• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "JankTracker.h"
17 
18 #include "Properties.h"
19 #include "utils/TimeUtils.h"
20 
21 #include <algorithm>
22 #include <cutils/ashmem.h>
23 #include <cutils/log.h>
24 #include <cstdio>
25 #include <errno.h>
26 #include <inttypes.h>
27 #include <limits>
28 #include <cmath>
29 #include <sys/mman.h>
30 
31 namespace android {
32 namespace uirenderer {
33 
34 static const char* JANK_TYPE_NAMES[] = {
35         "Missed Vsync",
36         "High input latency",
37         "Slow UI thread",
38         "Slow bitmap uploads",
39         "Slow issue draw commands",
40 };
41 
42 struct Comparison {
43     FrameInfoIndex start;
44     FrameInfoIndex end;
45 };
46 
47 static const Comparison COMPARISONS[] = {
48         {FrameInfoIndex::IntendedVsync, FrameInfoIndex::Vsync},
49         {FrameInfoIndex::OldestInputEvent, FrameInfoIndex::Vsync},
50         {FrameInfoIndex::Vsync, FrameInfoIndex::SyncStart},
51         {FrameInfoIndex::SyncStart, FrameInfoIndex::IssueDrawCommandsStart},
52         {FrameInfoIndex::IssueDrawCommandsStart, FrameInfoIndex::FrameCompleted},
53 };
54 
55 // If the event exceeds 10 seconds throw it away, this isn't a jank event
56 // it's an ANR and will be handled as such
57 static const int64_t IGNORE_EXCEEDING = seconds_to_nanoseconds(10);
58 
59 /*
60  * We don't track direct-drawing via Surface:lockHardwareCanvas()
61  * for now
62  *
63  * TODO: kSurfaceCanvas can negatively impact other drawing by using up
64  * time on the RenderThread, figure out how to attribute that as a jank-causer
65  */
66 static const int64_t EXEMPT_FRAMES_FLAGS = FrameInfoFlags::SurfaceCanvas;
67 
68 // The bucketing algorithm controls so to speak
69 // If a frame is <= to this it goes in bucket 0
70 static const uint32_t kBucketMinThreshold = 5;
71 // If a frame is > this, start counting in increments of 2ms
72 static const uint32_t kBucket2msIntervals = 32;
73 // If a frame is > this, start counting in increments of 4ms
74 static const uint32_t kBucket4msIntervals = 48;
75 
76 // For testing purposes to try and eliminate test infra overhead we will
77 // consider any unknown delay of frame start as part of the test infrastructure
78 // and filter it out of the frame profile data
79 static FrameInfoIndex sFrameStart = FrameInfoIndex::IntendedVsync;
80 
81 // The interval of the slow frame histogram
82 static const uint32_t kSlowFrameBucketIntervalMs = 50;
83 // The start point of the slow frame bucket in ms
84 static const uint32_t kSlowFrameBucketStartMs = 150;
85 
86 // This will be called every frame, performance sensitive
87 // Uses bit twiddling to avoid branching while achieving the packing desired
frameCountIndexForFrameTime(nsecs_t frameTime)88 static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) {
89     uint32_t index = static_cast<uint32_t>(ns2ms(frameTime));
90     // If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result
91     // of negating 1 (twos compliment, yaay) else mask will be 0
92     uint32_t mask = -(index > kBucketMinThreshold);
93     // If index > threshold, this will essentially perform:
94     // amountAboveThreshold = index - threshold;
95     // index = threshold + (amountAboveThreshold / 2)
96     // However if index is <= this will do nothing. It will underflow, do
97     // a right shift by 0 (no-op), then overflow back to the original value
98     index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals))
99             + kBucket4msIntervals;
100     index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals))
101             + kBucket2msIntervals;
102     // If index was < minThreshold at the start of all this it's going to
103     // be a pretty garbage value right now. However, mask is 0 so we'll end
104     // up with the desired result of 0.
105     index = (index - kBucketMinThreshold) & mask;
106     return index;
107 }
108 
109 // Only called when dumping stats, less performance sensitive
frameTimeForFrameCountIndex(uint32_t index)110 static uint32_t frameTimeForFrameCountIndex(uint32_t index) {
111     index = index + kBucketMinThreshold;
112     if (index > kBucket2msIntervals) {
113         index += (index - kBucket2msIntervals);
114     }
115     if (index > kBucket4msIntervals) {
116         // This works because it was already doubled by the above if
117         // 1 is added to shift slightly more towards the middle of the bucket
118         index += (index - kBucket4msIntervals) + 1;
119     }
120     return index;
121 }
122 
JankTracker(const DisplayInfo & displayInfo)123 JankTracker::JankTracker(const DisplayInfo& displayInfo) {
124     // By default this will use malloc memory. It may be moved later to ashmem
125     // if there is shared space for it and a request comes in to do that.
126     mData = new ProfileData;
127     reset();
128     nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1_s / displayInfo.fps);
129 #if USE_HWC2
130     nsecs_t sfOffset = frameIntervalNanos - (displayInfo.presentationDeadline - 1_ms);
131     nsecs_t offsetDelta = sfOffset - displayInfo.appVsyncOffset;
132     // There are two different offset cases. If the offsetDelta is positive
133     // and small, then the intention is to give apps extra time by leveraging
134     // pipelining between the UI & RT threads. If the offsetDelta is large or
135     // negative, the intention is to subtract time from the total duration
136     // in which case we can't afford to wait for dequeueBuffer blockage.
137     if (offsetDelta <= 4_ms && offsetDelta >= 0) {
138         // SF will begin composition at VSYNC-app + offsetDelta. If we are triple
139         // buffered, this is the expected time at which dequeueBuffer will
140         // return due to the staggering of VSYNC-app & VSYNC-sf.
141         mDequeueTimeForgiveness = offsetDelta + 4_ms;
142     }
143 #endif
144     setFrameInterval(frameIntervalNanos);
145 }
146 
~JankTracker()147 JankTracker::~JankTracker() {
148     freeData();
149 }
150 
freeData()151 void JankTracker::freeData() {
152     if (mIsMapped) {
153         munmap(mData, sizeof(ProfileData));
154     } else {
155         delete mData;
156     }
157     mIsMapped = false;
158     mData = nullptr;
159 }
160 
switchStorageToAshmem(int ashmemfd)161 void JankTracker::switchStorageToAshmem(int ashmemfd) {
162     int regionSize = ashmem_get_size_region(ashmemfd);
163     if (regionSize < static_cast<int>(sizeof(ProfileData))) {
164         ALOGW("Ashmem region is too small! Received %d, required %u",
165                 regionSize, static_cast<unsigned int>(sizeof(ProfileData)));
166         return;
167     }
168     ProfileData* newData = reinterpret_cast<ProfileData*>(
169             mmap(NULL, sizeof(ProfileData), PROT_READ | PROT_WRITE,
170             MAP_SHARED, ashmemfd, 0));
171     if (newData == MAP_FAILED) {
172         int err = errno;
173         ALOGW("Failed to move profile data to ashmem fd %d, error = %d",
174                 ashmemfd, err);
175         return;
176     }
177 
178     // The new buffer may have historical data that we want to build on top of
179     // But let's make sure we don't overflow Just In Case
180     uint32_t divider = 0;
181     if (newData->totalFrameCount > (1 << 24)) {
182         divider = 4;
183     }
184     for (size_t i = 0; i < mData->jankTypeCounts.size(); i++) {
185         newData->jankTypeCounts[i] >>= divider;
186         newData->jankTypeCounts[i] += mData->jankTypeCounts[i];
187     }
188     for (size_t i = 0; i < mData->frameCounts.size(); i++) {
189         newData->frameCounts[i] >>= divider;
190         newData->frameCounts[i] += mData->frameCounts[i];
191     }
192     newData->jankFrameCount >>= divider;
193     newData->jankFrameCount += mData->jankFrameCount;
194     newData->totalFrameCount >>= divider;
195     newData->totalFrameCount += mData->totalFrameCount;
196     if (newData->statStartTime > mData->statStartTime
197             || newData->statStartTime == 0) {
198         newData->statStartTime = mData->statStartTime;
199     }
200 
201     freeData();
202     mData = newData;
203     mIsMapped = true;
204 }
205 
setFrameInterval(nsecs_t frameInterval)206 void JankTracker::setFrameInterval(nsecs_t frameInterval) {
207     mFrameInterval = frameInterval;
208     mThresholds[kMissedVsync] = 1;
209     /*
210      * Due to interpolation and sample rate differences between the touch
211      * panel and the display (example, 85hz touch panel driving a 60hz display)
212      * we call high latency 1.5 * frameinterval
213      *
214      * NOTE: Be careful when tuning this! A theoretical 1,000hz touch panel
215      * on a 60hz display will show kOldestInputEvent - kIntendedVsync of being 15ms
216      * Thus this must always be larger than frameInterval, or it will fail
217      */
218     mThresholds[kHighInputLatency] = static_cast<int64_t>(1.5 * frameInterval);
219 
220     // Note that these do not add up to 1. This is intentional. It's to deal
221     // with variance in values, and should be sort of an upper-bound on what
222     // is reasonable to expect.
223     mThresholds[kSlowUI] = static_cast<int64_t>(.5 * frameInterval);
224     mThresholds[kSlowSync] = static_cast<int64_t>(.2 * frameInterval);
225     mThresholds[kSlowRT] = static_cast<int64_t>(.75 * frameInterval);
226 
227 }
228 
addFrame(const FrameInfo & frame)229 void JankTracker::addFrame(const FrameInfo& frame) {
230     mData->totalFrameCount++;
231     // Fast-path for jank-free frames
232     int64_t totalDuration = frame.duration(sFrameStart, FrameInfoIndex::FrameCompleted);
233     if (mDequeueTimeForgiveness
234             && frame[FrameInfoIndex::DequeueBufferDuration] > 500_us) {
235         nsecs_t expectedDequeueDuration =
236                 mDequeueTimeForgiveness + frame[FrameInfoIndex::Vsync]
237                 - frame[FrameInfoIndex::IssueDrawCommandsStart];
238         if (expectedDequeueDuration > 0) {
239             // Forgive only up to the expected amount, but not more than
240             // the actual time spent blocked.
241             nsecs_t forgiveAmount = std::min(expectedDequeueDuration,
242                     frame[FrameInfoIndex::DequeueBufferDuration]);
243             totalDuration -= forgiveAmount;
244         }
245     }
246     uint32_t framebucket = frameCountIndexForFrameTime(totalDuration);
247     // Keep the fast path as fast as possible.
248     if (CC_LIKELY(totalDuration < mFrameInterval)) {
249         mData->frameCounts[framebucket]++;
250         return;
251     }
252 
253     // Only things like Surface.lockHardwareCanvas() are exempt from tracking
254     if (frame[FrameInfoIndex::Flags] & EXEMPT_FRAMES_FLAGS) {
255         return;
256     }
257 
258     if (framebucket <= mData->frameCounts.size()) {
259         mData->frameCounts[framebucket]++;
260     } else {
261         framebucket = (ns2ms(totalDuration) - kSlowFrameBucketStartMs)
262                 / kSlowFrameBucketIntervalMs;
263         framebucket = std::min(framebucket,
264                 static_cast<uint32_t>(mData->slowFrameCounts.size() - 1));
265         framebucket = std::max(framebucket, 0u);
266         mData->slowFrameCounts[framebucket]++;
267     }
268 
269     mData->jankFrameCount++;
270 
271     for (int i = 0; i < NUM_BUCKETS; i++) {
272         int64_t delta = frame.duration(COMPARISONS[i].start, COMPARISONS[i].end);
273         if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) {
274             mData->jankTypeCounts[i]++;
275         }
276     }
277 }
278 
dumpBuffer(const void * buffer,size_t bufsize,int fd)279 void JankTracker::dumpBuffer(const void* buffer, size_t bufsize, int fd) {
280     if (bufsize < sizeof(ProfileData)) {
281         return;
282     }
283     const ProfileData* data = reinterpret_cast<const ProfileData*>(buffer);
284     dumpData(data, fd);
285 }
286 
dumpData(const ProfileData * data,int fd)287 void JankTracker::dumpData(const ProfileData* data, int fd) {
288     if (sFrameStart != FrameInfoIndex::IntendedVsync) {
289         dprintf(fd, "\nNote: Data has been filtered!");
290     }
291     dprintf(fd, "\nStats since: %" PRIu64 "ns", data->statStartTime);
292     dprintf(fd, "\nTotal frames rendered: %u", data->totalFrameCount);
293     dprintf(fd, "\nJanky frames: %u (%.2f%%)", data->jankFrameCount,
294             (float) data->jankFrameCount / (float) data->totalFrameCount * 100.0f);
295     dprintf(fd, "\n50th percentile: %ums", findPercentile(data, 50));
296     dprintf(fd, "\n90th percentile: %ums", findPercentile(data, 90));
297     dprintf(fd, "\n95th percentile: %ums", findPercentile(data, 95));
298     dprintf(fd, "\n99th percentile: %ums", findPercentile(data, 99));
299     for (int i = 0; i < NUM_BUCKETS; i++) {
300         dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], data->jankTypeCounts[i]);
301     }
302     dprintf(fd, "\nHISTOGRAM:");
303     for (size_t i = 0; i < data->frameCounts.size(); i++) {
304         dprintf(fd, " %ums=%u", frameTimeForFrameCountIndex(i),
305                 data->frameCounts[i]);
306     }
307     for (size_t i = 0; i < data->slowFrameCounts.size(); i++) {
308         dprintf(fd, " %zums=%u", (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs,
309                 data->slowFrameCounts[i]);
310     }
311     dprintf(fd, "\n");
312 }
313 
reset()314 void JankTracker::reset() {
315     mData->jankTypeCounts.fill(0);
316     mData->frameCounts.fill(0);
317     mData->slowFrameCounts.fill(0);
318     mData->totalFrameCount = 0;
319     mData->jankFrameCount = 0;
320     mData->statStartTime = systemTime(CLOCK_MONOTONIC);
321     sFrameStart = Properties::filterOutTestOverhead
322             ? FrameInfoIndex::HandleInputStart
323             : FrameInfoIndex::IntendedVsync;
324 }
325 
findPercentile(const ProfileData * data,int percentile)326 uint32_t JankTracker::findPercentile(const ProfileData* data, int percentile) {
327     int pos = percentile * data->totalFrameCount / 100;
328     int remaining = data->totalFrameCount - pos;
329     for (int i = data->slowFrameCounts.size() - 1; i >= 0; i--) {
330         remaining -= data->slowFrameCounts[i];
331         if (remaining <= 0) {
332             return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs;
333         }
334     }
335     for (int i = data->frameCounts.size() - 1; i >= 0; i--) {
336         remaining -= data->frameCounts[i];
337         if (remaining <= 0) {
338             return frameTimeForFrameCountIndex(i);
339         }
340     }
341     return 0;
342 }
343 
344 } /* namespace uirenderer */
345 } /* namespace android */
346