1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mark_sweep.h"
18
19 #include <atomic>
20 #include <functional>
21 #include <numeric>
22 #include <climits>
23 #include <vector>
24
25 #include "base/bounded_fifo.h"
26 #include "base/logging.h"
27 #include "base/macros.h"
28 #include "base/mutex-inl.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "base/timing_logger.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "gc/accounting/heap_bitmap-inl.h"
34 #include "gc/accounting/mod_union_table.h"
35 #include "gc/accounting/space_bitmap-inl.h"
36 #include "gc/heap.h"
37 #include "gc/reference_processor.h"
38 #include "gc/space/large_object_space.h"
39 #include "gc/space/space-inl.h"
40 #include "mark_sweep-inl.h"
41 #include "mirror/object-inl.h"
42 #include "runtime.h"
43 #include "scoped_thread_state_change.h"
44 #include "thread-inl.h"
45 #include "thread_list.h"
46
47 namespace art {
48 namespace gc {
49 namespace collector {
50
51 // Performance options.
52 static constexpr bool kUseRecursiveMark = false;
53 static constexpr bool kUseMarkStackPrefetch = true;
54 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
55 static constexpr bool kPreCleanCards = true;
56
57 // Parallelism options.
58 static constexpr bool kParallelCardScan = true;
59 static constexpr bool kParallelRecursiveMark = true;
60 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
61 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
62 // having this can add overhead in ProcessReferences since we may end up doing many calls of
63 // ProcessMarkStack with very small mark stacks.
64 static constexpr size_t kMinimumParallelMarkStackSize = 128;
65 static constexpr bool kParallelProcessMarkStack = true;
66
67 // Profiling and information flags.
68 static constexpr bool kProfileLargeObjects = false;
69 static constexpr bool kMeasureOverhead = false;
70 static constexpr bool kCountTasks = false;
71 static constexpr bool kCountMarkedObjects = false;
72
73 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
74 static constexpr bool kCheckLocks = kDebugLocking;
75 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
76
77 // If true, revoke the rosalloc thread-local buffers at the
78 // checkpoint, as opposed to during the pause.
79 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
80
BindBitmaps()81 void MarkSweep::BindBitmaps() {
82 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
83 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
84 // Mark all of the spaces we never collect as immune.
85 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
86 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
87 immune_spaces_.AddSpace(space);
88 }
89 }
90 }
91
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)92 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
93 : GarbageCollector(heap,
94 name_prefix +
95 (is_concurrent ? "concurrent mark sweep": "mark sweep")),
96 current_space_bitmap_(nullptr),
97 mark_bitmap_(nullptr),
98 mark_stack_(nullptr),
99 gc_barrier_(new Barrier(0)),
100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101 is_concurrent_(is_concurrent),
102 live_stack_freeze_size_(0) {
103 std::string error_msg;
104 MemMap* mem_map = MemMap::MapAnonymous(
105 "mark sweep sweep array free buffer", nullptr,
106 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
107 PROT_READ | PROT_WRITE, false, false, &error_msg);
108 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
109 sweep_array_free_buffer_mem_map_.reset(mem_map);
110 }
111
InitializePhase()112 void MarkSweep::InitializePhase() {
113 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
114 mark_stack_ = heap_->GetMarkStack();
115 DCHECK(mark_stack_ != nullptr);
116 immune_spaces_.Reset();
117 no_reference_class_count_.StoreRelaxed(0);
118 normal_count_.StoreRelaxed(0);
119 class_count_.StoreRelaxed(0);
120 object_array_count_.StoreRelaxed(0);
121 other_count_.StoreRelaxed(0);
122 reference_count_.StoreRelaxed(0);
123 large_object_test_.StoreRelaxed(0);
124 large_object_mark_.StoreRelaxed(0);
125 overhead_time_ .StoreRelaxed(0);
126 work_chunks_created_.StoreRelaxed(0);
127 work_chunks_deleted_.StoreRelaxed(0);
128 mark_null_count_.StoreRelaxed(0);
129 mark_immune_count_.StoreRelaxed(0);
130 mark_fastpath_count_.StoreRelaxed(0);
131 mark_slowpath_count_.StoreRelaxed(0);
132 {
133 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
134 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
135 mark_bitmap_ = heap_->GetMarkBitmap();
136 }
137 if (!GetCurrentIteration()->GetClearSoftReferences()) {
138 // Always clear soft references if a non-sticky collection.
139 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
140 }
141 }
142
RunPhases()143 void MarkSweep::RunPhases() {
144 Thread* self = Thread::Current();
145 InitializePhase();
146 Locks::mutator_lock_->AssertNotHeld(self);
147 if (IsConcurrent()) {
148 GetHeap()->PreGcVerification(this);
149 {
150 ReaderMutexLock mu(self, *Locks::mutator_lock_);
151 MarkingPhase();
152 }
153 ScopedPause pause(this);
154 GetHeap()->PrePauseRosAllocVerification(this);
155 PausePhase();
156 RevokeAllThreadLocalBuffers();
157 } else {
158 ScopedPause pause(this);
159 GetHeap()->PreGcVerificationPaused(this);
160 MarkingPhase();
161 GetHeap()->PrePauseRosAllocVerification(this);
162 PausePhase();
163 RevokeAllThreadLocalBuffers();
164 }
165 {
166 // Sweeping always done concurrently, even for non concurrent mark sweep.
167 ReaderMutexLock mu(self, *Locks::mutator_lock_);
168 ReclaimPhase();
169 }
170 GetHeap()->PostGcVerification(this);
171 FinishPhase();
172 }
173
ProcessReferences(Thread * self)174 void MarkSweep::ProcessReferences(Thread* self) {
175 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
176 GetHeap()->GetReferenceProcessor()->ProcessReferences(
177 true,
178 GetTimings(),
179 GetCurrentIteration()->GetClearSoftReferences(),
180 this);
181 }
182
PausePhase()183 void MarkSweep::PausePhase() {
184 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
185 Thread* self = Thread::Current();
186 Locks::mutator_lock_->AssertExclusiveHeld(self);
187 if (IsConcurrent()) {
188 // Handle the dirty objects if we are a concurrent GC.
189 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190 // Re-mark root set.
191 ReMarkRoots();
192 // Scan dirty objects, this is only required if we are not doing concurrent GC.
193 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
194 }
195 {
196 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
197 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198 heap_->SwapStacks();
199 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
200 // Need to revoke all the thread local allocation stacks since we just swapped the allocation
201 // stacks and don't want anybody to allocate into the live stack.
202 RevokeAllThreadLocalAllocationStacks(self);
203 }
204 heap_->PreSweepingGcVerification(this);
205 // Disallow new system weaks to prevent a race which occurs when someone adds a new system
206 // weak before we sweep them. Since this new system weak may not be marked, the GC may
207 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
208 // reference to a string that is about to be swept.
209 Runtime::Current()->DisallowNewSystemWeaks();
210 // Enable the reference processing slow path, needs to be done with mutators paused since there
211 // is no lock in the GetReferent fast path.
212 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
213 }
214
PreCleanCards()215 void MarkSweep::PreCleanCards() {
216 // Don't do this for non concurrent GCs since they don't have any dirty cards.
217 if (kPreCleanCards && IsConcurrent()) {
218 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
219 Thread* self = Thread::Current();
220 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
221 // Process dirty cards and add dirty cards to mod union tables, also ages cards.
222 heap_->ProcessCards(GetTimings(), false, true, false);
223 // The checkpoint root marking is required to avoid a race condition which occurs if the
224 // following happens during a reference write:
225 // 1. mutator dirties the card (write barrier)
226 // 2. GC ages the card (the above ProcessCards call)
227 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
228 // 4. mutator writes the value (corresponding to the write barrier in 1.)
229 // This causes the GC to age the card but not necessarily mark the reference which the mutator
230 // wrote into the object stored in the card.
231 // Having the checkpoint fixes this issue since it ensures that the card mark and the
232 // reference write are visible to the GC before the card is scanned (this is due to locks being
233 // acquired / released in the checkpoint code).
234 // The other roots are also marked to help reduce the pause.
235 MarkRootsCheckpoint(self, false);
236 MarkNonThreadRoots();
237 MarkConcurrentRoots(
238 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
239 // Process the newly aged cards.
240 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
241 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
242 // in the next GC.
243 }
244 }
245
RevokeAllThreadLocalAllocationStacks(Thread * self)246 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
247 if (kUseThreadLocalAllocationStack) {
248 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
249 Locks::mutator_lock_->AssertExclusiveHeld(self);
250 heap_->RevokeAllThreadLocalAllocationStacks(self);
251 }
252 }
253
MarkingPhase()254 void MarkSweep::MarkingPhase() {
255 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
256 Thread* self = Thread::Current();
257 BindBitmaps();
258 FindDefaultSpaceBitmap();
259 // Process dirty cards and add dirty cards to mod union tables.
260 // If the GC type is non sticky, then we just clear the cards instead of ageing them.
261 heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
262 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
263 MarkRoots(self);
264 MarkReachableObjects();
265 // Pre-clean dirtied cards to reduce pauses.
266 PreCleanCards();
267 }
268
269 class MarkSweep::ScanObjectVisitor {
270 public:
ScanObjectVisitor(MarkSweep * const mark_sweep)271 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
272 : mark_sweep_(mark_sweep) {}
273
operator ()(mirror::Object * obj) const274 void operator()(mirror::Object* obj) const
275 ALWAYS_INLINE
276 REQUIRES(Locks::heap_bitmap_lock_)
277 SHARED_REQUIRES(Locks::mutator_lock_) {
278 if (kCheckLocks) {
279 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
280 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
281 }
282 mark_sweep_->ScanObject(obj);
283 }
284
285 private:
286 MarkSweep* const mark_sweep_;
287 };
288
UpdateAndMarkModUnion()289 void MarkSweep::UpdateAndMarkModUnion() {
290 for (const auto& space : immune_spaces_.GetSpaces()) {
291 const char* name = space->IsZygoteSpace()
292 ? "UpdateAndMarkZygoteModUnionTable"
293 : "UpdateAndMarkImageModUnionTable";
294 DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
295 TimingLogger::ScopedTiming t(name, GetTimings());
296 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
297 if (mod_union_table != nullptr) {
298 mod_union_table->UpdateAndMarkReferences(this);
299 } else {
300 // No mod-union table, scan all the live bits. This can only occur for app images.
301 space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
302 reinterpret_cast<uintptr_t>(space->End()),
303 ScanObjectVisitor(this));
304 }
305 }
306 }
307
MarkReachableObjects()308 void MarkSweep::MarkReachableObjects() {
309 UpdateAndMarkModUnion();
310 // Recursively mark all the non-image bits set in the mark bitmap.
311 RecursiveMark();
312 }
313
ReclaimPhase()314 void MarkSweep::ReclaimPhase() {
315 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
316 Thread* const self = Thread::Current();
317 // Process the references concurrently.
318 ProcessReferences(self);
319 SweepSystemWeaks(self);
320 Runtime* const runtime = Runtime::Current();
321 runtime->AllowNewSystemWeaks();
322 // Clean up class loaders after system weaks are swept since that is how we know if class
323 // unloading occurred.
324 runtime->GetClassLinker()->CleanupClassLoaders();
325 {
326 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
327 GetHeap()->RecordFreeRevoke();
328 // Reclaim unmarked objects.
329 Sweep(false);
330 // Swap the live and mark bitmaps for each space which we modified space. This is an
331 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
332 // bitmaps.
333 SwapBitmaps();
334 // Unbind the live and mark bitmaps.
335 GetHeap()->UnBindBitmaps();
336 }
337 }
338
FindDefaultSpaceBitmap()339 void MarkSweep::FindDefaultSpaceBitmap() {
340 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
341 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
342 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
343 // We want to have the main space instead of non moving if possible.
344 if (bitmap != nullptr &&
345 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
346 current_space_bitmap_ = bitmap;
347 // If we are not the non moving space exit the loop early since this will be good enough.
348 if (space != heap_->GetNonMovingSpace()) {
349 break;
350 }
351 }
352 }
353 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
354 << heap_->DumpSpaces();
355 }
356
ExpandMarkStack()357 void MarkSweep::ExpandMarkStack() {
358 ResizeMarkStack(mark_stack_->Capacity() * 2);
359 }
360
ResizeMarkStack(size_t new_size)361 void MarkSweep::ResizeMarkStack(size_t new_size) {
362 // Rare case, no need to have Thread::Current be a parameter.
363 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
364 // Someone else acquired the lock and expanded the mark stack before us.
365 return;
366 }
367 std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
368 CHECK_LE(mark_stack_->Size(), new_size);
369 mark_stack_->Resize(new_size);
370 for (auto& obj : temp) {
371 mark_stack_->PushBack(obj.AsMirrorPtr());
372 }
373 }
374
MarkObject(mirror::Object * obj)375 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
376 MarkObject(obj, nullptr, MemberOffset(0));
377 return obj;
378 }
379
MarkObjectNonNullParallel(mirror::Object * obj)380 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
381 DCHECK(obj != nullptr);
382 if (MarkObjectParallel(obj)) {
383 MutexLock mu(Thread::Current(), mark_stack_lock_);
384 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
385 ExpandMarkStack();
386 }
387 // The object must be pushed on to the mark stack.
388 mark_stack_->PushBack(obj);
389 }
390 }
391
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * ref)392 bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
393 return IsMarked(ref->AsMirrorPtr());
394 }
395
396 class MarkSweep::MarkObjectSlowPath {
397 public:
MarkObjectSlowPath(MarkSweep * mark_sweep,mirror::Object * holder=nullptr,MemberOffset offset=MemberOffset (0))398 explicit MarkObjectSlowPath(MarkSweep* mark_sweep,
399 mirror::Object* holder = nullptr,
400 MemberOffset offset = MemberOffset(0))
401 : mark_sweep_(mark_sweep),
402 holder_(holder),
403 offset_(offset) {}
404
operator ()(const mirror::Object * obj) const405 void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
406 if (kProfileLargeObjects) {
407 // TODO: Differentiate between marking and testing somehow.
408 ++mark_sweep_->large_object_test_;
409 ++mark_sweep_->large_object_mark_;
410 }
411 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
412 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
413 (kIsDebugBuild && large_object_space != nullptr &&
414 !large_object_space->Contains(obj)))) {
415 LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
416 if (holder_ != nullptr) {
417 size_t holder_size = holder_->SizeOf();
418 ArtField* field = holder_->FindFieldByOffset(offset_);
419 LOG(INTERNAL_FATAL) << "Field info: "
420 << " holder=" << holder_
421 << " holder is "
422 << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
423 ? "alive" : "dead")
424 << " holder_size=" << holder_size
425 << " holder_type=" << PrettyTypeOf(holder_)
426 << " offset=" << offset_.Uint32Value()
427 << " field=" << (field != nullptr ? field->GetName() : "nullptr")
428 << " field_type="
429 << (field != nullptr ? field->GetTypeDescriptor() : "")
430 << " first_ref_field_offset="
431 << (holder_->IsClass()
432 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
433 sizeof(void*))
434 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
435 << " num_of_ref_fields="
436 << (holder_->IsClass()
437 ? holder_->AsClass()->NumReferenceStaticFields()
438 : holder_->GetClass()->NumReferenceInstanceFields())
439 << "\n";
440 // Print the memory content of the holder.
441 for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
442 uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
443 LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
444 << std::hex << p[i];
445 }
446 }
447 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
448 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
449 {
450 LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
451 Thread* self = Thread::Current();
452 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
453 mark_sweep_->VerifyRoots();
454 } else {
455 const bool heap_bitmap_exclusive_locked =
456 Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
457 if (heap_bitmap_exclusive_locked) {
458 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
459 }
460 {
461 ScopedThreadSuspension(self, kSuspended);
462 ScopedSuspendAll ssa(__FUNCTION__);
463 mark_sweep_->VerifyRoots();
464 }
465 if (heap_bitmap_exclusive_locked) {
466 Locks::heap_bitmap_lock_->ExclusiveLock(self);
467 }
468 }
469 }
470 LOG(FATAL) << "Can't mark invalid object";
471 }
472 }
473
474 private:
475 MarkSweep* const mark_sweep_;
476 mirror::Object* const holder_;
477 MemberOffset offset_;
478 };
479
MarkObjectNonNull(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)480 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
481 mirror::Object* holder,
482 MemberOffset offset) {
483 DCHECK(obj != nullptr);
484 if (kUseBakerOrBrooksReadBarrier) {
485 // Verify all the objects have the correct pointer installed.
486 obj->AssertReadBarrierPointer();
487 }
488 if (immune_spaces_.IsInImmuneRegion(obj)) {
489 if (kCountMarkedObjects) {
490 ++mark_immune_count_;
491 }
492 DCHECK(mark_bitmap_->Test(obj));
493 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
494 if (kCountMarkedObjects) {
495 ++mark_fastpath_count_;
496 }
497 if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
498 PushOnMarkStack(obj); // This object was not previously marked.
499 }
500 } else {
501 if (kCountMarkedObjects) {
502 ++mark_slowpath_count_;
503 }
504 MarkObjectSlowPath visitor(this, holder, offset);
505 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
506 // will check again.
507 if (!mark_bitmap_->Set(obj, visitor)) {
508 PushOnMarkStack(obj); // Was not already marked, push.
509 }
510 }
511 }
512
PushOnMarkStack(mirror::Object * obj)513 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
514 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
515 // Lock is not needed but is here anyways to please annotalysis.
516 MutexLock mu(Thread::Current(), mark_stack_lock_);
517 ExpandMarkStack();
518 }
519 // The object must be pushed on to the mark stack.
520 mark_stack_->PushBack(obj);
521 }
522
MarkObjectParallel(mirror::Object * obj)523 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
524 DCHECK(obj != nullptr);
525 if (kUseBakerOrBrooksReadBarrier) {
526 // Verify all the objects have the correct pointer installed.
527 obj->AssertReadBarrierPointer();
528 }
529 if (immune_spaces_.IsInImmuneRegion(obj)) {
530 DCHECK(IsMarked(obj) != nullptr);
531 return false;
532 }
533 // Try to take advantage of locality of references within a space, failing this find the space
534 // the hard way.
535 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
536 if (LIKELY(object_bitmap->HasAddress(obj))) {
537 return !object_bitmap->AtomicTestAndSet(obj);
538 }
539 MarkObjectSlowPath visitor(this);
540 return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
541 }
542
MarkHeapReference(mirror::HeapReference<mirror::Object> * ref)543 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
544 MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
545 }
546
547 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)548 inline void MarkSweep::MarkObject(mirror::Object* obj,
549 mirror::Object* holder,
550 MemberOffset offset) {
551 if (obj != nullptr) {
552 MarkObjectNonNull(obj, holder, offset);
553 } else if (kCountMarkedObjects) {
554 ++mark_null_count_;
555 }
556 }
557
558 class MarkSweep::VerifyRootMarkedVisitor : public SingleRootVisitor {
559 public:
VerifyRootMarkedVisitor(MarkSweep * collector)560 explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
561
VisitRoot(mirror::Object * root,const RootInfo & info)562 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
563 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
564 CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
565 }
566
567 private:
568 MarkSweep* const collector_;
569 };
570
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)571 void MarkSweep::VisitRoots(mirror::Object*** roots,
572 size_t count,
573 const RootInfo& info ATTRIBUTE_UNUSED) {
574 for (size_t i = 0; i < count; ++i) {
575 MarkObjectNonNull(*roots[i]);
576 }
577 }
578
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)579 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
580 size_t count,
581 const RootInfo& info ATTRIBUTE_UNUSED) {
582 for (size_t i = 0; i < count; ++i) {
583 MarkObjectNonNull(roots[i]->AsMirrorPtr());
584 }
585 }
586
587 class MarkSweep::VerifyRootVisitor : public SingleRootVisitor {
588 public:
VisitRoot(mirror::Object * root,const RootInfo & info)589 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
590 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
591 // See if the root is on any space bitmap.
592 auto* heap = Runtime::Current()->GetHeap();
593 if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
594 space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
595 if (large_object_space != nullptr && !large_object_space->Contains(root)) {
596 LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
597 }
598 }
599 }
600 };
601
VerifyRoots()602 void MarkSweep::VerifyRoots() {
603 VerifyRootVisitor visitor;
604 Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
605 }
606
MarkRoots(Thread * self)607 void MarkSweep::MarkRoots(Thread* self) {
608 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
609 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
610 // If we exclusively hold the mutator lock, all threads must be suspended.
611 Runtime::Current()->VisitRoots(this);
612 RevokeAllThreadLocalAllocationStacks(self);
613 } else {
614 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
615 // At this point the live stack should no longer have any mutators which push into it.
616 MarkNonThreadRoots();
617 MarkConcurrentRoots(
618 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
619 }
620 }
621
MarkNonThreadRoots()622 void MarkSweep::MarkNonThreadRoots() {
623 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
624 Runtime::Current()->VisitNonThreadRoots(this);
625 }
626
MarkConcurrentRoots(VisitRootFlags flags)627 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
628 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
629 // Visit all runtime roots and clear dirty flags.
630 Runtime::Current()->VisitConcurrentRoots(
631 this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
632 }
633
634 class MarkSweep::DelayReferenceReferentVisitor {
635 public:
DelayReferenceReferentVisitor(MarkSweep * collector)636 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
637
operator ()(mirror::Class * klass,mirror::Reference * ref) const638 void operator()(mirror::Class* klass, mirror::Reference* ref) const
639 REQUIRES(Locks::heap_bitmap_lock_)
640 SHARED_REQUIRES(Locks::mutator_lock_) {
641 collector_->DelayReferenceReferent(klass, ref);
642 }
643
644 private:
645 MarkSweep* const collector_;
646 };
647
648 template <bool kUseFinger = false>
649 class MarkSweep::MarkStackTask : public Task {
650 public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack)651 MarkStackTask(ThreadPool* thread_pool,
652 MarkSweep* mark_sweep,
653 size_t mark_stack_size,
654 StackReference<mirror::Object>* mark_stack)
655 : mark_sweep_(mark_sweep),
656 thread_pool_(thread_pool),
657 mark_stack_pos_(mark_stack_size) {
658 // We may have to copy part of an existing mark stack when another mark stack overflows.
659 if (mark_stack_size != 0) {
660 DCHECK(mark_stack != nullptr);
661 // TODO: Check performance?
662 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
663 }
664 if (kCountTasks) {
665 ++mark_sweep_->work_chunks_created_;
666 }
667 }
668
669 static const size_t kMaxSize = 1 * KB;
670
671 protected:
672 class MarkObjectParallelVisitor {
673 public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)674 ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
675 MarkSweep* mark_sweep)
676 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
677
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const678 ALWAYS_INLINE void operator()(mirror::Object* obj,
679 MemberOffset offset,
680 bool is_static ATTRIBUTE_UNUSED) const
681 SHARED_REQUIRES(Locks::mutator_lock_) {
682 Mark(obj->GetFieldObject<mirror::Object>(offset));
683 }
684
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const685 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
686 SHARED_REQUIRES(Locks::mutator_lock_) {
687 if (!root->IsNull()) {
688 VisitRoot(root);
689 }
690 }
691
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const692 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
693 SHARED_REQUIRES(Locks::mutator_lock_) {
694 if (kCheckLocks) {
695 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
696 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
697 }
698 Mark(root->AsMirrorPtr());
699 }
700
701 private:
Mark(mirror::Object * ref) const702 ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
703 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
704 if (kUseFinger) {
705 std::atomic_thread_fence(std::memory_order_seq_cst);
706 if (reinterpret_cast<uintptr_t>(ref) >=
707 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
708 return;
709 }
710 }
711 chunk_task_->MarkStackPush(ref);
712 }
713 }
714
715 MarkStackTask<kUseFinger>* const chunk_task_;
716 MarkSweep* const mark_sweep_;
717 };
718
719 class ScanObjectParallelVisitor {
720 public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)721 ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
722 : chunk_task_(chunk_task) {}
723
724 // No thread safety analysis since multiple threads will use this visitor.
operator ()(mirror::Object * obj) const725 void operator()(mirror::Object* obj) const
726 REQUIRES(Locks::heap_bitmap_lock_)
727 SHARED_REQUIRES(Locks::mutator_lock_) {
728 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
729 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
730 DelayReferenceReferentVisitor ref_visitor(mark_sweep);
731 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
732 }
733
734 private:
735 MarkStackTask<kUseFinger>* const chunk_task_;
736 };
737
~MarkStackTask()738 virtual ~MarkStackTask() {
739 // Make sure that we have cleared our mark stack.
740 DCHECK_EQ(mark_stack_pos_, 0U);
741 if (kCountTasks) {
742 ++mark_sweep_->work_chunks_deleted_;
743 }
744 }
745
746 MarkSweep* const mark_sweep_;
747 ThreadPool* const thread_pool_;
748 // Thread local mark stack for this task.
749 StackReference<mirror::Object> mark_stack_[kMaxSize];
750 // Mark stack position.
751 size_t mark_stack_pos_;
752
MarkStackPush(mirror::Object * obj)753 ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
754 SHARED_REQUIRES(Locks::mutator_lock_) {
755 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
756 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
757 mark_stack_pos_ /= 2;
758 auto* task = new MarkStackTask(thread_pool_,
759 mark_sweep_,
760 kMaxSize - mark_stack_pos_,
761 mark_stack_ + mark_stack_pos_);
762 thread_pool_->AddTask(Thread::Current(), task);
763 }
764 DCHECK(obj != nullptr);
765 DCHECK_LT(mark_stack_pos_, kMaxSize);
766 mark_stack_[mark_stack_pos_++].Assign(obj);
767 }
768
Finalize()769 virtual void Finalize() {
770 delete this;
771 }
772
773 // Scans all of the objects
Run(Thread * self ATTRIBUTE_UNUSED)774 virtual void Run(Thread* self ATTRIBUTE_UNUSED)
775 REQUIRES(Locks::heap_bitmap_lock_)
776 SHARED_REQUIRES(Locks::mutator_lock_) {
777 ScanObjectParallelVisitor visitor(this);
778 // TODO: Tune this.
779 static const size_t kFifoSize = 4;
780 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
781 for (;;) {
782 mirror::Object* obj = nullptr;
783 if (kUseMarkStackPrefetch) {
784 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
785 mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
786 DCHECK(mark_stack_obj != nullptr);
787 __builtin_prefetch(mark_stack_obj);
788 prefetch_fifo.push_back(mark_stack_obj);
789 }
790 if (UNLIKELY(prefetch_fifo.empty())) {
791 break;
792 }
793 obj = prefetch_fifo.front();
794 prefetch_fifo.pop_front();
795 } else {
796 if (UNLIKELY(mark_stack_pos_ == 0)) {
797 break;
798 }
799 obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
800 }
801 DCHECK(obj != nullptr);
802 visitor(obj);
803 }
804 }
805 };
806
807 class MarkSweep::CardScanTask : public MarkStackTask<false> {
808 public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uint8_t * begin,uint8_t * end,uint8_t minimum_age,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack_obj,bool clear_card)809 CardScanTask(ThreadPool* thread_pool,
810 MarkSweep* mark_sweep,
811 accounting::ContinuousSpaceBitmap* bitmap,
812 uint8_t* begin,
813 uint8_t* end,
814 uint8_t minimum_age,
815 size_t mark_stack_size,
816 StackReference<mirror::Object>* mark_stack_obj,
817 bool clear_card)
818 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
819 bitmap_(bitmap),
820 begin_(begin),
821 end_(end),
822 minimum_age_(minimum_age),
823 clear_card_(clear_card) {}
824
825 protected:
826 accounting::ContinuousSpaceBitmap* const bitmap_;
827 uint8_t* const begin_;
828 uint8_t* const end_;
829 const uint8_t minimum_age_;
830 const bool clear_card_;
831
Finalize()832 virtual void Finalize() {
833 delete this;
834 }
835
Run(Thread * self)836 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
837 ScanObjectParallelVisitor visitor(this);
838 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
839 size_t cards_scanned = clear_card_
840 ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
841 : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
842 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
843 << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
844 // Finish by emptying our local mark stack.
845 MarkStackTask::Run(self);
846 }
847 };
848
GetThreadCount(bool paused) const849 size_t MarkSweep::GetThreadCount(bool paused) const {
850 // Use less threads if we are in a background state (non jank perceptible) since we want to leave
851 // more CPU time for the foreground apps.
852 if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
853 return 1;
854 }
855 return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
856 }
857
ScanGrayObjects(bool paused,uint8_t minimum_age)858 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
859 accounting::CardTable* card_table = GetHeap()->GetCardTable();
860 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
861 size_t thread_count = GetThreadCount(paused);
862 // The parallel version with only one thread is faster for card scanning, TODO: fix.
863 if (kParallelCardScan && thread_count > 1) {
864 Thread* self = Thread::Current();
865 // Can't have a different split for each space since multiple spaces can have their cards being
866 // scanned at the same time.
867 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
868 GetTimings());
869 // Try to take some of the mark stack since we can pass this off to the worker tasks.
870 StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
871 StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
872 const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
873 // Estimated number of work tasks we will create.
874 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
875 DCHECK_NE(mark_stack_tasks, 0U);
876 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
877 mark_stack_size / mark_stack_tasks + 1);
878 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
879 if (space->GetMarkBitmap() == nullptr) {
880 continue;
881 }
882 uint8_t* card_begin = space->Begin();
883 uint8_t* card_end = space->End();
884 // Align up the end address. For example, the image space's end
885 // may not be card-size-aligned.
886 card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
887 DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
888 DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
889 // Calculate how many bytes of heap we will scan,
890 const size_t address_range = card_end - card_begin;
891 // Calculate how much address range each task gets.
892 const size_t card_delta = RoundUp(address_range / thread_count + 1,
893 accounting::CardTable::kCardSize);
894 // If paused and the space is neither zygote nor image space, we could clear the dirty
895 // cards to avoid accumulating them to increase card scanning load in the following GC
896 // cycles. We need to keep dirty cards of image space and zygote space in order to track
897 // references to the other spaces.
898 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
899 // Create the worker tasks for this space.
900 while (card_begin != card_end) {
901 // Add a range of cards.
902 size_t addr_remaining = card_end - card_begin;
903 size_t card_increment = std::min(card_delta, addr_remaining);
904 // Take from the back of the mark stack.
905 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
906 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
907 mark_stack_end -= mark_stack_increment;
908 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
909 DCHECK_EQ(mark_stack_end, mark_stack_->End());
910 // Add the new task to the thread pool.
911 auto* task = new CardScanTask(thread_pool,
912 this,
913 space->GetMarkBitmap(),
914 card_begin,
915 card_begin + card_increment,
916 minimum_age,
917 mark_stack_increment,
918 mark_stack_end,
919 clear_card);
920 thread_pool->AddTask(self, task);
921 card_begin += card_increment;
922 }
923 }
924
925 // Note: the card scan below may dirty new cards (and scan them)
926 // as a side effect when a Reference object is encountered and
927 // queued during the marking. See b/11465268.
928 thread_pool->SetMaxActiveWorkers(thread_count - 1);
929 thread_pool->StartWorkers(self);
930 thread_pool->Wait(self, true, true);
931 thread_pool->StopWorkers(self);
932 } else {
933 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
934 if (space->GetMarkBitmap() != nullptr) {
935 // Image spaces are handled properly since live == marked for them.
936 const char* name = nullptr;
937 switch (space->GetGcRetentionPolicy()) {
938 case space::kGcRetentionPolicyNeverCollect:
939 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
940 break;
941 case space::kGcRetentionPolicyFullCollect:
942 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
943 break;
944 case space::kGcRetentionPolicyAlwaysCollect:
945 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
946 break;
947 default:
948 LOG(FATAL) << "Unreachable";
949 UNREACHABLE();
950 }
951 TimingLogger::ScopedTiming t(name, GetTimings());
952 ScanObjectVisitor visitor(this);
953 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
954 if (clear_card) {
955 card_table->Scan<true>(space->GetMarkBitmap(),
956 space->Begin(),
957 space->End(),
958 visitor,
959 minimum_age);
960 } else {
961 card_table->Scan<false>(space->GetMarkBitmap(),
962 space->Begin(),
963 space->End(),
964 visitor,
965 minimum_age);
966 }
967 }
968 }
969 }
970 }
971
972 class MarkSweep::RecursiveMarkTask : public MarkStackTask<false> {
973 public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)974 RecursiveMarkTask(ThreadPool* thread_pool,
975 MarkSweep* mark_sweep,
976 accounting::ContinuousSpaceBitmap* bitmap,
977 uintptr_t begin,
978 uintptr_t end)
979 : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
980 bitmap_(bitmap),
981 begin_(begin),
982 end_(end) {}
983
984 protected:
985 accounting::ContinuousSpaceBitmap* const bitmap_;
986 const uintptr_t begin_;
987 const uintptr_t end_;
988
Finalize()989 virtual void Finalize() {
990 delete this;
991 }
992
993 // Scans all of the objects
Run(Thread * self)994 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
995 ScanObjectParallelVisitor visitor(this);
996 bitmap_->VisitMarkedRange(begin_, end_, visitor);
997 // Finish by emptying our local mark stack.
998 MarkStackTask::Run(self);
999 }
1000 };
1001
1002 // Populates the mark stack based on the set of marked objects and
1003 // recursively marks until the mark stack is emptied.
RecursiveMark()1004 void MarkSweep::RecursiveMark() {
1005 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1006 // RecursiveMark will build the lists of known instances of the Reference classes. See
1007 // DelayReferenceReferent for details.
1008 if (kUseRecursiveMark) {
1009 const bool partial = GetGcType() == kGcTypePartial;
1010 ScanObjectVisitor scan_visitor(this);
1011 auto* self = Thread::Current();
1012 ThreadPool* thread_pool = heap_->GetThreadPool();
1013 size_t thread_count = GetThreadCount(false);
1014 const bool parallel = kParallelRecursiveMark && thread_count > 1;
1015 mark_stack_->Reset();
1016 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1017 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
1018 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
1019 current_space_bitmap_ = space->GetMarkBitmap();
1020 if (current_space_bitmap_ == nullptr) {
1021 continue;
1022 }
1023 if (parallel) {
1024 // We will use the mark stack the future.
1025 // CHECK(mark_stack_->IsEmpty());
1026 // This function does not handle heap end increasing, so we must use the space end.
1027 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1028 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1029 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
1030
1031 // Create a few worker tasks.
1032 const size_t n = thread_count * 2;
1033 while (begin != end) {
1034 uintptr_t start = begin;
1035 uintptr_t delta = (end - begin) / n;
1036 delta = RoundUp(delta, KB);
1037 if (delta < 16 * KB) delta = end - begin;
1038 begin += delta;
1039 auto* task = new RecursiveMarkTask(thread_pool,
1040 this,
1041 current_space_bitmap_,
1042 start,
1043 begin);
1044 thread_pool->AddTask(self, task);
1045 }
1046 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1047 thread_pool->StartWorkers(self);
1048 thread_pool->Wait(self, true, true);
1049 thread_pool->StopWorkers(self);
1050 } else {
1051 // This function does not handle heap end increasing, so we must use the space end.
1052 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1053 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1054 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
1055 }
1056 }
1057 }
1058 }
1059 ProcessMarkStack(false);
1060 }
1061
RecursiveMarkDirtyObjects(bool paused,uint8_t minimum_age)1062 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
1063 ScanGrayObjects(paused, minimum_age);
1064 ProcessMarkStack(paused);
1065 }
1066
ReMarkRoots()1067 void MarkSweep::ReMarkRoots() {
1068 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1069 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1070 Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1071 kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1072 if (kVerifyRootsMarked) {
1073 TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1074 VerifyRootMarkedVisitor visitor(this);
1075 Runtime::Current()->VisitRoots(&visitor);
1076 }
1077 }
1078
SweepSystemWeaks(Thread * self)1079 void MarkSweep::SweepSystemWeaks(Thread* self) {
1080 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1081 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1082 Runtime::Current()->SweepSystemWeaks(this);
1083 }
1084
1085 class MarkSweep::VerifySystemWeakVisitor : public IsMarkedVisitor {
1086 public:
VerifySystemWeakVisitor(MarkSweep * mark_sweep)1087 explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1088
IsMarked(mirror::Object * obj)1089 virtual mirror::Object* IsMarked(mirror::Object* obj)
1090 OVERRIDE
1091 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1092 mark_sweep_->VerifyIsLive(obj);
1093 return obj;
1094 }
1095
1096 MarkSweep* const mark_sweep_;
1097 };
1098
VerifyIsLive(const mirror::Object * obj)1099 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1100 if (!heap_->GetLiveBitmap()->Test(obj)) {
1101 // TODO: Consider live stack? Has this code bitrotted?
1102 CHECK(!heap_->allocation_stack_->Contains(obj))
1103 << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1104 }
1105 }
1106
VerifySystemWeaks()1107 void MarkSweep::VerifySystemWeaks() {
1108 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1109 // Verify system weaks, uses a special object visitor which returns the input object.
1110 VerifySystemWeakVisitor visitor(this);
1111 Runtime::Current()->SweepSystemWeaks(&visitor);
1112 }
1113
1114 class MarkSweep::CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1115 public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1116 CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1117 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1118 : mark_sweep_(mark_sweep),
1119 revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1120 revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1121 }
1122
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1123 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1124 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1125 REQUIRES(Locks::heap_bitmap_lock_) {
1126 for (size_t i = 0; i < count; ++i) {
1127 mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1128 }
1129 }
1130
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1131 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1132 size_t count,
1133 const RootInfo& info ATTRIBUTE_UNUSED)
1134 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1135 REQUIRES(Locks::heap_bitmap_lock_) {
1136 for (size_t i = 0; i < count; ++i) {
1137 mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1138 }
1139 }
1140
Run(Thread * thread)1141 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1142 ScopedTrace trace("Marking thread roots");
1143 // Note: self is not necessarily equal to thread since thread may be suspended.
1144 Thread* const self = Thread::Current();
1145 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1146 << thread->GetState() << " thread " << thread << " self " << self;
1147 thread->VisitRoots(this);
1148 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1149 ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
1150 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1151 }
1152 // If thread is a running mutator, then act on behalf of the garbage collector.
1153 // See the code in ThreadList::RunCheckpoint.
1154 mark_sweep_->GetBarrier().Pass(self);
1155 }
1156
1157 private:
1158 MarkSweep* const mark_sweep_;
1159 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1160 };
1161
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1162 void MarkSweep::MarkRootsCheckpoint(Thread* self,
1163 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1164 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1165 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1166 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1167 // Request the check point is run on all threads returning a count of the threads that must
1168 // run through the barrier including self.
1169 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1170 // Release locks then wait for all mutator threads to pass the barrier.
1171 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1172 // then no need to release locks.
1173 if (barrier_count == 0) {
1174 return;
1175 }
1176 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1177 Locks::mutator_lock_->SharedUnlock(self);
1178 {
1179 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1180 gc_barrier_->Increment(self, barrier_count);
1181 }
1182 Locks::mutator_lock_->SharedLock(self);
1183 Locks::heap_bitmap_lock_->ExclusiveLock(self);
1184 }
1185
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1186 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1187 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1188 Thread* self = Thread::Current();
1189 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1190 sweep_array_free_buffer_mem_map_->BaseBegin());
1191 size_t chunk_free_pos = 0;
1192 ObjectBytePair freed;
1193 ObjectBytePair freed_los;
1194 // How many objects are left in the array, modified after each space is swept.
1195 StackReference<mirror::Object>* objects = allocations->Begin();
1196 size_t count = allocations->Size();
1197 // Change the order to ensure that the non-moving space last swept as an optimization.
1198 std::vector<space::ContinuousSpace*> sweep_spaces;
1199 space::ContinuousSpace* non_moving_space = nullptr;
1200 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1201 if (space->IsAllocSpace() &&
1202 !immune_spaces_.ContainsSpace(space) &&
1203 space->GetLiveBitmap() != nullptr) {
1204 if (space == heap_->GetNonMovingSpace()) {
1205 non_moving_space = space;
1206 } else {
1207 sweep_spaces.push_back(space);
1208 }
1209 }
1210 }
1211 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1212 // the other alloc spaces as an optimization.
1213 if (non_moving_space != nullptr) {
1214 sweep_spaces.push_back(non_moving_space);
1215 }
1216 // Start by sweeping the continuous spaces.
1217 for (space::ContinuousSpace* space : sweep_spaces) {
1218 space::AllocSpace* alloc_space = space->AsAllocSpace();
1219 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1220 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1221 if (swap_bitmaps) {
1222 std::swap(live_bitmap, mark_bitmap);
1223 }
1224 StackReference<mirror::Object>* out = objects;
1225 for (size_t i = 0; i < count; ++i) {
1226 mirror::Object* const obj = objects[i].AsMirrorPtr();
1227 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1228 continue;
1229 }
1230 if (space->HasAddress(obj)) {
1231 // This object is in the space, remove it from the array and add it to the sweep buffer
1232 // if needed.
1233 if (!mark_bitmap->Test(obj)) {
1234 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1235 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1236 freed.objects += chunk_free_pos;
1237 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1238 chunk_free_pos = 0;
1239 }
1240 chunk_free_buffer[chunk_free_pos++] = obj;
1241 }
1242 } else {
1243 (out++)->Assign(obj);
1244 }
1245 }
1246 if (chunk_free_pos > 0) {
1247 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1248 freed.objects += chunk_free_pos;
1249 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1250 chunk_free_pos = 0;
1251 }
1252 // All of the references which space contained are no longer in the allocation stack, update
1253 // the count.
1254 count = out - objects;
1255 }
1256 // Handle the large object space.
1257 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1258 if (large_object_space != nullptr) {
1259 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1260 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1261 if (swap_bitmaps) {
1262 std::swap(large_live_objects, large_mark_objects);
1263 }
1264 for (size_t i = 0; i < count; ++i) {
1265 mirror::Object* const obj = objects[i].AsMirrorPtr();
1266 // Handle large objects.
1267 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1268 continue;
1269 }
1270 if (!large_mark_objects->Test(obj)) {
1271 ++freed_los.objects;
1272 freed_los.bytes += large_object_space->Free(self, obj);
1273 }
1274 }
1275 }
1276 {
1277 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1278 RecordFree(freed);
1279 RecordFreeLOS(freed_los);
1280 t2.NewTiming("ResetStack");
1281 allocations->Reset();
1282 }
1283 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1284 }
1285
Sweep(bool swap_bitmaps)1286 void MarkSweep::Sweep(bool swap_bitmaps) {
1287 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1288 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1289 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1290 {
1291 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1292 // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1293 // knowing that new allocations won't be marked as live.
1294 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1295 heap_->MarkAllocStackAsLive(live_stack);
1296 live_stack->Reset();
1297 DCHECK(mark_stack_->IsEmpty());
1298 }
1299 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1300 if (space->IsContinuousMemMapAllocSpace()) {
1301 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1302 TimingLogger::ScopedTiming split(
1303 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
1304 GetTimings());
1305 RecordFree(alloc_space->Sweep(swap_bitmaps));
1306 }
1307 }
1308 SweepLargeObjects(swap_bitmaps);
1309 }
1310
SweepLargeObjects(bool swap_bitmaps)1311 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1312 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1313 if (los != nullptr) {
1314 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1315 RecordFreeLOS(los->Sweep(swap_bitmaps));
1316 }
1317 }
1318
1319 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
1320 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1321 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1322 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1323 }
1324
1325 class MarkVisitor {
1326 public:
MarkVisitor(MarkSweep * const mark_sweep)1327 ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
1328
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1329 ALWAYS_INLINE void operator()(mirror::Object* obj,
1330 MemberOffset offset,
1331 bool is_static ATTRIBUTE_UNUSED) const
1332 REQUIRES(Locks::heap_bitmap_lock_)
1333 SHARED_REQUIRES(Locks::mutator_lock_) {
1334 if (kCheckLocks) {
1335 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1336 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1337 }
1338 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1339 }
1340
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1341 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1342 REQUIRES(Locks::heap_bitmap_lock_)
1343 SHARED_REQUIRES(Locks::mutator_lock_) {
1344 if (!root->IsNull()) {
1345 VisitRoot(root);
1346 }
1347 }
1348
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1349 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1350 REQUIRES(Locks::heap_bitmap_lock_)
1351 SHARED_REQUIRES(Locks::mutator_lock_) {
1352 if (kCheckLocks) {
1353 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1354 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1355 }
1356 mark_sweep_->MarkObject(root->AsMirrorPtr());
1357 }
1358
1359 private:
1360 MarkSweep* const mark_sweep_;
1361 };
1362
1363 // Scans an object reference. Determines the type of the reference
1364 // and dispatches to a specialized scanning routine.
ScanObject(mirror::Object * obj)1365 void MarkSweep::ScanObject(mirror::Object* obj) {
1366 MarkVisitor mark_visitor(this);
1367 DelayReferenceReferentVisitor ref_visitor(this);
1368 ScanObjectVisit(obj, mark_visitor, ref_visitor);
1369 }
1370
ProcessMarkStackParallel(size_t thread_count)1371 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1372 Thread* self = Thread::Current();
1373 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1374 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1375 static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1376 CHECK_GT(chunk_size, 0U);
1377 // Split the current mark stack up into work tasks.
1378 for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1379 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1380 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1381 it += delta;
1382 }
1383 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1384 thread_pool->StartWorkers(self);
1385 thread_pool->Wait(self, true, true);
1386 thread_pool->StopWorkers(self);
1387 mark_stack_->Reset();
1388 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1389 work_chunks_deleted_.LoadSequentiallyConsistent())
1390 << " some of the work chunks were leaked";
1391 }
1392
1393 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1394 void MarkSweep::ProcessMarkStack(bool paused) {
1395 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1396 size_t thread_count = GetThreadCount(paused);
1397 if (kParallelProcessMarkStack && thread_count > 1 &&
1398 mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1399 ProcessMarkStackParallel(thread_count);
1400 } else {
1401 // TODO: Tune this.
1402 static const size_t kFifoSize = 4;
1403 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1404 for (;;) {
1405 mirror::Object* obj = nullptr;
1406 if (kUseMarkStackPrefetch) {
1407 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1408 mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1409 DCHECK(mark_stack_obj != nullptr);
1410 __builtin_prefetch(mark_stack_obj);
1411 prefetch_fifo.push_back(mark_stack_obj);
1412 }
1413 if (prefetch_fifo.empty()) {
1414 break;
1415 }
1416 obj = prefetch_fifo.front();
1417 prefetch_fifo.pop_front();
1418 } else {
1419 if (mark_stack_->IsEmpty()) {
1420 break;
1421 }
1422 obj = mark_stack_->PopBack();
1423 }
1424 DCHECK(obj != nullptr);
1425 ScanObject(obj);
1426 }
1427 }
1428 }
1429
IsMarked(mirror::Object * object)1430 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1431 if (immune_spaces_.IsInImmuneRegion(object)) {
1432 return object;
1433 }
1434 if (current_space_bitmap_->HasAddress(object)) {
1435 return current_space_bitmap_->Test(object) ? object : nullptr;
1436 }
1437 return mark_bitmap_->Test(object) ? object : nullptr;
1438 }
1439
FinishPhase()1440 void MarkSweep::FinishPhase() {
1441 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1442 if (kCountScannedTypes) {
1443 VLOG(gc)
1444 << "MarkSweep scanned"
1445 << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
1446 << " normal objects=" << normal_count_.LoadRelaxed()
1447 << " classes=" << class_count_.LoadRelaxed()
1448 << " object arrays=" << object_array_count_.LoadRelaxed()
1449 << " references=" << reference_count_.LoadRelaxed()
1450 << " other=" << other_count_.LoadRelaxed();
1451 }
1452 if (kCountTasks) {
1453 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1454 }
1455 if (kMeasureOverhead) {
1456 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1457 }
1458 if (kProfileLargeObjects) {
1459 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1460 << " marked " << large_object_mark_.LoadRelaxed();
1461 }
1462 if (kCountMarkedObjects) {
1463 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1464 << " immune=" << mark_immune_count_.LoadRelaxed()
1465 << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1466 << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1467 }
1468 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty.
1469 mark_stack_->Reset();
1470 Thread* const self = Thread::Current();
1471 ReaderMutexLock mu(self, *Locks::mutator_lock_);
1472 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
1473 heap_->ClearMarkedObjects();
1474 }
1475
RevokeAllThreadLocalBuffers()1476 void MarkSweep::RevokeAllThreadLocalBuffers() {
1477 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1478 // If concurrent, rosalloc thread-local buffers are revoked at the
1479 // thread checkpoint. Bump pointer space thread-local buffers must
1480 // not be in use.
1481 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1482 } else {
1483 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1484 GetHeap()->RevokeAllThreadLocalBuffers();
1485 }
1486 }
1487
1488 } // namespace collector
1489 } // namespace gc
1490 } // namespace art
1491