• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "concurrent_copying.h"
18 
19 #include "art_field-inl.h"
20 #include "base/stl_util.h"
21 #include "debugger.h"
22 #include "gc/accounting/heap_bitmap-inl.h"
23 #include "gc/accounting/space_bitmap-inl.h"
24 #include "gc/reference_processor.h"
25 #include "gc/space/image_space.h"
26 #include "gc/space/space-inl.h"
27 #include "image-inl.h"
28 #include "intern_table.h"
29 #include "mirror/class-inl.h"
30 #include "mirror/object-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "thread-inl.h"
33 #include "thread_list.h"
34 #include "well_known_classes.h"
35 
36 namespace art {
37 namespace gc {
38 namespace collector {
39 
40 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
41 
ConcurrentCopying(Heap * heap,const std::string & name_prefix)42 ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
43     : GarbageCollector(heap,
44                        name_prefix + (name_prefix.empty() ? "" : " ") +
45                        "concurrent copying + mark sweep"),
46       region_space_(nullptr), gc_barrier_(new Barrier(0)),
47       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
48                                                      kDefaultGcMarkStackSize,
49                                                      kDefaultGcMarkStackSize)),
50       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
51       thread_running_gc_(nullptr),
52       is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
53       heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
54       weak_ref_access_enabled_(true),
55       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
56       rb_table_(heap_->GetReadBarrierTable()),
57       force_evacuate_all_(false) {
58   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
59                 "The region space size and the read barrier table region size must match");
60   cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
61   Thread* self = Thread::Current();
62   {
63     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
64     // Cache this so that we won't have to lock heap_bitmap_lock_ in
65     // Mark() which could cause a nested lock on heap_bitmap_lock_
66     // when GC causes a RB while doing GC or a lock order violation
67     // (class_linker_lock_ and heap_bitmap_lock_).
68     heap_mark_bitmap_ = heap->GetMarkBitmap();
69   }
70   {
71     MutexLock mu(self, mark_stack_lock_);
72     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
73       accounting::AtomicStack<mirror::Object>* mark_stack =
74           accounting::AtomicStack<mirror::Object>::Create(
75               "thread local mark stack", kMarkStackSize, kMarkStackSize);
76       pooled_mark_stacks_.push_back(mark_stack);
77     }
78   }
79 }
80 
MarkHeapReference(mirror::HeapReference<mirror::Object> * from_ref)81 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
82   // Used for preserving soft references, should be OK to not have a CAS here since there should be
83   // no other threads which can trigger read barriers on the same referent during reference
84   // processing.
85   from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
86   DCHECK(!from_ref->IsNull());
87 }
88 
~ConcurrentCopying()89 ConcurrentCopying::~ConcurrentCopying() {
90   STLDeleteElements(&pooled_mark_stacks_);
91 }
92 
RunPhases()93 void ConcurrentCopying::RunPhases() {
94   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
95   CHECK(!is_active_);
96   is_active_ = true;
97   Thread* self = Thread::Current();
98   thread_running_gc_ = self;
99   Locks::mutator_lock_->AssertNotHeld(self);
100   {
101     ReaderMutexLock mu(self, *Locks::mutator_lock_);
102     InitializePhase();
103   }
104   FlipThreadRoots();
105   {
106     ReaderMutexLock mu(self, *Locks::mutator_lock_);
107     MarkingPhase();
108   }
109   // Verify no from space refs. This causes a pause.
110   if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
111     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
112     ScopedPause pause(this);
113     CheckEmptyMarkStack();
114     if (kVerboseMode) {
115       LOG(INFO) << "Verifying no from-space refs";
116     }
117     VerifyNoFromSpaceReferences();
118     if (kVerboseMode) {
119       LOG(INFO) << "Done verifying no from-space refs";
120     }
121     CheckEmptyMarkStack();
122   }
123   {
124     ReaderMutexLock mu(self, *Locks::mutator_lock_);
125     ReclaimPhase();
126   }
127   FinishPhase();
128   CHECK(is_active_);
129   is_active_ = false;
130   thread_running_gc_ = nullptr;
131 }
132 
BindBitmaps()133 void ConcurrentCopying::BindBitmaps() {
134   Thread* self = Thread::Current();
135   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
136   // Mark all of the spaces we never collect as immune.
137   for (const auto& space : heap_->GetContinuousSpaces()) {
138     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
139         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
140       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
141       immune_spaces_.AddSpace(space);
142       const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
143           "cc zygote space bitmap";
144       // TODO: try avoiding using bitmaps for image/zygote to save space.
145       accounting::ContinuousSpaceBitmap* bitmap =
146           accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
147       cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
148       cc_bitmaps_.push_back(bitmap);
149     } else if (space == region_space_) {
150       accounting::ContinuousSpaceBitmap* bitmap =
151           accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
152                                                     space->Begin(), space->Capacity());
153       cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
154       cc_bitmaps_.push_back(bitmap);
155       region_space_bitmap_ = bitmap;
156     }
157   }
158 }
159 
InitializePhase()160 void ConcurrentCopying::InitializePhase() {
161   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
162   if (kVerboseMode) {
163     LOG(INFO) << "GC InitializePhase";
164     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
165               << reinterpret_cast<void*>(region_space_->Limit());
166   }
167   CheckEmptyMarkStack();
168   immune_spaces_.Reset();
169   bytes_moved_.StoreRelaxed(0);
170   objects_moved_.StoreRelaxed(0);
171   if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
172       GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
173       GetCurrentIteration()->GetClearSoftReferences()) {
174     force_evacuate_all_ = true;
175   } else {
176     force_evacuate_all_ = false;
177   }
178   BindBitmaps();
179   if (kVerboseMode) {
180     LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
181     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
182               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
183     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
184       LOG(INFO) << "Immune space: " << *space;
185     }
186     LOG(INFO) << "GC end of InitializePhase";
187   }
188 }
189 
190 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
191 class ConcurrentCopying::ThreadFlipVisitor : public Closure {
192  public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)193   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
194       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
195   }
196 
Run(Thread * thread)197   virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
198     // Note: self is not necessarily equal to thread since thread may be suspended.
199     Thread* self = Thread::Current();
200     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
201         << thread->GetState() << " thread " << thread << " self " << self;
202     thread->SetIsGcMarking(true);
203     if (use_tlab_ && thread->HasTlab()) {
204       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
205         // This must come before the revoke.
206         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
207         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
208         reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
209             FetchAndAddSequentiallyConsistent(thread_local_objects);
210       } else {
211         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
212       }
213     }
214     if (kUseThreadLocalAllocationStack) {
215       thread->RevokeThreadLocalAllocationStack();
216     }
217     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
218     thread->VisitRoots(concurrent_copying_);
219     concurrent_copying_->GetBarrier().Pass(self);
220   }
221 
222  private:
223   ConcurrentCopying* const concurrent_copying_;
224   const bool use_tlab_;
225 };
226 
227 // Called back from Runtime::FlipThreadRoots() during a pause.
228 class ConcurrentCopying::FlipCallback : public Closure {
229  public:
FlipCallback(ConcurrentCopying * concurrent_copying)230   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
231       : concurrent_copying_(concurrent_copying) {
232   }
233 
Run(Thread * thread)234   virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
235     ConcurrentCopying* cc = concurrent_copying_;
236     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
237     // Note: self is not necessarily equal to thread since thread may be suspended.
238     Thread* self = Thread::Current();
239     CHECK(thread == self);
240     Locks::mutator_lock_->AssertExclusiveHeld(self);
241     cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
242     cc->SwapStacks();
243     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
244       cc->RecordLiveStackFreezeSize(self);
245       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
246       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
247     }
248     cc->is_marking_ = true;
249     cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
250     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
251       CHECK(Runtime::Current()->IsAotCompiler());
252       TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
253       Runtime::Current()->VisitTransactionRoots(cc);
254     }
255   }
256 
257  private:
258   ConcurrentCopying* const concurrent_copying_;
259 };
260 
261 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()262 void ConcurrentCopying::FlipThreadRoots() {
263   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
264   if (kVerboseMode) {
265     LOG(INFO) << "time=" << region_space_->Time();
266     region_space_->DumpNonFreeRegions(LOG(INFO));
267   }
268   Thread* self = Thread::Current();
269   Locks::mutator_lock_->AssertNotHeld(self);
270   gc_barrier_->Init(self, 0);
271   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
272   FlipCallback flip_callback(this);
273   heap_->ThreadFlipBegin(self);  // Sync with JNI critical calls.
274   size_t barrier_count = Runtime::Current()->FlipThreadRoots(
275       &thread_flip_visitor, &flip_callback, this);
276   heap_->ThreadFlipEnd(self);
277   {
278     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
279     gc_barrier_->Increment(self, barrier_count);
280   }
281   is_asserting_to_space_invariant_ = true;
282   QuasiAtomic::ThreadFenceForConstructor();
283   if (kVerboseMode) {
284     LOG(INFO) << "time=" << region_space_->Time();
285     region_space_->DumpNonFreeRegions(LOG(INFO));
286     LOG(INFO) << "GC end of FlipThreadRoots";
287   }
288 }
289 
SwapStacks()290 void ConcurrentCopying::SwapStacks() {
291   heap_->SwapStacks();
292 }
293 
RecordLiveStackFreezeSize(Thread * self)294 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
295   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
296   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
297 }
298 
299 // Used to visit objects in the immune spaces.
300 class ConcurrentCopying::ImmuneSpaceObjVisitor {
301  public:
ImmuneSpaceObjVisitor(ConcurrentCopying * cc)302   explicit ImmuneSpaceObjVisitor(ConcurrentCopying* cc) : collector_(cc) {}
303 
operator ()(mirror::Object * obj) const304   void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
305       SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
306     DCHECK(obj != nullptr);
307     DCHECK(collector_->immune_spaces_.ContainsObject(obj));
308     accounting::ContinuousSpaceBitmap* cc_bitmap =
309         collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
310     DCHECK(cc_bitmap != nullptr)
311         << "An immune space object must have a bitmap";
312     if (kIsDebugBuild) {
313       DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
314           << "Immune space object must be already marked";
315     }
316     // This may or may not succeed, which is ok.
317     if (kUseBakerReadBarrier) {
318       obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
319     }
320     if (cc_bitmap->AtomicTestAndSet(obj)) {
321       // Already marked. Do nothing.
322     } else {
323       // Newly marked. Set the gray bit and push it onto the mark stack.
324       CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
325       collector_->PushOntoMarkStack(obj);
326     }
327   }
328 
329  private:
330   ConcurrentCopying* const collector_;
331 };
332 
333 class EmptyCheckpoint : public Closure {
334  public:
EmptyCheckpoint(ConcurrentCopying * concurrent_copying)335   explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
336       : concurrent_copying_(concurrent_copying) {
337   }
338 
Run(Thread * thread)339   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
340     // Note: self is not necessarily equal to thread since thread may be suspended.
341     Thread* self = Thread::Current();
342     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
343         << thread->GetState() << " thread " << thread << " self " << self;
344     // If thread is a running mutator, then act on behalf of the garbage collector.
345     // See the code in ThreadList::RunCheckpoint.
346     concurrent_copying_->GetBarrier().Pass(self);
347   }
348 
349  private:
350   ConcurrentCopying* const concurrent_copying_;
351 };
352 
353 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
MarkingPhase()354 void ConcurrentCopying::MarkingPhase() {
355   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
356   if (kVerboseMode) {
357     LOG(INFO) << "GC MarkingPhase";
358   }
359   CHECK(weak_ref_access_enabled_);
360   {
361     // Mark the image root. The WB-based collectors do not need to
362     // scan the image objects from roots by relying on the card table,
363     // but it's necessary for the RB to-space invariant to hold.
364     TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
365     for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
366       if (space->IsImageSpace()) {
367         gc::space::ImageSpace* image = space->AsImageSpace();
368         if (image != nullptr) {
369           mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
370           mirror::Object* marked_image_root = Mark(image_root);
371           CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
372           if (ReadBarrier::kEnableToSpaceInvariantChecks) {
373             AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
374           }
375         }
376       }
377     }
378   }
379   {
380     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
381     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
382   }
383   {
384     // TODO: don't visit the transaction roots if it's not active.
385     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
386     Runtime::Current()->VisitNonThreadRoots(this);
387   }
388 
389   // Immune spaces.
390   for (auto& space : immune_spaces_.GetSpaces()) {
391     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
392     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
393     ImmuneSpaceObjVisitor visitor(this);
394     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
395                                   reinterpret_cast<uintptr_t>(space->Limit()),
396                                   visitor);
397   }
398 
399   Thread* self = Thread::Current();
400   {
401     TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
402     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
403     // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
404     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
405     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
406     // reach the point where we process weak references, we can avoid using a lock when accessing
407     // the GC mark stack, which makes mark stack processing more efficient.
408 
409     // Process the mark stack once in the thread local stack mode. This marks most of the live
410     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
411     // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
412     // objects and push refs on the mark stack.
413     ProcessMarkStack();
414     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
415     // for the last time before transitioning to the shared mark stack mode, which would process new
416     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
417     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
418     // important to do these together in a single checkpoint so that we can ensure that mutators
419     // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
420     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
421     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
422     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
423     SwitchToSharedMarkStackMode();
424     CHECK(!self->GetWeakRefAccessEnabled());
425     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
426     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
427     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
428     // (via read barriers) have no way to produce any more refs to process. Marking converges once
429     // before we process weak refs below.
430     ProcessMarkStack();
431     CheckEmptyMarkStack();
432     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
433     // lock from this point on.
434     SwitchToGcExclusiveMarkStackMode();
435     CheckEmptyMarkStack();
436     if (kVerboseMode) {
437       LOG(INFO) << "ProcessReferences";
438     }
439     // Process weak references. This may produce new refs to process and have them processed via
440     // ProcessMarkStack (in the GC exclusive mark stack mode).
441     ProcessReferences(self);
442     CheckEmptyMarkStack();
443     if (kVerboseMode) {
444       LOG(INFO) << "SweepSystemWeaks";
445     }
446     SweepSystemWeaks(self);
447     if (kVerboseMode) {
448       LOG(INFO) << "SweepSystemWeaks done";
449     }
450     // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
451     // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
452     // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
453     ProcessMarkStack();
454     CheckEmptyMarkStack();
455     // Re-enable weak ref accesses.
456     ReenableWeakRefAccess(self);
457     // Free data for class loaders that we unloaded.
458     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
459     // Marking is done. Disable marking.
460     DisableMarking();
461     CheckEmptyMarkStack();
462   }
463 
464   CHECK(weak_ref_access_enabled_);
465   if (kVerboseMode) {
466     LOG(INFO) << "GC end of MarkingPhase";
467   }
468 }
469 
ReenableWeakRefAccess(Thread * self)470 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
471   if (kVerboseMode) {
472     LOG(INFO) << "ReenableWeakRefAccess";
473   }
474   weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
475   QuasiAtomic::ThreadFenceForConstructor();
476   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
477   {
478     MutexLock mu(self, *Locks::thread_list_lock_);
479     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
480     for (Thread* thread : thread_list) {
481       thread->SetWeakRefAccessEnabled(true);
482     }
483   }
484   // Unblock blocking threads.
485   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
486   Runtime::Current()->BroadcastForNewSystemWeaks();
487 }
488 
489 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
490  public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)491   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
492       : concurrent_copying_(concurrent_copying) {
493   }
494 
Run(Thread * thread)495   void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
496     // Note: self is not necessarily equal to thread since thread may be suspended.
497     Thread* self = Thread::Current();
498     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
499         << thread->GetState() << " thread " << thread << " self " << self;
500     // Disable the thread-local is_gc_marking flag.
501     // Note a thread that has just started right before this checkpoint may have already this flag
502     // set to false, which is ok.
503     thread->SetIsGcMarking(false);
504     // If thread is a running mutator, then act on behalf of the garbage collector.
505     // See the code in ThreadList::RunCheckpoint.
506     concurrent_copying_->GetBarrier().Pass(self);
507   }
508 
509  private:
510   ConcurrentCopying* const concurrent_copying_;
511 };
512 
IssueDisableMarkingCheckpoint()513 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
514   Thread* self = Thread::Current();
515   DisableMarkingCheckpoint check_point(this);
516   ThreadList* thread_list = Runtime::Current()->GetThreadList();
517   gc_barrier_->Init(self, 0);
518   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
519   // If there are no threads to wait which implies that all the checkpoint functions are finished,
520   // then no need to release the mutator lock.
521   if (barrier_count == 0) {
522     return;
523   }
524   // Release locks then wait for all mutator threads to pass the barrier.
525   Locks::mutator_lock_->SharedUnlock(self);
526   {
527     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
528     gc_barrier_->Increment(self, barrier_count);
529   }
530   Locks::mutator_lock_->SharedLock(self);
531 }
532 
DisableMarking()533 void ConcurrentCopying::DisableMarking() {
534   // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
535   // thread-local flags so that a new thread starting up will get the correct is_marking flag.
536   is_marking_ = false;
537   QuasiAtomic::ThreadFenceForConstructor();
538   // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
539   // still in the middle of a read barrier which may have a from-space ref cached in a local
540   // variable.
541   IssueDisableMarkingCheckpoint();
542   if (kUseTableLookupReadBarrier) {
543     heap_->rb_table_->ClearAll();
544     DCHECK(heap_->rb_table_->IsAllCleared());
545   }
546   is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
547   mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
548 }
549 
IssueEmptyCheckpoint()550 void ConcurrentCopying::IssueEmptyCheckpoint() {
551   Thread* self = Thread::Current();
552   EmptyCheckpoint check_point(this);
553   ThreadList* thread_list = Runtime::Current()->GetThreadList();
554   gc_barrier_->Init(self, 0);
555   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
556   // If there are no threads to wait which implys that all the checkpoint functions are finished,
557   // then no need to release the mutator lock.
558   if (barrier_count == 0) {
559     return;
560   }
561   // Release locks then wait for all mutator threads to pass the barrier.
562   Locks::mutator_lock_->SharedUnlock(self);
563   {
564     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
565     gc_barrier_->Increment(self, barrier_count);
566   }
567   Locks::mutator_lock_->SharedLock(self);
568 }
569 
ExpandGcMarkStack()570 void ConcurrentCopying::ExpandGcMarkStack() {
571   DCHECK(gc_mark_stack_->IsFull());
572   const size_t new_size = gc_mark_stack_->Capacity() * 2;
573   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
574                                                    gc_mark_stack_->End());
575   gc_mark_stack_->Resize(new_size);
576   for (auto& ref : temp) {
577     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
578   }
579   DCHECK(!gc_mark_stack_->IsFull());
580 }
581 
PushOntoMarkStack(mirror::Object * to_ref)582 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
583   CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
584       << " " << to_ref << " " << PrettyTypeOf(to_ref);
585   Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
586   CHECK(thread_running_gc_ != nullptr);
587   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
588   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
589     if (LIKELY(self == thread_running_gc_)) {
590       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
591       CHECK(self->GetThreadLocalMarkStack() == nullptr);
592       if (UNLIKELY(gc_mark_stack_->IsFull())) {
593         ExpandGcMarkStack();
594       }
595       gc_mark_stack_->PushBack(to_ref);
596     } else {
597       // Otherwise, use a thread-local mark stack.
598       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
599       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
600         MutexLock mu(self, mark_stack_lock_);
601         // Get a new thread local mark stack.
602         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
603         if (!pooled_mark_stacks_.empty()) {
604           // Use a pooled mark stack.
605           new_tl_mark_stack = pooled_mark_stacks_.back();
606           pooled_mark_stacks_.pop_back();
607         } else {
608           // None pooled. Create a new one.
609           new_tl_mark_stack =
610               accounting::AtomicStack<mirror::Object>::Create(
611                   "thread local mark stack", 4 * KB, 4 * KB);
612         }
613         DCHECK(new_tl_mark_stack != nullptr);
614         DCHECK(new_tl_mark_stack->IsEmpty());
615         new_tl_mark_stack->PushBack(to_ref);
616         self->SetThreadLocalMarkStack(new_tl_mark_stack);
617         if (tl_mark_stack != nullptr) {
618           // Store the old full stack into a vector.
619           revoked_mark_stacks_.push_back(tl_mark_stack);
620         }
621       } else {
622         tl_mark_stack->PushBack(to_ref);
623       }
624     }
625   } else if (mark_stack_mode == kMarkStackModeShared) {
626     // Access the shared GC mark stack with a lock.
627     MutexLock mu(self, mark_stack_lock_);
628     if (UNLIKELY(gc_mark_stack_->IsFull())) {
629       ExpandGcMarkStack();
630     }
631     gc_mark_stack_->PushBack(to_ref);
632   } else {
633     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
634              static_cast<uint32_t>(kMarkStackModeGcExclusive))
635         << "ref=" << to_ref
636         << " self->gc_marking=" << self->GetIsGcMarking()
637         << " cc->is_marking=" << is_marking_;
638     CHECK(self == thread_running_gc_)
639         << "Only GC-running thread should access the mark stack "
640         << "in the GC exclusive mark stack mode";
641     // Access the GC mark stack without a lock.
642     if (UNLIKELY(gc_mark_stack_->IsFull())) {
643       ExpandGcMarkStack();
644     }
645     gc_mark_stack_->PushBack(to_ref);
646   }
647 }
648 
GetAllocationStack()649 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
650   return heap_->allocation_stack_.get();
651 }
652 
GetLiveStack()653 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
654   return heap_->live_stack_.get();
655 }
656 
657 // The following visitors are that used to verify that there's no
658 // references to the from-space left after marking.
659 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
660  public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)661   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
662       : collector_(collector) {}
663 
operator ()(mirror::Object * ref) const664   void operator()(mirror::Object* ref) const
665       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
666     if (ref == nullptr) {
667       // OK.
668       return;
669     }
670     collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
671     if (kUseBakerReadBarrier) {
672       if (collector_->RegionSpace()->IsInToSpace(ref)) {
673         CHECK(ref->GetReadBarrierPointer() == nullptr)
674             << "To-space ref " << ref << " " << PrettyTypeOf(ref)
675             << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
676       } else {
677         CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
678               (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
679                collector_->IsOnAllocStack(ref)))
680             << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
681             << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
682             << " but isn't on the alloc stack (and has white rb_ptr)."
683             << " Is it in the non-moving space="
684             << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
685       }
686     }
687   }
688 
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)689   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
690       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
691     DCHECK(root != nullptr);
692     operator()(root);
693   }
694 
695  private:
696   ConcurrentCopying* const collector_;
697 };
698 
699 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
700  public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)701   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
702       : collector_(collector) {}
703 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const704   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
705       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
706     mirror::Object* ref =
707         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
708     VerifyNoFromSpaceRefsVisitor visitor(collector_);
709     visitor(ref);
710   }
operator ()(mirror::Class * klass,mirror::Reference * ref) const711   void operator()(mirror::Class* klass, mirror::Reference* ref) const
712       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
713     CHECK(klass->IsTypeOfReferenceClass());
714     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
715   }
716 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const717   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
718       SHARED_REQUIRES(Locks::mutator_lock_) {
719     if (!root->IsNull()) {
720       VisitRoot(root);
721     }
722   }
723 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const724   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
725       SHARED_REQUIRES(Locks::mutator_lock_) {
726     VerifyNoFromSpaceRefsVisitor visitor(collector_);
727     visitor(root->AsMirrorPtr());
728   }
729 
730  private:
731   ConcurrentCopying* const collector_;
732 };
733 
734 class ConcurrentCopying::VerifyNoFromSpaceRefsObjectVisitor {
735  public:
VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying * collector)736   explicit VerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
737       : collector_(collector) {}
operator ()(mirror::Object * obj) const738   void operator()(mirror::Object* obj) const
739       SHARED_REQUIRES(Locks::mutator_lock_) {
740     ObjectCallback(obj, collector_);
741   }
ObjectCallback(mirror::Object * obj,void * arg)742   static void ObjectCallback(mirror::Object* obj, void *arg)
743       SHARED_REQUIRES(Locks::mutator_lock_) {
744     CHECK(obj != nullptr);
745     ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
746     space::RegionSpace* region_space = collector->RegionSpace();
747     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
748     VerifyNoFromSpaceRefsFieldVisitor visitor(collector);
749     obj->VisitReferences(visitor, visitor);
750     if (kUseBakerReadBarrier) {
751       if (collector->RegionSpace()->IsInToSpace(obj)) {
752         CHECK(obj->GetReadBarrierPointer() == nullptr)
753             << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
754       } else {
755         CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
756               (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
757                collector->IsOnAllocStack(obj)))
758             << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
759             << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
760             << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
761             << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
762       }
763     }
764   }
765 
766  private:
767   ConcurrentCopying* const collector_;
768 };
769 
770 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()771 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
772   Thread* self = Thread::Current();
773   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
774   // Verify all threads have is_gc_marking to be false
775   {
776     MutexLock mu(self, *Locks::thread_list_lock_);
777     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
778     for (Thread* thread : thread_list) {
779       CHECK(!thread->GetIsGcMarking());
780     }
781   }
782   VerifyNoFromSpaceRefsObjectVisitor visitor(this);
783   // Roots.
784   {
785     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
786     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
787     Runtime::Current()->VisitRoots(&ref_visitor);
788   }
789   // The to-space.
790   region_space_->WalkToSpace(VerifyNoFromSpaceRefsObjectVisitor::ObjectCallback, this);
791   // Non-moving spaces.
792   {
793     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
794     heap_->GetMarkBitmap()->Visit(visitor);
795   }
796   // The alloc stack.
797   {
798     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
799     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
800         it < end; ++it) {
801       mirror::Object* const obj = it->AsMirrorPtr();
802       if (obj != nullptr && obj->GetClass() != nullptr) {
803         // TODO: need to call this only if obj is alive?
804         ref_visitor(obj);
805         visitor(obj);
806       }
807     }
808   }
809   // TODO: LOS. But only refs in LOS are classes.
810 }
811 
812 // The following visitors are used to assert the to-space invariant.
813 class ConcurrentCopying::AssertToSpaceInvariantRefsVisitor {
814  public:
AssertToSpaceInvariantRefsVisitor(ConcurrentCopying * collector)815   explicit AssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
816       : collector_(collector) {}
817 
operator ()(mirror::Object * ref) const818   void operator()(mirror::Object* ref) const
819       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
820     if (ref == nullptr) {
821       // OK.
822       return;
823     }
824     collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
825   }
826 
827  private:
828   ConcurrentCopying* const collector_;
829 };
830 
831 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
832  public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)833   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
834       : collector_(collector) {}
835 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const836   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
837       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
838     mirror::Object* ref =
839         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
840     AssertToSpaceInvariantRefsVisitor visitor(collector_);
841     visitor(ref);
842   }
operator ()(mirror::Class * klass,mirror::Reference * ref ATTRIBUTE_UNUSED) const843   void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
844       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
845     CHECK(klass->IsTypeOfReferenceClass());
846   }
847 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const848   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
849       SHARED_REQUIRES(Locks::mutator_lock_) {
850     if (!root->IsNull()) {
851       VisitRoot(root);
852     }
853   }
854 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const855   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
856       SHARED_REQUIRES(Locks::mutator_lock_) {
857     AssertToSpaceInvariantRefsVisitor visitor(collector_);
858     visitor(root->AsMirrorPtr());
859   }
860 
861  private:
862   ConcurrentCopying* const collector_;
863 };
864 
865 class ConcurrentCopying::AssertToSpaceInvariantObjectVisitor {
866  public:
AssertToSpaceInvariantObjectVisitor(ConcurrentCopying * collector)867   explicit AssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
868       : collector_(collector) {}
operator ()(mirror::Object * obj) const869   void operator()(mirror::Object* obj) const
870       SHARED_REQUIRES(Locks::mutator_lock_) {
871     ObjectCallback(obj, collector_);
872   }
ObjectCallback(mirror::Object * obj,void * arg)873   static void ObjectCallback(mirror::Object* obj, void *arg)
874       SHARED_REQUIRES(Locks::mutator_lock_) {
875     CHECK(obj != nullptr);
876     ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
877     space::RegionSpace* region_space = collector->RegionSpace();
878     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
879     collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
880     AssertToSpaceInvariantFieldVisitor visitor(collector);
881     obj->VisitReferences(visitor, visitor);
882   }
883 
884  private:
885   ConcurrentCopying* const collector_;
886 };
887 
888 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
889  public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)890   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
891                                        bool disable_weak_ref_access)
892       : concurrent_copying_(concurrent_copying),
893         disable_weak_ref_access_(disable_weak_ref_access) {
894   }
895 
Run(Thread * thread)896   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
897     // Note: self is not necessarily equal to thread since thread may be suspended.
898     Thread* self = Thread::Current();
899     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
900         << thread->GetState() << " thread " << thread << " self " << self;
901     // Revoke thread local mark stacks.
902     accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
903     if (tl_mark_stack != nullptr) {
904       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
905       concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
906       thread->SetThreadLocalMarkStack(nullptr);
907     }
908     // Disable weak ref access.
909     if (disable_weak_ref_access_) {
910       thread->SetWeakRefAccessEnabled(false);
911     }
912     // If thread is a running mutator, then act on behalf of the garbage collector.
913     // See the code in ThreadList::RunCheckpoint.
914     concurrent_copying_->GetBarrier().Pass(self);
915   }
916 
917  private:
918   ConcurrentCopying* const concurrent_copying_;
919   const bool disable_weak_ref_access_;
920 };
921 
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access)922 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
923   Thread* self = Thread::Current();
924   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
925   ThreadList* thread_list = Runtime::Current()->GetThreadList();
926   gc_barrier_->Init(self, 0);
927   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
928   // If there are no threads to wait which implys that all the checkpoint functions are finished,
929   // then no need to release the mutator lock.
930   if (barrier_count == 0) {
931     return;
932   }
933   Locks::mutator_lock_->SharedUnlock(self);
934   {
935     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
936     gc_barrier_->Increment(self, barrier_count);
937   }
938   Locks::mutator_lock_->SharedLock(self);
939 }
940 
RevokeThreadLocalMarkStack(Thread * thread)941 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
942   Thread* self = Thread::Current();
943   CHECK_EQ(self, thread);
944   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
945   if (tl_mark_stack != nullptr) {
946     CHECK(is_marking_);
947     MutexLock mu(self, mark_stack_lock_);
948     revoked_mark_stacks_.push_back(tl_mark_stack);
949     thread->SetThreadLocalMarkStack(nullptr);
950   }
951 }
952 
ProcessMarkStack()953 void ConcurrentCopying::ProcessMarkStack() {
954   if (kVerboseMode) {
955     LOG(INFO) << "ProcessMarkStack. ";
956   }
957   bool empty_prev = false;
958   while (true) {
959     bool empty = ProcessMarkStackOnce();
960     if (empty_prev && empty) {
961       // Saw empty mark stack for a second time, done.
962       break;
963     }
964     empty_prev = empty;
965   }
966 }
967 
ProcessMarkStackOnce()968 bool ConcurrentCopying::ProcessMarkStackOnce() {
969   Thread* self = Thread::Current();
970   CHECK(thread_running_gc_ != nullptr);
971   CHECK(self == thread_running_gc_);
972   CHECK(self->GetThreadLocalMarkStack() == nullptr);
973   size_t count = 0;
974   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
975   if (mark_stack_mode == kMarkStackModeThreadLocal) {
976     // Process the thread-local mark stacks and the GC mark stack.
977     count += ProcessThreadLocalMarkStacks(false);
978     while (!gc_mark_stack_->IsEmpty()) {
979       mirror::Object* to_ref = gc_mark_stack_->PopBack();
980       ProcessMarkStackRef(to_ref);
981       ++count;
982     }
983     gc_mark_stack_->Reset();
984   } else if (mark_stack_mode == kMarkStackModeShared) {
985     // Process the shared GC mark stack with a lock.
986     {
987       MutexLock mu(self, mark_stack_lock_);
988       CHECK(revoked_mark_stacks_.empty());
989     }
990     while (true) {
991       std::vector<mirror::Object*> refs;
992       {
993         // Copy refs with lock. Note the number of refs should be small.
994         MutexLock mu(self, mark_stack_lock_);
995         if (gc_mark_stack_->IsEmpty()) {
996           break;
997         }
998         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
999              p != gc_mark_stack_->End(); ++p) {
1000           refs.push_back(p->AsMirrorPtr());
1001         }
1002         gc_mark_stack_->Reset();
1003       }
1004       for (mirror::Object* ref : refs) {
1005         ProcessMarkStackRef(ref);
1006         ++count;
1007       }
1008     }
1009   } else {
1010     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1011              static_cast<uint32_t>(kMarkStackModeGcExclusive));
1012     {
1013       MutexLock mu(self, mark_stack_lock_);
1014       CHECK(revoked_mark_stacks_.empty());
1015     }
1016     // Process the GC mark stack in the exclusive mode. No need to take the lock.
1017     while (!gc_mark_stack_->IsEmpty()) {
1018       mirror::Object* to_ref = gc_mark_stack_->PopBack();
1019       ProcessMarkStackRef(to_ref);
1020       ++count;
1021     }
1022     gc_mark_stack_->Reset();
1023   }
1024 
1025   // Return true if the stack was empty.
1026   return count == 0;
1027 }
1028 
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access)1029 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1030   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1031   RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1032   size_t count = 0;
1033   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1034   {
1035     MutexLock mu(Thread::Current(), mark_stack_lock_);
1036     // Make a copy of the mark stack vector.
1037     mark_stacks = revoked_mark_stacks_;
1038     revoked_mark_stacks_.clear();
1039   }
1040   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1041     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1042       mirror::Object* to_ref = p->AsMirrorPtr();
1043       ProcessMarkStackRef(to_ref);
1044       ++count;
1045     }
1046     {
1047       MutexLock mu(Thread::Current(), mark_stack_lock_);
1048       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1049         // The pool has enough. Delete it.
1050         delete mark_stack;
1051       } else {
1052         // Otherwise, put it into the pool for later reuse.
1053         mark_stack->Reset();
1054         pooled_mark_stacks_.push_back(mark_stack);
1055       }
1056     }
1057   }
1058   return count;
1059 }
1060 
ProcessMarkStackRef(mirror::Object * to_ref)1061 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1062   DCHECK(!region_space_->IsInFromSpace(to_ref));
1063   if (kUseBakerReadBarrier) {
1064     DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1065         << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1066         << " is_marked=" << IsMarked(to_ref);
1067   }
1068   // Scan ref fields.
1069   Scan(to_ref);
1070   // Mark the gray ref as white or black.
1071   if (kUseBakerReadBarrier) {
1072     DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1073         << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1074         << " is_marked=" << IsMarked(to_ref);
1075   }
1076 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1077   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1078                 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1079                 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())))) {
1080     // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1081     // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1082     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
1083   } else {
1084     // We may occasionally leave a Reference black or white in the queue if its referent happens to
1085     // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1086     // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1087     // here in this else block.
1088     if (kUseBakerReadBarrier) {
1089       if (region_space_->IsInToSpace(to_ref)) {
1090         // If to-space, change from gray to white.
1091         bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1092             ReadBarrier::GrayPtr(),
1093             ReadBarrier::WhitePtr());
1094         DCHECK(success) << "Must succeed as we won the race.";
1095         DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1096       } else {
1097         // If non-moving space/unevac from space, change from gray
1098         // to black. We can't change gray to white because it's not
1099         // safe to use CAS if two threads change values in opposite
1100         // directions (A->B and B->A). So, we change it to black to
1101         // indicate non-moving objects that have been marked
1102         // through. Note we'd need to change from black to white
1103         // later (concurrently).
1104         bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1105             ReadBarrier::GrayPtr(),
1106             ReadBarrier::BlackPtr());
1107         DCHECK(success) << "Must succeed as we won the race.";
1108         DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1109       }
1110     }
1111   }
1112 #else
1113   DCHECK(!kUseBakerReadBarrier);
1114 #endif
1115   if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1116     AssertToSpaceInvariantObjectVisitor visitor(this);
1117     visitor(to_ref);
1118   }
1119 }
1120 
SwitchToSharedMarkStackMode()1121 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1122   Thread* self = Thread::Current();
1123   CHECK(thread_running_gc_ != nullptr);
1124   CHECK_EQ(self, thread_running_gc_);
1125   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1126   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1127   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1128            static_cast<uint32_t>(kMarkStackModeThreadLocal));
1129   mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1130   CHECK(weak_ref_access_enabled_.LoadRelaxed());
1131   weak_ref_access_enabled_.StoreRelaxed(false);
1132   QuasiAtomic::ThreadFenceForConstructor();
1133   // Process the thread local mark stacks one last time after switching to the shared mark stack
1134   // mode and disable weak ref accesses.
1135   ProcessThreadLocalMarkStacks(true);
1136   if (kVerboseMode) {
1137     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1138   }
1139 }
1140 
SwitchToGcExclusiveMarkStackMode()1141 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1142   Thread* self = Thread::Current();
1143   CHECK(thread_running_gc_ != nullptr);
1144   CHECK_EQ(self, thread_running_gc_);
1145   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1146   MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1147   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1148            static_cast<uint32_t>(kMarkStackModeShared));
1149   mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1150   QuasiAtomic::ThreadFenceForConstructor();
1151   if (kVerboseMode) {
1152     LOG(INFO) << "Switched to GC exclusive mark stack mode";
1153   }
1154 }
1155 
CheckEmptyMarkStack()1156 void ConcurrentCopying::CheckEmptyMarkStack() {
1157   Thread* self = Thread::Current();
1158   CHECK(thread_running_gc_ != nullptr);
1159   CHECK_EQ(self, thread_running_gc_);
1160   CHECK(self->GetThreadLocalMarkStack() == nullptr);
1161   MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1162   if (mark_stack_mode == kMarkStackModeThreadLocal) {
1163     // Thread-local mark stack mode.
1164     RevokeThreadLocalMarkStacks(false);
1165     MutexLock mu(Thread::Current(), mark_stack_lock_);
1166     if (!revoked_mark_stacks_.empty()) {
1167       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1168         while (!mark_stack->IsEmpty()) {
1169           mirror::Object* obj = mark_stack->PopBack();
1170           if (kUseBakerReadBarrier) {
1171             mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1172             LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1173                       << " is_marked=" << IsMarked(obj);
1174           } else {
1175             LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1176                       << " is_marked=" << IsMarked(obj);
1177           }
1178         }
1179       }
1180       LOG(FATAL) << "mark stack is not empty";
1181     }
1182   } else {
1183     // Shared, GC-exclusive, or off.
1184     MutexLock mu(Thread::Current(), mark_stack_lock_);
1185     CHECK(gc_mark_stack_->IsEmpty());
1186     CHECK(revoked_mark_stacks_.empty());
1187   }
1188 }
1189 
SweepSystemWeaks(Thread * self)1190 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1191   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1192   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1193   Runtime::Current()->SweepSystemWeaks(this);
1194 }
1195 
Sweep(bool swap_bitmaps)1196 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1197   {
1198     TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1199     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1200     if (kEnableFromSpaceAccountingCheck) {
1201       CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1202     }
1203     heap_->MarkAllocStackAsLive(live_stack);
1204     live_stack->Reset();
1205   }
1206   CheckEmptyMarkStack();
1207   TimingLogger::ScopedTiming split("Sweep", GetTimings());
1208   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1209     if (space->IsContinuousMemMapAllocSpace()) {
1210       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1211       if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
1212         continue;
1213       }
1214       TimingLogger::ScopedTiming split2(
1215           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1216       RecordFree(alloc_space->Sweep(swap_bitmaps));
1217     }
1218   }
1219   SweepLargeObjects(swap_bitmaps);
1220 }
1221 
SweepLargeObjects(bool swap_bitmaps)1222 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1223   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1224   RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1225 }
1226 
1227 class ConcurrentCopying::ClearBlackPtrsVisitor {
1228  public:
ClearBlackPtrsVisitor(ConcurrentCopying * cc)1229   explicit ClearBlackPtrsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
operator ()(mirror::Object * obj) const1230   void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1231       SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1232     DCHECK(obj != nullptr);
1233     DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1234     DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1235     obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1236     DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1237   }
1238 
1239  private:
1240   ConcurrentCopying* const collector_;
1241 };
1242 
1243 // Clear the black ptrs in non-moving objects back to white.
ClearBlackPtrs()1244 void ConcurrentCopying::ClearBlackPtrs() {
1245   CHECK(kUseBakerReadBarrier);
1246   TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1247   ClearBlackPtrsVisitor visitor(this);
1248   for (auto& space : heap_->GetContinuousSpaces()) {
1249     if (space == region_space_) {
1250       continue;
1251     }
1252     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1253     if (kVerboseMode) {
1254       LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1255     }
1256     mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1257                                   reinterpret_cast<uintptr_t>(space->Limit()),
1258                                   visitor);
1259   }
1260   space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1261   large_object_space->GetMarkBitmap()->VisitMarkedRange(
1262       reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1263       reinterpret_cast<uintptr_t>(large_object_space->End()),
1264       visitor);
1265   // Objects on the allocation stack?
1266   if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1267     size_t count = GetAllocationStack()->Size();
1268     auto* it = GetAllocationStack()->Begin();
1269     auto* end = GetAllocationStack()->End();
1270     for (size_t i = 0; i < count; ++i, ++it) {
1271       CHECK_LT(it, end);
1272       mirror::Object* obj = it->AsMirrorPtr();
1273       if (obj != nullptr) {
1274         // Must have been cleared above.
1275         CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1276       }
1277     }
1278   }
1279 }
1280 
ReclaimPhase()1281 void ConcurrentCopying::ReclaimPhase() {
1282   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1283   if (kVerboseMode) {
1284     LOG(INFO) << "GC ReclaimPhase";
1285   }
1286   Thread* self = Thread::Current();
1287 
1288   {
1289     // Double-check that the mark stack is empty.
1290     // Note: need to set this after VerifyNoFromSpaceRef().
1291     is_asserting_to_space_invariant_ = false;
1292     QuasiAtomic::ThreadFenceForConstructor();
1293     if (kVerboseMode) {
1294       LOG(INFO) << "Issue an empty check point. ";
1295     }
1296     IssueEmptyCheckpoint();
1297     // Disable the check.
1298     is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1299     CheckEmptyMarkStack();
1300   }
1301 
1302   {
1303     // Record freed objects.
1304     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1305     // Don't include thread-locals that are in the to-space.
1306     uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1307     uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1308     uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1309     uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1310     uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1311     uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1312     if (kEnableFromSpaceAccountingCheck) {
1313       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1314       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1315     }
1316     CHECK_LE(to_objects, from_objects);
1317     CHECK_LE(to_bytes, from_bytes);
1318     int64_t freed_bytes = from_bytes - to_bytes;
1319     int64_t freed_objects = from_objects - to_objects;
1320     if (kVerboseMode) {
1321       LOG(INFO) << "RecordFree:"
1322                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1323                 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1324                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1325                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1326                 << " from_space size=" << region_space_->FromSpaceSize()
1327                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1328                 << " to_space size=" << region_space_->ToSpaceSize();
1329       LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1330     }
1331     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1332     if (kVerboseMode) {
1333       LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1334     }
1335   }
1336 
1337   {
1338     TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1339     ComputeUnevacFromSpaceLiveRatio();
1340   }
1341 
1342   {
1343     TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1344     region_space_->ClearFromSpace();
1345   }
1346 
1347   {
1348     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1349     if (kUseBakerReadBarrier) {
1350       ClearBlackPtrs();
1351     }
1352     Sweep(false);
1353     SwapBitmaps();
1354     heap_->UnBindBitmaps();
1355 
1356     // Remove bitmaps for the immune spaces.
1357     while (!cc_bitmaps_.empty()) {
1358       accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1359       cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1360       delete cc_bitmap;
1361       cc_bitmaps_.pop_back();
1362     }
1363     region_space_bitmap_ = nullptr;
1364   }
1365 
1366   CheckEmptyMarkStack();
1367 
1368   if (kVerboseMode) {
1369     LOG(INFO) << "GC end of ReclaimPhase";
1370   }
1371 }
1372 
1373 class ConcurrentCopying::ComputeUnevacFromSpaceLiveRatioVisitor {
1374  public:
ComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying * cc)1375   explicit ComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1376       : collector_(cc) {}
operator ()(mirror::Object * ref) const1377   void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1378       SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1379     DCHECK(ref != nullptr);
1380     DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1381     DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1382     if (kUseBakerReadBarrier) {
1383       DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1384       // Clear the black ptr.
1385       ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1386       DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1387     }
1388     size_t obj_size = ref->SizeOf();
1389     size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1390     collector_->region_space_->AddLiveBytes(ref, alloc_size);
1391   }
1392 
1393  private:
1394   ConcurrentCopying* const collector_;
1395 };
1396 
1397 // Compute how much live objects are left in regions.
ComputeUnevacFromSpaceLiveRatio()1398 void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1399   region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1400   ComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1401   region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1402                                          reinterpret_cast<uintptr_t>(region_space_->Limit()),
1403                                          visitor);
1404 }
1405 
1406 // Assert the to-space invariant.
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)1407 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1408                                                mirror::Object* ref) {
1409   CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1410   if (is_asserting_to_space_invariant_) {
1411     if (region_space_->IsInToSpace(ref)) {
1412       // OK.
1413       return;
1414     } else if (region_space_->IsInUnevacFromSpace(ref)) {
1415       CHECK(region_space_bitmap_->Test(ref)) << ref;
1416     } else if (region_space_->IsInFromSpace(ref)) {
1417       // Not OK. Do extra logging.
1418       if (obj != nullptr) {
1419         LogFromSpaceRefHolder(obj, offset);
1420       }
1421       ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1422       CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1423     } else {
1424       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1425     }
1426   }
1427 }
1428 
1429 class RootPrinter {
1430  public:
RootPrinter()1431   RootPrinter() { }
1432 
1433   template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)1434   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1435       SHARED_REQUIRES(Locks::mutator_lock_) {
1436     if (!root->IsNull()) {
1437       VisitRoot(root);
1438     }
1439   }
1440 
1441   template <class MirrorType>
VisitRoot(mirror::Object ** root)1442   void VisitRoot(mirror::Object** root)
1443       SHARED_REQUIRES(Locks::mutator_lock_) {
1444     LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1445   }
1446 
1447   template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)1448   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1449       SHARED_REQUIRES(Locks::mutator_lock_) {
1450     LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1451   }
1452 };
1453 
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)1454 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1455                                                mirror::Object* ref) {
1456   CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1457   if (is_asserting_to_space_invariant_) {
1458     if (region_space_->IsInToSpace(ref)) {
1459       // OK.
1460       return;
1461     } else if (region_space_->IsInUnevacFromSpace(ref)) {
1462       CHECK(region_space_bitmap_->Test(ref)) << ref;
1463     } else if (region_space_->IsInFromSpace(ref)) {
1464       // Not OK. Do extra logging.
1465       if (gc_root_source == nullptr) {
1466         // No info.
1467       } else if (gc_root_source->HasArtField()) {
1468         ArtField* field = gc_root_source->GetArtField();
1469         LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1470         RootPrinter root_printer;
1471         field->VisitRoots(root_printer);
1472       } else if (gc_root_source->HasArtMethod()) {
1473         ArtMethod* method = gc_root_source->GetArtMethod();
1474         LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1475         RootPrinter root_printer;
1476         method->VisitRoots(root_printer, sizeof(void*));
1477       }
1478       ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1479       region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1480       PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1481       MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1482       CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1483     } else {
1484       AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1485     }
1486   }
1487 }
1488 
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)1489 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1490   if (kUseBakerReadBarrier) {
1491     LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1492               << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1493   } else {
1494     LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1495   }
1496   if (region_space_->IsInFromSpace(obj)) {
1497     LOG(INFO) << "holder is in the from-space.";
1498   } else if (region_space_->IsInToSpace(obj)) {
1499     LOG(INFO) << "holder is in the to-space.";
1500   } else if (region_space_->IsInUnevacFromSpace(obj)) {
1501     LOG(INFO) << "holder is in the unevac from-space.";
1502     if (region_space_bitmap_->Test(obj)) {
1503       LOG(INFO) << "holder is marked in the region space bitmap.";
1504     } else {
1505       LOG(INFO) << "holder is not marked in the region space bitmap.";
1506     }
1507   } else {
1508     // In a non-moving space.
1509     if (immune_spaces_.ContainsObject(obj)) {
1510       LOG(INFO) << "holder is in an immune image or the zygote space.";
1511       accounting::ContinuousSpaceBitmap* cc_bitmap =
1512           cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1513       CHECK(cc_bitmap != nullptr)
1514           << "An immune space object must have a bitmap.";
1515       if (cc_bitmap->Test(obj)) {
1516         LOG(INFO) << "holder is marked in the bit map.";
1517       } else {
1518         LOG(INFO) << "holder is NOT marked in the bit map.";
1519       }
1520     } else {
1521       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
1522       accounting::ContinuousSpaceBitmap* mark_bitmap =
1523           heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1524       accounting::LargeObjectBitmap* los_bitmap =
1525           heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1526       CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1527       bool is_los = mark_bitmap == nullptr;
1528       if (!is_los && mark_bitmap->Test(obj)) {
1529         LOG(INFO) << "holder is marked in the mark bit map.";
1530       } else if (is_los && los_bitmap->Test(obj)) {
1531         LOG(INFO) << "holder is marked in the los bit map.";
1532       } else {
1533         // If ref is on the allocation stack, then it is considered
1534         // mark/alive (but not necessarily on the live stack.)
1535         if (IsOnAllocStack(obj)) {
1536           LOG(INFO) << "holder is on the alloc stack.";
1537         } else {
1538           LOG(INFO) << "holder is not marked or on the alloc stack.";
1539         }
1540       }
1541     }
1542   }
1543   LOG(INFO) << "offset=" << offset.SizeValue();
1544 }
1545 
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)1546 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1547                                                                mirror::Object* ref) {
1548   // In a non-moving spaces. Check that the ref is marked.
1549   if (immune_spaces_.ContainsObject(ref)) {
1550     accounting::ContinuousSpaceBitmap* cc_bitmap =
1551         cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1552     CHECK(cc_bitmap != nullptr)
1553         << "An immune space ref must have a bitmap. " << ref;
1554     if (kUseBakerReadBarrier) {
1555       CHECK(cc_bitmap->Test(ref))
1556           << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1557           << obj->GetReadBarrierPointer() << " ref=" << ref;
1558     } else {
1559       CHECK(cc_bitmap->Test(ref))
1560           << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1561     }
1562   } else {
1563     accounting::ContinuousSpaceBitmap* mark_bitmap =
1564         heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1565     accounting::LargeObjectBitmap* los_bitmap =
1566         heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1567     CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1568     bool is_los = mark_bitmap == nullptr;
1569     if ((!is_los && mark_bitmap->Test(ref)) ||
1570         (is_los && los_bitmap->Test(ref))) {
1571       // OK.
1572     } else {
1573       // If ref is on the allocation stack, then it may not be
1574       // marked live, but considered marked/alive (but not
1575       // necessarily on the live stack).
1576       CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1577                                  << "obj=" << obj << " ref=" << ref;
1578     }
1579   }
1580 }
1581 
1582 // Used to scan ref fields of an object.
1583 class ConcurrentCopying::RefFieldsVisitor {
1584  public:
RefFieldsVisitor(ConcurrentCopying * collector)1585   explicit RefFieldsVisitor(ConcurrentCopying* collector)
1586       : collector_(collector) {}
1587 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1588   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1589       const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1590       SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1591     collector_->Process(obj, offset);
1592   }
1593 
operator ()(mirror::Class * klass,mirror::Reference * ref) const1594   void operator()(mirror::Class* klass, mirror::Reference* ref) const
1595       SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1596     CHECK(klass->IsTypeOfReferenceClass());
1597     collector_->DelayReferenceReferent(klass, ref);
1598   }
1599 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1600   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1601       ALWAYS_INLINE
1602       SHARED_REQUIRES(Locks::mutator_lock_) {
1603     if (!root->IsNull()) {
1604       VisitRoot(root);
1605     }
1606   }
1607 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1608   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1609       ALWAYS_INLINE
1610       SHARED_REQUIRES(Locks::mutator_lock_) {
1611     collector_->MarkRoot(root);
1612   }
1613 
1614  private:
1615   ConcurrentCopying* const collector_;
1616 };
1617 
1618 // Scan ref fields of an object.
Scan(mirror::Object * to_ref)1619 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1620   DCHECK(!region_space_->IsInFromSpace(to_ref));
1621   RefFieldsVisitor visitor(this);
1622   // Disable the read barrier for a performance reason.
1623   to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1624       visitor, visitor);
1625 }
1626 
1627 // Process a field.
Process(mirror::Object * obj,MemberOffset offset)1628 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1629   mirror::Object* ref = obj->GetFieldObject<
1630       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1631   mirror::Object* to_ref = Mark(ref);
1632   if (to_ref == ref) {
1633     return;
1634   }
1635   // This may fail if the mutator writes to the field at the same time. But it's ok.
1636   mirror::Object* expected_ref = ref;
1637   mirror::Object* new_ref = to_ref;
1638   do {
1639     if (expected_ref !=
1640         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1641       // It was updated by the mutator.
1642       break;
1643     }
1644   } while (!obj->CasFieldWeakRelaxedObjectWithoutWriteBarrier<
1645       false, false, kVerifyNone>(offset, expected_ref, new_ref));
1646 }
1647 
1648 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1649 inline void ConcurrentCopying::VisitRoots(
1650     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1651   for (size_t i = 0; i < count; ++i) {
1652     mirror::Object** root = roots[i];
1653     mirror::Object* ref = *root;
1654     mirror::Object* to_ref = Mark(ref);
1655     if (to_ref == ref) {
1656       continue;
1657     }
1658     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1659     mirror::Object* expected_ref = ref;
1660     mirror::Object* new_ref = to_ref;
1661     do {
1662       if (expected_ref != addr->LoadRelaxed()) {
1663         // It was updated by the mutator.
1664         break;
1665       }
1666     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1667   }
1668 }
1669 
MarkRoot(mirror::CompressedReference<mirror::Object> * root)1670 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1671   DCHECK(!root->IsNull());
1672   mirror::Object* const ref = root->AsMirrorPtr();
1673   mirror::Object* to_ref = Mark(ref);
1674   if (to_ref != ref) {
1675     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1676     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1677     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1678     // If the cas fails, then it was updated by the mutator.
1679     do {
1680       if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1681         // It was updated by the mutator.
1682         break;
1683       }
1684     } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1685   }
1686 }
1687 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1688 inline void ConcurrentCopying::VisitRoots(
1689     mirror::CompressedReference<mirror::Object>** roots, size_t count,
1690     const RootInfo& info ATTRIBUTE_UNUSED) {
1691   for (size_t i = 0; i < count; ++i) {
1692     mirror::CompressedReference<mirror::Object>* const root = roots[i];
1693     if (!root->IsNull()) {
1694       MarkRoot(root);
1695     }
1696   }
1697 }
1698 
1699 // Fill the given memory block with a dummy object. Used to fill in a
1700 // copy of objects that was lost in race.
FillWithDummyObject(mirror::Object * dummy_obj,size_t byte_size)1701 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1702   CHECK_ALIGNED(byte_size, kObjectAlignment);
1703   memset(dummy_obj, 0, byte_size);
1704   mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1705   CHECK(int_array_class != nullptr);
1706   AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1707   size_t component_size = int_array_class->GetComponentSize();
1708   CHECK_EQ(component_size, sizeof(int32_t));
1709   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1710   if (data_offset > byte_size) {
1711     // An int array is too big. Use java.lang.Object.
1712     mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1713     AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1714     CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1715     dummy_obj->SetClass(java_lang_Object);
1716     CHECK_EQ(byte_size, dummy_obj->SizeOf());
1717   } else {
1718     // Use an int array.
1719     dummy_obj->SetClass(int_array_class);
1720     CHECK(dummy_obj->IsArrayInstance());
1721     int32_t length = (byte_size - data_offset) / component_size;
1722     dummy_obj->AsArray()->SetLength(length);
1723     CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1724         << "byte_size=" << byte_size << " length=" << length
1725         << " component_size=" << component_size << " data_offset=" << data_offset;
1726     CHECK_EQ(byte_size, dummy_obj->SizeOf())
1727         << "byte_size=" << byte_size << " length=" << length
1728         << " component_size=" << component_size << " data_offset=" << data_offset;
1729   }
1730 }
1731 
1732 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(size_t alloc_size)1733 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1734   // Try to reuse the blocks that were unused due to CAS failures.
1735   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1736   Thread* self = Thread::Current();
1737   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1738   MutexLock mu(self, skipped_blocks_lock_);
1739   auto it = skipped_blocks_map_.lower_bound(alloc_size);
1740   if (it == skipped_blocks_map_.end()) {
1741     // Not found.
1742     return nullptr;
1743   }
1744   {
1745     size_t byte_size = it->first;
1746     CHECK_GE(byte_size, alloc_size);
1747     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1748       // If remainder would be too small for a dummy object, retry with a larger request size.
1749       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1750       if (it == skipped_blocks_map_.end()) {
1751         // Not found.
1752         return nullptr;
1753       }
1754       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1755       CHECK_GE(it->first - alloc_size, min_object_size)
1756           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1757     }
1758   }
1759   // Found a block.
1760   CHECK(it != skipped_blocks_map_.end());
1761   size_t byte_size = it->first;
1762   uint8_t* addr = it->second;
1763   CHECK_GE(byte_size, alloc_size);
1764   CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1765   CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1766   if (kVerboseMode) {
1767     LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1768   }
1769   skipped_blocks_map_.erase(it);
1770   memset(addr, 0, byte_size);
1771   if (byte_size > alloc_size) {
1772     // Return the remainder to the map.
1773     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1774     CHECK_GE(byte_size - alloc_size, min_object_size);
1775     FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1776                         byte_size - alloc_size);
1777     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1778     skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1779   }
1780   return reinterpret_cast<mirror::Object*>(addr);
1781 }
1782 
Copy(mirror::Object * from_ref)1783 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1784   DCHECK(region_space_->IsInFromSpace(from_ref));
1785   // No read barrier to avoid nested RB that might violate the to-space
1786   // invariant. Note that from_ref is a from space ref so the SizeOf()
1787   // call will access the from-space meta objects, but it's ok and necessary.
1788   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1789   size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1790   size_t region_space_bytes_allocated = 0U;
1791   size_t non_moving_space_bytes_allocated = 0U;
1792   size_t bytes_allocated = 0U;
1793   size_t dummy;
1794   mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1795       region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1796   bytes_allocated = region_space_bytes_allocated;
1797   if (to_ref != nullptr) {
1798     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1799   }
1800   bool fall_back_to_non_moving = false;
1801   if (UNLIKELY(to_ref == nullptr)) {
1802     // Failed to allocate in the region space. Try the skipped blocks.
1803     to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1804     if (to_ref != nullptr) {
1805       // Succeeded to allocate in a skipped block.
1806       if (heap_->use_tlab_) {
1807         // This is necessary for the tlab case as it's not accounted in the space.
1808         region_space_->RecordAlloc(to_ref);
1809       }
1810       bytes_allocated = region_space_alloc_size;
1811     } else {
1812       // Fall back to the non-moving space.
1813       fall_back_to_non_moving = true;
1814       if (kVerboseMode) {
1815         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1816                   << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1817                   << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1818       }
1819       fall_back_to_non_moving = true;
1820       to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1821                                                &non_moving_space_bytes_allocated, nullptr, &dummy);
1822       CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1823       bytes_allocated = non_moving_space_bytes_allocated;
1824       // Mark it in the mark bitmap.
1825       accounting::ContinuousSpaceBitmap* mark_bitmap =
1826           heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1827       CHECK(mark_bitmap != nullptr);
1828       CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1829     }
1830   }
1831   DCHECK(to_ref != nullptr);
1832 
1833   // Attempt to install the forward pointer. This is in a loop as the
1834   // lock word atomic write can fail.
1835   while (true) {
1836     // Copy the object. TODO: copy only the lockword in the second iteration and on?
1837     memcpy(to_ref, from_ref, obj_size);
1838 
1839     LockWord old_lock_word = to_ref->GetLockWord(false);
1840 
1841     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1842       // Lost the race. Another thread (either GC or mutator) stored
1843       // the forwarding pointer first. Make the lost copy (to_ref)
1844       // look like a valid but dead (dummy) object and keep it for
1845       // future reuse.
1846       FillWithDummyObject(to_ref, bytes_allocated);
1847       if (!fall_back_to_non_moving) {
1848         DCHECK(region_space_->IsInToSpace(to_ref));
1849         if (bytes_allocated > space::RegionSpace::kRegionSize) {
1850           // Free the large alloc.
1851           region_space_->FreeLarge(to_ref, bytes_allocated);
1852         } else {
1853           // Record the lost copy for later reuse.
1854           heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1855           to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1856           to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1857           MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1858           skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1859                                                     reinterpret_cast<uint8_t*>(to_ref)));
1860         }
1861       } else {
1862         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1863         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1864         // Free the non-moving-space chunk.
1865         accounting::ContinuousSpaceBitmap* mark_bitmap =
1866             heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1867         CHECK(mark_bitmap != nullptr);
1868         CHECK(mark_bitmap->Clear(to_ref));
1869         heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1870       }
1871 
1872       // Get the winner's forward ptr.
1873       mirror::Object* lost_fwd_ptr = to_ref;
1874       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1875       CHECK(to_ref != nullptr);
1876       CHECK_NE(to_ref, lost_fwd_ptr);
1877       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1878       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1879       return to_ref;
1880     }
1881 
1882     // Set the gray ptr.
1883     if (kUseBakerReadBarrier) {
1884       to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1885     }
1886 
1887     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1888 
1889     // Try to atomically write the fwd ptr.
1890     bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1891     if (LIKELY(success)) {
1892       // The CAS succeeded.
1893       objects_moved_.FetchAndAddSequentiallyConsistent(1);
1894       bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1895       if (LIKELY(!fall_back_to_non_moving)) {
1896         DCHECK(region_space_->IsInToSpace(to_ref));
1897       } else {
1898         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1899         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1900       }
1901       if (kUseBakerReadBarrier) {
1902         DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1903       }
1904       DCHECK(GetFwdPtr(from_ref) == to_ref);
1905       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1906       PushOntoMarkStack(to_ref);
1907       return to_ref;
1908     } else {
1909       // The CAS failed. It may have lost the race or may have failed
1910       // due to monitor/hashcode ops. Either way, retry.
1911     }
1912   }
1913 }
1914 
IsMarked(mirror::Object * from_ref)1915 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1916   DCHECK(from_ref != nullptr);
1917   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1918   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1919     // It's already marked.
1920     return from_ref;
1921   }
1922   mirror::Object* to_ref;
1923   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1924     to_ref = GetFwdPtr(from_ref);
1925     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1926            heap_->non_moving_space_->HasAddress(to_ref))
1927         << "from_ref=" << from_ref << " to_ref=" << to_ref;
1928   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1929     if (region_space_bitmap_->Test(from_ref)) {
1930       to_ref = from_ref;
1931     } else {
1932       to_ref = nullptr;
1933     }
1934   } else {
1935     // from_ref is in a non-moving space.
1936     if (immune_spaces_.ContainsObject(from_ref)) {
1937       accounting::ContinuousSpaceBitmap* cc_bitmap =
1938           cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1939       DCHECK(cc_bitmap != nullptr)
1940           << "An immune space object must have a bitmap";
1941       if (kIsDebugBuild) {
1942         DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1943             << "Immune space object must be already marked";
1944       }
1945       if (cc_bitmap->Test(from_ref)) {
1946         // Already marked.
1947         to_ref = from_ref;
1948       } else {
1949         // Newly marked.
1950         to_ref = nullptr;
1951       }
1952     } else {
1953       // Non-immune non-moving space. Use the mark bitmap.
1954       accounting::ContinuousSpaceBitmap* mark_bitmap =
1955           heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1956       accounting::LargeObjectBitmap* los_bitmap =
1957           heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1958       CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1959       bool is_los = mark_bitmap == nullptr;
1960       if (!is_los && mark_bitmap->Test(from_ref)) {
1961         // Already marked.
1962         to_ref = from_ref;
1963       } else if (is_los && los_bitmap->Test(from_ref)) {
1964         // Already marked in LOS.
1965         to_ref = from_ref;
1966       } else {
1967         // Not marked.
1968         if (IsOnAllocStack(from_ref)) {
1969           // If on the allocation stack, it's considered marked.
1970           to_ref = from_ref;
1971         } else {
1972           // Not marked.
1973           to_ref = nullptr;
1974         }
1975       }
1976     }
1977   }
1978   return to_ref;
1979 }
1980 
IsOnAllocStack(mirror::Object * ref)1981 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1982   QuasiAtomic::ThreadFenceAcquire();
1983   accounting::ObjectStack* alloc_stack = GetAllocationStack();
1984   return alloc_stack->Contains(ref);
1985 }
1986 
MarkNonMoving(mirror::Object * ref)1987 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref) {
1988   // ref is in a non-moving space (from_ref == to_ref).
1989   DCHECK(!region_space_->HasAddress(ref)) << ref;
1990   if (immune_spaces_.ContainsObject(ref)) {
1991     accounting::ContinuousSpaceBitmap* cc_bitmap =
1992         cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1993     DCHECK(cc_bitmap != nullptr)
1994         << "An immune space object must have a bitmap";
1995     if (kIsDebugBuild) {
1996       DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref))
1997           << "Immune space object must be already marked";
1998     }
1999     // This may or may not succeed, which is ok.
2000     if (kUseBakerReadBarrier) {
2001       ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2002     }
2003     if (cc_bitmap->AtomicTestAndSet(ref)) {
2004       // Already marked.
2005     } else {
2006       // Newly marked.
2007       if (kUseBakerReadBarrier) {
2008         DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2009       }
2010       PushOntoMarkStack(ref);
2011     }
2012   } else {
2013     // Use the mark bitmap.
2014     accounting::ContinuousSpaceBitmap* mark_bitmap =
2015         heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2016     accounting::LargeObjectBitmap* los_bitmap =
2017         heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2018     CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2019     bool is_los = mark_bitmap == nullptr;
2020     if (!is_los && mark_bitmap->Test(ref)) {
2021       // Already marked.
2022       if (kUseBakerReadBarrier) {
2023         DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2024                ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2025       }
2026     } else if (is_los && los_bitmap->Test(ref)) {
2027       // Already marked in LOS.
2028       if (kUseBakerReadBarrier) {
2029         DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2030                ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2031       }
2032     } else {
2033       // Not marked.
2034       if (IsOnAllocStack(ref)) {
2035         // If it's on the allocation stack, it's considered marked. Keep it white.
2036         // Objects on the allocation stack need not be marked.
2037         if (!is_los) {
2038           DCHECK(!mark_bitmap->Test(ref));
2039         } else {
2040           DCHECK(!los_bitmap->Test(ref));
2041         }
2042         if (kUseBakerReadBarrier) {
2043           DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr());
2044         }
2045       } else {
2046         // Not marked or on the allocation stack. Try to mark it.
2047         // This may or may not succeed, which is ok.
2048         if (kUseBakerReadBarrier) {
2049           ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2050         }
2051         if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2052           // Already marked.
2053         } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2054           // Already marked in LOS.
2055         } else {
2056           // Newly marked.
2057           if (kUseBakerReadBarrier) {
2058             DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2059           }
2060           PushOntoMarkStack(ref);
2061         }
2062       }
2063     }
2064   }
2065   return ref;
2066 }
2067 
FinishPhase()2068 void ConcurrentCopying::FinishPhase() {
2069   Thread* const self = Thread::Current();
2070   {
2071     MutexLock mu(self, mark_stack_lock_);
2072     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2073   }
2074   region_space_ = nullptr;
2075   {
2076     MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2077     skipped_blocks_map_.clear();
2078   }
2079   ReaderMutexLock mu(self, *Locks::mutator_lock_);
2080   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2081   heap_->ClearMarkedObjects();
2082 }
2083 
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * field)2084 bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2085   mirror::Object* from_ref = field->AsMirrorPtr();
2086   mirror::Object* to_ref = IsMarked(from_ref);
2087   if (to_ref == nullptr) {
2088     return false;
2089   }
2090   if (from_ref != to_ref) {
2091     QuasiAtomic::ThreadFenceRelease();
2092     field->Assign(to_ref);
2093     QuasiAtomic::ThreadFenceSequentiallyConsistent();
2094   }
2095   return true;
2096 }
2097 
MarkObject(mirror::Object * from_ref)2098 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2099   return Mark(from_ref);
2100 }
2101 
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)2102 void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2103   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2104 }
2105 
ProcessReferences(Thread * self)2106 void ConcurrentCopying::ProcessReferences(Thread* self) {
2107   TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2108   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2109   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2110   GetHeap()->GetReferenceProcessor()->ProcessReferences(
2111       true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2112 }
2113 
RevokeAllThreadLocalBuffers()2114 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2115   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2116   region_space_->RevokeAllThreadLocalBuffers();
2117 }
2118 
2119 }  // namespace collector
2120 }  // namespace gc
2121 }  // namespace art
2122