• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Hexagon.h"
10 #include "HexagonMachineFunctionInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "hexagon_cfg"
29 
30 namespace llvm {
31   FunctionPass *createHexagonCFGOptimizer();
32   void initializeHexagonCFGOptimizerPass(PassRegistry&);
33 }
34 
35 
36 namespace {
37 
38 class HexagonCFGOptimizer : public MachineFunctionPass {
39 
40 private:
41   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
42 
43  public:
44   static char ID;
HexagonCFGOptimizer()45   HexagonCFGOptimizer() : MachineFunctionPass(ID) {
46     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
47   }
48 
getPassName() const49   const char *getPassName() const override {
50     return "Hexagon CFG Optimizer";
51   }
52   bool runOnMachineFunction(MachineFunction &Fn) override;
53 };
54 
55 
56 char HexagonCFGOptimizer::ID = 0;
57 
IsConditionalBranch(int Opc)58 static bool IsConditionalBranch(int Opc) {
59   return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
60     || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
61 }
62 
63 
IsUnconditionalJump(int Opc)64 static bool IsUnconditionalJump(int Opc) {
65   return (Opc == Hexagon::J2_jump);
66 }
67 
68 
69 void
InvertAndChangeJumpTarget(MachineInstr * MI,MachineBasicBlock * NewTarget)70 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
71                                                MachineBasicBlock* NewTarget) {
72   const TargetInstrInfo *TII =
73       MI->getParent()->getParent()->getSubtarget().getInstrInfo();
74   int NewOpcode = 0;
75   switch(MI->getOpcode()) {
76   case Hexagon::J2_jumpt:
77     NewOpcode = Hexagon::J2_jumpf;
78     break;
79 
80   case Hexagon::J2_jumpf:
81     NewOpcode = Hexagon::J2_jumpt;
82     break;
83 
84   case Hexagon::J2_jumptnewpt:
85     NewOpcode = Hexagon::J2_jumpfnewpt;
86     break;
87 
88   case Hexagon::J2_jumpfnewpt:
89     NewOpcode = Hexagon::J2_jumptnewpt;
90     break;
91 
92   default:
93     llvm_unreachable("Cannot handle this case");
94   }
95 
96   MI->setDesc(TII->get(NewOpcode));
97   MI->getOperand(1).setMBB(NewTarget);
98 }
99 
100 
runOnMachineFunction(MachineFunction & Fn)101 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
102   // Loop over all of the basic blocks.
103   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
104        MBBb != MBBe; ++MBBb) {
105     MachineBasicBlock *MBB = &*MBBb;
106 
107     // Traverse the basic block.
108     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
109     if (MII != MBB->end()) {
110       MachineInstr *MI = MII;
111       int Opc = MI->getOpcode();
112       if (IsConditionalBranch(Opc)) {
113 
114         //
115         // (Case 1) Transform the code if the following condition occurs:
116         //   BB1: if (p0) jump BB3
117         //   ...falls-through to BB2 ...
118         //   BB2: jump BB4
119         //   ...next block in layout is BB3...
120         //   BB3: ...
121         //
122         //  Transform this to:
123         //  BB1: if (!p0) jump BB4
124         //  Remove BB2
125         //  BB3: ...
126         //
127         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
128         //   BB1: if (p0) jump BB3
129         //   ...falls-through to BB2 ...
130         //   BB2: jump BB4
131         //   ...other basic blocks ...
132         //   BB4:
133         //   ...not a fall-thru
134         //   BB3: ...
135         //     jump BB4
136         //
137         // Transform this to:
138         //   BB1: if (!p0) jump BB4
139         //   Remove BB2
140         //   BB3: ...
141         //   BB4: ...
142         //
143         unsigned NumSuccs = MBB->succ_size();
144         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
145         MachineBasicBlock* FirstSucc = *SI;
146         MachineBasicBlock* SecondSucc = *(++SI);
147         MachineBasicBlock* LayoutSucc = nullptr;
148         MachineBasicBlock* JumpAroundTarget = nullptr;
149 
150         if (MBB->isLayoutSuccessor(FirstSucc)) {
151           LayoutSucc = FirstSucc;
152           JumpAroundTarget = SecondSucc;
153         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
154           LayoutSucc = SecondSucc;
155           JumpAroundTarget = FirstSucc;
156         } else {
157           // Odd case...cannot handle.
158         }
159 
160         // The target of the unconditional branch must be JumpAroundTarget.
161         // TODO: If not, we should not invert the unconditional branch.
162         MachineBasicBlock* CondBranchTarget = nullptr;
163         if ((MI->getOpcode() == Hexagon::J2_jumpt) ||
164             (MI->getOpcode() == Hexagon::J2_jumpf)) {
165           CondBranchTarget = MI->getOperand(1).getMBB();
166         }
167 
168         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
169           continue;
170         }
171 
172         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
173 
174           // Ensure that BB2 has one instruction -- an unconditional jump.
175           if ((LayoutSucc->size() == 1) &&
176               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
177             MachineBasicBlock* UncondTarget =
178               LayoutSucc->front().getOperand(0).getMBB();
179             // Check if the layout successor of BB2 is BB3.
180             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
181             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
182               JumpAroundTarget->size() >= 1 &&
183               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
184               JumpAroundTarget->pred_size() == 1 &&
185               JumpAroundTarget->succ_size() == 1;
186 
187             if (case1 || case2) {
188               InvertAndChangeJumpTarget(MI, UncondTarget);
189               MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);
190 
191               // Remove the unconditional branch in LayoutSucc.
192               LayoutSucc->erase(LayoutSucc->begin());
193               LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);
194 
195               // This code performs the conversion for case 2, which moves
196               // the block to the fall-thru case (BB3 in the code above).
197               if (case2 && !case1) {
198                 JumpAroundTarget->moveAfter(LayoutSucc);
199                 // only move a block if it doesn't have a fall-thru. otherwise
200                 // the CFG will be incorrect.
201                 if (!UncondTarget->canFallThrough()) {
202                   UncondTarget->moveAfter(JumpAroundTarget);
203                 }
204               }
205 
206               //
207               // Correct live-in information. Is used by post-RA scheduler
208               // The live-in to LayoutSucc is now all values live-in to
209               // JumpAroundTarget.
210               //
211               std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
212                   LayoutSucc->livein_begin(), LayoutSucc->livein_end());
213               std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
214                   JumpAroundTarget->livein_begin(),
215                   JumpAroundTarget->livein_end());
216               for (const auto &OrigLI : OrigLiveIn)
217                 LayoutSucc->removeLiveIn(OrigLI.PhysReg);
218               for (const auto &NewLI : NewLiveIn)
219                 LayoutSucc->addLiveIn(NewLI);
220             }
221           }
222         }
223       }
224     }
225   }
226   return true;
227 }
228 }
229 
230 
231 //===----------------------------------------------------------------------===//
232 //                         Public Constructor Functions
233 //===----------------------------------------------------------------------===//
234 
initializePassOnce(PassRegistry & Registry)235 static void initializePassOnce(PassRegistry &Registry) {
236   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
237                               &HexagonCFGOptimizer::ID, nullptr, false, false);
238   Registry.registerPass(*PI, true);
239 }
240 
initializeHexagonCFGOptimizerPass(PassRegistry & Registry)241 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
242   CALL_ONCE_INITIALIZATION(initializePassOnce)
243 }
244 
createHexagonCFGOptimizer()245 FunctionPass *llvm::createHexagonCFGOptimizer() {
246   return new HexagonCFGOptimizer();
247 }
248