1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "ppc-instr-info"
44
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51 cl::desc("Disable analysis for CTR loops"));
52
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62 cl::desc("Use the old (incorrect) instruction latency calculation"));
63
64 // Pin the vtable to this file.
anchor()65 void PPCInstrInfo::anchor() {}
66
PPCInstrInfo(PPCSubtarget & STI)67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69 Subtarget(STI), RI(STI.getTargetMachine()) {}
70
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75 const ScheduleDAG *DAG) const {
76 unsigned Directive =
77 static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80 const InstrItineraryData *II =
81 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82 return new ScoreboardHazardRecognizer(II, DAG);
83 }
84
85 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92 const ScheduleDAG *DAG) const {
93 unsigned Directive =
94 DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95
96 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
97 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
98
99 // Most subtargets use a PPC970 recognizer.
100 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
101 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
102 assert(DAG->TII && "No InstrInfo?");
103
104 return new PPCHazardRecognizer970(*DAG);
105 }
106
107 return new ScoreboardHazardRecognizer(II, DAG);
108 }
109
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
111 const MachineInstr *MI,
112 unsigned *PredCost) const {
113 if (!ItinData || UseOldLatencyCalc)
114 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
115
116 // The default implementation of getInstrLatency calls getStageLatency, but
117 // getStageLatency does not do the right thing for us. While we have
118 // itinerary, most cores are fully pipelined, and so the itineraries only
119 // express the first part of the pipeline, not every stage. Instead, we need
120 // to use the listed output operand cycle number (using operand 0 here, which
121 // is an output).
122
123 unsigned Latency = 1;
124 unsigned DefClass = MI->getDesc().getSchedClass();
125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126 const MachineOperand &MO = MI->getOperand(i);
127 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
128 continue;
129
130 int Cycle = ItinData->getOperandCycle(DefClass, i);
131 if (Cycle < 0)
132 continue;
133
134 Latency = std::max(Latency, (unsigned) Cycle);
135 }
136
137 return Latency;
138 }
139
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
141 const MachineInstr *DefMI, unsigned DefIdx,
142 const MachineInstr *UseMI,
143 unsigned UseIdx) const {
144 int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
145 UseMI, UseIdx);
146
147 if (!DefMI->getParent())
148 return Latency;
149
150 const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
151 unsigned Reg = DefMO.getReg();
152
153 bool IsRegCR;
154 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
155 const MachineRegisterInfo *MRI =
156 &DefMI->getParent()->getParent()->getRegInfo();
157 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
158 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
159 } else {
160 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
161 PPC::CRBITRCRegClass.contains(Reg);
162 }
163
164 if (UseMI->isBranch() && IsRegCR) {
165 if (Latency < 0)
166 Latency = getInstrLatency(ItinData, DefMI);
167
168 // On some cores, there is an additional delay between writing to a condition
169 // register, and using it from a branch.
170 unsigned Directive = Subtarget.getDarwinDirective();
171 switch (Directive) {
172 default: break;
173 case PPC::DIR_7400:
174 case PPC::DIR_750:
175 case PPC::DIR_970:
176 case PPC::DIR_E5500:
177 case PPC::DIR_PWR4:
178 case PPC::DIR_PWR5:
179 case PPC::DIR_PWR5X:
180 case PPC::DIR_PWR6:
181 case PPC::DIR_PWR6X:
182 case PPC::DIR_PWR7:
183 case PPC::DIR_PWR8:
184 Latency += 2;
185 break;
186 }
187 }
188
189 return Latency;
190 }
191
192 // This function does not list all associative and commutative operations, but
193 // only those worth feeding through the machine combiner in an attempt to
194 // reduce the critical path. Mostly, this means floating-point operations,
195 // because they have high latencies (compared to other operations, such and
196 // and/or, which are also associative and commutative, but have low latencies).
isAssociativeAndCommutative(const MachineInstr & Inst) const197 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
198 switch (Inst.getOpcode()) {
199 // FP Add:
200 case PPC::FADD:
201 case PPC::FADDS:
202 // FP Multiply:
203 case PPC::FMUL:
204 case PPC::FMULS:
205 // Altivec Add:
206 case PPC::VADDFP:
207 // VSX Add:
208 case PPC::XSADDDP:
209 case PPC::XVADDDP:
210 case PPC::XVADDSP:
211 case PPC::XSADDSP:
212 // VSX Multiply:
213 case PPC::XSMULDP:
214 case PPC::XVMULDP:
215 case PPC::XVMULSP:
216 case PPC::XSMULSP:
217 // QPX Add:
218 case PPC::QVFADD:
219 case PPC::QVFADDS:
220 case PPC::QVFADDSs:
221 // QPX Multiply:
222 case PPC::QVFMUL:
223 case PPC::QVFMULS:
224 case PPC::QVFMULSs:
225 return true;
226 default:
227 return false;
228 }
229 }
230
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const231 bool PPCInstrInfo::getMachineCombinerPatterns(
232 MachineInstr &Root,
233 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
234 // Using the machine combiner in this way is potentially expensive, so
235 // restrict to when aggressive optimizations are desired.
236 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
237 return false;
238
239 // FP reassociation is only legal when we don't need strict IEEE semantics.
240 if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
241 return false;
242
243 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
244 }
245
246 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const247 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
248 unsigned &SrcReg, unsigned &DstReg,
249 unsigned &SubIdx) const {
250 switch (MI.getOpcode()) {
251 default: return false;
252 case PPC::EXTSW:
253 case PPC::EXTSW_32_64:
254 SrcReg = MI.getOperand(1).getReg();
255 DstReg = MI.getOperand(0).getReg();
256 SubIdx = PPC::sub_32;
257 return true;
258 }
259 }
260
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const261 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
262 int &FrameIndex) const {
263 // Note: This list must be kept consistent with LoadRegFromStackSlot.
264 switch (MI->getOpcode()) {
265 default: break;
266 case PPC::LD:
267 case PPC::LWZ:
268 case PPC::LFS:
269 case PPC::LFD:
270 case PPC::RESTORE_CR:
271 case PPC::RESTORE_CRBIT:
272 case PPC::LVX:
273 case PPC::LXVD2X:
274 case PPC::QVLFDX:
275 case PPC::QVLFSXs:
276 case PPC::QVLFDXb:
277 case PPC::RESTORE_VRSAVE:
278 // Check for the operands added by addFrameReference (the immediate is the
279 // offset which defaults to 0).
280 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
281 MI->getOperand(2).isFI()) {
282 FrameIndex = MI->getOperand(2).getIndex();
283 return MI->getOperand(0).getReg();
284 }
285 break;
286 }
287 return 0;
288 }
289
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const290 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
291 int &FrameIndex) const {
292 // Note: This list must be kept consistent with StoreRegToStackSlot.
293 switch (MI->getOpcode()) {
294 default: break;
295 case PPC::STD:
296 case PPC::STW:
297 case PPC::STFS:
298 case PPC::STFD:
299 case PPC::SPILL_CR:
300 case PPC::SPILL_CRBIT:
301 case PPC::STVX:
302 case PPC::STXVD2X:
303 case PPC::QVSTFDX:
304 case PPC::QVSTFSXs:
305 case PPC::QVSTFDXb:
306 case PPC::SPILL_VRSAVE:
307 // Check for the operands added by addFrameReference (the immediate is the
308 // offset which defaults to 0).
309 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
310 MI->getOperand(2).isFI()) {
311 FrameIndex = MI->getOperand(2).getIndex();
312 return MI->getOperand(0).getReg();
313 }
314 break;
315 }
316 return 0;
317 }
318
commuteInstructionImpl(MachineInstr * MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const319 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr *MI,
320 bool NewMI,
321 unsigned OpIdx1,
322 unsigned OpIdx2) const {
323 MachineFunction &MF = *MI->getParent()->getParent();
324
325 // Normal instructions can be commuted the obvious way.
326 if (MI->getOpcode() != PPC::RLWIMI &&
327 MI->getOpcode() != PPC::RLWIMIo)
328 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331 // changing the relative order of the mask operands might change what happens
332 // to the high-bits of the mask (and, thus, the result).
333
334 // Cannot commute if it has a non-zero rotate count.
335 if (MI->getOperand(3).getImm() != 0)
336 return nullptr;
337
338 // If we have a zero rotate count, we have:
339 // M = mask(MB,ME)
340 // Op0 = (Op1 & ~M) | (Op2 & M)
341 // Change this to:
342 // M = mask((ME+1)&31, (MB-1)&31)
343 // Op0 = (Op2 & ~M) | (Op1 & M)
344
345 // Swap op1/op2
346 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348 unsigned Reg0 = MI->getOperand(0).getReg();
349 unsigned Reg1 = MI->getOperand(1).getReg();
350 unsigned Reg2 = MI->getOperand(2).getReg();
351 unsigned SubReg1 = MI->getOperand(1).getSubReg();
352 unsigned SubReg2 = MI->getOperand(2).getSubReg();
353 bool Reg1IsKill = MI->getOperand(1).isKill();
354 bool Reg2IsKill = MI->getOperand(2).isKill();
355 bool ChangeReg0 = false;
356 // If machine instrs are no longer in two-address forms, update
357 // destination register as well.
358 if (Reg0 == Reg1) {
359 // Must be two address instruction!
360 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361 "Expecting a two-address instruction!");
362 assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363 Reg2IsKill = false;
364 ChangeReg0 = true;
365 }
366
367 // Masks.
368 unsigned MB = MI->getOperand(4).getImm();
369 unsigned ME = MI->getOperand(5).getImm();
370
371 // We can't commute a trivial mask (there is no way to represent an all-zero
372 // mask).
373 if (MB == 0 && ME == 31)
374 return nullptr;
375
376 if (NewMI) {
377 // Create a new instruction.
378 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
379 bool Reg0IsDead = MI->getOperand(0).isDead();
380 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
381 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382 .addReg(Reg2, getKillRegState(Reg2IsKill))
383 .addReg(Reg1, getKillRegState(Reg1IsKill))
384 .addImm((ME+1) & 31)
385 .addImm((MB-1) & 31);
386 }
387
388 if (ChangeReg0) {
389 MI->getOperand(0).setReg(Reg2);
390 MI->getOperand(0).setSubReg(SubReg2);
391 }
392 MI->getOperand(2).setReg(Reg1);
393 MI->getOperand(1).setReg(Reg2);
394 MI->getOperand(2).setSubReg(SubReg1);
395 MI->getOperand(1).setSubReg(SubReg2);
396 MI->getOperand(2).setIsKill(Reg1IsKill);
397 MI->getOperand(1).setIsKill(Reg2IsKill);
398
399 // Swap the mask around.
400 MI->getOperand(4).setImm((ME+1) & 31);
401 MI->getOperand(5).setImm((MB-1) & 31);
402 return MI;
403 }
404
findCommutedOpIndices(MachineInstr * MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
406 unsigned &SrcOpIdx2) const {
407 // For VSX A-Type FMA instructions, it is the first two operands that can be
408 // commuted, however, because the non-encoded tied input operand is listed
409 // first, the operands to swap are actually the second and third.
410
411 int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
412 if (AltOpc == -1)
413 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414
415 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416 // and SrcOpIdx2.
417 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421 MachineBasicBlock::iterator MI) const {
422 // This function is used for scheduling, and the nop wanted here is the type
423 // that terminates dispatch groups on the POWER cores.
424 unsigned Directive = Subtarget.getDarwinDirective();
425 unsigned Opcode;
426 switch (Directive) {
427 default: Opcode = PPC::NOP; break;
428 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431 }
432
433 DebugLoc DL;
434 BuildMI(MBB, MI, DL, get(Opcode));
435 }
436
437 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
getNoopForMachoTarget(MCInst & NopInst) const438 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
439 NopInst.setOpcode(PPC::NOP);
440 }
441
442 // Branch analysis.
443 // Note: If the condition register is set to CTR or CTR8 then this is a
444 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const445 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
446 MachineBasicBlock *&FBB,
447 SmallVectorImpl<MachineOperand> &Cond,
448 bool AllowModify) const {
449 bool isPPC64 = Subtarget.isPPC64();
450
451 // If the block has no terminators, it just falls into the block after it.
452 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
453 if (I == MBB.end())
454 return false;
455
456 if (!isUnpredicatedTerminator(I))
457 return false;
458
459 // Get the last instruction in the block.
460 MachineInstr *LastInst = I;
461
462 // If there is only one terminator instruction, process it.
463 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
464 if (LastInst->getOpcode() == PPC::B) {
465 if (!LastInst->getOperand(0).isMBB())
466 return true;
467 TBB = LastInst->getOperand(0).getMBB();
468 return false;
469 } else if (LastInst->getOpcode() == PPC::BCC) {
470 if (!LastInst->getOperand(2).isMBB())
471 return true;
472 // Block ends with fall-through condbranch.
473 TBB = LastInst->getOperand(2).getMBB();
474 Cond.push_back(LastInst->getOperand(0));
475 Cond.push_back(LastInst->getOperand(1));
476 return false;
477 } else if (LastInst->getOpcode() == PPC::BC) {
478 if (!LastInst->getOperand(1).isMBB())
479 return true;
480 // Block ends with fall-through condbranch.
481 TBB = LastInst->getOperand(1).getMBB();
482 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
483 Cond.push_back(LastInst->getOperand(0));
484 return false;
485 } else if (LastInst->getOpcode() == PPC::BCn) {
486 if (!LastInst->getOperand(1).isMBB())
487 return true;
488 // Block ends with fall-through condbranch.
489 TBB = LastInst->getOperand(1).getMBB();
490 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
491 Cond.push_back(LastInst->getOperand(0));
492 return false;
493 } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
494 LastInst->getOpcode() == PPC::BDNZ) {
495 if (!LastInst->getOperand(0).isMBB())
496 return true;
497 if (DisableCTRLoopAnal)
498 return true;
499 TBB = LastInst->getOperand(0).getMBB();
500 Cond.push_back(MachineOperand::CreateImm(1));
501 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
502 true));
503 return false;
504 } else if (LastInst->getOpcode() == PPC::BDZ8 ||
505 LastInst->getOpcode() == PPC::BDZ) {
506 if (!LastInst->getOperand(0).isMBB())
507 return true;
508 if (DisableCTRLoopAnal)
509 return true;
510 TBB = LastInst->getOperand(0).getMBB();
511 Cond.push_back(MachineOperand::CreateImm(0));
512 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
513 true));
514 return false;
515 }
516
517 // Otherwise, don't know what this is.
518 return true;
519 }
520
521 // Get the instruction before it if it's a terminator.
522 MachineInstr *SecondLastInst = I;
523
524 // If there are three terminators, we don't know what sort of block this is.
525 if (SecondLastInst && I != MBB.begin() &&
526 isUnpredicatedTerminator(--I))
527 return true;
528
529 // If the block ends with PPC::B and PPC:BCC, handle it.
530 if (SecondLastInst->getOpcode() == PPC::BCC &&
531 LastInst->getOpcode() == PPC::B) {
532 if (!SecondLastInst->getOperand(2).isMBB() ||
533 !LastInst->getOperand(0).isMBB())
534 return true;
535 TBB = SecondLastInst->getOperand(2).getMBB();
536 Cond.push_back(SecondLastInst->getOperand(0));
537 Cond.push_back(SecondLastInst->getOperand(1));
538 FBB = LastInst->getOperand(0).getMBB();
539 return false;
540 } else if (SecondLastInst->getOpcode() == PPC::BC &&
541 LastInst->getOpcode() == PPC::B) {
542 if (!SecondLastInst->getOperand(1).isMBB() ||
543 !LastInst->getOperand(0).isMBB())
544 return true;
545 TBB = SecondLastInst->getOperand(1).getMBB();
546 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
547 Cond.push_back(SecondLastInst->getOperand(0));
548 FBB = LastInst->getOperand(0).getMBB();
549 return false;
550 } else if (SecondLastInst->getOpcode() == PPC::BCn &&
551 LastInst->getOpcode() == PPC::B) {
552 if (!SecondLastInst->getOperand(1).isMBB() ||
553 !LastInst->getOperand(0).isMBB())
554 return true;
555 TBB = SecondLastInst->getOperand(1).getMBB();
556 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
557 Cond.push_back(SecondLastInst->getOperand(0));
558 FBB = LastInst->getOperand(0).getMBB();
559 return false;
560 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
561 SecondLastInst->getOpcode() == PPC::BDNZ) &&
562 LastInst->getOpcode() == PPC::B) {
563 if (!SecondLastInst->getOperand(0).isMBB() ||
564 !LastInst->getOperand(0).isMBB())
565 return true;
566 if (DisableCTRLoopAnal)
567 return true;
568 TBB = SecondLastInst->getOperand(0).getMBB();
569 Cond.push_back(MachineOperand::CreateImm(1));
570 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
571 true));
572 FBB = LastInst->getOperand(0).getMBB();
573 return false;
574 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
575 SecondLastInst->getOpcode() == PPC::BDZ) &&
576 LastInst->getOpcode() == PPC::B) {
577 if (!SecondLastInst->getOperand(0).isMBB() ||
578 !LastInst->getOperand(0).isMBB())
579 return true;
580 if (DisableCTRLoopAnal)
581 return true;
582 TBB = SecondLastInst->getOperand(0).getMBB();
583 Cond.push_back(MachineOperand::CreateImm(0));
584 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
585 true));
586 FBB = LastInst->getOperand(0).getMBB();
587 return false;
588 }
589
590 // If the block ends with two PPC:Bs, handle it. The second one is not
591 // executed, so remove it.
592 if (SecondLastInst->getOpcode() == PPC::B &&
593 LastInst->getOpcode() == PPC::B) {
594 if (!SecondLastInst->getOperand(0).isMBB())
595 return true;
596 TBB = SecondLastInst->getOperand(0).getMBB();
597 I = LastInst;
598 if (AllowModify)
599 I->eraseFromParent();
600 return false;
601 }
602
603 // Otherwise, can't handle this.
604 return true;
605 }
606
RemoveBranch(MachineBasicBlock & MBB) const607 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
608 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
609 if (I == MBB.end())
610 return 0;
611
612 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
613 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
614 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
615 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
616 return 0;
617
618 // Remove the branch.
619 I->eraseFromParent();
620
621 I = MBB.end();
622
623 if (I == MBB.begin()) return 1;
624 --I;
625 if (I->getOpcode() != PPC::BCC &&
626 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
627 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
628 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
629 return 1;
630
631 // Remove the branch.
632 I->eraseFromParent();
633 return 2;
634 }
635
636 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,DebugLoc DL) const637 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
638 MachineBasicBlock *FBB,
639 ArrayRef<MachineOperand> Cond,
640 DebugLoc DL) const {
641 // Shouldn't be a fall through.
642 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
643 assert((Cond.size() == 2 || Cond.size() == 0) &&
644 "PPC branch conditions have two components!");
645
646 bool isPPC64 = Subtarget.isPPC64();
647
648 // One-way branch.
649 if (!FBB) {
650 if (Cond.empty()) // Unconditional branch
651 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
652 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
653 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
654 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
655 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
656 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
657 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
658 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
659 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
660 else // Conditional branch
661 BuildMI(&MBB, DL, get(PPC::BCC))
662 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
663 return 1;
664 }
665
666 // Two-way Conditional Branch.
667 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
668 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
669 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
670 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
671 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
672 BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
673 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
674 BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
675 else
676 BuildMI(&MBB, DL, get(PPC::BCC))
677 .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
678 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
679 return 2;
680 }
681
682 // Select analysis.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const683 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
684 ArrayRef<MachineOperand> Cond,
685 unsigned TrueReg, unsigned FalseReg,
686 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
687 if (!Subtarget.hasISEL())
688 return false;
689
690 if (Cond.size() != 2)
691 return false;
692
693 // If this is really a bdnz-like condition, then it cannot be turned into a
694 // select.
695 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
696 return false;
697
698 // Check register classes.
699 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
700 const TargetRegisterClass *RC =
701 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
702 if (!RC)
703 return false;
704
705 // isel is for regular integer GPRs only.
706 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
707 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
708 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
709 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
710 return false;
711
712 // FIXME: These numbers are for the A2, how well they work for other cores is
713 // an open question. On the A2, the isel instruction has a 2-cycle latency
714 // but single-cycle throughput. These numbers are used in combination with
715 // the MispredictPenalty setting from the active SchedMachineModel.
716 CondCycles = 1;
717 TrueCycles = 1;
718 FalseCycles = 1;
719
720 return true;
721 }
722
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,DebugLoc dl,unsigned DestReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg) const723 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
724 MachineBasicBlock::iterator MI, DebugLoc dl,
725 unsigned DestReg, ArrayRef<MachineOperand> Cond,
726 unsigned TrueReg, unsigned FalseReg) const {
727 assert(Cond.size() == 2 &&
728 "PPC branch conditions have two components!");
729
730 assert(Subtarget.hasISEL() &&
731 "Cannot insert select on target without ISEL support");
732
733 // Get the register classes.
734 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
735 const TargetRegisterClass *RC =
736 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
737 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
738
739 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
740 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
741 assert((Is64Bit ||
742 PPC::GPRCRegClass.hasSubClassEq(RC) ||
743 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
744 "isel is for regular integer GPRs only");
745
746 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
747 unsigned SelectPred = Cond[0].getImm();
748
749 unsigned SubIdx;
750 bool SwapOps;
751 switch (SelectPred) {
752 default: llvm_unreachable("invalid predicate for isel");
753 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
754 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
755 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
756 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
757 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
758 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
759 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
760 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
761 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
762 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
763 }
764
765 unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
766 SecondReg = SwapOps ? TrueReg : FalseReg;
767
768 // The first input register of isel cannot be r0. If it is a member
769 // of a register class that can be r0, then copy it first (the
770 // register allocator should eliminate the copy).
771 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
772 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
773 const TargetRegisterClass *FirstRC =
774 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
775 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
776 unsigned OldFirstReg = FirstReg;
777 FirstReg = MRI.createVirtualRegister(FirstRC);
778 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
779 .addReg(OldFirstReg);
780 }
781
782 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
783 .addReg(FirstReg).addReg(SecondReg)
784 .addReg(Cond[1].getReg(), 0, SubIdx);
785 }
786
getCRBitValue(unsigned CRBit)787 static unsigned getCRBitValue(unsigned CRBit) {
788 unsigned Ret = 4;
789 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
790 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
791 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
792 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
793 Ret = 3;
794 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
795 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
796 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
797 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
798 Ret = 2;
799 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
800 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
801 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
802 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
803 Ret = 1;
804 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
805 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
806 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
807 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
808 Ret = 0;
809
810 assert(Ret != 4 && "Invalid CR bit register");
811 return Ret;
812 }
813
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const814 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
815 MachineBasicBlock::iterator I, DebugLoc DL,
816 unsigned DestReg, unsigned SrcReg,
817 bool KillSrc) const {
818 // We can end up with self copies and similar things as a result of VSX copy
819 // legalization. Promote them here.
820 const TargetRegisterInfo *TRI = &getRegisterInfo();
821 if (PPC::F8RCRegClass.contains(DestReg) &&
822 PPC::VSRCRegClass.contains(SrcReg)) {
823 unsigned SuperReg =
824 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
825
826 if (VSXSelfCopyCrash && SrcReg == SuperReg)
827 llvm_unreachable("nop VSX copy");
828
829 DestReg = SuperReg;
830 } else if (PPC::VRRCRegClass.contains(DestReg) &&
831 PPC::VSRCRegClass.contains(SrcReg)) {
832 unsigned SuperReg =
833 TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
834
835 if (VSXSelfCopyCrash && SrcReg == SuperReg)
836 llvm_unreachable("nop VSX copy");
837
838 DestReg = SuperReg;
839 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
840 PPC::VSRCRegClass.contains(DestReg)) {
841 unsigned SuperReg =
842 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
843
844 if (VSXSelfCopyCrash && DestReg == SuperReg)
845 llvm_unreachable("nop VSX copy");
846
847 SrcReg = SuperReg;
848 } else if (PPC::VRRCRegClass.contains(SrcReg) &&
849 PPC::VSRCRegClass.contains(DestReg)) {
850 unsigned SuperReg =
851 TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
852
853 if (VSXSelfCopyCrash && DestReg == SuperReg)
854 llvm_unreachable("nop VSX copy");
855
856 SrcReg = SuperReg;
857 }
858
859 // Different class register copy
860 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
861 PPC::GPRCRegClass.contains(DestReg)) {
862 unsigned CRReg = getCRFromCRBit(SrcReg);
863 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
864 .addReg(CRReg), getKillRegState(KillSrc);
865 // Rotate the CR bit in the CR fields to be the least significant bit and
866 // then mask with 0x1 (MB = ME = 31).
867 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
868 .addReg(DestReg, RegState::Kill)
869 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
870 .addImm(31)
871 .addImm(31);
872 return;
873 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
874 PPC::G8RCRegClass.contains(DestReg)) {
875 BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg)
876 .addReg(SrcReg), getKillRegState(KillSrc);
877 return;
878 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
879 PPC::GPRCRegClass.contains(DestReg)) {
880 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
881 .addReg(SrcReg), getKillRegState(KillSrc);
882 return;
883 }
884
885 unsigned Opc;
886 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
887 Opc = PPC::OR;
888 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
889 Opc = PPC::OR8;
890 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
891 Opc = PPC::FMR;
892 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
893 Opc = PPC::MCRF;
894 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
895 Opc = PPC::VOR;
896 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
897 // There are two different ways this can be done:
898 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
899 // issue in VSU pipeline 0.
900 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
901 // can go to either pipeline.
902 // We'll always use xxlor here, because in practically all cases where
903 // copies are generated, they are close enough to some use that the
904 // lower-latency form is preferable.
905 Opc = PPC::XXLOR;
906 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
907 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
908 Opc = PPC::XXLORf;
909 else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
910 Opc = PPC::QVFMR;
911 else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
912 Opc = PPC::QVFMRs;
913 else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
914 Opc = PPC::QVFMRb;
915 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
916 Opc = PPC::CROR;
917 else
918 llvm_unreachable("Impossible reg-to-reg copy");
919
920 const MCInstrDesc &MCID = get(Opc);
921 if (MCID.getNumOperands() == 3)
922 BuildMI(MBB, I, DL, MCID, DestReg)
923 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
924 else
925 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
926 }
927
928 // This function returns true if a CR spill is necessary and false otherwise.
929 bool
StoreRegToStackSlot(MachineFunction & MF,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const930 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
931 unsigned SrcReg, bool isKill,
932 int FrameIdx,
933 const TargetRegisterClass *RC,
934 SmallVectorImpl<MachineInstr*> &NewMIs,
935 bool &NonRI, bool &SpillsVRS) const{
936 // Note: If additional store instructions are added here,
937 // update isStoreToStackSlot.
938
939 DebugLoc DL;
940 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
941 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
942 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
943 .addReg(SrcReg,
944 getKillRegState(isKill)),
945 FrameIdx));
946 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
947 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
948 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
949 .addReg(SrcReg,
950 getKillRegState(isKill)),
951 FrameIdx));
952 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
953 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
954 .addReg(SrcReg,
955 getKillRegState(isKill)),
956 FrameIdx));
957 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
958 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
959 .addReg(SrcReg,
960 getKillRegState(isKill)),
961 FrameIdx));
962 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
963 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
964 .addReg(SrcReg,
965 getKillRegState(isKill)),
966 FrameIdx));
967 return true;
968 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
969 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
970 .addReg(SrcReg,
971 getKillRegState(isKill)),
972 FrameIdx));
973 return true;
974 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
975 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
976 .addReg(SrcReg,
977 getKillRegState(isKill)),
978 FrameIdx));
979 NonRI = true;
980 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
981 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
982 .addReg(SrcReg,
983 getKillRegState(isKill)),
984 FrameIdx));
985 NonRI = true;
986 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
987 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
988 .addReg(SrcReg,
989 getKillRegState(isKill)),
990 FrameIdx));
991 NonRI = true;
992 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
993 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
994 .addReg(SrcReg,
995 getKillRegState(isKill)),
996 FrameIdx));
997 NonRI = true;
998 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
999 assert(Subtarget.isDarwin() &&
1000 "VRSAVE only needs spill/restore on Darwin");
1001 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1002 .addReg(SrcReg,
1003 getKillRegState(isKill)),
1004 FrameIdx));
1005 SpillsVRS = true;
1006 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1007 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1008 .addReg(SrcReg,
1009 getKillRegState(isKill)),
1010 FrameIdx));
1011 NonRI = true;
1012 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1013 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1014 .addReg(SrcReg,
1015 getKillRegState(isKill)),
1016 FrameIdx));
1017 NonRI = true;
1018 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1019 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1020 .addReg(SrcReg,
1021 getKillRegState(isKill)),
1022 FrameIdx));
1023 NonRI = true;
1024 } else {
1025 llvm_unreachable("Unknown regclass!");
1026 }
1027
1028 return false;
1029 }
1030
1031 void
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1032 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1033 MachineBasicBlock::iterator MI,
1034 unsigned SrcReg, bool isKill, int FrameIdx,
1035 const TargetRegisterClass *RC,
1036 const TargetRegisterInfo *TRI) const {
1037 MachineFunction &MF = *MBB.getParent();
1038 SmallVector<MachineInstr*, 4> NewMIs;
1039
1040 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1041 FuncInfo->setHasSpills();
1042
1043 bool NonRI = false, SpillsVRS = false;
1044 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1045 NonRI, SpillsVRS))
1046 FuncInfo->setSpillsCR();
1047
1048 if (SpillsVRS)
1049 FuncInfo->setSpillsVRSAVE();
1050
1051 if (NonRI)
1052 FuncInfo->setHasNonRISpills();
1053
1054 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1055 MBB.insert(MI, NewMIs[i]);
1056
1057 const MachineFrameInfo &MFI = *MF.getFrameInfo();
1058 MachineMemOperand *MMO = MF.getMachineMemOperand(
1059 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1060 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1061 MFI.getObjectAlignment(FrameIdx));
1062 NewMIs.back()->addMemOperand(MF, MMO);
1063 }
1064
1065 bool
LoadRegFromStackSlot(MachineFunction & MF,DebugLoc DL,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,SmallVectorImpl<MachineInstr * > & NewMIs,bool & NonRI,bool & SpillsVRS) const1066 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
1067 unsigned DestReg, int FrameIdx,
1068 const TargetRegisterClass *RC,
1069 SmallVectorImpl<MachineInstr*> &NewMIs,
1070 bool &NonRI, bool &SpillsVRS) const{
1071 // Note: If additional load instructions are added here,
1072 // update isLoadFromStackSlot.
1073
1074 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1075 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1076 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1077 DestReg), FrameIdx));
1078 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1079 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1080 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1081 FrameIdx));
1082 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1083 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1084 FrameIdx));
1085 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1086 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1087 FrameIdx));
1088 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1089 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1090 get(PPC::RESTORE_CR), DestReg),
1091 FrameIdx));
1092 return true;
1093 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1094 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1095 get(PPC::RESTORE_CRBIT), DestReg),
1096 FrameIdx));
1097 return true;
1098 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1099 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1100 FrameIdx));
1101 NonRI = true;
1102 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1103 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1104 FrameIdx));
1105 NonRI = true;
1106 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1107 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1108 FrameIdx));
1109 NonRI = true;
1110 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1111 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1112 FrameIdx));
1113 NonRI = true;
1114 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1115 assert(Subtarget.isDarwin() &&
1116 "VRSAVE only needs spill/restore on Darwin");
1117 NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1118 get(PPC::RESTORE_VRSAVE),
1119 DestReg),
1120 FrameIdx));
1121 SpillsVRS = true;
1122 } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1123 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1124 FrameIdx));
1125 NonRI = true;
1126 } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1127 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1128 FrameIdx));
1129 NonRI = true;
1130 } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1131 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1132 FrameIdx));
1133 NonRI = true;
1134 } else {
1135 llvm_unreachable("Unknown regclass!");
1136 }
1137
1138 return false;
1139 }
1140
1141 void
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1142 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1143 MachineBasicBlock::iterator MI,
1144 unsigned DestReg, int FrameIdx,
1145 const TargetRegisterClass *RC,
1146 const TargetRegisterInfo *TRI) const {
1147 MachineFunction &MF = *MBB.getParent();
1148 SmallVector<MachineInstr*, 4> NewMIs;
1149 DebugLoc DL;
1150 if (MI != MBB.end()) DL = MI->getDebugLoc();
1151
1152 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1153 FuncInfo->setHasSpills();
1154
1155 bool NonRI = false, SpillsVRS = false;
1156 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1157 NonRI, SpillsVRS))
1158 FuncInfo->setSpillsCR();
1159
1160 if (SpillsVRS)
1161 FuncInfo->setSpillsVRSAVE();
1162
1163 if (NonRI)
1164 FuncInfo->setHasNonRISpills();
1165
1166 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1167 MBB.insert(MI, NewMIs[i]);
1168
1169 const MachineFrameInfo &MFI = *MF.getFrameInfo();
1170 MachineMemOperand *MMO = MF.getMachineMemOperand(
1171 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1172 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1173 MFI.getObjectAlignment(FrameIdx));
1174 NewMIs.back()->addMemOperand(MF, MMO);
1175 }
1176
1177 bool PPCInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const1178 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1179 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1180 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1181 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1182 else
1183 // Leave the CR# the same, but invert the condition.
1184 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1185 return false;
1186 }
1187
FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI) const1188 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1189 unsigned Reg, MachineRegisterInfo *MRI) const {
1190 // For some instructions, it is legal to fold ZERO into the RA register field.
1191 // A zero immediate should always be loaded with a single li.
1192 unsigned DefOpc = DefMI->getOpcode();
1193 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1194 return false;
1195 if (!DefMI->getOperand(1).isImm())
1196 return false;
1197 if (DefMI->getOperand(1).getImm() != 0)
1198 return false;
1199
1200 // Note that we cannot here invert the arguments of an isel in order to fold
1201 // a ZERO into what is presented as the second argument. All we have here
1202 // is the condition bit, and that might come from a CR-logical bit operation.
1203
1204 const MCInstrDesc &UseMCID = UseMI->getDesc();
1205
1206 // Only fold into real machine instructions.
1207 if (UseMCID.isPseudo())
1208 return false;
1209
1210 unsigned UseIdx;
1211 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1212 if (UseMI->getOperand(UseIdx).isReg() &&
1213 UseMI->getOperand(UseIdx).getReg() == Reg)
1214 break;
1215
1216 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1217 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1218
1219 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1220
1221 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1222 // register (which might also be specified as a pointer class kind).
1223 if (UseInfo->isLookupPtrRegClass()) {
1224 if (UseInfo->RegClass /* Kind */ != 1)
1225 return false;
1226 } else {
1227 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1228 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1229 return false;
1230 }
1231
1232 // Make sure this is not tied to an output register (or otherwise
1233 // constrained). This is true for ST?UX registers, for example, which
1234 // are tied to their output registers.
1235 if (UseInfo->Constraints != 0)
1236 return false;
1237
1238 unsigned ZeroReg;
1239 if (UseInfo->isLookupPtrRegClass()) {
1240 bool isPPC64 = Subtarget.isPPC64();
1241 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1242 } else {
1243 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1244 PPC::ZERO8 : PPC::ZERO;
1245 }
1246
1247 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1248 UseMI->getOperand(UseIdx).setReg(ZeroReg);
1249
1250 if (DeleteDef)
1251 DefMI->eraseFromParent();
1252
1253 return true;
1254 }
1255
MBBDefinesCTR(MachineBasicBlock & MBB)1256 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1257 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1258 I != IE; ++I)
1259 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1260 return true;
1261 return false;
1262 }
1263
1264 // We should make sure that, if we're going to predicate both sides of a
1265 // condition (a diamond), that both sides don't define the counter register. We
1266 // can predicate counter-decrement-based branches, but while that predicates
1267 // the branching, it does not predicate the counter decrement. If we tried to
1268 // merge the triangle into one predicated block, we'd decrement the counter
1269 // twice.
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumT,unsigned ExtraT,MachineBasicBlock & FMBB,unsigned NumF,unsigned ExtraF,BranchProbability Probability) const1270 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1271 unsigned NumT, unsigned ExtraT,
1272 MachineBasicBlock &FMBB,
1273 unsigned NumF, unsigned ExtraF,
1274 BranchProbability Probability) const {
1275 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1276 }
1277
1278
isPredicated(const MachineInstr * MI) const1279 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1280 // The predicated branches are identified by their type, not really by the
1281 // explicit presence of a predicate. Furthermore, some of them can be
1282 // predicated more than once. Because if conversion won't try to predicate
1283 // any instruction which already claims to be predicated (by returning true
1284 // here), always return false. In doing so, we let isPredicable() be the
1285 // final word on whether not the instruction can be (further) predicated.
1286
1287 return false;
1288 }
1289
isUnpredicatedTerminator(const MachineInstr * MI) const1290 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1291 if (!MI->isTerminator())
1292 return false;
1293
1294 // Conditional branch is a special case.
1295 if (MI->isBranch() && !MI->isBarrier())
1296 return true;
1297
1298 return !isPredicated(MI);
1299 }
1300
PredicateInstruction(MachineInstr * MI,ArrayRef<MachineOperand> Pred) const1301 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI,
1302 ArrayRef<MachineOperand> Pred) const {
1303 unsigned OpC = MI->getOpcode();
1304 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1305 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1306 bool isPPC64 = Subtarget.isPPC64();
1307 MI->setDesc(get(Pred[0].getImm() ?
1308 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1309 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
1310 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1311 MI->setDesc(get(PPC::BCLR));
1312 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1313 .addReg(Pred[1].getReg());
1314 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1315 MI->setDesc(get(PPC::BCLRn));
1316 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1317 .addReg(Pred[1].getReg());
1318 } else {
1319 MI->setDesc(get(PPC::BCCLR));
1320 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1321 .addImm(Pred[0].getImm())
1322 .addReg(Pred[1].getReg());
1323 }
1324
1325 return true;
1326 } else if (OpC == PPC::B) {
1327 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1328 bool isPPC64 = Subtarget.isPPC64();
1329 MI->setDesc(get(Pred[0].getImm() ?
1330 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1331 (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
1332 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1333 MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1334 MI->RemoveOperand(0);
1335
1336 MI->setDesc(get(PPC::BC));
1337 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1338 .addReg(Pred[1].getReg())
1339 .addMBB(MBB);
1340 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1341 MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1342 MI->RemoveOperand(0);
1343
1344 MI->setDesc(get(PPC::BCn));
1345 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1346 .addReg(Pred[1].getReg())
1347 .addMBB(MBB);
1348 } else {
1349 MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1350 MI->RemoveOperand(0);
1351
1352 MI->setDesc(get(PPC::BCC));
1353 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1354 .addImm(Pred[0].getImm())
1355 .addReg(Pred[1].getReg())
1356 .addMBB(MBB);
1357 }
1358
1359 return true;
1360 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 ||
1361 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1362 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1363 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1364
1365 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1366 bool isPPC64 = Subtarget.isPPC64();
1367
1368 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1369 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1370 (setLR ? PPC::BCCTRL : PPC::BCCTR)));
1371 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1372 .addReg(Pred[1].getReg());
1373 return true;
1374 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1375 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1376 (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
1377 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1378 .addReg(Pred[1].getReg());
1379 return true;
1380 }
1381
1382 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1383 (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
1384 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1385 .addImm(Pred[0].getImm())
1386 .addReg(Pred[1].getReg());
1387 return true;
1388 }
1389
1390 return false;
1391 }
1392
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const1393 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1394 ArrayRef<MachineOperand> Pred2) const {
1395 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1396 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1397
1398 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1399 return false;
1400 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1401 return false;
1402
1403 // P1 can only subsume P2 if they test the same condition register.
1404 if (Pred1[1].getReg() != Pred2[1].getReg())
1405 return false;
1406
1407 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1408 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1409
1410 if (P1 == P2)
1411 return true;
1412
1413 // Does P1 subsume P2, e.g. GE subsumes GT.
1414 if (P1 == PPC::PRED_LE &&
1415 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1416 return true;
1417 if (P1 == PPC::PRED_GE &&
1418 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1419 return true;
1420
1421 return false;
1422 }
1423
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred) const1424 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1425 std::vector<MachineOperand> &Pred) const {
1426 // Note: At the present time, the contents of Pred from this function is
1427 // unused by IfConversion. This implementation follows ARM by pushing the
1428 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1429 // predicate, instructions defining CTR or CTR8 are also included as
1430 // predicate-defining instructions.
1431
1432 const TargetRegisterClass *RCs[] =
1433 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1434 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1435
1436 bool Found = false;
1437 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1438 const MachineOperand &MO = MI->getOperand(i);
1439 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1440 const TargetRegisterClass *RC = RCs[c];
1441 if (MO.isReg()) {
1442 if (MO.isDef() && RC->contains(MO.getReg())) {
1443 Pred.push_back(MO);
1444 Found = true;
1445 }
1446 } else if (MO.isRegMask()) {
1447 for (TargetRegisterClass::iterator I = RC->begin(),
1448 IE = RC->end(); I != IE; ++I)
1449 if (MO.clobbersPhysReg(*I)) {
1450 Pred.push_back(MO);
1451 Found = true;
1452 }
1453 }
1454 }
1455 }
1456
1457 return Found;
1458 }
1459
isPredicable(MachineInstr * MI) const1460 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1461 unsigned OpC = MI->getOpcode();
1462 switch (OpC) {
1463 default:
1464 return false;
1465 case PPC::B:
1466 case PPC::BLR:
1467 case PPC::BLR8:
1468 case PPC::BCTR:
1469 case PPC::BCTR8:
1470 case PPC::BCTRL:
1471 case PPC::BCTRL8:
1472 return true;
1473 }
1474 }
1475
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value) const1476 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1477 unsigned &SrcReg, unsigned &SrcReg2,
1478 int &Mask, int &Value) const {
1479 unsigned Opc = MI->getOpcode();
1480
1481 switch (Opc) {
1482 default: return false;
1483 case PPC::CMPWI:
1484 case PPC::CMPLWI:
1485 case PPC::CMPDI:
1486 case PPC::CMPLDI:
1487 SrcReg = MI->getOperand(1).getReg();
1488 SrcReg2 = 0;
1489 Value = MI->getOperand(2).getImm();
1490 Mask = 0xFFFF;
1491 return true;
1492 case PPC::CMPW:
1493 case PPC::CMPLW:
1494 case PPC::CMPD:
1495 case PPC::CMPLD:
1496 case PPC::FCMPUS:
1497 case PPC::FCMPUD:
1498 SrcReg = MI->getOperand(1).getReg();
1499 SrcReg2 = MI->getOperand(2).getReg();
1500 return true;
1501 }
1502 }
1503
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI) const1504 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1505 unsigned SrcReg, unsigned SrcReg2,
1506 int Mask, int Value,
1507 const MachineRegisterInfo *MRI) const {
1508 if (DisableCmpOpt)
1509 return false;
1510
1511 int OpC = CmpInstr->getOpcode();
1512 unsigned CRReg = CmpInstr->getOperand(0).getReg();
1513
1514 // FP record forms set CR1 based on the execption status bits, not a
1515 // comparison with zero.
1516 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1517 return false;
1518
1519 // The record forms set the condition register based on a signed comparison
1520 // with zero (so says the ISA manual). This is not as straightforward as it
1521 // seems, however, because this is always a 64-bit comparison on PPC64, even
1522 // for instructions that are 32-bit in nature (like slw for example).
1523 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1524 // for equality checks (as those don't depend on the sign). On PPC64,
1525 // we are restricted to equality for unsigned 64-bit comparisons and for
1526 // signed 32-bit comparisons the applicability is more restricted.
1527 bool isPPC64 = Subtarget.isPPC64();
1528 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1529 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1530 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1531
1532 // Get the unique definition of SrcReg.
1533 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1534 if (!MI) return false;
1535 int MIOpC = MI->getOpcode();
1536
1537 bool equalityOnly = false;
1538 bool noSub = false;
1539 if (isPPC64) {
1540 if (is32BitSignedCompare) {
1541 // We can perform this optimization only if MI is sign-extending.
1542 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo ||
1543 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1544 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1545 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1546 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1547 noSub = true;
1548 } else
1549 return false;
1550 } else if (is32BitUnsignedCompare) {
1551 // We can perform this optimization, equality only, if MI is
1552 // zero-extending.
1553 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1554 MIOpC == PPC::SLW || MIOpC == PPC::SLWo ||
1555 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) {
1556 noSub = true;
1557 equalityOnly = true;
1558 } else
1559 return false;
1560 } else
1561 equalityOnly = is64BitUnsignedCompare;
1562 } else
1563 equalityOnly = is32BitUnsignedCompare;
1564
1565 if (equalityOnly) {
1566 // We need to check the uses of the condition register in order to reject
1567 // non-equality comparisons.
1568 for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1569 IE = MRI->use_instr_end(); I != IE; ++I) {
1570 MachineInstr *UseMI = &*I;
1571 if (UseMI->getOpcode() == PPC::BCC) {
1572 unsigned Pred = UseMI->getOperand(0).getImm();
1573 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1574 return false;
1575 } else if (UseMI->getOpcode() == PPC::ISEL ||
1576 UseMI->getOpcode() == PPC::ISEL8) {
1577 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1578 if (SubIdx != PPC::sub_eq)
1579 return false;
1580 } else
1581 return false;
1582 }
1583 }
1584
1585 MachineBasicBlock::iterator I = CmpInstr;
1586
1587 // Scan forward to find the first use of the compare.
1588 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1589 I != EL; ++I) {
1590 bool FoundUse = false;
1591 for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1592 JE = MRI->use_instr_end(); J != JE; ++J)
1593 if (&*J == &*I) {
1594 FoundUse = true;
1595 break;
1596 }
1597
1598 if (FoundUse)
1599 break;
1600 }
1601
1602 // There are two possible candidates which can be changed to set CR[01].
1603 // One is MI, the other is a SUB instruction.
1604 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1605 MachineInstr *Sub = nullptr;
1606 if (SrcReg2 != 0)
1607 // MI is not a candidate for CMPrr.
1608 MI = nullptr;
1609 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1610 // same BB as the comparison. This is to allow the check below to avoid calls
1611 // (and other explicit clobbers); instead we should really check for these
1612 // more explicitly (in at least a few predecessors).
1613 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1614 // PPC does not have a record-form SUBri.
1615 return false;
1616 }
1617
1618 // Search for Sub.
1619 const TargetRegisterInfo *TRI = &getRegisterInfo();
1620 --I;
1621
1622 // Get ready to iterate backward from CmpInstr.
1623 MachineBasicBlock::iterator E = MI,
1624 B = CmpInstr->getParent()->begin();
1625
1626 for (; I != E && !noSub; --I) {
1627 const MachineInstr &Instr = *I;
1628 unsigned IOpC = Instr.getOpcode();
1629
1630 if (&*I != CmpInstr && (
1631 Instr.modifiesRegister(PPC::CR0, TRI) ||
1632 Instr.readsRegister(PPC::CR0, TRI)))
1633 // This instruction modifies or uses the record condition register after
1634 // the one we want to change. While we could do this transformation, it
1635 // would likely not be profitable. This transformation removes one
1636 // instruction, and so even forcing RA to generate one move probably
1637 // makes it unprofitable.
1638 return false;
1639
1640 // Check whether CmpInstr can be made redundant by the current instruction.
1641 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1642 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1643 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1644 ((Instr.getOperand(1).getReg() == SrcReg &&
1645 Instr.getOperand(2).getReg() == SrcReg2) ||
1646 (Instr.getOperand(1).getReg() == SrcReg2 &&
1647 Instr.getOperand(2).getReg() == SrcReg))) {
1648 Sub = &*I;
1649 break;
1650 }
1651
1652 if (I == B)
1653 // The 'and' is below the comparison instruction.
1654 return false;
1655 }
1656
1657 // Return false if no candidates exist.
1658 if (!MI && !Sub)
1659 return false;
1660
1661 // The single candidate is called MI.
1662 if (!MI) MI = Sub;
1663
1664 int NewOpC = -1;
1665 MIOpC = MI->getOpcode();
1666 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1667 NewOpC = MIOpC;
1668 else {
1669 NewOpC = PPC::getRecordFormOpcode(MIOpC);
1670 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1671 NewOpC = MIOpC;
1672 }
1673
1674 // FIXME: On the non-embedded POWER architectures, only some of the record
1675 // forms are fast, and we should use only the fast ones.
1676
1677 // The defining instruction has a record form (or is already a record
1678 // form). It is possible, however, that we'll need to reverse the condition
1679 // code of the users.
1680 if (NewOpC == -1)
1681 return false;
1682
1683 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1684 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1685
1686 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1687 // needs to be updated to be based on SUB. Push the condition code
1688 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1689 // condition code of these operands will be modified.
1690 bool ShouldSwap = false;
1691 if (Sub) {
1692 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1693 Sub->getOperand(2).getReg() == SrcReg;
1694
1695 // The operands to subf are the opposite of sub, so only in the fixed-point
1696 // case, invert the order.
1697 ShouldSwap = !ShouldSwap;
1698 }
1699
1700 if (ShouldSwap)
1701 for (MachineRegisterInfo::use_instr_iterator
1702 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1703 I != IE; ++I) {
1704 MachineInstr *UseMI = &*I;
1705 if (UseMI->getOpcode() == PPC::BCC) {
1706 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1707 assert((!equalityOnly ||
1708 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1709 "Invalid predicate for equality-only optimization");
1710 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1711 PPC::getSwappedPredicate(Pred)));
1712 } else if (UseMI->getOpcode() == PPC::ISEL ||
1713 UseMI->getOpcode() == PPC::ISEL8) {
1714 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1715 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1716 "Invalid CR bit for equality-only optimization");
1717
1718 if (NewSubReg == PPC::sub_lt)
1719 NewSubReg = PPC::sub_gt;
1720 else if (NewSubReg == PPC::sub_gt)
1721 NewSubReg = PPC::sub_lt;
1722
1723 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1724 NewSubReg));
1725 } else // We need to abort on a user we don't understand.
1726 return false;
1727 }
1728
1729 // Create a new virtual register to hold the value of the CR set by the
1730 // record-form instruction. If the instruction was not previously in
1731 // record form, then set the kill flag on the CR.
1732 CmpInstr->eraseFromParent();
1733
1734 MachineBasicBlock::iterator MII = MI;
1735 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1736 get(TargetOpcode::COPY), CRReg)
1737 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1738
1739 if (MIOpC != NewOpC) {
1740 // We need to be careful here: we're replacing one instruction with
1741 // another, and we need to make sure that we get all of the right
1742 // implicit uses and defs. On the other hand, the caller may be holding
1743 // an iterator to this instruction, and so we can't delete it (this is
1744 // specifically the case if this is the instruction directly after the
1745 // compare).
1746
1747 const MCInstrDesc &NewDesc = get(NewOpC);
1748 MI->setDesc(NewDesc);
1749
1750 if (NewDesc.ImplicitDefs)
1751 for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1752 *ImpDefs; ++ImpDefs)
1753 if (!MI->definesRegister(*ImpDefs))
1754 MI->addOperand(*MI->getParent()->getParent(),
1755 MachineOperand::CreateReg(*ImpDefs, true, true));
1756 if (NewDesc.ImplicitUses)
1757 for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1758 *ImpUses; ++ImpUses)
1759 if (!MI->readsRegister(*ImpUses))
1760 MI->addOperand(*MI->getParent()->getParent(),
1761 MachineOperand::CreateReg(*ImpUses, false, true));
1762 }
1763
1764 // Modify the condition code of operands in OperandsToUpdate.
1765 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1766 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1767 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1768 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1769
1770 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1771 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1772
1773 return true;
1774 }
1775
1776 /// GetInstSize - Return the number of bytes of code the specified
1777 /// instruction may be. This returns the maximum number of bytes.
1778 ///
GetInstSizeInBytes(const MachineInstr * MI) const1779 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1780 unsigned Opcode = MI->getOpcode();
1781
1782 if (Opcode == PPC::INLINEASM) {
1783 const MachineFunction *MF = MI->getParent()->getParent();
1784 const char *AsmStr = MI->getOperand(0).getSymbolName();
1785 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1786 } else if (Opcode == TargetOpcode::STACKMAP) {
1787 return MI->getOperand(1).getImm();
1788 } else if (Opcode == TargetOpcode::PATCHPOINT) {
1789 PatchPointOpers Opers(MI);
1790 return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1791 } else {
1792 const MCInstrDesc &Desc = get(Opcode);
1793 return Desc.getSize();
1794 }
1795 }
1796
1797 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const1798 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1799 const unsigned Mask = PPCII::MO_ACCESS_MASK;
1800 return std::make_pair(TF & Mask, TF & ~Mask);
1801 }
1802
1803 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const1804 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1805 using namespace PPCII;
1806 static const std::pair<unsigned, const char *> TargetFlags[] = {
1807 {MO_LO, "ppc-lo"},
1808 {MO_HA, "ppc-ha"},
1809 {MO_TPREL_LO, "ppc-tprel-lo"},
1810 {MO_TPREL_HA, "ppc-tprel-ha"},
1811 {MO_DTPREL_LO, "ppc-dtprel-lo"},
1812 {MO_TLSLD_LO, "ppc-tlsld-lo"},
1813 {MO_TOC_LO, "ppc-toc-lo"},
1814 {MO_TLS, "ppc-tls"}};
1815 return makeArrayRef(TargetFlags);
1816 }
1817
1818 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const1819 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1820 using namespace PPCII;
1821 static const std::pair<unsigned, const char *> TargetFlags[] = {
1822 {MO_PLT_OR_STUB, "ppc-plt-or-stub"},
1823 {MO_PIC_FLAG, "ppc-pic"},
1824 {MO_NLP_FLAG, "ppc-nlp"},
1825 {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1826 return makeArrayRef(TargetFlags);
1827 }
1828
1829