
2510 __ j(kAboveEqual, &done);
2511 // if input == NaN goto nan
2512 __ j(kUnordered, &nan);
2513 // output = double-to-int-truncate(input)
2514 __ cvttsd2si(output, input);
2515 __ jmp(&done);
2516 __ Bind(&nan);
2517 // output = 0
2518 __ xorl(output, output);
2519 __ Bind(&done);
2520 break;
2521 }
2522
2523 default:
2524 LOG(FATAL) << "Unexpected type conversion from " << input_type
2525 << " to " << result_type;
2526 }
2527 break;
2528
2529 case Primitive::kPrimLong:
2530 switch (input_type) {
2531 case Primitive::kPrimBoolean:
2532 // Boolean input is a result of code transformations.
2533 case Primitive::kPrimByte:
2534 case Primitive::kPrimShort:
2535 case Primitive::kPrimInt:
2536 case Primitive::kPrimChar:
2537 // Processing a Dex `int-to-long' instruction.
2538 DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
2539 DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
2540 DCHECK_EQ(in.AsRegister<Register>(), EAX);
2541 __ cdq();
2542 break;
2543
2544 case Primitive::kPrimFloat:
2545 // Processing a Dex `float-to-long' instruction.
2546 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
2547 conversion,
2548 conversion->GetDexPc(),
2549 nullptr);
2550 CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2551 break;
2552
2553 case Primitive::kPrimDouble:
2554 // Processing a Dex `double-to-long' instruction.
2555 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
2556 conversion,
2557 conversion->GetDexPc(),
2558 nullptr);
2559 CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2560 break;
2561
2562 default:
2563 LOG(FATAL) << "Unexpected type conversion from " << input_type
2564 << " to " << result_type;
2565 }
2566 break;
2567
2568 case Primitive::kPrimChar:
2569 switch (input_type) {
2570 case Primitive::kPrimLong:
2571 // Type conversion from long to short is a result of code transformations.
2572 if (in.IsRegisterPair()) {
2573 __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2574 } else if (in.IsDoubleStackSlot()) {
2575 __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2576 } else {
2577 DCHECK(in.GetConstant()->IsLongConstant());
2578 int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2579 __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2580 }
2581 break;
2582 case Primitive::kPrimBoolean:
2583 // Boolean input is a result of code transformations.
2584 case Primitive::kPrimByte:
2585 case Primitive::kPrimShort:
2586 case Primitive::kPrimInt:
2587 // Processing a Dex `Process a Dex `int-to-char'' instruction.
2588 if (in.IsRegister()) {
2589 __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2590 } else if (in.IsStackSlot()) {
2591 __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2592 } else {
2593 DCHECK(in.GetConstant()->IsIntConstant());
2594 int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2595 __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2596 }
2597 break;
2598
2599 default:
2600 LOG(FATAL) << "Unexpected type conversion from " << input_type
2601 << " to " << result_type;
2602 }
2603 break;
2604
2605 case Primitive::kPrimFloat:
2606 switch (input_type) {
2607 case Primitive::kPrimBoolean:
2608 // Boolean input is a result of code transformations.
2609 case Primitive::kPrimByte:
2610 case Primitive::kPrimShort:
2611 case Primitive::kPrimInt:
2612 case Primitive::kPrimChar:
2613 // Processing a Dex `int-to-float' instruction.
2614 __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2615 break;
2616
2617 case Primitive::kPrimLong: {
2618 // Processing a Dex `long-to-float' instruction.
2619 size_t adjustment = 0;
2620
2621 // Create stack space for the call to
2622 // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
2623 // TODO: enhance register allocator to ask for stack temporaries.
2624 if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
2625 adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2626 __ subl(ESP, Immediate(adjustment));
2627 }
2628
2629 // Load the value to the FP stack, using temporaries if needed.
2630 PushOntoFPStack(in, 0, adjustment, false, true);
2631
2632 if (out.IsStackSlot()) {
2633 __ fstps(Address(ESP, out.GetStackIndex() + adjustment));
2634 } else {
2635 __ fstps(Address(ESP, 0));
2636 Location stack_temp = Location::StackSlot(0);
2637 codegen_->Move32(out, stack_temp);
2638 }
2639
2640 // Remove the temporary stack space we allocated.
2641 if (adjustment != 0) {
2642 __ addl(ESP, Immediate(adjustment));
2643 }
2644 break;
2645 }
2646
2647 case Primitive::kPrimDouble:
2648 // Processing a Dex `double-to-float' instruction.
2649 __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2650 break;
2651
2652 default:
2653 LOG(FATAL) << "Unexpected type conversion from " << input_type
2654 << " to " << result_type;
2655 };
2656 break;
2657
2658 case Primitive::kPrimDouble:
2659 switch (input_type) {
2660 case Primitive::kPrimBoolean:
2661 // Boolean input is a result of code transformations.
2662 case Primitive::kPrimByte:
2663 case Primitive::kPrimShort:
2664 case Primitive::kPrimInt:
2665 case Primitive::kPrimChar:
2666 // Processing a Dex `int-to-double' instruction.
2667 __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2668 break;
2669
2670 case Primitive::kPrimLong: {
2671 // Processing a Dex `long-to-double' instruction.
2672 size_t adjustment = 0;
2673
2674 // Create stack space for the call to
2675 // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
2676 // TODO: enhance register allocator to ask for stack temporaries.
2677 if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
2678 adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2679 __ subl(ESP, Immediate(adjustment));
2680 }
2681
2682 // Load the value to the FP stack, using temporaries if needed.
2683 PushOntoFPStack(in, 0, adjustment, false, true);
2684
2685 if (out.IsDoubleStackSlot()) {
2686 __ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
2687 } else {
2688 __ fstpl(Address(ESP, 0));
2689 Location stack_temp = Location::DoubleStackSlot(0);
2690 codegen_->Move64(out, stack_temp);
2691 }
2692
2693 // Remove the temporary stack space we allocated.
2694 if (adjustment != 0) {
2695 __ addl(ESP, Immediate(adjustment));
2696 }
2697 break;
2698 }
2699
2700 case Primitive::kPrimFloat:
2701 // Processing a Dex `float-to-double' instruction.
2702 __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2703 break;
2704
2705 default:
2706 LOG(FATAL) << "Unexpected type conversion from " << input_type
2707 << " to " << result_type;
2708 };
2709 break;
2710
2711 default:
2712 LOG(FATAL) << "Unexpected type conversion from " << input_type
2713 << " to " << result_type;
2714 }
2715 }
2716
VisitAdd(HAdd * add)2717 void LocationsBuilderX86::VisitAdd(HAdd* add) {
2718 LocationSummary* locations =
2719 new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2720 switch (add->GetResultType()) {
2721 case Primitive::kPrimInt: {
2722 locations->SetInAt(0, Location::RequiresRegister());
2723 locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2724 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2725 break;
2726 }
2727
2728 case Primitive::kPrimLong: {
2729 locations->SetInAt(0, Location::RequiresRegister());
2730 locations->SetInAt(1, Location::Any());
2731 locations->SetOut(Location::SameAsFirstInput());
2732 break;
2733 }
2734
2735 case Primitive::kPrimFloat:
2736 case Primitive::kPrimDouble: {
2737 locations->SetInAt(0, Location::RequiresFpuRegister());
2738 if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2739 DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
2740 } else if (add->InputAt(1)->IsConstant()) {
2741 locations->SetInAt(1, Location::RequiresFpuRegister());
2742 } else {
2743 locations->SetInAt(1, Location::Any());
2744 }
2745 locations->SetOut(Location::SameAsFirstInput());
2746 break;
2747 }
2748
2749 default:
2750 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2751 break;
2752 }
2753 }
2754
VisitAdd(HAdd * add)2755 void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
2756 LocationSummary* locations = add->GetLocations();
2757 Location first = locations->InAt(0);
2758 Location second = locations->InAt(1);
2759 Location out = locations->Out();
2760
2761 switch (add->GetResultType()) {
2762 case Primitive::kPrimInt: {
2763 if (second.IsRegister()) {
2764 if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2765 __ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
2766 } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
2767 __ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
2768 } else {
2769 __ leal(out.AsRegister<Register>(), Address(
2770 first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
2771 }
2772 } else if (second.IsConstant()) {
2773 int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
2774 if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
2775 __ addl(out.AsRegister<Register>(), Immediate(value));
2776 } else {
2777 __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
2778 }
2779 } else {
2780 DCHECK(first.Equals(locations->Out()));
2781 __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2782 }
2783 break;
2784 }
2785
2786 case Primitive::kPrimLong: {
2787 if (second.IsRegisterPair()) {
2788 __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2789 __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2790 } else if (second.IsDoubleStackSlot()) {
2791 __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2792 __ adcl(first.AsRegisterPairHigh<Register>(),
2793 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2794 } else {
2795 DCHECK(second.IsConstant()) << second;
2796 int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2797 __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2798 __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2799 }
2800 break;
2801 }
2802
2803 case Primitive::kPrimFloat: {
2804 if (second.IsFpuRegister()) {
2805 __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2806 } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2807 HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2808 DCHECK(const_area->IsEmittedAtUseSite());
2809 __ addss(first.AsFpuRegister<XmmRegister>(),
2810 codegen_->LiteralFloatAddress(
2811 const_area->GetConstant()->AsFloatConstant()->GetValue(),
2812 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2813 } else {
2814 DCHECK(second.IsStackSlot());
2815 __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2816 }
2817 break;
2818 }
2819
2820 case Primitive::kPrimDouble: {
2821 if (second.IsFpuRegister()) {
2822 __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2823 } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2824 HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
2825 DCHECK(const_area->IsEmittedAtUseSite());
2826 __ addsd(first.AsFpuRegister<XmmRegister>(),
2827 codegen_->LiteralDoubleAddress(
2828 const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2829 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2830 } else {
2831 DCHECK(second.IsDoubleStackSlot());
2832 __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2833 }
2834 break;
2835 }
2836
2837 default:
2838 LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2839 }
2840 }
2841
VisitSub(HSub * sub)2842 void LocationsBuilderX86::VisitSub(HSub* sub) {
2843 LocationSummary* locations =
2844 new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2845 switch (sub->GetResultType()) {
2846 case Primitive::kPrimInt:
2847 case Primitive::kPrimLong: {
2848 locations->SetInAt(0, Location::RequiresRegister());
2849 locations->SetInAt(1, Location::Any());
2850 locations->SetOut(Location::SameAsFirstInput());
2851 break;
2852 }
2853 case Primitive::kPrimFloat:
2854 case Primitive::kPrimDouble: {
2855 locations->SetInAt(0, Location::RequiresFpuRegister());
2856 if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2857 DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
2858 } else if (sub->InputAt(1)->IsConstant()) {
2859 locations->SetInAt(1, Location::RequiresFpuRegister());
2860 } else {
2861 locations->SetInAt(1, Location::Any());
2862 }
2863 locations->SetOut(Location::SameAsFirstInput());
2864 break;
2865 }
2866
2867 default:
2868 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2869 }
2870 }
2871
VisitSub(HSub * sub)2872 void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
2873 LocationSummary* locations = sub->GetLocations();
2874 Location first = locations->InAt(0);
2875 Location second = locations->InAt(1);
2876 DCHECK(first.Equals(locations->Out()));
2877 switch (sub->GetResultType()) {
2878 case Primitive::kPrimInt: {
2879 if (second.IsRegister()) {
2880 __ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
2881 } else if (second.IsConstant()) {
2882 __ subl(first.AsRegister<Register>(),
2883 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
2884 } else {
2885 __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
2886 }
2887 break;
2888 }
2889
2890 case Primitive::kPrimLong: {
2891 if (second.IsRegisterPair()) {
2892 __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
2893 __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
2894 } else if (second.IsDoubleStackSlot()) {
2895 __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
2896 __ sbbl(first.AsRegisterPairHigh<Register>(),
2897 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
2898 } else {
2899 DCHECK(second.IsConstant()) << second;
2900 int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
2901 __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
2902 __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
2903 }
2904 break;
2905 }
2906
2907 case Primitive::kPrimFloat: {
2908 if (second.IsFpuRegister()) {
2909 __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2910 } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2911 HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2912 DCHECK(const_area->IsEmittedAtUseSite());
2913 __ subss(first.AsFpuRegister<XmmRegister>(),
2914 codegen_->LiteralFloatAddress(
2915 const_area->GetConstant()->AsFloatConstant()->GetValue(),
2916 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2917 } else {
2918 DCHECK(second.IsStackSlot());
2919 __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2920 }
2921 break;
2922 }
2923
2924 case Primitive::kPrimDouble: {
2925 if (second.IsFpuRegister()) {
2926 __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
2927 } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
2928 HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
2929 DCHECK(const_area->IsEmittedAtUseSite());
2930 __ subsd(first.AsFpuRegister<XmmRegister>(),
2931 codegen_->LiteralDoubleAddress(
2932 const_area->GetConstant()->AsDoubleConstant()->GetValue(),
2933 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
2934 } else {
2935 DCHECK(second.IsDoubleStackSlot());
2936 __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
2937 }
2938 break;
2939 }
2940
2941 default:
2942 LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2943 }
2944 }
2945
VisitMul(HMul * mul)2946 void LocationsBuilderX86::VisitMul(HMul* mul) {
2947 LocationSummary* locations =
2948 new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
2949 switch (mul->GetResultType()) {
2950 case Primitive::kPrimInt:
2951 locations->SetInAt(0, Location::RequiresRegister());
2952 locations->SetInAt(1, Location::Any());
2953 if (mul->InputAt(1)->IsIntConstant()) {
2954 // Can use 3 operand multiply.
2955 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2956 } else {
2957 locations->SetOut(Location::SameAsFirstInput());
2958 }
2959 break;
2960 case Primitive::kPrimLong: {
2961 locations->SetInAt(0, Location::RequiresRegister());
2962 locations->SetInAt(1, Location::Any());
2963 locations->SetOut(Location::SameAsFirstInput());
2964 // Needed for imul on 32bits with 64bits output.
2965 locations->AddTemp(Location::RegisterLocation(EAX));
2966 locations->AddTemp(Location::RegisterLocation(EDX));
2967 break;
2968 }
2969 case Primitive::kPrimFloat:
2970 case Primitive::kPrimDouble: {
2971 locations->SetInAt(0, Location::RequiresFpuRegister());
2972 if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
2973 DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
2974 } else if (mul->InputAt(1)->IsConstant()) {
2975 locations->SetInAt(1, Location::RequiresFpuRegister());
2976 } else {
2977 locations->SetInAt(1, Location::Any());
2978 }
2979 locations->SetOut(Location::SameAsFirstInput());
2980 break;
2981 }
2982
2983 default:
2984 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2985 }
2986 }
2987
VisitMul(HMul * mul)2988 void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
2989 LocationSummary* locations = mul->GetLocations();
2990 Location first = locations->InAt(0);
2991 Location second = locations->InAt(1);
2992 Location out = locations->Out();
2993
2994 switch (mul->GetResultType()) {
2995 case Primitive::kPrimInt:
2996 // The constant may have ended up in a register, so test explicitly to avoid
2997 // problems where the output may not be the same as the first operand.
2998 if (mul->InputAt(1)->IsIntConstant()) {
2999 Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
3000 __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
3001 } else if (second.IsRegister()) {
3002 DCHECK(first.Equals(out));
3003 __ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
3004 } else {
3005 DCHECK(second.IsStackSlot());
3006 DCHECK(first.Equals(out));
3007 __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3008 }
3009 break;
3010
3011 case Primitive::kPrimLong: {
3012 Register in1_hi = first.AsRegisterPairHigh<Register>();
3013 Register in1_lo = first.AsRegisterPairLow<Register>();
3014 Register eax = locations->GetTemp(0).AsRegister<Register>();
3015 Register edx = locations->GetTemp(1).AsRegister<Register>();
3016
3017 DCHECK_EQ(EAX, eax);
3018 DCHECK_EQ(EDX, edx);
3019
3020 // input: in1 - 64 bits, in2 - 64 bits.
3021 // output: in1
3022 // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3023 // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3024 // parts: in1.lo = (in1.lo * in2.lo)[31:0]
3025 if (second.IsConstant()) {
3026 DCHECK(second.GetConstant()->IsLongConstant());
3027
3028 int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3029 int32_t low_value = Low32Bits(value);
3030 int32_t high_value = High32Bits(value);
3031 Immediate low(low_value);
3032 Immediate high(high_value);
3033
3034 __ movl(eax, high);
3035 // eax <- in1.lo * in2.hi
3036 __ imull(eax, in1_lo);
3037 // in1.hi <- in1.hi * in2.lo
3038 __ imull(in1_hi, low);
3039 // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3040 __ addl(in1_hi, eax);
3041 // move in2_lo to eax to prepare for double precision
3042 __ movl(eax, low);
3043 // edx:eax <- in1.lo * in2.lo
3044 __ mull(in1_lo);
3045 // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3046 __ addl(in1_hi, edx);
3047 // in1.lo <- (in1.lo * in2.lo)[31:0];
3048 __ movl(in1_lo, eax);
3049 } else if (second.IsRegisterPair()) {
3050 Register in2_hi = second.AsRegisterPairHigh<Register>();
3051 Register in2_lo = second.AsRegisterPairLow<Register>();
3052
3053 __ movl(eax, in2_hi);
3054 // eax <- in1.lo * in2.hi
3055 __ imull(eax, in1_lo);
3056 // in1.hi <- in1.hi * in2.lo
3057 __ imull(in1_hi, in2_lo);
3058 // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3059 __ addl(in1_hi, eax);
3060 // move in1_lo to eax to prepare for double precision
3061 __ movl(eax, in1_lo);
3062 // edx:eax <- in1.lo * in2.lo
3063 __ mull(in2_lo);
3064 // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3065 __ addl(in1_hi, edx);
3066 // in1.lo <- (in1.lo * in2.lo)[31:0];
3067 __ movl(in1_lo, eax);
3068 } else {
3069 DCHECK(second.IsDoubleStackSlot()) << second;
3070 Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
3071 Address in2_lo(ESP, second.GetStackIndex());
3072
3073 __ movl(eax, in2_hi);
3074 // eax <- in1.lo * in2.hi
3075 __ imull(eax, in1_lo);
3076 // in1.hi <- in1.hi * in2.lo
3077 __ imull(in1_hi, in2_lo);
3078 // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3079 __ addl(in1_hi, eax);
3080 // move in1_lo to eax to prepare for double precision
3081 __ movl(eax, in1_lo);
3082 // edx:eax <- in1.lo * in2.lo
3083 __ mull(in2_lo);
3084 // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3085 __ addl(in1_hi, edx);
3086 // in1.lo <- (in1.lo * in2.lo)[31:0];
3087 __ movl(in1_lo, eax);
3088 }
3089
3090 break;
3091 }
3092
3093 case Primitive::kPrimFloat: {
3094 DCHECK(first.Equals(locations->Out()));
3095 if (second.IsFpuRegister()) {
3096 __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3097 } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3098 HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3099 DCHECK(const_area->IsEmittedAtUseSite());
3100 __ mulss(first.AsFpuRegister<XmmRegister>(),
3101 codegen_->LiteralFloatAddress(
3102 const_area->GetConstant()->AsFloatConstant()->GetValue(),
3103 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3104 } else {
3105 DCHECK(second.IsStackSlot());
3106 __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3107 }
3108 break;
3109 }
3110
3111 case Primitive::kPrimDouble: {
3112 DCHECK(first.Equals(locations->Out()));
3113 if (second.IsFpuRegister()) {
3114 __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3115 } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3116 HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3117 DCHECK(const_area->IsEmittedAtUseSite());
3118 __ mulsd(first.AsFpuRegister<XmmRegister>(),
3119 codegen_->LiteralDoubleAddress(
3120 const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3121 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3122 } else {
3123 DCHECK(second.IsDoubleStackSlot());
3124 __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3125 }
3126 break;
3127 }
3128
3129 default:
3130 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3131 }
3132 }
3133
PushOntoFPStack(Location source,uint32_t temp_offset,uint32_t stack_adjustment,bool is_fp,bool is_wide)3134 void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
3135 uint32_t temp_offset,
3136 uint32_t stack_adjustment,
3137 bool is_fp,
3138 bool is_wide) {
3139 if (source.IsStackSlot()) {
3140 DCHECK(!is_wide);
3141 if (is_fp) {
3142 __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3143 } else {
3144 __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3145 }
3146 } else if (source.IsDoubleStackSlot()) {
3147 DCHECK(is_wide);
3148 if (is_fp) {
3149 __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3150 } else {
3151 __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3152 }
3153 } else {
3154 // Write the value to the temporary location on the stack and load to FP stack.
3155 if (!is_wide) {
3156 Location stack_temp = Location::StackSlot(temp_offset);
3157 codegen_->Move32(stack_temp, source);
3158 if (is_fp) {
3159 __ flds(Address(ESP, temp_offset));
3160 } else {
3161 __ filds(Address(ESP, temp_offset));
3162 }
3163 } else {
3164 Location stack_temp = Location::DoubleStackSlot(temp_offset);
3165 codegen_->Move64(stack_temp, source);
3166 if (is_fp) {
3167 __ fldl(Address(ESP, temp_offset));
3168 } else {
3169 __ fildl(Address(ESP, temp_offset));
3170 }
3171 }
3172 }
3173 }
3174
GenerateRemFP(HRem * rem)3175 void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
3176 Primitive::Type type = rem->GetResultType();
3177 bool is_float = type == Primitive::kPrimFloat;
3178 size_t elem_size = Primitive::ComponentSize(type);
3179 LocationSummary* locations = rem->GetLocations();
3180 Location first = locations->InAt(0);
3181 Location second = locations->InAt(1);
3182 Location out = locations->Out();
3183
3184 // Create stack space for 2 elements.
3185 // TODO: enhance register allocator to ask for stack temporaries.
3186 __ subl(ESP, Immediate(2 * elem_size));
3187
3188 // Load the values to the FP stack in reverse order, using temporaries if needed.
3189 const bool is_wide = !is_float;
3190 PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
3191 PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
3192
3193 // Loop doing FPREM until we stabilize.
3194 NearLabel retry;
3195 __ Bind(&retry);
3196 __ fprem();
3197
3198 // Move FP status to AX.
3199 __ fstsw();
3200
3201 // And see if the argument reduction is complete. This is signaled by the
3202 // C2 FPU flag bit set to 0.
3203 __ andl(EAX, Immediate(kC2ConditionMask));
3204 __ j(kNotEqual, &retry);
3205
3206 // We have settled on the final value. Retrieve it into an XMM register.
3207 // Store FP top of stack to real stack.
3208 if (is_float) {
3209 __ fsts(Address(ESP, 0));
3210 } else {
3211 __ fstl(Address(ESP, 0));
3212 }
3213
3214 // Pop the 2 items from the FP stack.
3215 __ fucompp();
3216
3217 // Load the value from the stack into an XMM register.
3218 DCHECK(out.IsFpuRegister()) << out;
3219 if (is_float) {
3220 __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3221 } else {
3222 __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3223 }
3224
3225 // And remove the temporary stack space we allocated.
3226 __ addl(ESP, Immediate(2 * elem_size));
3227 }
3228
3229
DivRemOneOrMinusOne(HBinaryOperation * instruction)3230 void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3231 DCHECK(instruction->IsDiv() || instruction->IsRem());
3232
3233 LocationSummary* locations = instruction->GetLocations();
3234 DCHECK(locations->InAt(1).IsConstant());
3235 DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
3236
3237 Register out_register = locations->Out().AsRegister<Register>();
3238 Register input_register = locations->InAt(0).AsRegister<Register>();
3239 int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3240
3241 DCHECK(imm == 1 || imm == -1);
3242
3243 if (instruction->IsRem()) {
3244 __ xorl(out_register, out_register);
3245 } else {
3246 __ movl(out_register, input_register);
3247 if (imm == -1) {
3248 __ negl(out_register);
3249 }
3250 }
3251 }
3252
3253
DivByPowerOfTwo(HDiv * instruction)3254 void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
3255 LocationSummary* locations = instruction->GetLocations();
3256
3257 Register out_register = locations->Out().AsRegister<Register>();
3258 Register input_register = locations->InAt(0).AsRegister<Register>();
3259 int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3260 DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3261 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3262
3263 Register num = locations->GetTemp(0).AsRegister<Register>();
3264
3265 __ leal(num, Address(input_register, abs_imm - 1));
3266 __ testl(input_register, input_register);
3267 __ cmovl(kGreaterEqual, num, input_register);
3268 int shift = CTZ(imm);
3269 __ sarl(num, Immediate(shift));
3270
3271 if (imm < 0) {
3272 __ negl(num);
3273 }
3274
3275 __ movl(out_register, num);
3276 }
3277
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3278 void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3279 DCHECK(instruction->IsDiv() || instruction->IsRem());
3280
3281 LocationSummary* locations = instruction->GetLocations();
3282 int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3283
3284 Register eax = locations->InAt(0).AsRegister<Register>();
3285 Register out = locations->Out().AsRegister<Register>();
3286 Register num;
3287 Register edx;
3288
3289 if (instruction->IsDiv()) {
3290 edx = locations->GetTemp(0).AsRegister<Register>();
3291 num = locations->GetTemp(1).AsRegister<Register>();
3292 } else {
3293 edx = locations->Out().AsRegister<Register>();
3294 num = locations->GetTemp(0).AsRegister<Register>();
3295 }
3296
3297 DCHECK_EQ(EAX, eax);
3298 DCHECK_EQ(EDX, edx);
3299 if (instruction->IsDiv()) {
3300 DCHECK_EQ(EAX, out);
3301 } else {
3302 DCHECK_EQ(EDX, out);
3303 }
3304
3305 int64_t magic;
3306 int shift;
3307 CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3308
3309 NearLabel ndiv;
3310 NearLabel end;
3311 // If numerator is 0, the result is 0, no computation needed.
3312 __ testl(eax, eax);
3313 __ j(kNotEqual, &ndiv);
3314
3315 __ xorl(out, out);
3316 __ jmp(&end);
3317
3318 __ Bind(&ndiv);
3319
3320 // Save the numerator.
3321 __ movl(num, eax);
3322
3323 // EAX = magic
3324 __ movl(eax, Immediate(magic));
3325
3326 // EDX:EAX = magic * numerator
3327 __ imull(num);
3328
3329 if (imm > 0 && magic < 0) {
3330 // EDX += num
3331 __ addl(edx, num);
3332 } else if (imm < 0 && magic > 0) {
3333 __ subl(edx, num);
3334 }
3335
3336 // Shift if needed.
3337 if (shift != 0) {
3338 __ sarl(edx, Immediate(shift));
3339 }
3340
3341 // EDX += 1 if EDX < 0
3342 __ movl(eax, edx);
3343 __ shrl(edx, Immediate(31));
3344 __ addl(edx, eax);
3345
3346 if (instruction->IsRem()) {
3347 __ movl(eax, num);
3348 __ imull(edx, Immediate(imm));
3349 __ subl(eax, edx);
3350 __ movl(edx, eax);
3351 } else {
3352 __ movl(eax, edx);
3353 }
3354 __ Bind(&end);
3355 }
3356
GenerateDivRemIntegral(HBinaryOperation * instruction)3357 void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
3358 DCHECK(instruction->IsDiv() || instruction->IsRem());
3359
3360 LocationSummary* locations = instruction->GetLocations();
3361 Location out = locations->Out();
3362 Location first = locations->InAt(0);
3363 Location second = locations->InAt(1);
3364 bool is_div = instruction->IsDiv();
3365
3366 switch (instruction->GetResultType()) {
3367 case Primitive::kPrimInt: {
3368 DCHECK_EQ(EAX, first.AsRegister<Register>());
3369 DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
3370
3371 if (second.IsConstant()) {
3372 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3373
3374 if (imm == 0) {
3375 // Do not generate anything for 0. DivZeroCheck would forbid any generated code.
3376 } else if (imm == 1 || imm == -1) {
3377 DivRemOneOrMinusOne(instruction);
3378 } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
3379 DivByPowerOfTwo(instruction->AsDiv());
3380 } else {
3381 DCHECK(imm <= -2 || imm >= 2);
3382 GenerateDivRemWithAnyConstant(instruction);
3383 }
3384 } else {
3385 SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
3386 instruction, out.AsRegister<Register>(), is_div);
3387 codegen_->AddSlowPath(slow_path);
3388
3389 Register second_reg = second.AsRegister<Register>();
3390 // 0x80000000/-1 triggers an arithmetic exception!
3391 // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
3392 // it's safe to just use negl instead of more complex comparisons.
3393
3394 __ cmpl(second_reg, Immediate(-1));
3395 __ j(kEqual, slow_path->GetEntryLabel());
3396
3397 // edx:eax <- sign-extended of eax
3398 __ cdq();
3399 // eax = quotient, edx = remainder
3400 __ idivl(second_reg);
3401 __ Bind(slow_path->GetExitLabel());
3402 }
3403 break;
3404 }
3405
3406 case Primitive::kPrimLong: {
3407 InvokeRuntimeCallingConvention calling_convention;
3408 DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3409 DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3410 DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3411 DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3412 DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
3413 DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
3414
3415 if (is_div) {
3416 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
3417 instruction,
3418 instruction->GetDexPc(),
3419 nullptr);
3420 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3421 } else {
3422 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
3423 instruction,
3424 instruction->GetDexPc(),
3425 nullptr);
3426 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3427 }
3428 break;
3429 }
3430
3431 default:
3432 LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
3433 }
3434 }
3435
VisitDiv(HDiv * div)3436 void LocationsBuilderX86::VisitDiv(HDiv* div) {
3437 LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
3438 ? LocationSummary::kCall
3439 : LocationSummary::kNoCall;
3440 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3441
3442 switch (div->GetResultType()) {
3443 case Primitive::kPrimInt: {
3444 locations->SetInAt(0, Location::RegisterLocation(EAX));
3445 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3446 locations->SetOut(Location::SameAsFirstInput());
3447 // Intel uses edx:eax as the dividend.
3448 locations->AddTemp(Location::RegisterLocation(EDX));
3449 // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3450 // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
3451 // output and request another temp.
3452 if (div->InputAt(1)->IsIntConstant()) {
3453 locations->AddTemp(Location::RequiresRegister());
3454 }
3455 break;
3456 }
3457 case Primitive::kPrimLong: {
3458 InvokeRuntimeCallingConvention calling_convention;
3459 locations->SetInAt(0, Location::RegisterPairLocation(
3460 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3461 locations->SetInAt(1, Location::RegisterPairLocation(
3462 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3463 // Runtime helper puts the result in EAX, EDX.
3464 locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3465 break;
3466 }
3467 case Primitive::kPrimFloat:
3468 case Primitive::kPrimDouble: {
3469 locations->SetInAt(0, Location::RequiresFpuRegister());
3470 if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3471 DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
3472 } else if (div->InputAt(1)->IsConstant()) {
3473 locations->SetInAt(1, Location::RequiresFpuRegister());
3474 } else {
3475 locations->SetInAt(1, Location::Any());
3476 }
3477 locations->SetOut(Location::SameAsFirstInput());
3478 break;
3479 }
3480
3481 default:
3482 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3483 }
3484 }
3485
VisitDiv(HDiv * div)3486 void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
3487 LocationSummary* locations = div->GetLocations();
3488 Location first = locations->InAt(0);
3489 Location second = locations->InAt(1);
3490
3491 switch (div->GetResultType()) {
3492 case Primitive::kPrimInt:
3493 case Primitive::kPrimLong: {
3494 GenerateDivRemIntegral(div);
3495 break;
3496 }
3497
3498 case Primitive::kPrimFloat: {
3499 if (second.IsFpuRegister()) {
3500 __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3501 } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3502 HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3503 DCHECK(const_area->IsEmittedAtUseSite());
3504 __ divss(first.AsFpuRegister<XmmRegister>(),
3505 codegen_->LiteralFloatAddress(
3506 const_area->GetConstant()->AsFloatConstant()->GetValue(),
3507 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3508 } else {
3509 DCHECK(second.IsStackSlot());
3510 __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3511 }
3512 break;
3513 }
3514
3515 case Primitive::kPrimDouble: {
3516 if (second.IsFpuRegister()) {
3517 __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3518 } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3519 HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3520 DCHECK(const_area->IsEmittedAtUseSite());
3521 __ divsd(first.AsFpuRegister<XmmRegister>(),
3522 codegen_->LiteralDoubleAddress(
3523 const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3524 const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3525 } else {
3526 DCHECK(second.IsDoubleStackSlot());
3527 __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3528 }
3529 break;
3530 }
3531
3532 default:
3533 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3534 }
3535 }
3536
VisitRem(HRem * rem)3537 void LocationsBuilderX86::VisitRem(HRem* rem) {
3538 Primitive::Type type = rem->GetResultType();
3539
3540 LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
3541 ? LocationSummary::kCall
3542 : LocationSummary::kNoCall;
3543 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3544
3545 switch (type) {
3546 case Primitive::kPrimInt: {
3547 locations->SetInAt(0, Location::RegisterLocation(EAX));
3548 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
3549 locations->SetOut(Location::RegisterLocation(EDX));
3550 // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3551 // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
3552 // output and request another temp.
3553 if (rem->InputAt(1)->IsIntConstant()) {
3554 locations->AddTemp(Location::RequiresRegister());
3555 }
3556 break;
3557 }
3558 case Primitive::kPrimLong: {
3559 InvokeRuntimeCallingConvention calling_convention;
3560 locations->SetInAt(0, Location::RegisterPairLocation(
3561 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3562 locations->SetInAt(1, Location::RegisterPairLocation(
3563 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3564 // Runtime helper puts the result in EAX, EDX.
3565 locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3566 break;
3567 }
3568 case Primitive::kPrimDouble:
3569 case Primitive::kPrimFloat: {
3570 locations->SetInAt(0, Location::Any());
3571 locations->SetInAt(1, Location::Any());
3572 locations->SetOut(Location::RequiresFpuRegister());
3573 locations->AddTemp(Location::RegisterLocation(EAX));
3574 break;
3575 }
3576
3577 default:
3578 LOG(FATAL) << "Unexpected rem type " << type;
3579 }
3580 }
3581
VisitRem(HRem * rem)3582 void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
3583 Primitive::Type type = rem->GetResultType();
3584 switch (type) {
3585 case Primitive::kPrimInt:
3586 case Primitive::kPrimLong: {
3587 GenerateDivRemIntegral(rem);
3588 break;
3589 }
3590 case Primitive::kPrimFloat:
3591 case Primitive::kPrimDouble: {
3592 GenerateRemFP(rem);
3593 break;
3594 }
3595 default:
3596 LOG(FATAL) << "Unexpected rem type " << type;
3597 }
3598 }
3599
VisitDivZeroCheck(HDivZeroCheck * instruction)3600 void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3601 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
3602 ? LocationSummary::kCallOnSlowPath
3603 : LocationSummary::kNoCall;
3604 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3605 switch (instruction->GetType()) {
3606 case Primitive::kPrimBoolean:
3607 case Primitive::kPrimByte:
3608 case Primitive::kPrimChar:
3609 case Primitive::kPrimShort:
3610 case Primitive::kPrimInt: {
3611 locations->SetInAt(0, Location::Any());
3612 break;
3613 }
3614 case Primitive::kPrimLong: {
3615 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3616 if (!instruction->IsConstant()) {
3617 locations->AddTemp(Location::RequiresRegister());
3618 }
3619 break;
3620 }
3621 default:
3622 LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3623 }
3624 if (instruction->HasUses()) {
3625 locations->SetOut(Location::SameAsFirstInput());
3626 }
3627 }
3628
VisitDivZeroCheck(HDivZeroCheck * instruction)3629 void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3630 SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
3631 codegen_->AddSlowPath(slow_path);
3632
3633 LocationSummary* locations = instruction->GetLocations();
3634 Location value = locations->InAt(0);
3635
3636 switch (instruction->GetType()) {
3637 case Primitive::kPrimBoolean:
3638 case Primitive::kPrimByte:
3639 case Primitive::kPrimChar:
3640 case Primitive::kPrimShort:
3641 case Primitive::kPrimInt: {
3642 if (value.IsRegister()) {
3643 __ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
3644 __ j(kEqual, slow_path->GetEntryLabel());
3645 } else if (value.IsStackSlot()) {
3646 __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
3647 __ j(kEqual, slow_path->GetEntryLabel());
3648 } else {
3649 DCHECK(value.IsConstant()) << value;
3650 if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3651 __ jmp(slow_path->GetEntryLabel());
3652 }
3653 }
3654 break;
3655 }
3656 case Primitive::kPrimLong: {
3657 if (value.IsRegisterPair()) {
3658 Register temp = locations->GetTemp(0).AsRegister<Register>();
3659 __ movl(temp, value.AsRegisterPairLow<Register>());
3660 __ orl(temp, value.AsRegisterPairHigh<Register>());
3661 __ j(kEqual, slow_path->GetEntryLabel());
3662 } else {
3663 DCHECK(value.IsConstant()) << value;
3664 if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3665 __ jmp(slow_path->GetEntryLabel());
3666 }
3667 }
3668 break;
3669 }
3670 default:
3671 LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
3672 }
3673 }
3674
HandleShift(HBinaryOperation * op)3675 void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
3676 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3677
3678 LocationSummary* locations =
3679 new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3680
3681 switch (op->GetResultType()) {
3682 case Primitive::kPrimInt:
3683 case Primitive::kPrimLong: {
3684 // Can't have Location::Any() and output SameAsFirstInput()
3685 locations->SetInAt(0, Location::RequiresRegister());
3686 // The shift count needs to be in CL or a constant.
3687 locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
3688 locations->SetOut(Location::SameAsFirstInput());
3689 break;
3690 }
3691 default:
3692 LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3693 }
3694 }
3695
HandleShift(HBinaryOperation * op)3696 void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
3697 DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3698
3699 LocationSummary* locations = op->GetLocations();
3700 Location first = locations->InAt(0);
3701 Location second = locations->InAt(1);
3702 DCHECK(first.Equals(locations->Out()));
3703
3704 switch (op->GetResultType()) {
3705 case Primitive::kPrimInt: {
3706 DCHECK(first.IsRegister());
3707 Register first_reg = first.AsRegister<Register>();
3708 if (second.IsRegister()) {
3709 Register second_reg = second.AsRegister<Register>();
3710 DCHECK_EQ(ECX, second_reg);
3711 if (op->IsShl()) {
3712 __ shll(first_reg, second_reg);
3713 } else if (op->IsShr()) {
3714 __ sarl(first_reg, second_reg);
3715 } else {
3716 __ shrl(first_reg, second_reg);
3717 }
3718 } else {
3719 int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
3720 if (shift == 0) {
3721 return;
3722 }
3723 Immediate imm(shift);
3724 if (op->IsShl()) {
3725 __ shll(first_reg, imm);
3726 } else if (op->IsShr()) {
3727 __ sarl(first_reg, imm);
3728 } else {
3729 __ shrl(first_reg, imm);
3730 }
3731 }
3732 break;
3733 }
3734 case Primitive::kPrimLong: {
3735 if (second.IsRegister()) {
3736 Register second_reg = second.AsRegister<Register>();
3737 DCHECK_EQ(ECX, second_reg);
3738 if (op->IsShl()) {
3739 GenerateShlLong(first, second_reg);
3740 } else if (op->IsShr()) {
3741 GenerateShrLong(first, second_reg);
3742 } else {
3743 GenerateUShrLong(first, second_reg);
3744 }
3745 } else {
3746 // Shift by a constant.
3747 int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3748 // Nothing to do if the shift is 0, as the input is already the output.
3749 if (shift != 0) {
3750 if (op->IsShl()) {
3751 GenerateShlLong(first, shift);
3752 } else if (op->IsShr()) {
3753 GenerateShrLong(first, shift);
3754 } else {
3755 GenerateUShrLong(first, shift);
3756 }
3757 }
3758 }
3759 break;
3760 }
3761 default:
3762 LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3763 }
3764 }
3765
GenerateShlLong(const Location & loc,int shift)3766 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
3767 Register low = loc.AsRegisterPairLow<Register>();
3768 Register high = loc.AsRegisterPairHigh<Register>();
3769 if (shift == 1) {
3770 // This is just an addition.
3771 __ addl(low, low);
3772 __ adcl(high, high);
3773 } else if (shift == 32) {
3774 // Shift by 32 is easy. High gets low, and low gets 0.
3775 codegen_->EmitParallelMoves(
3776 loc.ToLow(),
3777 loc.ToHigh(),
3778 Primitive::kPrimInt,
3779 Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3780 loc.ToLow(),
3781 Primitive::kPrimInt);
3782 } else if (shift > 32) {
3783 // Low part becomes 0. High part is low part << (shift-32).
3784 __ movl(high, low);
3785 __ shll(high, Immediate(shift - 32));
3786 __ xorl(low, low);
3787 } else {
3788 // Between 1 and 31.
3789 __ shld(high, low, Immediate(shift));
3790 __ shll(low, Immediate(shift));
3791 }
3792 }
3793
GenerateShlLong(const Location & loc,Register shifter)3794 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
3795 NearLabel done;
3796 __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
3797 __ shll(loc.AsRegisterPairLow<Register>(), shifter);
3798 __ testl(shifter, Immediate(32));
3799 __ j(kEqual, &done);
3800 __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
3801 __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
3802 __ Bind(&done);
3803 }
3804
GenerateShrLong(const Location & loc,int shift)3805 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
3806 Register low = loc.AsRegisterPairLow<Register>();
3807 Register high = loc.AsRegisterPairHigh<Register>();
3808 if (shift == 32) {
3809 // Need to copy the sign.
3810 DCHECK_NE(low, high);
3811 __ movl(low, high);
3812 __ sarl(high, Immediate(31));
3813 } else if (shift > 32) {
3814 DCHECK_NE(low, high);
3815 // High part becomes sign. Low part is shifted by shift - 32.
3816 __ movl(low, high);
3817 __ sarl(high, Immediate(31));
3818 __ sarl(low, Immediate(shift - 32));
3819 } else {
3820 // Between 1 and 31.
3821 __ shrd(low, high, Immediate(shift));
3822 __ sarl(high, Immediate(shift));
3823 }
3824 }
3825
GenerateShrLong(const Location & loc,Register shifter)3826 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
3827 NearLabel done;
3828 __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3829 __ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
3830 __ testl(shifter, Immediate(32));
3831 __ j(kEqual, &done);
3832 __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3833 __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
3834 __ Bind(&done);
3835 }
3836
GenerateUShrLong(const Location & loc,int shift)3837 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
3838 Register low = loc.AsRegisterPairLow<Register>();
3839 Register high = loc.AsRegisterPairHigh<Register>();
3840 if (shift == 32) {
3841 // Shift by 32 is easy. Low gets high, and high gets 0.
3842 codegen_->EmitParallelMoves(
3843 loc.ToHigh(),
3844 loc.ToLow(),
3845 Primitive::kPrimInt,
3846 Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
3847 loc.ToHigh(),
3848 Primitive::kPrimInt);
3849 } else if (shift > 32) {
3850 // Low part is high >> (shift - 32). High part becomes 0.
3851 __ movl(low, high);
3852 __ shrl(low, Immediate(shift - 32));
3853 __ xorl(high, high);
3854 } else {
3855 // Between 1 and 31.
3856 __ shrd(low, high, Immediate(shift));
3857 __ shrl(high, Immediate(shift));
3858 }
3859 }
3860
GenerateUShrLong(const Location & loc,Register shifter)3861 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
3862 NearLabel done;
3863 __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
3864 __ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
3865 __ testl(shifter, Immediate(32));
3866 __ j(kEqual, &done);
3867 __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
3868 __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
3869 __ Bind(&done);
3870 }
3871
VisitRor(HRor * ror)3872 void LocationsBuilderX86::VisitRor(HRor* ror) {
3873 LocationSummary* locations =
3874 new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3875
3876 switch (ror->GetResultType()) {
3877 case Primitive::kPrimLong:
3878 // Add the temporary needed.
3879 locations->AddTemp(Location::RequiresRegister());
3880 FALLTHROUGH_INTENDED;
3881 case Primitive::kPrimInt:
3882 locations->SetInAt(0, Location::RequiresRegister());
3883 // The shift count needs to be in CL (unless it is a constant).
3884 locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
3885 locations->SetOut(Location::SameAsFirstInput());
3886 break;
3887 default:
3888 LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3889 UNREACHABLE();
3890 }
3891 }
3892
VisitRor(HRor * ror)3893 void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
3894 LocationSummary* locations = ror->GetLocations();
3895 Location first = locations->InAt(0);
3896 Location second = locations->InAt(1);
3897
3898 if (ror->GetResultType() == Primitive::kPrimInt) {
3899 Register first_reg = first.AsRegister<Register>();
3900 if (second.IsRegister()) {
3901 Register second_reg = second.AsRegister<Register>();
3902 __ rorl(first_reg, second_reg);
3903 } else {
3904 Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
3905 __ rorl(first_reg, imm);
3906 }
3907 return;
3908 }
3909
3910 DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
3911 Register first_reg_lo = first.AsRegisterPairLow<Register>();
3912 Register first_reg_hi = first.AsRegisterPairHigh<Register>();
3913 Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
3914 if (second.IsRegister()) {
3915 Register second_reg = second.AsRegister<Register>();
3916 DCHECK_EQ(second_reg, ECX);
3917 __ movl(temp_reg, first_reg_hi);
3918 __ shrd(first_reg_hi, first_reg_lo, second_reg);
3919 __ shrd(first_reg_lo, temp_reg, second_reg);
3920 __ movl(temp_reg, first_reg_hi);
3921 __ testl(second_reg, Immediate(32));
3922 __ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
3923 __ cmovl(kNotEqual, first_reg_lo, temp_reg);
3924 } else {
3925 int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3926 if (shift_amt == 0) {
3927 // Already fine.
3928 return;
3929 }
3930 if (shift_amt == 32) {
3931 // Just swap.
3932 __ movl(temp_reg, first_reg_lo);
3933 __ movl(first_reg_lo, first_reg_hi);
3934 __ movl(first_reg_hi, temp_reg);
3935 return;
3936 }
3937
3938 Immediate imm(shift_amt);
3939 // Save the constents of the low value.
3940 __ movl(temp_reg, first_reg_lo);
3941
3942 // Shift right into low, feeding bits from high.
3943 __ shrd(first_reg_lo, first_reg_hi, imm);
3944
3945 // Shift right into high, feeding bits from the original low.
3946 __ shrd(first_reg_hi, temp_reg, imm);
3947
3948 // Swap if needed.
3949 if (shift_amt > 32) {
3950 __ movl(temp_reg, first_reg_lo);
3951 __ movl(first_reg_lo, first_reg_hi);
3952 __ movl(first_reg_hi, temp_reg);
3953 }
3954 }
3955 }
3956
VisitShl(HShl * shl)3957 void LocationsBuilderX86::VisitShl(HShl* shl) {
3958 HandleShift(shl);
3959 }
3960
VisitShl(HShl * shl)3961 void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
3962 HandleShift(shl);
3963 }
3964
VisitShr(HShr * shr)3965 void LocationsBuilderX86::VisitShr(HShr* shr) {
3966 HandleShift(shr);
3967 }
3968
VisitShr(HShr * shr)3969 void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
3970 HandleShift(shr);
3971 }
3972
VisitUShr(HUShr * ushr)3973 void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
3974 HandleShift(ushr);
3975 }
3976
VisitUShr(HUShr * ushr)3977 void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
3978 HandleShift(ushr);
3979 }
3980
VisitNewInstance(HNewInstance * instruction)3981 void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
3982 LocationSummary* locations =
3983 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3984 locations->SetOut(Location::RegisterLocation(EAX));
3985 if (instruction->IsStringAlloc()) {
3986 locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3987 } else {
3988 InvokeRuntimeCallingConvention calling_convention;
3989 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3990 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3991 }
3992 }
3993
VisitNewInstance(HNewInstance * instruction)3994 void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
3995 // Note: if heap poisoning is enabled, the entry point takes cares
3996 // of poisoning the reference.
3997 if (instruction->IsStringAlloc()) {
3998 // String is allocated through StringFactory. Call NewEmptyString entry point.
3999 Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
4000 MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize);
4001 __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
4002 __ call(Address(temp, code_offset.Int32Value()));
4003 codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4004 } else {
4005 codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4006 instruction,
4007 instruction->GetDexPc(),
4008 nullptr);
4009 CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4010 DCHECK(!codegen_->IsLeafMethod());
4011 }
4012 }
4013
VisitNewArray(HNewArray * instruction)4014 void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
4015 LocationSummary* locations =
4016 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4017 locations->SetOut(Location::RegisterLocation(EAX));
4018 InvokeRuntimeCallingConvention calling_convention;
4019 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4020 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4021 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
4022 }
4023
VisitNewArray(HNewArray * instruction)4024 void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
4025 InvokeRuntimeCallingConvention calling_convention;
4026 __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
4027 // Note: if heap poisoning is enabled, the entry point takes cares
4028 // of poisoning the reference.
4029 codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4030 instruction,
4031 instruction->GetDexPc(),
4032 nullptr);
4033 CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4034 DCHECK(!codegen_->IsLeafMethod());
4035 }
4036
VisitParameterValue(HParameterValue * instruction)4037 void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
4038 LocationSummary* locations =
4039 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4040 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4041 if (location.IsStackSlot()) {
4042 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4043 } else if (location.IsDoubleStackSlot()) {
4044 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4045 }
4046 locations->SetOut(location);
4047 }
4048
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4049 void InstructionCodeGeneratorX86::VisitParameterValue(
4050 HParameterValue* instruction ATTRIBUTE_UNUSED) {
4051 }
4052
VisitCurrentMethod(HCurrentMethod * instruction)4053 void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
4054 LocationSummary* locations =
4055 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4056 locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
4057 }
4058
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4059 void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4060 }
4061
VisitClassTableGet(HClassTableGet * instruction)4062 void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
4063 LocationSummary* locations =
4064 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4065 locations->SetInAt(0, Location::RequiresRegister());
4066 locations->SetOut(Location::RequiresRegister());
4067 }
4068
VisitClassTableGet(HClassTableGet * instruction)4069 void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
4070 LocationSummary* locations = instruction->GetLocations();
4071 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
4072 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4073 instruction->GetIndex(), kX86PointerSize).SizeValue();
4074 __ movl(locations->Out().AsRegister<Register>(),
4075 Address(locations->InAt(0).AsRegister<Register>(), method_offset));
4076 } else {
4077 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4078 instruction->GetIndex() % ImTable::kSize, kX86PointerSize));
4079 __ movl(locations->Out().AsRegister<Register>(),
4080 Address(locations->InAt(0).AsRegister<Register>(),
4081 mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
4082 // temp = temp->GetImtEntryAt(method_offset);
4083 __ movl(locations->Out().AsRegister<Register>(),
4084 Address(locations->Out().AsRegister<Register>(), method_offset));
4085 }
4086 }
4087
VisitNot(HNot * not_)4088 void LocationsBuilderX86::VisitNot(HNot* not_) {
4089 LocationSummary* locations =
4090 new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4091 locations->SetInAt(0, Location::RequiresRegister());
4092 locations->SetOut(Location::SameAsFirstInput());
4093 }
4094
VisitNot(HNot * not_)4095 void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
4096 LocationSummary* locations = not_->GetLocations();
4097 Location in = locations->InAt(0);
4098 Location out = locations->Out();
4099 DCHECK(in.Equals(out));
4100 switch (not_->GetResultType()) {
4101 case Primitive::kPrimInt:
4102 __ notl(out.AsRegister<Register>());
4103 break;
4104
4105 case Primitive::kPrimLong:
4106 __ notl(out.AsRegisterPairLow<Register>());
4107 __ notl(out.AsRegisterPairHigh<Register>());
4108 break;
4109
4110 default:
4111 LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4112 }
4113 }
4114
VisitBooleanNot(HBooleanNot * bool_not)4115 void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
4116 LocationSummary* locations =
4117 new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4118 locations->SetInAt(0, Location::RequiresRegister());
4119 locations->SetOut(Location::SameAsFirstInput());
4120 }
4121
VisitBooleanNot(HBooleanNot * bool_not)4122 void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
4123 LocationSummary* locations = bool_not->GetLocations();
4124 Location in = locations->InAt(0);
4125 Location out = locations->Out();
4126 DCHECK(in.Equals(out));
4127 __ xorl(out.AsRegister<Register>(), Immediate(1));
4128 }
4129
VisitCompare(HCompare * compare)4130 void LocationsBuilderX86::VisitCompare(HCompare* compare) {
4131 LocationSummary* locations =
4132 new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4133 switch (compare->InputAt(0)->GetType()) {
4134 case Primitive::kPrimBoolean:
4135 case Primitive::kPrimByte:
4136 case Primitive::kPrimShort:
4137 case Primitive::kPrimChar:
4138 case Primitive::kPrimInt:
4139 case Primitive::kPrimLong: {
4140 locations->SetInAt(0, Location::RequiresRegister());
4141 locations->SetInAt(1, Location::Any());
4142 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4143 break;
4144 }
4145 case Primitive::kPrimFloat:
4146 case Primitive::kPrimDouble: {
4147 locations->SetInAt(0, Location::RequiresFpuRegister());
4148 if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
4149 DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
4150 } else if (compare->InputAt(1)->IsConstant()) {
4151 locations->SetInAt(1, Location::RequiresFpuRegister());
4152 } else {
4153 locations->SetInAt(1, Location::Any());
4154 }
4155 locations->SetOut(Location::RequiresRegister());
4156 break;
4157 }
4158 default:
4159 LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4160 }
4161 }
4162
VisitCompare(HCompare * compare)4163 void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
4164 LocationSummary* locations = compare->GetLocations();
4165 Register out = locations->Out().AsRegister<Register>();
4166 Location left = locations->InAt(0);
4167 Location right = locations->InAt(1);
4168
4169 NearLabel less, greater, done;
4170 Condition less_cond = kLess;
4171
4172 switch (compare->InputAt(0)->GetType()) {
4173 case Primitive::kPrimBoolean:
4174 case Primitive::kPrimByte:
4175 case Primitive::kPrimShort:
4176 case Primitive::kPrimChar:
4177 case Primitive::kPrimInt: {
4178 GenerateIntCompare(left, right);
4179 break;
4180 }
4181 case Primitive::kPrimLong: {
4182 Register left_low = left.AsRegisterPairLow<Register>();
4183 Register left_high = left.AsRegisterPairHigh<Register>();
4184 int32_t val_low = 0;
4185 int32_t val_high = 0;
4186 bool right_is_const = false;
4187
4188 if (right.IsConstant()) {
4189 DCHECK(right.GetConstant()->IsLongConstant());
4190 right_is_const = true;
4191 int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
4192 val_low = Low32Bits(val);
4193 val_high = High32Bits(val);
4194 }
4195
4196 if (right.IsRegisterPair()) {
4197 __ cmpl(left_high, right.AsRegisterPairHigh<Register>());
4198 } else if (right.IsDoubleStackSlot()) {
4199 __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
4200 } else {
4201 DCHECK(right_is_const) << right;
4202 codegen_->Compare32BitValue(left_high, val_high);
4203 }
4204 __ j(kLess, &less); // Signed compare.
4205 __ j(kGreater, &greater); // Signed compare.
4206 if (right.IsRegisterPair()) {
4207 __ cmpl(left_low, right.AsRegisterPairLow<Register>());
4208 } else if (right.IsDoubleStackSlot()) {
4209 __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
4210 } else {
4211 DCHECK(right_is_const) << right;
4212 codegen_->Compare32BitValue(left_low, val_low);
4213 }
4214 less_cond = kBelow; // for CF (unsigned).
4215 break;
4216 }
4217 case Primitive::kPrimFloat: {
4218 GenerateFPCompare(left, right, compare, false);
4219 __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4220 less_cond = kBelow; // for CF (floats).
4221 break;
4222 }
4223 case Primitive::kPrimDouble: {
4224 GenerateFPCompare(left, right, compare, true);
4225 __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4226 less_cond = kBelow; // for CF (floats).
4227 break;
4228 }
4229 default:
4230 LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4231 }
4232
4233 __ movl(out, Immediate(0));
4234 __ j(kEqual, &done);
4235 __ j(less_cond, &less);
4236
4237 __ Bind(&greater);
4238 __ movl(out, Immediate(1));
4239 __ jmp(&done);
4240
4241 __ Bind(&less);
4242 __ movl(out, Immediate(-1));
4243
4244 __ Bind(&done);
4245 }
4246
VisitPhi(HPhi * instruction)4247 void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
4248 LocationSummary* locations =
4249 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4250 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4251 locations->SetInAt(i, Location::Any());
4252 }
4253 locations->SetOut(Location::Any());
4254 }
4255
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)4256 void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4257 LOG(FATAL) << "Unreachable";
4258 }
4259
GenerateMemoryBarrier(MemBarrierKind kind)4260 void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
4261 /*
4262 * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
4263 * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
4264 * For those cases, all we need to ensure is that there is a scheduling barrier in place.
4265 */
4266 switch (kind) {
4267 case MemBarrierKind::kAnyAny: {
4268 MemoryFence();
4269 break;
4270 }
4271 case MemBarrierKind::kAnyStore:
4272 case MemBarrierKind::kLoadAny:
4273 case MemBarrierKind::kStoreStore: {
4274 // nop
4275 break;
4276 }
4277 default:
4278 LOG(FATAL) << "Unexpected memory barrier " << kind;
4279 }
4280 }
4281
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,MethodReference target_method ATTRIBUTE_UNUSED)4282 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
4283 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4284 MethodReference target_method ATTRIBUTE_UNUSED) {
4285 HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
4286
4287 // We disable pc-relative load when there is an irreducible loop, as the optimization
4288 // is incompatible with it.
4289 // TODO: Create as many X86ComputeBaseMethodAddress instructions
4290 // as needed for methods with irreducible loops.
4291 if (GetGraph()->HasIrreducibleLoops() &&
4292 (dispatch_info.method_load_kind ==
4293 HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
4294 dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
4295 }
4296 switch (dispatch_info.code_ptr_location) {
4297 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4298 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4299 // For direct code, we actually prefer to call via the code pointer from ArtMethod*.
4300 // (Though the direct CALL ptr16:32 is available for consideration).
4301 return HInvokeStaticOrDirect::DispatchInfo {
4302 dispatch_info.method_load_kind,
4303 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
4304 dispatch_info.method_load_data,
4305 0u
4306 };
4307 default:
4308 return dispatch_info;
4309 }
4310 }
4311
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)4312 Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
4313 Register temp) {
4314 DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
4315 Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4316 if (!invoke->GetLocations()->Intrinsified()) {
4317 return location.AsRegister<Register>();
4318 }
4319 // For intrinsics we allow any location, so it may be on the stack.
4320 if (!location.IsRegister()) {
4321 __ movl(temp, Address(ESP, location.GetStackIndex()));
4322 return temp;
4323 }
4324 // For register locations, check if the register was saved. If so, get it from the stack.
4325 // Note: There is a chance that the register was saved but not overwritten, so we could
4326 // save one load. However, since this is just an intrinsic slow path we prefer this
4327 // simple and more robust approach rather that trying to determine if that's the case.
4328 SlowPathCode* slow_path = GetCurrentSlowPath();
4329 DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
4330 if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
4331 int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
4332 __ movl(temp, Address(ESP, stack_offset));
4333 return temp;
4334 }
4335 return location.AsRegister<Register>();
4336 }
4337
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)4338 void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
4339 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
4340 switch (invoke->GetMethodLoadKind()) {
4341 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
4342 // temp = thread->string_init_entrypoint
4343 __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset()));
4344 break;
4345 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4346 callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4347 break;
4348 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
4349 __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
4350 break;
4351 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
4352 __ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0));
4353 method_patches_.emplace_back(invoke->GetTargetMethod());
4354 __ Bind(&method_patches_.back().label); // Bind the label at the end of the "movl" insn.
4355 break;
4356 case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
4357 Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
4358 temp.AsRegister<Register>());
4359 __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
4360 // Bind a new fixup label at the end of the "movl" insn.
4361 uint32_t offset = invoke->GetDexCacheArrayOffset();
4362 __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset));
4363 break;
4364 }
4365 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
4366 Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4367 Register method_reg;
4368 Register reg = temp.AsRegister<Register>();
4369 if (current_method.IsRegister()) {
4370 method_reg = current_method.AsRegister<Register>();
4371 } else {
4372 DCHECK(invoke->GetLocations()->Intrinsified());
4373 DCHECK(!current_method.IsValid());
4374 method_reg = reg;
4375 __ movl(reg, Address(ESP, kCurrentMethodStackOffset));
4376 }
4377 // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
4378 __ movl(reg, Address(method_reg,
4379 ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value()));
4380 // temp = temp[index_in_cache];
4381 // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
4382 uint32_t index_in_cache = invoke->GetDexMethodIndex();
4383 __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache)));
4384 break;
4385 }
4386 }
4387
4388 switch (invoke->GetCodePtrLocation()) {
4389 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4390 __ call(GetFrameEntryLabel());
4391 break;
4392 case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
4393 relative_call_patches_.emplace_back(invoke->GetTargetMethod());
4394 Label* label = &relative_call_patches_.back().label;
4395 __ call(label); // Bind to the patch label, override at link time.
4396 __ Bind(label); // Bind the label at the end of the "call" insn.
4397 break;
4398 }
4399 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
4400 case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
4401 // Filtered out by GetSupportedInvokeStaticOrDirectDispatch().
4402 LOG(FATAL) << "Unsupported";
4403 UNREACHABLE();
4404 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4405 // (callee_method + offset_of_quick_compiled_code)()
4406 __ call(Address(callee_method.AsRegister<Register>(),
4407 ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4408 kX86WordSize).Int32Value()));
4409 break;
4410 }
4411
4412 DCHECK(!IsLeafMethod());
4413 }
4414
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in)4415 void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
4416 Register temp = temp_in.AsRegister<Register>();
4417 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4418 invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
4419
4420 // Use the calling convention instead of the location of the receiver, as
4421 // intrinsics may have put the receiver in a different register. In the intrinsics
4422 // slow path, the arguments have been moved to the right place, so here we are
4423 // guaranteed that the receiver is the first register of the calling convention.
4424 InvokeDexCallingConvention calling_convention;
4425 Register receiver = calling_convention.GetRegisterAt(0);
4426 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4427 // /* HeapReference<Class> */ temp = receiver->klass_
4428 __ movl(temp, Address(receiver, class_offset));
4429 MaybeRecordImplicitNullCheck(invoke);
4430 // Instead of simply (possibly) unpoisoning `temp` here, we should
4431 // emit a read barrier for the previous class reference load.
4432 // However this is not required in practice, as this is an
4433 // intermediate/temporary reference and because the current
4434 // concurrent copying collector keeps the from-space memory
4435 // intact/accessible until the end of the marking phase (the
4436 // concurrent copying collector may not in the future).
4437 __ MaybeUnpoisonHeapReference(temp);
4438 // temp = temp->GetMethodAt(method_offset);
4439 __ movl(temp, Address(temp, method_offset));
4440 // call temp->GetEntryPoint();
4441 __ call(Address(
4442 temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
4443 }
4444
RecordSimplePatch()4445 void CodeGeneratorX86::RecordSimplePatch() {
4446 if (GetCompilerOptions().GetIncludePatchInformation()) {
4447 simple_patches_.emplace_back();
4448 __ Bind(&simple_patches_.back());
4449 }
4450 }
4451
RecordStringPatch(HLoadString * load_string)4452 void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) {
4453 string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex());
4454 __ Bind(&string_patches_.back().label);
4455 }
4456
NewPcRelativeDexCacheArrayPatch(const DexFile & dex_file,uint32_t element_offset)4457 Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
4458 uint32_t element_offset) {
4459 // Add the patch entry and bind its label at the end of the instruction.
4460 pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset);
4461 return &pc_relative_dex_cache_patches_.back().label;
4462 }
4463
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)4464 void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
4465 DCHECK(linker_patches->empty());
4466 size_t size =
4467 method_patches_.size() +
4468 relative_call_patches_.size() +
4469 pc_relative_dex_cache_patches_.size() +
4470 simple_patches_.size() +
4471 string_patches_.size();
4472 linker_patches->reserve(size);
4473 // The label points to the end of the "movl" insn but the literal offset for method
4474 // patch needs to point to the embedded constant which occupies the last 4 bytes.
4475 constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
4476 for (const MethodPatchInfo<Label>& info : method_patches_) {
4477 uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4478 linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
4479 info.target_method.dex_file,
4480 info.target_method.dex_method_index));
4481 }
4482 for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
4483 uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4484 linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
4485 info.target_method.dex_file,
4486 info.target_method.dex_method_index));
4487 }
4488 for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
4489 uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4490 linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset,
4491 &info.target_dex_file,
4492 GetMethodAddressOffset(),
4493 info.element_offset));
4494 }
4495 for (const Label& label : simple_patches_) {
4496 uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4497 linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
4498 }
4499 if (GetCompilerOptions().GetCompilePic()) {
4500 for (const StringPatchInfo<Label>& info : string_patches_) {
4501 uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4502 linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset,
4503 &info.dex_file,
4504 GetMethodAddressOffset(),
4505 info.string_index));
4506 }
4507 } else {
4508 for (const StringPatchInfo<Label>& info : string_patches_) {
4509 uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4510 linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
4511 &info.dex_file,
4512 info.string_index));
4513 }
4514 }
4515 }
4516
MarkGCCard(Register temp,Register card,Register object,Register value,bool value_can_be_null)4517 void CodeGeneratorX86::MarkGCCard(Register temp,
4518 Register card,
4519 Register object,
4520 Register value,
4521 bool value_can_be_null) {
4522 NearLabel is_null;
4523 if (value_can_be_null) {
4524 __ testl(value, value);
4525 __ j(kEqual, &is_null);
4526 }
4527 __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value()));
4528 __ movl(temp, object);
4529 __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
4530 __ movb(Address(temp, card, TIMES_1, 0),
4531 X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
4532 if (value_can_be_null) {
4533 __ Bind(&is_null);
4534 }
4535 }
4536
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4537 void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4538 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4539
4540 bool object_field_get_with_read_barrier =
4541 kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4542 LocationSummary* locations =
4543 new (GetGraph()->GetArena()) LocationSummary(instruction,
4544 kEmitCompilerReadBarrier ?
4545 LocationSummary::kCallOnSlowPath :
4546 LocationSummary::kNoCall);
4547 locations->SetInAt(0, Location::RequiresRegister());
4548
4549 if (Primitive::IsFloatingPointType(instruction->GetType())) {
4550 locations->SetOut(Location::RequiresFpuRegister());
4551 } else {
4552 // The output overlaps in case of long: we don't want the low move
4553 // to overwrite the object's location. Likewise, in the case of
4554 // an object field get with read barriers enabled, we do not want
4555 // the move to overwrite the object's location, as we need it to emit
4556 // the read barrier.
4557 locations->SetOut(
4558 Location::RequiresRegister(),
4559 (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
4560 Location::kOutputOverlap :
4561 Location::kNoOutputOverlap);
4562 }
4563
4564 if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
4565 // Long values can be loaded atomically into an XMM using movsd.
4566 // So we use an XMM register as a temp to achieve atomicity (first
4567 // load the temp into the XMM and then copy the XMM into the
4568 // output, 32 bits at a time).
4569 locations->AddTemp(Location::RequiresFpuRegister());
4570 } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4571 // We need a temporary register for the read barrier marking slow
4572 // path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier.
4573 locations->AddTemp(Location::RequiresRegister());
4574 }
4575 }
4576
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4577 void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
4578 const FieldInfo& field_info) {
4579 DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4580
4581 LocationSummary* locations = instruction->GetLocations();
4582 Location base_loc = locations->InAt(0);
4583 Register base = base_loc.AsRegister<Register>();
4584 Location out = locations->Out();
4585 bool is_volatile = field_info.IsVolatile();
4586 Primitive::Type field_type = field_info.GetFieldType();
4587 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4588
4589 switch (field_type) {
4590 case Primitive::kPrimBoolean: {
4591 __ movzxb(out.AsRegister<Register>(), Address(base, offset));
4592 break;
4593 }
4594
4595 case Primitive::kPrimByte: {
4596 __ movsxb(out.AsRegister<Register>(), Address(base, offset));
4597 break;
4598 }
4599
4600 case Primitive::kPrimShort: {
4601 __ movsxw(out.AsRegister<Register>(), Address(base, offset));
4602 break;
4603 }
4604
4605 case Primitive::kPrimChar: {
4606 __ movzxw(out.AsRegister<Register>(), Address(base, offset));
4607 break;
4608 }
4609
4610 case Primitive::kPrimInt:
4611 __ movl(out.AsRegister<Register>(), Address(base, offset));
4612 break;
4613
4614 case Primitive::kPrimNot: {
4615 // /* HeapReference<Object> */ out = *(base + offset)
4616 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4617 Location temp_loc = locations->GetTemp(0);
4618 // Note that a potential implicit null check is handled in this
4619 // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
4620 codegen_->GenerateFieldLoadWithBakerReadBarrier(
4621 instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4622 if (is_volatile) {
4623 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4624 }
4625 } else {
4626 __ movl(out.AsRegister<Register>(), Address(base, offset));
4627 codegen_->MaybeRecordImplicitNullCheck(instruction);
4628 if (is_volatile) {
4629 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4630 }
4631 // If read barriers are enabled, emit read barriers other than
4632 // Baker's using a slow path (and also unpoison the loaded
4633 // reference, if heap poisoning is enabled).
4634 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4635 }
4636 break;
4637 }
4638
4639 case Primitive::kPrimLong: {
4640 if (is_volatile) {
4641 XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4642 __ movsd(temp, Address(base, offset));
4643 codegen_->MaybeRecordImplicitNullCheck(instruction);
4644 __ movd(out.AsRegisterPairLow<Register>(), temp);
4645 __ psrlq(temp, Immediate(32));
4646 __ movd(out.AsRegisterPairHigh<Register>(), temp);
4647 } else {
4648 DCHECK_NE(base, out.AsRegisterPairLow<Register>());
4649 __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
4650 codegen_->MaybeRecordImplicitNullCheck(instruction);
4651 __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
4652 }
4653 break;
4654 }
4655
4656 case Primitive::kPrimFloat: {
4657 __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4658 break;
4659 }
4660
4661 case Primitive::kPrimDouble: {
4662 __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4663 break;
4664 }
4665
4666 case Primitive::kPrimVoid:
4667 LOG(FATAL) << "Unreachable type " << field_type;
4668 UNREACHABLE();
4669 }
4670
4671 if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
4672 // Potential implicit null checks, in the case of reference or
4673 // long fields, are handled in the previous switch statement.
4674 } else {
4675 codegen_->MaybeRecordImplicitNullCheck(instruction);
4676 }
4677
4678 if (is_volatile) {
4679 if (field_type == Primitive::kPrimNot) {
4680 // Memory barriers, in the case of references, are also handled
4681 // in the previous switch statement.
4682 } else {
4683 codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4684 }
4685 }
4686 }
4687
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)4688 void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4689 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4690
4691 LocationSummary* locations =
4692 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4693 locations->SetInAt(0, Location::RequiresRegister());
4694 bool is_volatile = field_info.IsVolatile();
4695 Primitive::Type field_type = field_info.GetFieldType();
4696 bool is_byte_type = (field_type == Primitive::kPrimBoolean)
4697 || (field_type == Primitive::kPrimByte);
4698
4699 // The register allocator does not support multiple
4700 // inputs that die at entry with one in a specific register.
4701 if (is_byte_type) {
4702 // Ensure the value is in a byte register.
4703 locations->SetInAt(1, Location::RegisterLocation(EAX));
4704 } else if (Primitive::IsFloatingPointType(field_type)) {
4705 if (is_volatile && field_type == Primitive::kPrimDouble) {
4706 // In order to satisfy the semantics of volatile, this must be a single instruction store.
4707 locations->SetInAt(1, Location::RequiresFpuRegister());
4708 } else {
4709 locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
4710 }
4711 } else if (is_volatile && field_type == Primitive::kPrimLong) {
4712 // In order to satisfy the semantics of volatile, this must be a single instruction store.
4713 locations->SetInAt(1, Location::RequiresRegister());
4714
4715 // 64bits value can be atomically written to an address with movsd and an XMM register.
4716 // We need two XMM registers because there's no easier way to (bit) copy a register pair
4717 // into a single XMM register (we copy each pair part into the XMMs and then interleave them).
4718 // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
4719 // isolated cases when we need this it isn't worth adding the extra complexity.
4720 locations->AddTemp(Location::RequiresFpuRegister());
4721 locations->AddTemp(Location::RequiresFpuRegister());
4722 } else {
4723 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4724
4725 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4726 // Temporary registers for the write barrier.
4727 locations->AddTemp(Location::RequiresRegister()); // May be used for reference poisoning too.
4728 // Ensure the card is in a byte register.
4729 locations->AddTemp(Location::RegisterLocation(ECX));
4730 }
4731 }
4732 }
4733
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)4734 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
4735 const FieldInfo& field_info,
4736 bool value_can_be_null) {
4737 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4738
4739 LocationSummary* locations = instruction->GetLocations();
4740 Register base = locations->InAt(0).AsRegister<Register>();
4741 Location value = locations->InAt(1);
4742 bool is_volatile = field_info.IsVolatile();
4743 Primitive::Type field_type = field_info.GetFieldType();
4744 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4745 bool needs_write_barrier =
4746 CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4747
4748 if (is_volatile) {
4749 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4750 }
4751
4752 bool maybe_record_implicit_null_check_done = false;
4753
4754 switch (field_type) {
4755 case Primitive::kPrimBoolean:
4756 case Primitive::kPrimByte: {
4757 __ movb(Address(base, offset), value.AsRegister<ByteRegister>());
4758 break;
4759 }
4760
4761 case Primitive::kPrimShort:
4762 case Primitive::kPrimChar: {
4763 if (value.IsConstant()) {
4764 int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4765 __ movw(Address(base, offset), Immediate(v));
4766 } else {
4767 __ movw(Address(base, offset), value.AsRegister<Register>());
4768 }
4769 break;
4770 }
4771
4772 case Primitive::kPrimInt:
4773 case Primitive::kPrimNot: {
4774 if (kPoisonHeapReferences && needs_write_barrier) {
4775 // Note that in the case where `value` is a null reference,
4776 // we do not enter this block, as the reference does not
4777 // need poisoning.
4778 DCHECK_EQ(field_type, Primitive::kPrimNot);
4779 Register temp = locations->GetTemp(0).AsRegister<Register>();
4780 __ movl(temp, value.AsRegister<Register>());
4781 __ PoisonHeapReference(temp);
4782 __ movl(Address(base, offset), temp);
4783 } else if (value.IsConstant()) {
4784 int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4785 __ movl(Address(base, offset), Immediate(v));
4786 } else {
4787 DCHECK(value.IsRegister()) << value;
4788 __ movl(Address(base, offset), value.AsRegister<Register>());
4789 }
4790 break;
4791 }
4792
4793 case Primitive::kPrimLong: {
4794 if (is_volatile) {
4795 XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4796 XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
4797 __ movd(temp1, value.AsRegisterPairLow<Register>());
4798 __ movd(temp2, value.AsRegisterPairHigh<Register>());
4799 __ punpckldq(temp1, temp2);
4800 __ movsd(Address(base, offset), temp1);
4801 codegen_->MaybeRecordImplicitNullCheck(instruction);
4802 } else if (value.IsConstant()) {
4803 int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4804 __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4805 codegen_->MaybeRecordImplicitNullCheck(instruction);
4806 __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4807 } else {
4808 __ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
4809 codegen_->MaybeRecordImplicitNullCheck(instruction);
4810 __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
4811 }
4812 maybe_record_implicit_null_check_done = true;
4813 break;
4814 }
4815
4816 case Primitive::kPrimFloat: {
4817 if (value.IsConstant()) {
4818 int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4819 __ movl(Address(base, offset), Immediate(v));
4820 } else {
4821 __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4822 }
4823 break;
4824 }
4825
4826 case Primitive::kPrimDouble: {
4827 if (value.IsConstant()) {
4828 int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4829 __ movl(Address(base, offset), Immediate(Low32Bits(v)));
4830 codegen_->MaybeRecordImplicitNullCheck(instruction);
4831 __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
4832 maybe_record_implicit_null_check_done = true;
4833 } else {
4834 __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
4835 }
4836 break;
4837 }
4838
4839 case Primitive::kPrimVoid:
4840 LOG(FATAL) << "Unreachable type " << field_type;
4841 UNREACHABLE();
4842 }
4843
4844 if (!maybe_record_implicit_null_check_done) {
4845 codegen_->MaybeRecordImplicitNullCheck(instruction);
4846 }
4847
4848 if (needs_write_barrier) {
4849 Register temp = locations->GetTemp(0).AsRegister<Register>();
4850 Register card = locations->GetTemp(1).AsRegister<Register>();
4851 codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4852 }
4853
4854 if (is_volatile) {
4855 codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4856 }
4857 }
4858
VisitStaticFieldGet(HStaticFieldGet * instruction)4859 void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4860 HandleFieldGet(instruction, instruction->GetFieldInfo());
4861 }
4862
VisitStaticFieldGet(HStaticFieldGet * instruction)4863 void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4864 HandleFieldGet(instruction, instruction->GetFieldInfo());
4865 }
4866
VisitStaticFieldSet(HStaticFieldSet * instruction)4867 void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4868 HandleFieldSet(instruction, instruction->GetFieldInfo());
4869 }
4870
VisitStaticFieldSet(HStaticFieldSet * instruction)4871 void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4872 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4873 }
4874
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4875 void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4876 HandleFieldSet(instruction, instruction->GetFieldInfo());
4877 }
4878
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4879 void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4880 HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4881 }
4882
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4883 void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4884 HandleFieldGet(instruction, instruction->GetFieldInfo());
4885 }
4886
VisitInstanceFieldGet(HInstanceFieldGet * instruction)4887 void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4888 HandleFieldGet(instruction, instruction->GetFieldInfo());
4889 }
4890
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4891 void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
4892 HUnresolvedInstanceFieldGet* instruction) {
4893 FieldAccessCallingConventionX86 calling_convention;
4894 codegen_->CreateUnresolvedFieldLocationSummary(
4895 instruction, instruction->GetFieldType(), calling_convention);
4896 }
4897
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4898 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
4899 HUnresolvedInstanceFieldGet* instruction) {
4900 FieldAccessCallingConventionX86 calling_convention;
4901 codegen_->GenerateUnresolvedFieldAccess(instruction,
4902 instruction->GetFieldType(),
4903 instruction->GetFieldIndex(),
4904 instruction->GetDexPc(),
4905 calling_convention);
4906 }
4907
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4908 void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
4909 HUnresolvedInstanceFieldSet* instruction) {
4910 FieldAccessCallingConventionX86 calling_convention;
4911 codegen_->CreateUnresolvedFieldLocationSummary(
4912 instruction, instruction->GetFieldType(), calling_convention);
4913 }
4914
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4915 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
4916 HUnresolvedInstanceFieldSet* instruction) {
4917 FieldAccessCallingConventionX86 calling_convention;
4918 codegen_->GenerateUnresolvedFieldAccess(instruction,
4919 instruction->GetFieldType(),
4920 instruction->GetFieldIndex(),
4921 instruction->GetDexPc(),
4922 calling_convention);
4923 }
4924
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4925 void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
4926 HUnresolvedStaticFieldGet* instruction) {
4927 FieldAccessCallingConventionX86 calling_convention;
4928 codegen_->CreateUnresolvedFieldLocationSummary(
4929 instruction, instruction->GetFieldType(), calling_convention);
4930 }
4931
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4932 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
4933 HUnresolvedStaticFieldGet* instruction) {
4934 FieldAccessCallingConventionX86 calling_convention;
4935 codegen_->GenerateUnresolvedFieldAccess(instruction,
4936 instruction->GetFieldType(),
4937 instruction->GetFieldIndex(),
4938 instruction->GetDexPc(),
4939 calling_convention);
4940 }
4941
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4942 void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
4943 HUnresolvedStaticFieldSet* instruction) {
4944 FieldAccessCallingConventionX86 calling_convention;
4945 codegen_->CreateUnresolvedFieldLocationSummary(
4946 instruction, instruction->GetFieldType(), calling_convention);
4947 }
4948
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4949 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
4950 HUnresolvedStaticFieldSet* instruction) {
4951 FieldAccessCallingConventionX86 calling_convention;
4952 codegen_->GenerateUnresolvedFieldAccess(instruction,
4953 instruction->GetFieldType(),
4954 instruction->GetFieldIndex(),
4955 instruction->GetDexPc(),
4956 calling_convention);
4957 }
4958
VisitNullCheck(HNullCheck * instruction)4959 void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
4960 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4961 ? LocationSummary::kCallOnSlowPath
4962 : LocationSummary::kNoCall;
4963 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4964 Location loc = codegen_->IsImplicitNullCheckAllowed(instruction)
4965 ? Location::RequiresRegister()
4966 : Location::Any();
4967 locations->SetInAt(0, loc);
4968 if (instruction->HasUses()) {
4969 locations->SetOut(Location::SameAsFirstInput());
4970 }
4971 }
4972
GenerateImplicitNullCheck(HNullCheck * instruction)4973 void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
4974 if (CanMoveNullCheckToUser(instruction)) {
4975 return;
4976 }
4977 LocationSummary* locations = instruction->GetLocations();
4978 Location obj = locations->InAt(0);
4979
4980 __ testl(EAX, Address(obj.AsRegister<Register>(), 0));
4981 RecordPcInfo(instruction, instruction->GetDexPc());
4982 }
4983
GenerateExplicitNullCheck(HNullCheck * instruction)4984 void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
4985 SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
4986 AddSlowPath(slow_path);
4987
4988 LocationSummary* locations = instruction->GetLocations();
4989 Location obj = locations->InAt(0);
4990
4991 if (obj.IsRegister()) {
4992 __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
4993 } else if (obj.IsStackSlot()) {
4994 __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
4995 } else {
4996 DCHECK(obj.IsConstant()) << obj;
4997 DCHECK(obj.GetConstant()->IsNullConstant());
4998 __ jmp(slow_path->GetEntryLabel());
4999 return;
5000 }
5001 __ j(kEqual, slow_path->GetEntryLabel());
5002 }
5003
VisitNullCheck(HNullCheck * instruction)5004 void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
5005 codegen_->GenerateNullCheck(instruction);
5006 }
5007
VisitArrayGet(HArrayGet * instruction)5008 void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
5009 bool object_array_get_with_read_barrier =
5010 kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
5011 LocationSummary* locations =
5012 new (GetGraph()->GetArena()) LocationSummary(instruction,
5013 object_array_get_with_read_barrier ?
5014 LocationSummary::kCallOnSlowPath :
5015 LocationSummary::kNoCall);
5016 locations->SetInAt(0, Location::RequiresRegister());
5017 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5018 if (Primitive::IsFloatingPointType(instruction->GetType())) {
5019 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5020 } else {
5021 // The output overlaps in case of long: we don't want the low move
5022 // to overwrite the array's location. Likewise, in the case of an
5023 // object array get with read barriers enabled, we do not want the
5024 // move to overwrite the array's location, as we need it to emit
5025 // the read barrier.
5026 locations->SetOut(
5027 Location::RequiresRegister(),
5028 (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
5029 Location::kOutputOverlap :
5030 Location::kNoOutputOverlap);
5031 }
5032 // We need a temporary register for the read barrier marking slow
5033 // path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier.
5034 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
5035 locations->AddTemp(Location::RequiresRegister());
5036 }
5037 }
5038
VisitArrayGet(HArrayGet * instruction)5039 void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
5040 LocationSummary* locations = instruction->GetLocations();
5041 Location obj_loc = locations->InAt(0);
5042 Register obj = obj_loc.AsRegister<Register>();
5043 Location index = locations->InAt(1);
5044 Location out_loc = locations->Out();
5045
5046 Primitive::Type type = instruction->GetType();
5047 switch (type) {
5048 case Primitive::kPrimBoolean: {
5049 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5050 Register out = out_loc.AsRegister<Register>();
5051 if (index.IsConstant()) {
5052 __ movzxb(out, Address(obj,
5053 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5054 } else {
5055 __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5056 }
5057 break;
5058 }
5059
5060 case Primitive::kPrimByte: {
5061 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
5062 Register out = out_loc.AsRegister<Register>();
5063 if (index.IsConstant()) {
5064 __ movsxb(out, Address(obj,
5065 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
5066 } else {
5067 __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
5068 }
5069 break;
5070 }
5071
5072 case Primitive::kPrimShort: {
5073 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
5074 Register out = out_loc.AsRegister<Register>();
5075 if (index.IsConstant()) {
5076 __ movsxw(out, Address(obj,
5077 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5078 } else {
5079 __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5080 }
5081 break;
5082 }
5083
5084 case Primitive::kPrimChar: {
5085 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5086 Register out = out_loc.AsRegister<Register>();
5087 if (index.IsConstant()) {
5088 __ movzxw(out, Address(obj,
5089 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
5090 } else {
5091 __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
5092 }
5093 break;
5094 }
5095
5096 case Primitive::kPrimInt: {
5097 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5098 Register out = out_loc.AsRegister<Register>();
5099 if (index.IsConstant()) {
5100 __ movl(out, Address(obj,
5101 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5102 } else {
5103 __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5104 }
5105 break;
5106 }
5107
5108 case Primitive::kPrimNot: {
5109 static_assert(
5110 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5111 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5112 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5113 // /* HeapReference<Object> */ out =
5114 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
5115 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5116 Location temp = locations->GetTemp(0);
5117 // Note that a potential implicit null check is handled in this
5118 // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
5119 codegen_->GenerateArrayLoadWithBakerReadBarrier(
5120 instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
5121 } else {
5122 Register out = out_loc.AsRegister<Register>();
5123 if (index.IsConstant()) {
5124 uint32_t offset =
5125 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5126 __ movl(out, Address(obj, offset));
5127 codegen_->MaybeRecordImplicitNullCheck(instruction);
5128 // If read barriers are enabled, emit read barriers other than
5129 // Baker's using a slow path (and also unpoison the loaded
5130 // reference, if heap poisoning is enabled).
5131 codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
5132 } else {
5133 __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5134 codegen_->MaybeRecordImplicitNullCheck(instruction);
5135 // If read barriers are enabled, emit read barriers other than
5136 // Baker's using a slow path (and also unpoison the loaded
5137 // reference, if heap poisoning is enabled).
5138 codegen_->MaybeGenerateReadBarrierSlow(
5139 instruction, out_loc, out_loc, obj_loc, data_offset, index);
5140 }
5141 }
5142 break;
5143 }
5144
5145 case Primitive::kPrimLong: {
5146 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5147 DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
5148 if (index.IsConstant()) {
5149 size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5150 __ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset));
5151 codegen_->MaybeRecordImplicitNullCheck(instruction);
5152 __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize));
5153 } else {
5154 __ movl(out_loc.AsRegisterPairLow<Register>(),
5155 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5156 codegen_->MaybeRecordImplicitNullCheck(instruction);
5157 __ movl(out_loc.AsRegisterPairHigh<Register>(),
5158 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize));
5159 }
5160 break;
5161 }
5162
5163 case Primitive::kPrimFloat: {
5164 uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5165 XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5166 if (index.IsConstant()) {
5167 __ movss(out, Address(obj,
5168 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
5169 } else {
5170 __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
5171 }
5172 break;
5173 }
5174
5175 case Primitive::kPrimDouble: {
5176 uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5177 XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5178 if (index.IsConstant()) {
5179 __ movsd(out, Address(obj,
5180 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
5181 } else {
5182 __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
5183 }
5184 break;
5185 }
5186
5187 case Primitive::kPrimVoid:
5188 LOG(FATAL) << "Unreachable type " << type;
5189 UNREACHABLE();
5190 }
5191
5192 if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
5193 // Potential implicit null checks, in the case of reference or
5194 // long arrays, are handled in the previous switch statement.
5195 } else {
5196 codegen_->MaybeRecordImplicitNullCheck(instruction);
5197 }
5198 }
5199
VisitArraySet(HArraySet * instruction)5200 void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
5201 Primitive::Type value_type = instruction->GetComponentType();
5202
5203 bool needs_write_barrier =
5204 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5205 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5206 bool object_array_set_with_read_barrier =
5207 kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
5208
5209 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5210 instruction,
5211 (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
5212 LocationSummary::kCallOnSlowPath :
5213 LocationSummary::kNoCall);
5214
5215 bool is_byte_type = (value_type == Primitive::kPrimBoolean)
5216 || (value_type == Primitive::kPrimByte);
5217 // We need the inputs to be different than the output in case of long operation.
5218 // In case of a byte operation, the register allocator does not support multiple
5219 // inputs that die at entry with one in a specific register.
5220 locations->SetInAt(0, Location::RequiresRegister());
5221 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5222 if (is_byte_type) {
5223 // Ensure the value is in a byte register.
5224 locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
5225 } else if (Primitive::IsFloatingPointType(value_type)) {
5226 locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
5227 } else {
5228 locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
5229 }
5230 if (needs_write_barrier) {
5231 // Temporary registers for the write barrier.
5232 locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
5233 // Ensure the card is in a byte register.
5234 locations->AddTemp(Location::RegisterLocation(ECX));
5235 }
5236 }
5237
VisitArraySet(HArraySet * instruction)5238 void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
5239 LocationSummary* locations = instruction->GetLocations();
5240 Location array_loc = locations->InAt(0);
5241 Register array = array_loc.AsRegister<Register>();
5242 Location index = locations->InAt(1);
5243 Location value = locations->InAt(2);
5244 Primitive::Type value_type = instruction->GetComponentType();
5245 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5246 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5247 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5248 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5249 bool needs_write_barrier =
5250 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5251
5252 switch (value_type) {
5253 case Primitive::kPrimBoolean:
5254 case Primitive::kPrimByte: {
5255 uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5256 Address address = index.IsConstant()
5257 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset)
5258 : Address(array, index.AsRegister<Register>(), TIMES_1, offset);
5259 if (value.IsRegister()) {
5260 __ movb(address, value.AsRegister<ByteRegister>());
5261 } else {
5262 __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5263 }
5264 codegen_->MaybeRecordImplicitNullCheck(instruction);
5265 break;
5266 }
5267
5268 case Primitive::kPrimShort:
5269 case Primitive::kPrimChar: {
5270 uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5271 Address address = index.IsConstant()
5272 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset)
5273 : Address(array, index.AsRegister<Register>(), TIMES_2, offset);
5274 if (value.IsRegister()) {
5275 __ movw(address, value.AsRegister<Register>());
5276 } else {
5277 __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5278 }
5279 codegen_->MaybeRecordImplicitNullCheck(instruction);
5280 break;
5281 }
5282
5283 case Primitive::kPrimNot: {
5284 uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5285 Address address = index.IsConstant()
5286 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5287 : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5288
5289 if (!value.IsRegister()) {
5290 // Just setting null.
5291 DCHECK(instruction->InputAt(2)->IsNullConstant());
5292 DCHECK(value.IsConstant()) << value;
5293 __ movl(address, Immediate(0));
5294 codegen_->MaybeRecordImplicitNullCheck(instruction);
5295 DCHECK(!needs_write_barrier);
5296 DCHECK(!may_need_runtime_call_for_type_check);
5297 break;
5298 }
5299
5300 DCHECK(needs_write_barrier);
5301 Register register_value = value.AsRegister<Register>();
5302 NearLabel done, not_null, do_put;
5303 SlowPathCode* slow_path = nullptr;
5304 Register temp = locations->GetTemp(0).AsRegister<Register>();
5305 if (may_need_runtime_call_for_type_check) {
5306 slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
5307 codegen_->AddSlowPath(slow_path);
5308 if (instruction->GetValueCanBeNull()) {
5309 __ testl(register_value, register_value);
5310 __ j(kNotEqual, ¬_null);
5311 __ movl(address, Immediate(0));
5312 codegen_->MaybeRecordImplicitNullCheck(instruction);
5313 __ jmp(&done);
5314 __ Bind(¬_null);
5315 }
5316
5317 if (kEmitCompilerReadBarrier) {
5318 // When read barriers are enabled, the type checking
5319 // instrumentation requires two read barriers:
5320 //
5321 // __ movl(temp2, temp);
5322 // // /* HeapReference<Class> */ temp = temp->component_type_
5323 // __ movl(temp, Address(temp, component_offset));
5324 // codegen_->GenerateReadBarrierSlow(
5325 // instruction, temp_loc, temp_loc, temp2_loc, component_offset);
5326 //
5327 // // /* HeapReference<Class> */ temp2 = register_value->klass_
5328 // __ movl(temp2, Address(register_value, class_offset));
5329 // codegen_->GenerateReadBarrierSlow(
5330 // instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc);
5331 //
5332 // __ cmpl(temp, temp2);
5333 //
5334 // However, the second read barrier may trash `temp`, as it
5335 // is a temporary register, and as such would not be saved
5336 // along with live registers before calling the runtime (nor
5337 // restored afterwards). So in this case, we bail out and
5338 // delegate the work to the array set slow path.
5339 //
5340 // TODO: Extend the register allocator to support a new
5341 // "(locally) live temp" location so as to avoid always
5342 // going into the slow path when read barriers are enabled.
5343 __ jmp(slow_path->GetEntryLabel());
5344 } else {
5345 // /* HeapReference<Class> */ temp = array->klass_
5346 __ movl(temp, Address(array, class_offset));
5347 codegen_->MaybeRecordImplicitNullCheck(instruction);
5348 __ MaybeUnpoisonHeapReference(temp);
5349
5350 // /* HeapReference<Class> */ temp = temp->component_type_
5351 __ movl(temp, Address(temp, component_offset));
5352 // If heap poisoning is enabled, no need to unpoison `temp`
5353 // nor the object reference in `register_value->klass`, as
5354 // we are comparing two poisoned references.
5355 __ cmpl(temp, Address(register_value, class_offset));
5356
5357 if (instruction->StaticTypeOfArrayIsObjectArray()) {
5358 __ j(kEqual, &do_put);
5359 // If heap poisoning is enabled, the `temp` reference has
5360 // not been unpoisoned yet; unpoison it now.
5361 __ MaybeUnpoisonHeapReference(temp);
5362
5363 // /* HeapReference<Class> */ temp = temp->super_class_
5364 __ movl(temp, Address(temp, super_offset));
5365 // If heap poisoning is enabled, no need to unpoison
5366 // `temp`, as we are comparing against null below.
5367 __ testl(temp, temp);
5368 __ j(kNotEqual, slow_path->GetEntryLabel());
5369 __ Bind(&do_put);
5370 } else {
5371 __ j(kNotEqual, slow_path->GetEntryLabel());
5372 }
5373 }
5374 }
5375
5376 if (kPoisonHeapReferences) {
5377 __ movl(temp, register_value);
5378 __ PoisonHeapReference(temp);
5379 __ movl(address, temp);
5380 } else {
5381 __ movl(address, register_value);
5382 }
5383 if (!may_need_runtime_call_for_type_check) {
5384 codegen_->MaybeRecordImplicitNullCheck(instruction);
5385 }
5386
5387 Register card = locations->GetTemp(1).AsRegister<Register>();
5388 codegen_->MarkGCCard(
5389 temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
5390 __ Bind(&done);
5391
5392 if (slow_path != nullptr) {
5393 __ Bind(slow_path->GetExitLabel());
5394 }
5395
5396 break;
5397 }
5398
5399 case Primitive::kPrimInt: {
5400 uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5401 Address address = index.IsConstant()
5402 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5403 : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5404 if (value.IsRegister()) {
5405 __ movl(address, value.AsRegister<Register>());
5406 } else {
5407 DCHECK(value.IsConstant()) << value;
5408 int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5409 __ movl(address, Immediate(v));
5410 }
5411 codegen_->MaybeRecordImplicitNullCheck(instruction);
5412 break;
5413 }
5414
5415 case Primitive::kPrimLong: {
5416 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5417 if (index.IsConstant()) {
5418 size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5419 if (value.IsRegisterPair()) {
5420 __ movl(Address(array, offset), value.AsRegisterPairLow<Register>());
5421 codegen_->MaybeRecordImplicitNullCheck(instruction);
5422 __ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>());
5423 } else {
5424 DCHECK(value.IsConstant());
5425 int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5426 __ movl(Address(array, offset), Immediate(Low32Bits(val)));
5427 codegen_->MaybeRecordImplicitNullCheck(instruction);
5428 __ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val)));
5429 }
5430 } else {
5431 if (value.IsRegisterPair()) {
5432 __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5433 value.AsRegisterPairLow<Register>());
5434 codegen_->MaybeRecordImplicitNullCheck(instruction);
5435 __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5436 value.AsRegisterPairHigh<Register>());
5437 } else {
5438 DCHECK(value.IsConstant());
5439 int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5440 __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
5441 Immediate(Low32Bits(val)));
5442 codegen_->MaybeRecordImplicitNullCheck(instruction);
5443 __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
5444 Immediate(High32Bits(val)));
5445 }
5446 }
5447 break;
5448 }
5449
5450 case Primitive::kPrimFloat: {
5451 uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5452 Address address = index.IsConstant()
5453 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
5454 : Address(array, index.AsRegister<Register>(), TIMES_4, offset);
5455 if (value.IsFpuRegister()) {
5456 __ movss(address, value.AsFpuRegister<XmmRegister>());
5457 } else {
5458 DCHECK(value.IsConstant());
5459 int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
5460 __ movl(address, Immediate(v));
5461 }
5462 codegen_->MaybeRecordImplicitNullCheck(instruction);
5463 break;
5464 }
5465
5466 case Primitive::kPrimDouble: {
5467 uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5468 Address address = index.IsConstant()
5469 ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset)
5470 : Address(array, index.AsRegister<Register>(), TIMES_8, offset);
5471 if (value.IsFpuRegister()) {
5472 __ movsd(address, value.AsFpuRegister<XmmRegister>());
5473 } else {
5474 DCHECK(value.IsConstant());
5475 Address address_hi = index.IsConstant() ?
5476 Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) +
5477 offset + kX86WordSize) :
5478 Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize);
5479 int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
5480 __ movl(address, Immediate(Low32Bits(v)));
5481 codegen_->MaybeRecordImplicitNullCheck(instruction);
5482 __ movl(address_hi, Immediate(High32Bits(v)));
5483 }
5484 break;
5485 }
5486
5487 case Primitive::kPrimVoid:
5488 LOG(FATAL) << "Unreachable type " << instruction->GetType();
5489 UNREACHABLE();
5490 }
5491 }
5492
VisitArrayLength(HArrayLength * instruction)5493 void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
5494 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
5495 locations->SetInAt(0, Location::RequiresRegister());
5496 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5497 }
5498
VisitArrayLength(HArrayLength * instruction)5499 void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
5500 LocationSummary* locations = instruction->GetLocations();
5501 uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
5502 Register obj = locations->InAt(0).AsRegister<Register>();
5503 Register out = locations->Out().AsRegister<Register>();
5504 __ movl(out, Address(obj, offset));
5505 codegen_->MaybeRecordImplicitNullCheck(instruction);
5506 }
5507
VisitBoundsCheck(HBoundsCheck * instruction)5508 void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5509 LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
5510 ? LocationSummary::kCallOnSlowPath
5511 : LocationSummary::kNoCall;
5512 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5513 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5514 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5515 if (instruction->HasUses()) {
5516 locations->SetOut(Location::SameAsFirstInput());
5517 }
5518 }
5519
VisitBoundsCheck(HBoundsCheck * instruction)5520 void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5521 LocationSummary* locations = instruction->GetLocations();
5522 Location index_loc = locations->InAt(0);
5523 Location length_loc = locations->InAt(1);
5524 SlowPathCode* slow_path =
5525 new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
5526
5527 if (length_loc.IsConstant()) {
5528 int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
5529 if (index_loc.IsConstant()) {
5530 // BCE will remove the bounds check if we are guarenteed to pass.
5531 int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5532 if (index < 0 || index >= length) {
5533 codegen_->AddSlowPath(slow_path);
5534 __ jmp(slow_path->GetEntryLabel());
5535 } else {
5536 // Some optimization after BCE may have generated this, and we should not
5537 // generate a bounds check if it is a valid range.
5538 }
5539 return;
5540 }
5541
5542 // We have to reverse the jump condition because the length is the constant.
5543 Register index_reg = index_loc.AsRegister<Register>();
5544 __ cmpl(index_reg, Immediate(length));
5545 codegen_->AddSlowPath(slow_path);
5546 __ j(kAboveEqual, slow_path->GetEntryLabel());
5547 } else {
5548 Register length = length_loc.AsRegister<Register>();
5549 if (index_loc.IsConstant()) {
5550 int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5551 __ cmpl(length, Immediate(value));
5552 } else {
5553 __ cmpl(length, index_loc.AsRegister<Register>());
5554 }
5555 codegen_->AddSlowPath(slow_path);
5556 __ j(kBelowEqual, slow_path->GetEntryLabel());
5557 }
5558 }
5559
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5560 void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5561 LOG(FATAL) << "Unreachable";
5562 }
5563
VisitParallelMove(HParallelMove * instruction)5564 void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
5565 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5566 }
5567
VisitSuspendCheck(HSuspendCheck * instruction)5568 void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5569 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5570 }
5571
VisitSuspendCheck(HSuspendCheck * instruction)5572 void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5573 HBasicBlock* block = instruction->GetBlock();
5574 if (block->GetLoopInformation() != nullptr) {
5575 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5576 // The back edge will generate the suspend check.
5577 return;
5578 }
5579 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5580 // The goto will generate the suspend check.
5581 return;
5582 }
5583 GenerateSuspendCheck(instruction, nullptr);
5584 }
5585
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)5586 void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
5587 HBasicBlock* successor) {
5588 SuspendCheckSlowPathX86* slow_path =
5589 down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
5590 if (slow_path == nullptr) {
5591 slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
5592 instruction->SetSlowPath(slow_path);
5593 codegen_->AddSlowPath(slow_path);
5594 if (successor != nullptr) {
5595 DCHECK(successor->IsLoopHeader());
5596 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5597 }
5598 } else {
5599 DCHECK_EQ(slow_path->GetSuccessor(), successor);
5600 }
5601
5602 __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()),
5603 Immediate(0));
5604 if (successor == nullptr) {
5605 __ j(kNotEqual, slow_path->GetEntryLabel());
5606 __ Bind(slow_path->GetReturnLabel());
5607 } else {
5608 __ j(kEqual, codegen_->GetLabelOf(successor));
5609 __ jmp(slow_path->GetEntryLabel());
5610 }
5611 }
5612
GetAssembler() const5613 X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
5614 return codegen_->GetAssembler();
5615 }
5616
MoveMemoryToMemory32(int dst,int src)5617 void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
5618 ScratchRegisterScope ensure_scratch(
5619 this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5620 Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5621 int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5622 __ movl(temp_reg, Address(ESP, src + stack_offset));
5623 __ movl(Address(ESP, dst + stack_offset), temp_reg);
5624 }
5625
MoveMemoryToMemory64(int dst,int src)5626 void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
5627 ScratchRegisterScope ensure_scratch(
5628 this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5629 Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5630 int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5631 __ movl(temp_reg, Address(ESP, src + stack_offset));
5632 __ movl(Address(ESP, dst + stack_offset), temp_reg);
5633 __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
5634 __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
5635 }
5636
EmitMove(size_t index)5637 void ParallelMoveResolverX86::EmitMove(size_t index) {
5638 MoveOperands* move = moves_[index];
5639 Location source = move->GetSource();
5640 Location destination = move->GetDestination();
5641
5642 if (source.IsRegister()) {
5643 if (destination.IsRegister()) {
5644 __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5645 } else if (destination.IsFpuRegister()) {
5646 __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
5647 } else {
5648 DCHECK(destination.IsStackSlot());
5649 __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
5650 }
5651 } else if (source.IsRegisterPair()) {
5652 size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
5653 // Create stack space for 2 elements.
5654 __ subl(ESP, Immediate(2 * elem_size));
5655 __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
5656 __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
5657 __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
5658 // And remove the temporary stack space we allocated.
5659 __ addl(ESP, Immediate(2 * elem_size));
5660 } else if (source.IsFpuRegister()) {
5661 if (destination.IsRegister()) {
5662 __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
5663 } else if (destination.IsFpuRegister()) {
5664 __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5665 } else if (destination.IsRegisterPair()) {
5666 XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
5667 __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
5668 __ psrlq(src_reg, Immediate(32));
5669 __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
5670 } else if (destination.IsStackSlot()) {
5671 __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5672 } else {
5673 DCHECK(destination.IsDoubleStackSlot());
5674 __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5675 }
5676 } else if (source.IsStackSlot()) {
5677 if (destination.IsRegister()) {
5678 __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
5679 } else if (destination.IsFpuRegister()) {
5680 __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5681 } else {
5682 DCHECK(destination.IsStackSlot());
5683 MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
5684 }
5685 } else if (source.IsDoubleStackSlot()) {
5686 if (destination.IsRegisterPair()) {
5687 __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
5688 __ movl(destination.AsRegisterPairHigh<Register>(),
5689 Address(ESP, source.GetHighStackIndex(kX86WordSize)));
5690 } else if (destination.IsFpuRegister()) {
5691 __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5692 } else {
5693 DCHECK(destination.IsDoubleStackSlot()) << destination;
5694 MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
5695 }
5696 } else if (source.IsConstant()) {
5697 HConstant* constant = source.GetConstant();
5698 if (constant->IsIntConstant() || constant->IsNullConstant()) {
5699 int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5700 if (destination.IsRegister()) {
5701 if (value == 0) {
5702 __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
5703 } else {
5704 __ movl(destination.AsRegister<Register>(), Immediate(value));
5705 }
5706 } else {
5707 DCHECK(destination.IsStackSlot()) << destination;
5708 __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
5709 }
5710 } else if (constant->IsFloatConstant()) {
5711 float fp_value = constant->AsFloatConstant()->GetValue();
5712 int32_t value = bit_cast<int32_t, float>(fp_value);
5713 Immediate imm(value);
5714 if (destination.IsFpuRegister()) {
5715 XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5716 if (value == 0) {
5717 // Easy handling of 0.0.
5718 __ xorps(dest, dest);
5719 } else {
5720 ScratchRegisterScope ensure_scratch(
5721 this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5722 Register temp = static_cast<Register>(ensure_scratch.GetRegister());
5723 __ movl(temp, Immediate(value));
5724 __ movd(dest, temp);
5725 }
5726 } else {
5727 DCHECK(destination.IsStackSlot()) << destination;
5728 __ movl(Address(ESP, destination.GetStackIndex()), imm);
5729 }
5730 } else if (constant->IsLongConstant()) {
5731 int64_t value = constant->AsLongConstant()->GetValue();
5732 int32_t low_value = Low32Bits(value);
5733 int32_t high_value = High32Bits(value);
5734 Immediate low(low_value);
5735 Immediate high(high_value);
5736 if (destination.IsDoubleStackSlot()) {
5737 __ movl(Address(ESP, destination.GetStackIndex()), low);
5738 __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5739 } else {
5740 __ movl(destination.AsRegisterPairLow<Register>(), low);
5741 __ movl(destination.AsRegisterPairHigh<Register>(), high);
5742 }
5743 } else {
5744 DCHECK(constant->IsDoubleConstant());
5745 double dbl_value = constant->AsDoubleConstant()->GetValue();
5746 int64_t value = bit_cast<int64_t, double>(dbl_value);
5747 int32_t low_value = Low32Bits(value);
5748 int32_t high_value = High32Bits(value);
5749 Immediate low(low_value);
5750 Immediate high(high_value);
5751 if (destination.IsFpuRegister()) {
5752 XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5753 if (value == 0) {
5754 // Easy handling of 0.0.
5755 __ xorpd(dest, dest);
5756 } else {
5757 __ pushl(high);
5758 __ pushl(low);
5759 __ movsd(dest, Address(ESP, 0));
5760 __ addl(ESP, Immediate(8));
5761 }
5762 } else {
5763 DCHECK(destination.IsDoubleStackSlot()) << destination;
5764 __ movl(Address(ESP, destination.GetStackIndex()), low);
5765 __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5766 }
5767 }
5768 } else {
5769 LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
5770 }
5771 }
5772
Exchange(Register reg,int mem)5773 void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
5774 Register suggested_scratch = reg == EAX ? EBX : EAX;
5775 ScratchRegisterScope ensure_scratch(
5776 this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5777
5778 int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5779 __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
5780 __ movl(Address(ESP, mem + stack_offset), reg);
5781 __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
5782 }
5783
Exchange32(XmmRegister reg,int mem)5784 void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
5785 ScratchRegisterScope ensure_scratch(
5786 this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5787
5788 Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5789 int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5790 __ movl(temp_reg, Address(ESP, mem + stack_offset));
5791 __ movss(Address(ESP, mem + stack_offset), reg);
5792 __ movd(reg, temp_reg);
5793 }
5794
Exchange(int mem1,int mem2)5795 void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
5796 ScratchRegisterScope ensure_scratch1(
5797 this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5798
5799 Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
5800 ScratchRegisterScope ensure_scratch2(
5801 this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5802
5803 int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
5804 stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
5805 __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
5806 __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
5807 __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
5808 __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
5809 }
5810
EmitSwap(size_t index)5811 void ParallelMoveResolverX86::EmitSwap(size_t index) {
5812 MoveOperands* move = moves_[index];
5813 Location source = move->GetSource();
5814 Location destination = move->GetDestination();
5815
5816 if (source.IsRegister() && destination.IsRegister()) {
5817 // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
5818 DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
5819 __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5820 __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
5821 __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5822 } else if (source.IsRegister() && destination.IsStackSlot()) {
5823 Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5824 } else if (source.IsStackSlot() && destination.IsRegister()) {
5825 Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5826 } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5827 Exchange(destination.GetStackIndex(), source.GetStackIndex());
5828 } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5829 // Use XOR Swap algorithm to avoid a temporary.
5830 DCHECK_NE(source.reg(), destination.reg());
5831 __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5832 __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
5833 __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5834 } else if (source.IsFpuRegister() && destination.IsStackSlot()) {
5835 Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
5836 } else if (destination.IsFpuRegister() && source.IsStackSlot()) {
5837 Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
5838 } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
5839 // Take advantage of the 16 bytes in the XMM register.
5840 XmmRegister reg = source.AsFpuRegister<XmmRegister>();
5841 Address stack(ESP, destination.GetStackIndex());
5842 // Load the double into the high doubleword.
5843 __ movhpd(reg, stack);
5844
5845 // Store the low double into the destination.
5846 __ movsd(stack, reg);
5847
5848 // Move the high double to the low double.
5849 __ psrldq(reg, Immediate(8));
5850 } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
5851 // Take advantage of the 16 bytes in the XMM register.
5852 XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
5853 Address stack(ESP, source.GetStackIndex());
5854 // Load the double into the high doubleword.
5855 __ movhpd(reg, stack);
5856
5857 // Store the low double into the destination.
5858 __ movsd(stack, reg);
5859
5860 // Move the high double to the low double.
5861 __ psrldq(reg, Immediate(8));
5862 } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
5863 Exchange(destination.GetStackIndex(), source.GetStackIndex());
5864 Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
5865 } else {
5866 LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
5867 }
5868 }
5869
SpillScratch(int reg)5870 void ParallelMoveResolverX86::SpillScratch(int reg) {
5871 __ pushl(static_cast<Register>(reg));
5872 }
5873
RestoreScratch(int reg)5874 void ParallelMoveResolverX86::RestoreScratch(int reg) {
5875 __ popl(static_cast<Register>(reg));
5876 }
5877
VisitLoadClass(HLoadClass * cls)5878 void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
5879 InvokeRuntimeCallingConvention calling_convention;
5880 CodeGenerator::CreateLoadClassLocationSummary(
5881 cls,
5882 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5883 Location::RegisterLocation(EAX),
5884 /* code_generator_supports_read_barrier */ true);
5885 }
5886
VisitLoadClass(HLoadClass * cls)5887 void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) {
5888 LocationSummary* locations = cls->GetLocations();
5889 if (cls->NeedsAccessCheck()) {
5890 codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5891 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
5892 cls,
5893 cls->GetDexPc(),
5894 nullptr);
5895 CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5896 return;
5897 }
5898
5899 Location out_loc = locations->Out();
5900 Register out = out_loc.AsRegister<Register>();
5901 Register current_method = locations->InAt(0).AsRegister<Register>();
5902
5903 if (cls->IsReferrersClass()) {
5904 DCHECK(!cls->CanCallRuntime());
5905 DCHECK(!cls->MustGenerateClinitCheck());
5906 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5907 GenerateGcRootFieldLoad(
5908 cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
5909 } else {
5910 // /* GcRoot<mirror::Class>[] */ out =
5911 // current_method.ptr_sized_fields_->dex_cache_resolved_types_
5912 __ movl(out, Address(current_method,
5913 ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value()));
5914 // /* GcRoot<mirror::Class> */ out = out[type_index]
5915 GenerateGcRootFieldLoad(
5916 cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
5917
5918 if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
5919 DCHECK(cls->CanCallRuntime());
5920 SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5921 cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5922 codegen_->AddSlowPath(slow_path);
5923
5924 if (!cls->IsInDexCache()) {
5925 __ testl(out, out);
5926 __ j(kEqual, slow_path->GetEntryLabel());
5927 }
5928
5929 if (cls->MustGenerateClinitCheck()) {
5930 GenerateClassInitializationCheck(slow_path, out);
5931 } else {
5932 __ Bind(slow_path->GetExitLabel());
5933 }
5934 }
5935 }
5936 }
5937
VisitClinitCheck(HClinitCheck * check)5938 void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
5939 LocationSummary* locations =
5940 new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5941 locations->SetInAt(0, Location::RequiresRegister());
5942 if (check->HasUses()) {
5943 locations->SetOut(Location::SameAsFirstInput());
5944 }
5945 }
5946
VisitClinitCheck(HClinitCheck * check)5947 void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
5948 // We assume the class to not be null.
5949 SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
5950 check->GetLoadClass(), check, check->GetDexPc(), true);
5951 codegen_->AddSlowPath(slow_path);
5952 GenerateClassInitializationCheck(slow_path,
5953 check->GetLocations()->InAt(0).AsRegister<Register>());
5954 }
5955
GenerateClassInitializationCheck(SlowPathCode * slow_path,Register class_reg)5956 void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
5957 SlowPathCode* slow_path, Register class_reg) {
5958 __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()),
5959 Immediate(mirror::Class::kStatusInitialized));
5960 __ j(kLess, slow_path->GetEntryLabel());
5961 __ Bind(slow_path->GetExitLabel());
5962 // No need for memory fence, thanks to the X86 memory model.
5963 }
5964
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5965 HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
5966 HLoadString::LoadKind desired_string_load_kind) {
5967 if (kEmitCompilerReadBarrier) {
5968 switch (desired_string_load_kind) {
5969 case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5970 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5971 case HLoadString::LoadKind::kBootImageAddress:
5972 // TODO: Implement for read barrier.
5973 return HLoadString::LoadKind::kDexCacheViaMethod;
5974 default:
5975 break;
5976 }
5977 }
5978 switch (desired_string_load_kind) {
5979 case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5980 DCHECK(!GetCompilerOptions().GetCompilePic());
5981 break;
5982 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5983 DCHECK(GetCompilerOptions().GetCompilePic());
5984 FALLTHROUGH_INTENDED;
5985 case HLoadString::LoadKind::kDexCachePcRelative:
5986 DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT.
5987 // We disable pc-relative load when there is an irreducible loop, as the optimization
5988 // is incompatible with it.
5989 // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods
5990 // with irreducible loops.
5991 if (GetGraph()->HasIrreducibleLoops()) {
5992 return HLoadString::LoadKind::kDexCacheViaMethod;
5993 }
5994 break;
5995 case HLoadString::LoadKind::kBootImageAddress:
5996 break;
5997 case HLoadString::LoadKind::kDexCacheAddress:
5998 DCHECK(Runtime::Current()->UseJitCompilation());
5999 break;
6000 case HLoadString::LoadKind::kDexCacheViaMethod:
6001 break;
6002 }
6003 return desired_string_load_kind;
6004 }
6005
VisitLoadString(HLoadString * load)6006 void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
6007 LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
6008 ? LocationSummary::kCallOnSlowPath
6009 : LocationSummary::kNoCall;
6010 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
6011 HLoadString::LoadKind load_kind = load->GetLoadKind();
6012 if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
6013 load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
6014 load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
6015 locations->SetInAt(0, Location::RequiresRegister());
6016 }
6017 locations->SetOut(Location::RequiresRegister());
6018 }
6019
VisitLoadString(HLoadString * load)6020 void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) {
6021 LocationSummary* locations = load->GetLocations();
6022 Location out_loc = locations->Out();
6023 Register out = out_loc.AsRegister<Register>();
6024
6025 switch (load->GetLoadKind()) {
6026 case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
6027 DCHECK(!kEmitCompilerReadBarrier);
6028 __ movl(out, Immediate(/* placeholder */ 0));
6029 codegen_->RecordStringPatch(load);
6030 return; // No dex cache slow path.
6031 }
6032 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6033 DCHECK(!kEmitCompilerReadBarrier);
6034 Register method_address = locations->InAt(0).AsRegister<Register>();
6035 __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
6036 codegen_->RecordStringPatch(load);
6037 return; // No dex cache slow path.
6038 }
6039 case HLoadString::LoadKind::kBootImageAddress: {
6040 DCHECK(!kEmitCompilerReadBarrier);
6041 DCHECK_NE(load->GetAddress(), 0u);
6042 uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6043 __ movl(out, Immediate(address));
6044 codegen_->RecordSimplePatch();
6045 return; // No dex cache slow path.
6046 }
6047 case HLoadString::LoadKind::kDexCacheAddress: {
6048 DCHECK_NE(load->GetAddress(), 0u);
6049 uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
6050 GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address));
6051 break;
6052 }
6053 case HLoadString::LoadKind::kDexCachePcRelative: {
6054 Register base_reg = locations->InAt(0).AsRegister<Register>();
6055 uint32_t offset = load->GetDexCacheElementOffset();
6056 Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset);
6057 GenerateGcRootFieldLoad(
6058 load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label);
6059 break;
6060 }
6061 case HLoadString::LoadKind::kDexCacheViaMethod: {
6062 Register current_method = locations->InAt(0).AsRegister<Register>();
6063
6064 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
6065 GenerateGcRootFieldLoad(
6066 load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
6067
6068 // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
6069 __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
6070 // /* GcRoot<mirror::String> */ out = out[string_index]
6071 GenerateGcRootFieldLoad(
6072 load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
6073 break;
6074 }
6075 default:
6076 LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
6077 UNREACHABLE();
6078 }
6079
6080 if (!load->IsInDexCache()) {
6081 SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
6082 codegen_->AddSlowPath(slow_path);
6083 __ testl(out, out);
6084 __ j(kEqual, slow_path->GetEntryLabel());
6085 __ Bind(slow_path->GetExitLabel());
6086 }
6087 }
6088
GetExceptionTlsAddress()6089 static Address GetExceptionTlsAddress() {
6090 return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value());
6091 }
6092
VisitLoadException(HLoadException * load)6093 void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
6094 LocationSummary* locations =
6095 new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6096 locations->SetOut(Location::RequiresRegister());
6097 }
6098
VisitLoadException(HLoadException * load)6099 void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
6100 __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
6101 }
6102
VisitClearException(HClearException * clear)6103 void LocationsBuilderX86::VisitClearException(HClearException* clear) {
6104 new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6105 }
6106
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)6107 void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6108 __ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
6109 }
6110
VisitThrow(HThrow * instruction)6111 void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
6112 LocationSummary* locations =
6113 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6114 InvokeRuntimeCallingConvention calling_convention;
6115 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6116 }
6117
VisitThrow(HThrow * instruction)6118 void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
6119 codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
6120 instruction,
6121 instruction->GetDexPc(),
6122 nullptr);
6123 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6124 }
6125
TypeCheckNeedsATemporary(TypeCheckKind type_check_kind)6126 static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
6127 return kEmitCompilerReadBarrier &&
6128 (kUseBakerReadBarrier ||
6129 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6130 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6131 type_check_kind == TypeCheckKind::kArrayObjectCheck);
6132 }
6133
VisitInstanceOf(HInstanceOf * instruction)6134 void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
6135 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6136 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6137 switch (type_check_kind) {
6138 case TypeCheckKind::kExactCheck:
6139 case TypeCheckKind::kAbstractClassCheck:
6140 case TypeCheckKind::kClassHierarchyCheck:
6141 case TypeCheckKind::kArrayObjectCheck:
6142 call_kind =
6143 kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6144 break;
6145 case TypeCheckKind::kArrayCheck:
6146 case TypeCheckKind::kUnresolvedCheck:
6147 case TypeCheckKind::kInterfaceCheck:
6148 call_kind = LocationSummary::kCallOnSlowPath;
6149 break;
6150 }
6151
6152 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6153 locations->SetInAt(0, Location::RequiresRegister());
6154 locations->SetInAt(1, Location::Any());
6155 // Note that TypeCheckSlowPathX86 uses this "out" register too.
6156 locations->SetOut(Location::RequiresRegister());
6157 // When read barriers are enabled, we need a temporary register for
6158 // some cases.
6159 if (TypeCheckNeedsATemporary(type_check_kind)) {
6160 locations->AddTemp(Location::RequiresRegister());
6161 }
6162 }
6163
VisitInstanceOf(HInstanceOf * instruction)6164 void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
6165 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6166 LocationSummary* locations = instruction->GetLocations();
6167 Location obj_loc = locations->InAt(0);
6168 Register obj = obj_loc.AsRegister<Register>();
6169 Location cls = locations->InAt(1);
6170 Location out_loc = locations->Out();
6171 Register out = out_loc.AsRegister<Register>();
6172 Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6173 locations->GetTemp(0) :
6174 Location::NoLocation();
6175 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6176 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6177 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6178 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6179 SlowPathCode* slow_path = nullptr;
6180 NearLabel done, zero;
6181
6182 // Return 0 if `obj` is null.
6183 // Avoid null check if we know obj is not null.
6184 if (instruction->MustDoNullCheck()) {
6185 __ testl(obj, obj);
6186 __ j(kEqual, &zero);
6187 }
6188
6189 // /* HeapReference<Class> */ out = obj->klass_
6190 GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
6191
6192 switch (type_check_kind) {
6193 case TypeCheckKind::kExactCheck: {
6194 if (cls.IsRegister()) {
6195 __ cmpl(out, cls.AsRegister<Register>());
6196 } else {
6197 DCHECK(cls.IsStackSlot()) << cls;
6198 __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6199 }
6200
6201 // Classes must be equal for the instanceof to succeed.
6202 __ j(kNotEqual, &zero);
6203 __ movl(out, Immediate(1));
6204 __ jmp(&done);
6205 break;
6206 }
6207
6208 case TypeCheckKind::kAbstractClassCheck: {
6209 // If the class is abstract, we eagerly fetch the super class of the
6210 // object to avoid doing a comparison we know will fail.
6211 NearLabel loop;
6212 __ Bind(&loop);
6213 // /* HeapReference<Class> */ out = out->super_class_
6214 GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6215 __ testl(out, out);
6216 // If `out` is null, we use it for the result, and jump to `done`.
6217 __ j(kEqual, &done);
6218 if (cls.IsRegister()) {
6219 __ cmpl(out, cls.AsRegister<Register>());
6220 } else {
6221 DCHECK(cls.IsStackSlot()) << cls;
6222 __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6223 }
6224 __ j(kNotEqual, &loop);
6225 __ movl(out, Immediate(1));
6226 if (zero.IsLinked()) {
6227 __ jmp(&done);
6228 }
6229 break;
6230 }
6231
6232 case TypeCheckKind::kClassHierarchyCheck: {
6233 // Walk over the class hierarchy to find a match.
6234 NearLabel loop, success;
6235 __ Bind(&loop);
6236 if (cls.IsRegister()) {
6237 __ cmpl(out, cls.AsRegister<Register>());
6238 } else {
6239 DCHECK(cls.IsStackSlot()) << cls;
6240 __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6241 }
6242 __ j(kEqual, &success);
6243 // /* HeapReference<Class> */ out = out->super_class_
6244 GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
6245 __ testl(out, out);
6246 __ j(kNotEqual, &loop);
6247 // If `out` is null, we use it for the result, and jump to `done`.
6248 __ jmp(&done);
6249 __ Bind(&success);
6250 __ movl(out, Immediate(1));
6251 if (zero.IsLinked()) {
6252 __ jmp(&done);
6253 }
6254 break;
6255 }
6256
6257 case TypeCheckKind::kArrayObjectCheck: {
6258 // Do an exact check.
6259 NearLabel exact_check;
6260 if (cls.IsRegister()) {
6261 __ cmpl(out, cls.AsRegister<Register>());
6262 } else {
6263 DCHECK(cls.IsStackSlot()) << cls;
6264 __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6265 }
6266 __ j(kEqual, &exact_check);
6267 // Otherwise, we need to check that the object's class is a non-primitive array.
6268 // /* HeapReference<Class> */ out = out->component_type_
6269 GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
6270 __ testl(out, out);
6271 // If `out` is null, we use it for the result, and jump to `done`.
6272 __ j(kEqual, &done);
6273 __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
6274 __ j(kNotEqual, &zero);
6275 __ Bind(&exact_check);
6276 __ movl(out, Immediate(1));
6277 __ jmp(&done);
6278 break;
6279 }
6280
6281 case TypeCheckKind::kArrayCheck: {
6282 if (cls.IsRegister()) {
6283 __ cmpl(out, cls.AsRegister<Register>());
6284 } else {
6285 DCHECK(cls.IsStackSlot()) << cls;
6286 __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6287 }
6288 DCHECK(locations->OnlyCallsOnSlowPath());
6289 slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6290 /* is_fatal */ false);
6291 codegen_->AddSlowPath(slow_path);
6292 __ j(kNotEqual, slow_path->GetEntryLabel());
6293 __ movl(out, Immediate(1));
6294 if (zero.IsLinked()) {
6295 __ jmp(&done);
6296 }
6297 break;
6298 }
6299
6300 case TypeCheckKind::kUnresolvedCheck:
6301 case TypeCheckKind::kInterfaceCheck: {
6302 // Note that we indeed only call on slow path, but we always go
6303 // into the slow path for the unresolved and interface check
6304 // cases.
6305 //
6306 // We cannot directly call the InstanceofNonTrivial runtime
6307 // entry point without resorting to a type checking slow path
6308 // here (i.e. by calling InvokeRuntime directly), as it would
6309 // require to assign fixed registers for the inputs of this
6310 // HInstanceOf instruction (following the runtime calling
6311 // convention), which might be cluttered by the potential first
6312 // read barrier emission at the beginning of this method.
6313 //
6314 // TODO: Introduce a new runtime entry point taking the object
6315 // to test (instead of its class) as argument, and let it deal
6316 // with the read barrier issues. This will let us refactor this
6317 // case of the `switch` code as it was previously (with a direct
6318 // call to the runtime not using a type checking slow path).
6319 // This should also be beneficial for the other cases above.
6320 DCHECK(locations->OnlyCallsOnSlowPath());
6321 slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6322 /* is_fatal */ false);
6323 codegen_->AddSlowPath(slow_path);
6324 __ jmp(slow_path->GetEntryLabel());
6325 if (zero.IsLinked()) {
6326 __ jmp(&done);
6327 }
6328 break;
6329 }
6330 }
6331
6332 if (zero.IsLinked()) {
6333 __ Bind(&zero);
6334 __ xorl(out, out);
6335 }
6336
6337 if (done.IsLinked()) {
6338 __ Bind(&done);
6339 }
6340
6341 if (slow_path != nullptr) {
6342 __ Bind(slow_path->GetExitLabel());
6343 }
6344 }
6345
VisitCheckCast(HCheckCast * instruction)6346 void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
6347 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6348 bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6349 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6350 switch (type_check_kind) {
6351 case TypeCheckKind::kExactCheck:
6352 case TypeCheckKind::kAbstractClassCheck:
6353 case TypeCheckKind::kClassHierarchyCheck:
6354 case TypeCheckKind::kArrayObjectCheck:
6355 call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
6356 LocationSummary::kCallOnSlowPath :
6357 LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
6358 break;
6359 case TypeCheckKind::kArrayCheck:
6360 case TypeCheckKind::kUnresolvedCheck:
6361 case TypeCheckKind::kInterfaceCheck:
6362 call_kind = LocationSummary::kCallOnSlowPath;
6363 break;
6364 }
6365 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6366 locations->SetInAt(0, Location::RequiresRegister());
6367 locations->SetInAt(1, Location::Any());
6368 // Note that TypeCheckSlowPathX86 uses this "temp" register too.
6369 locations->AddTemp(Location::RequiresRegister());
6370 // When read barriers are enabled, we need an additional temporary
6371 // register for some cases.
6372 if (TypeCheckNeedsATemporary(type_check_kind)) {
6373 locations->AddTemp(Location::RequiresRegister());
6374 }
6375 }
6376
VisitCheckCast(HCheckCast * instruction)6377 void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
6378 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6379 LocationSummary* locations = instruction->GetLocations();
6380 Location obj_loc = locations->InAt(0);
6381 Register obj = obj_loc.AsRegister<Register>();
6382 Location cls = locations->InAt(1);
6383 Location temp_loc = locations->GetTemp(0);
6384 Register temp = temp_loc.AsRegister<Register>();
6385 Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6386 locations->GetTemp(1) :
6387 Location::NoLocation();
6388 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6389 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6390 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6391 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6392
6393 bool is_type_check_slow_path_fatal =
6394 (type_check_kind == TypeCheckKind::kExactCheck ||
6395 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6396 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6397 type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6398 !instruction->CanThrowIntoCatchBlock();
6399 SlowPathCode* type_check_slow_path =
6400 new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6401 is_type_check_slow_path_fatal);
6402 codegen_->AddSlowPath(type_check_slow_path);
6403
6404 NearLabel done;
6405 // Avoid null check if we know obj is not null.
6406 if (instruction->MustDoNullCheck()) {
6407 __ testl(obj, obj);
6408 __ j(kEqual, &done);
6409 }
6410
6411 // /* HeapReference<Class> */ temp = obj->klass_
6412 GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6413
6414 switch (type_check_kind) {
6415 case TypeCheckKind::kExactCheck:
6416 case TypeCheckKind::kArrayCheck: {
6417 if (cls.IsRegister()) {
6418 __ cmpl(temp, cls.AsRegister<Register>());
6419 } else {
6420 DCHECK(cls.IsStackSlot()) << cls;
6421 __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6422 }
6423 // Jump to slow path for throwing the exception or doing a
6424 // more involved array check.
6425 __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
6426 break;
6427 }
6428
6429 case TypeCheckKind::kAbstractClassCheck: {
6430 // If the class is abstract, we eagerly fetch the super class of the
6431 // object to avoid doing a comparison we know will fail.
6432 NearLabel loop, compare_classes;
6433 __ Bind(&loop);
6434 // /* HeapReference<Class> */ temp = temp->super_class_
6435 GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6436
6437 // If the class reference currently in `temp` is not null, jump
6438 // to the `compare_classes` label to compare it with the checked
6439 // class.
6440 __ testl(temp, temp);
6441 __ j(kNotEqual, &compare_classes);
6442 // Otherwise, jump to the slow path to throw the exception.
6443 //
6444 // But before, move back the object's class into `temp` before
6445 // going into the slow path, as it has been overwritten in the
6446 // meantime.
6447 // /* HeapReference<Class> */ temp = obj->klass_
6448 GenerateReferenceLoadTwoRegisters(
6449 instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6450 __ jmp(type_check_slow_path->GetEntryLabel());
6451
6452 __ Bind(&compare_classes);
6453 if (cls.IsRegister()) {
6454 __ cmpl(temp, cls.AsRegister<Register>());
6455 } else {
6456 DCHECK(cls.IsStackSlot()) << cls;
6457 __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6458 }
6459 __ j(kNotEqual, &loop);
6460 break;
6461 }
6462
6463 case TypeCheckKind::kClassHierarchyCheck: {
6464 // Walk over the class hierarchy to find a match.
6465 NearLabel loop;
6466 __ Bind(&loop);
6467 if (cls.IsRegister()) {
6468 __ cmpl(temp, cls.AsRegister<Register>());
6469 } else {
6470 DCHECK(cls.IsStackSlot()) << cls;
6471 __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6472 }
6473 __ j(kEqual, &done);
6474
6475 // /* HeapReference<Class> */ temp = temp->super_class_
6476 GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6477
6478 // If the class reference currently in `temp` is not null, jump
6479 // back at the beginning of the loop.
6480 __ testl(temp, temp);
6481 __ j(kNotEqual, &loop);
6482 // Otherwise, jump to the slow path to throw the exception.
6483 //
6484 // But before, move back the object's class into `temp` before
6485 // going into the slow path, as it has been overwritten in the
6486 // meantime.
6487 // /* HeapReference<Class> */ temp = obj->klass_
6488 GenerateReferenceLoadTwoRegisters(
6489 instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6490 __ jmp(type_check_slow_path->GetEntryLabel());
6491 break;
6492 }
6493
6494 case TypeCheckKind::kArrayObjectCheck: {
6495 // Do an exact check.
6496 NearLabel check_non_primitive_component_type;
6497 if (cls.IsRegister()) {
6498 __ cmpl(temp, cls.AsRegister<Register>());
6499 } else {
6500 DCHECK(cls.IsStackSlot()) << cls;
6501 __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6502 }
6503 __ j(kEqual, &done);
6504
6505 // Otherwise, we need to check that the object's class is a non-primitive array.
6506 // /* HeapReference<Class> */ temp = temp->component_type_
6507 GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
6508
6509 // If the component type is not null (i.e. the object is indeed
6510 // an array), jump to label `check_non_primitive_component_type`
6511 // to further check that this component type is not a primitive
6512 // type.
6513 __ testl(temp, temp);
6514 __ j(kNotEqual, &check_non_primitive_component_type);
6515 // Otherwise, jump to the slow path to throw the exception.
6516 //
6517 // But before, move back the object's class into `temp` before
6518 // going into the slow path, as it has been overwritten in the
6519 // meantime.
6520 // /* HeapReference<Class> */ temp = obj->klass_
6521 GenerateReferenceLoadTwoRegisters(
6522 instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6523 __ jmp(type_check_slow_path->GetEntryLabel());
6524
6525 __ Bind(&check_non_primitive_component_type);
6526 __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
6527 __ j(kEqual, &done);
6528 // Same comment as above regarding `temp` and the slow path.
6529 // /* HeapReference<Class> */ temp = obj->klass_
6530 GenerateReferenceLoadTwoRegisters(
6531 instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6532 __ jmp(type_check_slow_path->GetEntryLabel());
6533 break;
6534 }
6535
6536 case TypeCheckKind::kUnresolvedCheck:
6537 case TypeCheckKind::kInterfaceCheck:
6538 // We always go into the type check slow path for the unresolved
6539 // and interface check cases.
6540 //
6541 // We cannot directly call the CheckCast runtime entry point
6542 // without resorting to a type checking slow path here (i.e. by
6543 // calling InvokeRuntime directly), as it would require to
6544 // assign fixed registers for the inputs of this HInstanceOf
6545 // instruction (following the runtime calling convention), which
6546 // might be cluttered by the potential first read barrier
6547 // emission at the beginning of this method.
6548 //
6549 // TODO: Introduce a new runtime entry point taking the object
6550 // to test (instead of its class) as argument, and let it deal
6551 // with the read barrier issues. This will let us refactor this
6552 // case of the `switch` code as it was previously (with a direct
6553 // call to the runtime not using a type checking slow path).
6554 // This should also be beneficial for the other cases above.
6555 __ jmp(type_check_slow_path->GetEntryLabel());
6556 break;
6557 }
6558 __ Bind(&done);
6559
6560 __ Bind(type_check_slow_path->GetExitLabel());
6561 }
6562
VisitMonitorOperation(HMonitorOperation * instruction)6563 void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6564 LocationSummary* locations =
6565 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
6566 InvokeRuntimeCallingConvention calling_convention;
6567 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6568 }
6569
VisitMonitorOperation(HMonitorOperation * instruction)6570 void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6571 codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject)
6572 : QUICK_ENTRY_POINT(pUnlockObject),
6573 instruction,
6574 instruction->GetDexPc(),
6575 nullptr);
6576 if (instruction->IsEnter()) {
6577 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6578 } else {
6579 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6580 }
6581 }
6582
VisitAnd(HAnd * instruction)6583 void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
VisitOr(HOr * instruction)6584 void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
VisitXor(HXor * instruction)6585 void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
6586
HandleBitwiseOperation(HBinaryOperation * instruction)6587 void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6588 LocationSummary* locations =
6589 new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6590 DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6591 || instruction->GetResultType() == Primitive::kPrimLong);
6592 locations->SetInAt(0, Location::RequiresRegister());
6593 locations->SetInAt(1, Location::Any());
6594 locations->SetOut(Location::SameAsFirstInput());
6595 }
6596
VisitAnd(HAnd * instruction)6597 void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
6598 HandleBitwiseOperation(instruction);
6599 }
6600
VisitOr(HOr * instruction)6601 void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
6602 HandleBitwiseOperation(instruction);
6603 }
6604
VisitXor(HXor * instruction)6605 void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
6606 HandleBitwiseOperation(instruction);
6607 }
6608
HandleBitwiseOperation(HBinaryOperation * instruction)6609 void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6610 LocationSummary* locations = instruction->GetLocations();
6611 Location first = locations->InAt(0);
6612 Location second = locations->InAt(1);
6613 DCHECK(first.Equals(locations->Out()));
6614
6615 if (instruction->GetResultType() == Primitive::kPrimInt) {
6616 if (second.IsRegister()) {
6617 if (instruction->IsAnd()) {
6618 __ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
6619 } else if (instruction->IsOr()) {
6620 __ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
6621 } else {
6622 DCHECK(instruction->IsXor());
6623 __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
6624 }
6625 } else if (second.IsConstant()) {
6626 if (instruction->IsAnd()) {
6627 __ andl(first.AsRegister<Register>(),
6628 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6629 } else if (instruction->IsOr()) {
6630 __ orl(first.AsRegister<Register>(),
6631 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6632 } else {
6633 DCHECK(instruction->IsXor());
6634 __ xorl(first.AsRegister<Register>(),
6635 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6636 }
6637 } else {
6638 if (instruction->IsAnd()) {
6639 __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6640 } else if (instruction->IsOr()) {
6641 __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6642 } else {
6643 DCHECK(instruction->IsXor());
6644 __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6645 }
6646 }
6647 } else {
6648 DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6649 if (second.IsRegisterPair()) {
6650 if (instruction->IsAnd()) {
6651 __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6652 __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6653 } else if (instruction->IsOr()) {
6654 __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6655 __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6656 } else {
6657 DCHECK(instruction->IsXor());
6658 __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6659 __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6660 }
6661 } else if (second.IsDoubleStackSlot()) {
6662 if (instruction->IsAnd()) {
6663 __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6664 __ andl(first.AsRegisterPairHigh<Register>(),
6665 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6666 } else if (instruction->IsOr()) {
6667 __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6668 __ orl(first.AsRegisterPairHigh<Register>(),
6669 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6670 } else {
6671 DCHECK(instruction->IsXor());
6672 __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
6673 __ xorl(first.AsRegisterPairHigh<Register>(),
6674 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
6675 }
6676 } else {
6677 DCHECK(second.IsConstant()) << second;
6678 int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
6679 int32_t low_value = Low32Bits(value);
6680 int32_t high_value = High32Bits(value);
6681 Immediate low(low_value);
6682 Immediate high(high_value);
6683 Register first_low = first.AsRegisterPairLow<Register>();
6684 Register first_high = first.AsRegisterPairHigh<Register>();
6685 if (instruction->IsAnd()) {
6686 if (low_value == 0) {
6687 __ xorl(first_low, first_low);
6688 } else if (low_value != -1) {
6689 __ andl(first_low, low);
6690 }
6691 if (high_value == 0) {
6692 __ xorl(first_high, first_high);
6693 } else if (high_value != -1) {
6694 __ andl(first_high, high);
6695 }
6696 } else if (instruction->IsOr()) {
6697 if (low_value != 0) {
6698 __ orl(first_low, low);
6699 }
6700 if (high_value != 0) {
6701 __ orl(first_high, high);
6702 }
6703 } else {
6704 DCHECK(instruction->IsXor());
6705 if (low_value != 0) {
6706 __ xorl(first_low, low);
6707 }
6708 if (high_value != 0) {
6709 __ xorl(first_high, high);
6710 }
6711 }
6712 }
6713 }
6714 }
6715
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp)6716 void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction,
6717 Location out,
6718 uint32_t offset,
6719 Location maybe_temp) {
6720 Register out_reg = out.AsRegister<Register>();
6721 if (kEmitCompilerReadBarrier) {
6722 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6723 if (kUseBakerReadBarrier) {
6724 // Load with fast path based Baker's read barrier.
6725 // /* HeapReference<Object> */ out = *(out + offset)
6726 codegen_->GenerateFieldLoadWithBakerReadBarrier(
6727 instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6728 } else {
6729 // Load with slow path based read barrier.
6730 // Save the value of `out` into `maybe_temp` before overwriting it
6731 // in the following move operation, as we will need it for the
6732 // read barrier below.
6733 __ movl(maybe_temp.AsRegister<Register>(), out_reg);
6734 // /* HeapReference<Object> */ out = *(out + offset)
6735 __ movl(out_reg, Address(out_reg, offset));
6736 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6737 }
6738 } else {
6739 // Plain load with no read barrier.
6740 // /* HeapReference<Object> */ out = *(out + offset)
6741 __ movl(out_reg, Address(out_reg, offset));
6742 __ MaybeUnpoisonHeapReference(out_reg);
6743 }
6744 }
6745
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp)6746 void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
6747 Location out,
6748 Location obj,
6749 uint32_t offset,
6750 Location maybe_temp) {
6751 Register out_reg = out.AsRegister<Register>();
6752 Register obj_reg = obj.AsRegister<Register>();
6753 if (kEmitCompilerReadBarrier) {
6754 if (kUseBakerReadBarrier) {
6755 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6756 // Load with fast path based Baker's read barrier.
6757 // /* HeapReference<Object> */ out = *(obj + offset)
6758 codegen_->GenerateFieldLoadWithBakerReadBarrier(
6759 instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6760 } else {
6761 // Load with slow path based read barrier.
6762 // /* HeapReference<Object> */ out = *(obj + offset)
6763 __ movl(out_reg, Address(obj_reg, offset));
6764 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6765 }
6766 } else {
6767 // Plain load with no read barrier.
6768 // /* HeapReference<Object> */ out = *(obj + offset)
6769 __ movl(out_reg, Address(obj_reg, offset));
6770 __ MaybeUnpoisonHeapReference(out_reg);
6771 }
6772 }
6773
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,const Address & address,Label * fixup_label)6774 void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction,
6775 Location root,
6776 const Address& address,
6777 Label* fixup_label) {
6778 Register root_reg = root.AsRegister<Register>();
6779 if (kEmitCompilerReadBarrier) {
6780 if (kUseBakerReadBarrier) {
6781 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6782 // Baker's read barrier are used:
6783 //
6784 // root = *address;
6785 // if (Thread::Current()->GetIsGcMarking()) {
6786 // root = ReadBarrier::Mark(root)
6787 // }
6788
6789 // /* GcRoot<mirror::Object> */ root = *address
6790 __ movl(root_reg, address);
6791 if (fixup_label != nullptr) {
6792 __ Bind(fixup_label);
6793 }
6794 static_assert(
6795 sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6796 "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6797 "have different sizes.");
6798 static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6799 "art::mirror::CompressedReference<mirror::Object> and int32_t "
6800 "have different sizes.");
6801
6802 // Slow path used to mark the GC root `root`.
6803 SlowPathCode* slow_path =
6804 new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root, root);
6805 codegen_->AddSlowPath(slow_path);
6806
6807 __ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86WordSize>().Int32Value()),
6808 Immediate(0));
6809 __ j(kNotEqual, slow_path->GetEntryLabel());
6810 __ Bind(slow_path->GetExitLabel());
6811 } else {
6812 // GC root loaded through a slow path for read barriers other
6813 // than Baker's.
6814 // /* GcRoot<mirror::Object>* */ root = address
6815 __ leal(root_reg, address);
6816 if (fixup_label != nullptr) {
6817 __ Bind(fixup_label);
6818 }
6819 // /* mirror::Object* */ root = root->Read()
6820 codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6821 }
6822 } else {
6823 // Plain GC root load with no read barrier.
6824 // /* GcRoot<mirror::Object> */ root = *address
6825 __ movl(root_reg, address);
6826 if (fixup_label != nullptr) {
6827 __ Bind(fixup_label);
6828 }
6829 // Note that GC roots are not affected by heap poisoning, thus we
6830 // do not have to unpoison `root_reg` here.
6831 }
6832 }
6833
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location temp,bool needs_null_check)6834 void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6835 Location ref,
6836 Register obj,
6837 uint32_t offset,
6838 Location temp,
6839 bool needs_null_check) {
6840 DCHECK(kEmitCompilerReadBarrier);
6841 DCHECK(kUseBakerReadBarrier);
6842
6843 // /* HeapReference<Object> */ ref = *(obj + offset)
6844 Address src(obj, offset);
6845 GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6846 }
6847
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)6848 void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6849 Location ref,
6850 Register obj,
6851 uint32_t data_offset,
6852 Location index,
6853 Location temp,
6854 bool needs_null_check) {
6855 DCHECK(kEmitCompilerReadBarrier);
6856 DCHECK(kUseBakerReadBarrier);
6857
6858 // /* HeapReference<Object> */ ref =
6859 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
6860 Address src = index.IsConstant() ?
6861 Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) :
6862 Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset);
6863 GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
6864 }
6865
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,const Address & src,Location temp,bool needs_null_check)6866 void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6867 Location ref,
6868 Register obj,
6869 const Address& src,
6870 Location temp,
6871 bool needs_null_check) {
6872 DCHECK(kEmitCompilerReadBarrier);
6873 DCHECK(kUseBakerReadBarrier);
6874
6875 // In slow path based read barriers, the read barrier call is
6876 // inserted after the original load. However, in fast path based
6877 // Baker's read barriers, we need to perform the load of
6878 // mirror::Object::monitor_ *before* the original reference load.
6879 // This load-load ordering is required by the read barrier.
6880 // The fast path/slow path (for Baker's algorithm) should look like:
6881 //
6882 // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6883 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
6884 // HeapReference<Object> ref = *src; // Original reference load.
6885 // bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
6886 // if (is_gray) {
6887 // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
6888 // }
6889 //
6890 // Note: the original implementation in ReadBarrier::Barrier is
6891 // slightly more complex as:
6892 // - it implements the load-load fence using a data dependency on
6893 // the high-bits of rb_state, which are expected to be all zeroes
6894 // (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
6895 // which is a no-op thanks to the x86 memory model);
6896 // - it performs additional checks that we do not do here for
6897 // performance reasons.
6898
6899 Register ref_reg = ref.AsRegister<Register>();
6900 Register temp_reg = temp.AsRegister<Register>();
6901 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6902
6903 // /* int32_t */ monitor = obj->monitor_
6904 __ movl(temp_reg, Address(obj, monitor_offset));
6905 if (needs_null_check) {
6906 MaybeRecordImplicitNullCheck(instruction);
6907 }
6908 // /* LockWord */ lock_word = LockWord(monitor)
6909 static_assert(sizeof(LockWord) == sizeof(int32_t),
6910 "art::LockWord and int32_t have different sizes.");
6911 // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
6912 __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift));
6913 __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask));
6914 static_assert(
6915 LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
6916 "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
6917
6918 // Load fence to prevent load-load reordering.
6919 // Note that this is a no-op, thanks to the x86 memory model.
6920 GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6921
6922 // The actual reference load.
6923 // /* HeapReference<Object> */ ref = *src
6924 __ movl(ref_reg, src);
6925
6926 // Object* ref = ref_addr->AsMirrorPtr()
6927 __ MaybeUnpoisonHeapReference(ref_reg);
6928
6929 // Slow path used to mark the object `ref` when it is gray.
6930 SlowPathCode* slow_path =
6931 new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref, ref);
6932 AddSlowPath(slow_path);
6933
6934 // if (rb_state == ReadBarrier::gray_ptr_)
6935 // ref = ReadBarrier::Mark(ref);
6936 __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_));
6937 __ j(kEqual, slow_path->GetEntryLabel());
6938 __ Bind(slow_path->GetExitLabel());
6939 }
6940
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6941 void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
6942 Location out,
6943 Location ref,
6944 Location obj,
6945 uint32_t offset,
6946 Location index) {
6947 DCHECK(kEmitCompilerReadBarrier);
6948
6949 // Insert a slow path based read barrier *after* the reference load.
6950 //
6951 // If heap poisoning is enabled, the unpoisoning of the loaded
6952 // reference will be carried out by the runtime within the slow
6953 // path.
6954 //
6955 // Note that `ref` currently does not get unpoisoned (when heap
6956 // poisoning is enabled), which is alright as the `ref` argument is
6957 // not used by the artReadBarrierSlow entry point.
6958 //
6959 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6960 SlowPathCode* slow_path = new (GetGraph()->GetArena())
6961 ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
6962 AddSlowPath(slow_path);
6963
6964 __ jmp(slow_path->GetEntryLabel());
6965 __ Bind(slow_path->GetExitLabel());
6966 }
6967
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6968 void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6969 Location out,
6970 Location ref,
6971 Location obj,
6972 uint32_t offset,
6973 Location index) {
6974 if (kEmitCompilerReadBarrier) {
6975 // Baker's read barriers shall be handled by the fast path
6976 // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
6977 DCHECK(!kUseBakerReadBarrier);
6978 // If heap poisoning is enabled, unpoisoning will be taken care of
6979 // by the runtime within the slow path.
6980 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6981 } else if (kPoisonHeapReferences) {
6982 __ UnpoisonHeapReference(out.AsRegister<Register>());
6983 }
6984 }
6985
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6986 void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6987 Location out,
6988 Location root) {
6989 DCHECK(kEmitCompilerReadBarrier);
6990
6991 // Insert a slow path based read barrier *after* the GC root load.
6992 //
6993 // Note that GC roots are not affected by heap poisoning, so we do
6994 // not need to do anything special for this here.
6995 SlowPathCode* slow_path =
6996 new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
6997 AddSlowPath(slow_path);
6998
6999 __ jmp(slow_path->GetEntryLabel());
7000 __ Bind(slow_path->GetExitLabel());
7001 }
7002
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7003 void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7004 // Nothing to do, this should be removed during prepare for register allocator.
7005 LOG(FATAL) << "Unreachable";
7006 }
7007
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7008 void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7009 // Nothing to do, this should be removed during prepare for register allocator.
7010 LOG(FATAL) << "Unreachable";
7011 }
7012
7013 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)7014 void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7015 LocationSummary* locations =
7016 new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7017 locations->SetInAt(0, Location::RequiresRegister());
7018 }
7019
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)7020 void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
7021 int32_t lower_bound,
7022 uint32_t num_entries,
7023 HBasicBlock* switch_block,
7024 HBasicBlock* default_block) {
7025 // Figure out the correct compare values and jump conditions.
7026 // Handle the first compare/branch as a special case because it might
7027 // jump to the default case.
7028 DCHECK_GT(num_entries, 2u);
7029 Condition first_condition;
7030 uint32_t index;
7031 const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
7032 if (lower_bound != 0) {
7033 first_condition = kLess;
7034 __ cmpl(value_reg, Immediate(lower_bound));
7035 __ j(first_condition, codegen_->GetLabelOf(default_block));
7036 __ j(kEqual, codegen_->GetLabelOf(successors[0]));
7037
7038 index = 1;
7039 } else {
7040 // Handle all the compare/jumps below.
7041 first_condition = kBelow;
7042 index = 0;
7043 }
7044
7045 // Handle the rest of the compare/jumps.
7046 for (; index + 1 < num_entries; index += 2) {
7047 int32_t compare_to_value = lower_bound + index + 1;
7048 __ cmpl(value_reg, Immediate(compare_to_value));
7049 // Jump to successors[index] if value < case_value[index].
7050 __ j(first_condition, codegen_->GetLabelOf(successors[index]));
7051 // Jump to successors[index + 1] if value == case_value[index + 1].
7052 __ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
7053 }
7054
7055 if (index != num_entries) {
7056 // There are an odd number of entries. Handle the last one.
7057 DCHECK_EQ(index + 1, num_entries);
7058 __ cmpl(value_reg, Immediate(lower_bound + index));
7059 __ j(kEqual, codegen_->GetLabelOf(successors[index]));
7060 }
7061
7062 // And the default for any other value.
7063 if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
7064 __ jmp(codegen_->GetLabelOf(default_block));
7065 }
7066 }
7067
VisitPackedSwitch(HPackedSwitch * switch_instr)7068 void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7069 int32_t lower_bound = switch_instr->GetStartValue();
7070 uint32_t num_entries = switch_instr->GetNumEntries();
7071 LocationSummary* locations = switch_instr->GetLocations();
7072 Register value_reg = locations->InAt(0).AsRegister<Register>();
7073
7074 GenPackedSwitchWithCompares(value_reg,
7075 lower_bound,
7076 num_entries,
7077 switch_instr->GetBlock(),
7078 switch_instr->GetDefaultBlock());
7079 }
7080
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7081 void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7082 LocationSummary* locations =
7083 new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7084 locations->SetInAt(0, Location::RequiresRegister());
7085
7086 // Constant area pointer.
7087 locations->SetInAt(1, Location::RequiresRegister());
7088
7089 // And the temporary we need.
7090 locations->AddTemp(Location::RequiresRegister());
7091 }
7092
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7093 void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7094 int32_t lower_bound = switch_instr->GetStartValue();
7095 uint32_t num_entries = switch_instr->GetNumEntries();
7096 LocationSummary* locations = switch_instr->GetLocations();
7097 Register value_reg = locations->InAt(0).AsRegister<Register>();
7098 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7099
7100 if (num_entries <= kPackedSwitchJumpTableThreshold) {
7101 GenPackedSwitchWithCompares(value_reg,
7102 lower_bound,
7103 num_entries,
7104 switch_instr->GetBlock(),
7105 default_block);
7106 return;
7107 }
7108
7109 // Optimizing has a jump area.
7110 Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7111 Register constant_area = locations->InAt(1).AsRegister<Register>();
7112
7113 // Remove the bias, if needed.
7114 if (lower_bound != 0) {
7115 __ leal(temp_reg, Address(value_reg, -lower_bound));
7116 value_reg = temp_reg;
7117 }
7118
7119 // Is the value in range?
7120 DCHECK_GE(num_entries, 1u);
7121 __ cmpl(value_reg, Immediate(num_entries - 1));
7122 __ j(kAbove, codegen_->GetLabelOf(default_block));
7123
7124 // We are in the range of the table.
7125 // Load (target-constant_area) from the jump table, indexing by the value.
7126 __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
7127
7128 // Compute the actual target address by adding in constant_area.
7129 __ addl(temp_reg, constant_area);
7130
7131 // And jump.
7132 __ jmp(temp_reg);
7133 }
7134
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7135 void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
7136 HX86ComputeBaseMethodAddress* insn) {
7137 LocationSummary* locations =
7138 new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7139 locations->SetOut(Location::RequiresRegister());
7140 }
7141
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7142 void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
7143 HX86ComputeBaseMethodAddress* insn) {
7144 LocationSummary* locations = insn->GetLocations();
7145 Register reg = locations->Out().AsRegister<Register>();
7146
7147 // Generate call to next instruction.
7148 Label next_instruction;
7149 __ call(&next_instruction);
7150 __ Bind(&next_instruction);
7151
7152 // Remember this offset for later use with constant area.
7153 codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize());
7154
7155 // Grab the return address off the stack.
7156 __ popl(reg);
7157 }
7158
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7159 void LocationsBuilderX86::VisitX86LoadFromConstantTable(
7160 HX86LoadFromConstantTable* insn) {
7161 LocationSummary* locations =
7162 new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7163
7164 locations->SetInAt(0, Location::RequiresRegister());
7165 locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
7166
7167 // If we don't need to be materialized, we only need the inputs to be set.
7168 if (insn->IsEmittedAtUseSite()) {
7169 return;
7170 }
7171
7172 switch (insn->GetType()) {
7173 case Primitive::kPrimFloat:
7174 case Primitive::kPrimDouble:
7175 locations->SetOut(Location::RequiresFpuRegister());
7176 break;
7177
7178 case Primitive::kPrimInt:
7179 locations->SetOut(Location::RequiresRegister());
7180 break;
7181
7182 default:
7183 LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7184 }
7185 }
7186
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7187 void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
7188 if (insn->IsEmittedAtUseSite()) {
7189 return;
7190 }
7191
7192 LocationSummary* locations = insn->GetLocations();
7193 Location out = locations->Out();
7194 Register const_area = locations->InAt(0).AsRegister<Register>();
7195 HConstant *value = insn->GetConstant();
7196
7197 switch (insn->GetType()) {
7198 case Primitive::kPrimFloat:
7199 __ movss(out.AsFpuRegister<XmmRegister>(),
7200 codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area));
7201 break;
7202
7203 case Primitive::kPrimDouble:
7204 __ movsd(out.AsFpuRegister<XmmRegister>(),
7205 codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area));
7206 break;
7207
7208 case Primitive::kPrimInt:
7209 __ movl(out.AsRegister<Register>(),
7210 codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area));
7211 break;
7212
7213 default:
7214 LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7215 }
7216 }
7217
7218 /**
7219 * Class to handle late fixup of offsets into constant area.
7220 */
7221 class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
7222 public:
RIPFixup(CodeGeneratorX86 & codegen,size_t offset)7223 RIPFixup(CodeGeneratorX86& codegen, size_t offset)
7224 : codegen_(&codegen), offset_into_constant_area_(offset) {}
7225
7226 protected:
SetOffset(size_t offset)7227 void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
7228
7229 CodeGeneratorX86* codegen_;
7230
7231 private:
Process(const MemoryRegion & region,int pos)7232 void Process(const MemoryRegion& region, int pos) OVERRIDE {
7233 // Patch the correct offset for the instruction. The place to patch is the
7234 // last 4 bytes of the instruction.
7235 // The value to patch is the distance from the offset in the constant area
7236 // from the address computed by the HX86ComputeBaseMethodAddress instruction.
7237 int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
7238 int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();;
7239
7240 // Patch in the right value.
7241 region.StoreUnaligned<int32_t>(pos - 4, relative_position);
7242 }
7243
7244 // Location in constant area that the fixup refers to.
7245 int32_t offset_into_constant_area_;
7246 };
7247
7248 /**
7249 * Class to handle late fixup of offsets to a jump table that will be created in the
7250 * constant area.
7251 */
7252 class JumpTableRIPFixup : public RIPFixup {
7253 public:
JumpTableRIPFixup(CodeGeneratorX86 & codegen,HX86PackedSwitch * switch_instr)7254 JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
7255 : RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {}
7256
CreateJumpTable()7257 void CreateJumpTable() {
7258 X86Assembler* assembler = codegen_->GetAssembler();
7259
7260 // Ensure that the reference to the jump table has the correct offset.
7261 const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
7262 SetOffset(offset_in_constant_table);
7263
7264 // The label values in the jump table are computed relative to the
7265 // instruction addressing the constant area.
7266 const int32_t relative_offset = codegen_->GetMethodAddressOffset();
7267
7268 // Populate the jump table with the correct values for the jump table.
7269 int32_t num_entries = switch_instr_->GetNumEntries();
7270 HBasicBlock* block = switch_instr_->GetBlock();
7271 const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
7272 // The value that we want is the target offset - the position of the table.
7273 for (int32_t i = 0; i < num_entries; i++) {
7274 HBasicBlock* b = successors[i];
7275 Label* l = codegen_->GetLabelOf(b);
7276 DCHECK(l->IsBound());
7277 int32_t offset_to_block = l->Position() - relative_offset;
7278 assembler->AppendInt32(offset_to_block);
7279 }
7280 }
7281
7282 private:
7283 const HX86PackedSwitch* switch_instr_;
7284 };
7285
Finalize(CodeAllocator * allocator)7286 void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
7287 // Generate the constant area if needed.
7288 X86Assembler* assembler = GetAssembler();
7289 if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
7290 // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
7291 // byte values.
7292 assembler->Align(4, 0);
7293 constant_area_start_ = assembler->CodeSize();
7294
7295 // Populate any jump tables.
7296 for (auto jump_table : fixups_to_jump_tables_) {
7297 jump_table->CreateJumpTable();
7298 }
7299
7300 // And now add the constant area to the generated code.
7301 assembler->AddConstantArea();
7302 }
7303
7304 // And finish up.
7305 CodeGenerator::Finalize(allocator);
7306 }
7307
LiteralDoubleAddress(double v,Register reg)7308 Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) {
7309 AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v));
7310 return Address(reg, kDummy32BitOffset, fixup);
7311 }
7312
LiteralFloatAddress(float v,Register reg)7313 Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) {
7314 AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v));
7315 return Address(reg, kDummy32BitOffset, fixup);
7316 }
7317
LiteralInt32Address(int32_t v,Register reg)7318 Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) {
7319 AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v));
7320 return Address(reg, kDummy32BitOffset, fixup);
7321 }
7322
LiteralInt64Address(int64_t v,Register reg)7323 Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) {
7324 AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v));
7325 return Address(reg, kDummy32BitOffset, fixup);
7326 }
7327
Load32BitValue(Register dest,int32_t value)7328 void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
7329 if (value == 0) {
7330 __ xorl(dest, dest);
7331 } else {
7332 __ movl(dest, Immediate(value));
7333 }
7334 }
7335
Compare32BitValue(Register dest,int32_t value)7336 void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
7337 if (value == 0) {
7338 __ testl(dest, dest);
7339 } else {
7340 __ cmpl(dest, Immediate(value));
7341 }
7342 }
7343
LiteralCaseTable(HX86PackedSwitch * switch_instr,Register reg,Register value)7344 Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
7345 Register reg,
7346 Register value) {
7347 // Create a fixup to be used to create and address the jump table.
7348 JumpTableRIPFixup* table_fixup =
7349 new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
7350
7351 // We have to populate the jump tables.
7352 fixups_to_jump_tables_.push_back(table_fixup);
7353
7354 // We want a scaled address, as we are extracting the correct offset from the table.
7355 return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
7356 }
7357
7358 // TODO: target as memory.
MoveFromReturnRegister(Location target,Primitive::Type type)7359 void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
7360 if (!target.IsValid()) {
7361 DCHECK_EQ(type, Primitive::kPrimVoid);
7362 return;
7363 }
7364
7365 DCHECK_NE(type, Primitive::kPrimVoid);
7366
7367 Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
7368 if (target.Equals(return_loc)) {
7369 return;
7370 }
7371
7372 // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7373 // with the else branch.
7374 if (type == Primitive::kPrimLong) {
7375 HParallelMove parallel_move(GetGraph()->GetArena());
7376 parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
7377 parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
7378 GetMoveResolver()->EmitNativeCode(¶llel_move);
7379 } else {
7380 // Let the parallel move resolver take care of all of this.
7381 HParallelMove parallel_move(GetGraph()->GetArena());
7382 parallel_move.AddMove(return_loc, target, type, nullptr);
7383 GetMoveResolver()->EmitNativeCode(¶llel_move);
7384 }
7385 }
7386
7387 #undef __
7388
7389 } // namespace x86
7390 } // namespace art
7391