1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "JankTracker.h"
17
18 #include "Properties.h"
19 #include "utils/TimeUtils.h"
20
21 #include <algorithm>
22 #include <cutils/ashmem.h>
23 #include <cutils/log.h>
24 #include <cstdio>
25 #include <errno.h>
26 #include <inttypes.h>
27 #include <limits>
28 #include <cmath>
29 #include <sys/mman.h>
30
31 namespace android {
32 namespace uirenderer {
33
34 static const char* JANK_TYPE_NAMES[] = {
35 "Missed Vsync",
36 "High input latency",
37 "Slow UI thread",
38 "Slow bitmap uploads",
39 "Slow issue draw commands",
40 };
41
42 struct Comparison {
43 FrameInfoIndex start;
44 FrameInfoIndex end;
45 };
46
47 static const Comparison COMPARISONS[] = {
48 {FrameInfoIndex::IntendedVsync, FrameInfoIndex::Vsync},
49 {FrameInfoIndex::OldestInputEvent, FrameInfoIndex::Vsync},
50 {FrameInfoIndex::Vsync, FrameInfoIndex::SyncStart},
51 {FrameInfoIndex::SyncStart, FrameInfoIndex::IssueDrawCommandsStart},
52 {FrameInfoIndex::IssueDrawCommandsStart, FrameInfoIndex::FrameCompleted},
53 };
54
55 // If the event exceeds 10 seconds throw it away, this isn't a jank event
56 // it's an ANR and will be handled as such
57 static const int64_t IGNORE_EXCEEDING = seconds_to_nanoseconds(10);
58
59 /*
60 * We don't track direct-drawing via Surface:lockHardwareCanvas()
61 * for now
62 *
63 * TODO: kSurfaceCanvas can negatively impact other drawing by using up
64 * time on the RenderThread, figure out how to attribute that as a jank-causer
65 */
66 static const int64_t EXEMPT_FRAMES_FLAGS = FrameInfoFlags::SurfaceCanvas;
67
68 // The bucketing algorithm controls so to speak
69 // If a frame is <= to this it goes in bucket 0
70 static const uint32_t kBucketMinThreshold = 5;
71 // If a frame is > this, start counting in increments of 2ms
72 static const uint32_t kBucket2msIntervals = 32;
73 // If a frame is > this, start counting in increments of 4ms
74 static const uint32_t kBucket4msIntervals = 48;
75
76 // For testing purposes to try and eliminate test infra overhead we will
77 // consider any unknown delay of frame start as part of the test infrastructure
78 // and filter it out of the frame profile data
79 static FrameInfoIndex sFrameStart = FrameInfoIndex::IntendedVsync;
80
81 // The interval of the slow frame histogram
82 static const uint32_t kSlowFrameBucketIntervalMs = 50;
83 // The start point of the slow frame bucket in ms
84 static const uint32_t kSlowFrameBucketStartMs = 150;
85
86 // This will be called every frame, performance sensitive
87 // Uses bit twiddling to avoid branching while achieving the packing desired
frameCountIndexForFrameTime(nsecs_t frameTime)88 static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) {
89 uint32_t index = static_cast<uint32_t>(ns2ms(frameTime));
90 // If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result
91 // of negating 1 (twos compliment, yaay) else mask will be 0
92 uint32_t mask = -(index > kBucketMinThreshold);
93 // If index > threshold, this will essentially perform:
94 // amountAboveThreshold = index - threshold;
95 // index = threshold + (amountAboveThreshold / 2)
96 // However if index is <= this will do nothing. It will underflow, do
97 // a right shift by 0 (no-op), then overflow back to the original value
98 index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals))
99 + kBucket4msIntervals;
100 index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals))
101 + kBucket2msIntervals;
102 // If index was < minThreshold at the start of all this it's going to
103 // be a pretty garbage value right now. However, mask is 0 so we'll end
104 // up with the desired result of 0.
105 index = (index - kBucketMinThreshold) & mask;
106 return index;
107 }
108
109 // Only called when dumping stats, less performance sensitive
frameTimeForFrameCountIndex(uint32_t index)110 static uint32_t frameTimeForFrameCountIndex(uint32_t index) {
111 index = index + kBucketMinThreshold;
112 if (index > kBucket2msIntervals) {
113 index += (index - kBucket2msIntervals);
114 }
115 if (index > kBucket4msIntervals) {
116 // This works because it was already doubled by the above if
117 // 1 is added to shift slightly more towards the middle of the bucket
118 index += (index - kBucket4msIntervals) + 1;
119 }
120 return index;
121 }
122
JankTracker(const DisplayInfo & displayInfo)123 JankTracker::JankTracker(const DisplayInfo& displayInfo) {
124 // By default this will use malloc memory. It may be moved later to ashmem
125 // if there is shared space for it and a request comes in to do that.
126 mData = new ProfileData;
127 reset();
128 nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1_s / displayInfo.fps);
129 #if USE_HWC2
130 nsecs_t sfOffset = frameIntervalNanos - (displayInfo.presentationDeadline - 1_ms);
131 nsecs_t offsetDelta = sfOffset - displayInfo.appVsyncOffset;
132 // There are two different offset cases. If the offsetDelta is positive
133 // and small, then the intention is to give apps extra time by leveraging
134 // pipelining between the UI & RT threads. If the offsetDelta is large or
135 // negative, the intention is to subtract time from the total duration
136 // in which case we can't afford to wait for dequeueBuffer blockage.
137 if (offsetDelta <= 4_ms && offsetDelta >= 0) {
138 // SF will begin composition at VSYNC-app + offsetDelta. If we are triple
139 // buffered, this is the expected time at which dequeueBuffer will
140 // return due to the staggering of VSYNC-app & VSYNC-sf.
141 mDequeueTimeForgiveness = offsetDelta + 4_ms;
142 }
143 #endif
144 setFrameInterval(frameIntervalNanos);
145 }
146
~JankTracker()147 JankTracker::~JankTracker() {
148 freeData();
149 }
150
freeData()151 void JankTracker::freeData() {
152 if (mIsMapped) {
153 munmap(mData, sizeof(ProfileData));
154 } else {
155 delete mData;
156 }
157 mIsMapped = false;
158 mData = nullptr;
159 }
160
switchStorageToAshmem(int ashmemfd)161 void JankTracker::switchStorageToAshmem(int ashmemfd) {
162 int regionSize = ashmem_get_size_region(ashmemfd);
163 if (regionSize < static_cast<int>(sizeof(ProfileData))) {
164 ALOGW("Ashmem region is too small! Received %d, required %u",
165 regionSize, static_cast<unsigned int>(sizeof(ProfileData)));
166 return;
167 }
168 ProfileData* newData = reinterpret_cast<ProfileData*>(
169 mmap(NULL, sizeof(ProfileData), PROT_READ | PROT_WRITE,
170 MAP_SHARED, ashmemfd, 0));
171 if (newData == MAP_FAILED) {
172 int err = errno;
173 ALOGW("Failed to move profile data to ashmem fd %d, error = %d",
174 ashmemfd, err);
175 return;
176 }
177
178 // The new buffer may have historical data that we want to build on top of
179 // But let's make sure we don't overflow Just In Case
180 uint32_t divider = 0;
181 if (newData->totalFrameCount > (1 << 24)) {
182 divider = 4;
183 }
184 for (size_t i = 0; i < mData->jankTypeCounts.size(); i++) {
185 newData->jankTypeCounts[i] >>= divider;
186 newData->jankTypeCounts[i] += mData->jankTypeCounts[i];
187 }
188 for (size_t i = 0; i < mData->frameCounts.size(); i++) {
189 newData->frameCounts[i] >>= divider;
190 newData->frameCounts[i] += mData->frameCounts[i];
191 }
192 newData->jankFrameCount >>= divider;
193 newData->jankFrameCount += mData->jankFrameCount;
194 newData->totalFrameCount >>= divider;
195 newData->totalFrameCount += mData->totalFrameCount;
196 if (newData->statStartTime > mData->statStartTime
197 || newData->statStartTime == 0) {
198 newData->statStartTime = mData->statStartTime;
199 }
200
201 freeData();
202 mData = newData;
203 mIsMapped = true;
204 }
205
setFrameInterval(nsecs_t frameInterval)206 void JankTracker::setFrameInterval(nsecs_t frameInterval) {
207 mFrameInterval = frameInterval;
208 mThresholds[kMissedVsync] = 1;
209 /*
210 * Due to interpolation and sample rate differences between the touch
211 * panel and the display (example, 85hz touch panel driving a 60hz display)
212 * we call high latency 1.5 * frameinterval
213 *
214 * NOTE: Be careful when tuning this! A theoretical 1,000hz touch panel
215 * on a 60hz display will show kOldestInputEvent - kIntendedVsync of being 15ms
216 * Thus this must always be larger than frameInterval, or it will fail
217 */
218 mThresholds[kHighInputLatency] = static_cast<int64_t>(1.5 * frameInterval);
219
220 // Note that these do not add up to 1. This is intentional. It's to deal
221 // with variance in values, and should be sort of an upper-bound on what
222 // is reasonable to expect.
223 mThresholds[kSlowUI] = static_cast<int64_t>(.5 * frameInterval);
224 mThresholds[kSlowSync] = static_cast<int64_t>(.2 * frameInterval);
225 mThresholds[kSlowRT] = static_cast<int64_t>(.75 * frameInterval);
226
227 }
228
addFrame(const FrameInfo & frame)229 void JankTracker::addFrame(const FrameInfo& frame) {
230 mData->totalFrameCount++;
231 // Fast-path for jank-free frames
232 int64_t totalDuration = frame.duration(sFrameStart, FrameInfoIndex::FrameCompleted);
233 if (mDequeueTimeForgiveness
234 && frame[FrameInfoIndex::DequeueBufferDuration] > 500_us) {
235 nsecs_t expectedDequeueDuration =
236 mDequeueTimeForgiveness + frame[FrameInfoIndex::Vsync]
237 - frame[FrameInfoIndex::IssueDrawCommandsStart];
238 if (expectedDequeueDuration > 0) {
239 // Forgive only up to the expected amount, but not more than
240 // the actual time spent blocked.
241 nsecs_t forgiveAmount = std::min(expectedDequeueDuration,
242 frame[FrameInfoIndex::DequeueBufferDuration]);
243 totalDuration -= forgiveAmount;
244 }
245 }
246 uint32_t framebucket = frameCountIndexForFrameTime(totalDuration);
247 // Keep the fast path as fast as possible.
248 if (CC_LIKELY(totalDuration < mFrameInterval)) {
249 mData->frameCounts[framebucket]++;
250 return;
251 }
252
253 // Only things like Surface.lockHardwareCanvas() are exempt from tracking
254 if (frame[FrameInfoIndex::Flags] & EXEMPT_FRAMES_FLAGS) {
255 return;
256 }
257
258 if (framebucket <= mData->frameCounts.size()) {
259 mData->frameCounts[framebucket]++;
260 } else {
261 framebucket = (ns2ms(totalDuration) - kSlowFrameBucketStartMs)
262 / kSlowFrameBucketIntervalMs;
263 framebucket = std::min(framebucket,
264 static_cast<uint32_t>(mData->slowFrameCounts.size() - 1));
265 framebucket = std::max(framebucket, 0u);
266 mData->slowFrameCounts[framebucket]++;
267 }
268
269 mData->jankFrameCount++;
270
271 for (int i = 0; i < NUM_BUCKETS; i++) {
272 int64_t delta = frame.duration(COMPARISONS[i].start, COMPARISONS[i].end);
273 if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) {
274 mData->jankTypeCounts[i]++;
275 }
276 }
277 }
278
dumpBuffer(const void * buffer,size_t bufsize,int fd)279 void JankTracker::dumpBuffer(const void* buffer, size_t bufsize, int fd) {
280 if (bufsize < sizeof(ProfileData)) {
281 return;
282 }
283 const ProfileData* data = reinterpret_cast<const ProfileData*>(buffer);
284 dumpData(data, fd);
285 }
286
dumpData(const ProfileData * data,int fd)287 void JankTracker::dumpData(const ProfileData* data, int fd) {
288 if (sFrameStart != FrameInfoIndex::IntendedVsync) {
289 dprintf(fd, "\nNote: Data has been filtered!");
290 }
291 dprintf(fd, "\nStats since: %" PRIu64 "ns", data->statStartTime);
292 dprintf(fd, "\nTotal frames rendered: %u", data->totalFrameCount);
293 dprintf(fd, "\nJanky frames: %u (%.2f%%)", data->jankFrameCount,
294 (float) data->jankFrameCount / (float) data->totalFrameCount * 100.0f);
295 dprintf(fd, "\n50th percentile: %ums", findPercentile(data, 50));
296 dprintf(fd, "\n90th percentile: %ums", findPercentile(data, 90));
297 dprintf(fd, "\n95th percentile: %ums", findPercentile(data, 95));
298 dprintf(fd, "\n99th percentile: %ums", findPercentile(data, 99));
299 for (int i = 0; i < NUM_BUCKETS; i++) {
300 dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], data->jankTypeCounts[i]);
301 }
302 dprintf(fd, "\nHISTOGRAM:");
303 for (size_t i = 0; i < data->frameCounts.size(); i++) {
304 dprintf(fd, " %ums=%u", frameTimeForFrameCountIndex(i),
305 data->frameCounts[i]);
306 }
307 for (size_t i = 0; i < data->slowFrameCounts.size(); i++) {
308 dprintf(fd, " %zums=%u", (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs,
309 data->slowFrameCounts[i]);
310 }
311 dprintf(fd, "\n");
312 }
313
reset()314 void JankTracker::reset() {
315 mData->jankTypeCounts.fill(0);
316 mData->frameCounts.fill(0);
317 mData->slowFrameCounts.fill(0);
318 mData->totalFrameCount = 0;
319 mData->jankFrameCount = 0;
320 mData->statStartTime = systemTime(CLOCK_MONOTONIC);
321 sFrameStart = Properties::filterOutTestOverhead
322 ? FrameInfoIndex::HandleInputStart
323 : FrameInfoIndex::IntendedVsync;
324 }
325
findPercentile(const ProfileData * data,int percentile)326 uint32_t JankTracker::findPercentile(const ProfileData* data, int percentile) {
327 int pos = percentile * data->totalFrameCount / 100;
328 int remaining = data->totalFrameCount - pos;
329 for (int i = data->slowFrameCounts.size() - 1; i >= 0; i--) {
330 remaining -= data->slowFrameCounts[i];
331 if (remaining <= 0) {
332 return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
333 }
334 }
335 for (int i = data->frameCounts.size() - 1; i >= 0; i--) {
336 remaining -= data->frameCounts[i];
337 if (remaining <= 0) {
338 return frameTimeForFrameCountIndex(i);
339 }
340 }
341 return 0;
342 }
343
344 } /* namespace uirenderer */
345 } /* namespace android */
346