• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_IA32
6 
7 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
8 
9 #include "src/log.h"
10 #include "src/macro-assembler.h"
11 #include "src/profiler/cpu-profiler.h"
12 #include "src/regexp/regexp-macro-assembler.h"
13 #include "src/regexp/regexp-stack.h"
14 #include "src/unicode.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 #ifndef V8_INTERPRETED_REGEXP
20 /*
21  * This assembler uses the following register assignment convention
22  * - edx : Current character.  Must be loaded using LoadCurrentCharacter
23  *         before using any of the dispatch methods.  Temporarily stores the
24  *         index of capture start after a matching pass for a global regexp.
25  * - edi : Current position in input, as negative offset from end of string.
26  *         Please notice that this is the byte offset, not the character offset!
27  * - esi : end of input (points to byte after last character in input).
28  * - ebp : Frame pointer.  Used to access arguments, local variables and
29  *         RegExp registers.
30  * - esp : Points to tip of C stack.
31  * - ecx : Points to tip of backtrack stack
32  *
33  * The registers eax and ebx are free to use for computations.
34  *
35  * Each call to a public method should retain this convention.
36  * The stack will have the following structure:
37  *       - Isolate* isolate     (address of the current isolate)
38  *       - direct_call          (if 1, direct call from JavaScript code, if 0
39  *                               call through the runtime system)
40  *       - stack_area_base      (high end of the memory area to use as
41  *                               backtracking stack)
42  *       - capture array size   (may fit multiple sets of matches)
43  *       - int* capture_array   (int[num_saved_registers_], for output).
44  *       - end of input         (address of end of string)
45  *       - start of input       (address of first character in string)
46  *       - start index          (character index of start)
47  *       - String* input_string (location of a handle containing the string)
48  *       --- frame alignment (if applicable) ---
49  *       - return address
50  * ebp-> - old ebp
51  *       - backup of caller esi
52  *       - backup of caller edi
53  *       - backup of caller ebx
54  *       - success counter      (only for global regexps to count matches).
55  *       - Offset of location before start of input (effectively character
56  *         string start - 1). Used to initialize capture registers to a
57  *         non-position.
58  *       - register 0  ebp[-4]  (only positions must be stored in the first
59  *       - register 1  ebp[-8]   num_saved_registers_ registers)
60  *       - ...
61  *
62  * The first num_saved_registers_ registers are initialized to point to
63  * "character -1" in the string (i.e., char_size() bytes before the first
64  * character of the string). The remaining registers starts out as garbage.
65  *
66  * The data up to the return address must be placed there by the calling
67  * code, by calling the code entry as cast to a function with the signature:
68  * int (*match)(String* input_string,
69  *              int start_index,
70  *              Address start,
71  *              Address end,
72  *              int* capture_output_array,
73  *              bool at_start,
74  *              byte* stack_area_base,
75  *              bool direct_call)
76  */
77 
78 #define __ ACCESS_MASM(masm_)
79 
RegExpMacroAssemblerIA32(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)80 RegExpMacroAssemblerIA32::RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone,
81                                                    Mode mode,
82                                                    int registers_to_save)
83     : NativeRegExpMacroAssembler(isolate, zone),
84       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
85                                CodeObjectRequired::kYes)),
86       mode_(mode),
87       num_registers_(registers_to_save),
88       num_saved_registers_(registers_to_save),
89       entry_label_(),
90       start_label_(),
91       success_label_(),
92       backtrack_label_(),
93       exit_label_() {
94   DCHECK_EQ(0, registers_to_save % 2);
95   __ jmp(&entry_label_);   // We'll write the entry code later.
96   __ bind(&start_label_);  // And then continue from here.
97 }
98 
99 
~RegExpMacroAssemblerIA32()100 RegExpMacroAssemblerIA32::~RegExpMacroAssemblerIA32() {
101   delete masm_;
102   // Unuse labels in case we throw away the assembler without calling GetCode.
103   entry_label_.Unuse();
104   start_label_.Unuse();
105   success_label_.Unuse();
106   backtrack_label_.Unuse();
107   exit_label_.Unuse();
108   check_preempt_label_.Unuse();
109   stack_overflow_label_.Unuse();
110 }
111 
112 
stack_limit_slack()113 int RegExpMacroAssemblerIA32::stack_limit_slack()  {
114   return RegExpStack::kStackLimitSlack;
115 }
116 
117 
AdvanceCurrentPosition(int by)118 void RegExpMacroAssemblerIA32::AdvanceCurrentPosition(int by) {
119   if (by != 0) {
120     __ add(edi, Immediate(by * char_size()));
121   }
122 }
123 
124 
AdvanceRegister(int reg,int by)125 void RegExpMacroAssemblerIA32::AdvanceRegister(int reg, int by) {
126   DCHECK(reg >= 0);
127   DCHECK(reg < num_registers_);
128   if (by != 0) {
129     __ add(register_location(reg), Immediate(by));
130   }
131 }
132 
133 
Backtrack()134 void RegExpMacroAssemblerIA32::Backtrack() {
135   CheckPreemption();
136   // Pop Code* offset from backtrack stack, add Code* and jump to location.
137   Pop(ebx);
138   __ add(ebx, Immediate(masm_->CodeObject()));
139   __ jmp(ebx);
140 }
141 
142 
Bind(Label * label)143 void RegExpMacroAssemblerIA32::Bind(Label* label) {
144   __ bind(label);
145 }
146 
147 
CheckCharacter(uint32_t c,Label * on_equal)148 void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) {
149   __ cmp(current_character(), c);
150   BranchOrBacktrack(equal, on_equal);
151 }
152 
153 
CheckCharacterGT(uc16 limit,Label * on_greater)154 void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) {
155   __ cmp(current_character(), limit);
156   BranchOrBacktrack(greater, on_greater);
157 }
158 
159 
CheckAtStart(Label * on_at_start)160 void RegExpMacroAssemblerIA32::CheckAtStart(Label* on_at_start) {
161   __ lea(eax, Operand(edi, -char_size()));
162   __ cmp(eax, Operand(ebp, kStringStartMinusOne));
163   BranchOrBacktrack(equal, on_at_start);
164 }
165 
166 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)167 void RegExpMacroAssemblerIA32::CheckNotAtStart(int cp_offset,
168                                                Label* on_not_at_start) {
169   __ lea(eax, Operand(edi, -char_size() + cp_offset * char_size()));
170   __ cmp(eax, Operand(ebp, kStringStartMinusOne));
171   BranchOrBacktrack(not_equal, on_not_at_start);
172 }
173 
174 
CheckCharacterLT(uc16 limit,Label * on_less)175 void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) {
176   __ cmp(current_character(), limit);
177   BranchOrBacktrack(less, on_less);
178 }
179 
180 
CheckGreedyLoop(Label * on_equal)181 void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) {
182   Label fallthrough;
183   __ cmp(edi, Operand(backtrack_stackpointer(), 0));
184   __ j(not_equal, &fallthrough);
185   __ add(backtrack_stackpointer(), Immediate(kPointerSize));  // Pop.
186   BranchOrBacktrack(no_condition, on_equal);
187   __ bind(&fallthrough);
188 }
189 
190 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,Label * on_no_match)191 void RegExpMacroAssemblerIA32::CheckNotBackReferenceIgnoreCase(
192     int start_reg, bool read_backward, Label* on_no_match) {
193   Label fallthrough;
194   __ mov(edx, register_location(start_reg));  // Index of start of capture
195   __ mov(ebx, register_location(start_reg + 1));  // Index of end of capture
196   __ sub(ebx, edx);  // Length of capture.
197 
198   // At this point, the capture registers are either both set or both cleared.
199   // If the capture length is zero, then the capture is either empty or cleared.
200   // Fall through in both cases.
201   __ j(equal, &fallthrough);
202 
203   // Check that there are sufficient characters left in the input.
204   if (read_backward) {
205     __ mov(eax, Operand(ebp, kStringStartMinusOne));
206     __ add(eax, ebx);
207     __ cmp(edi, eax);
208     BranchOrBacktrack(less_equal, on_no_match);
209   } else {
210     __ mov(eax, edi);
211     __ add(eax, ebx);
212     BranchOrBacktrack(greater, on_no_match);
213   }
214 
215   if (mode_ == LATIN1) {
216     Label success;
217     Label fail;
218     Label loop_increment;
219     // Save register contents to make the registers available below.
220     __ push(edi);
221     __ push(backtrack_stackpointer());
222     // After this, the eax, ecx, and edi registers are available.
223 
224     __ add(edx, esi);  // Start of capture
225     __ add(edi, esi);  // Start of text to match against capture.
226     if (read_backward) {
227       __ sub(edi, ebx);  // Offset by length when matching backwards.
228     }
229     __ add(ebx, edi);  // End of text to match against capture.
230 
231     Label loop;
232     __ bind(&loop);
233     __ movzx_b(eax, Operand(edi, 0));
234     __ cmpb_al(Operand(edx, 0));
235     __ j(equal, &loop_increment);
236 
237     // Mismatch, try case-insensitive match (converting letters to lower-case).
238     __ or_(eax, 0x20);  // Convert match character to lower-case.
239     __ lea(ecx, Operand(eax, -'a'));
240     __ cmp(ecx, static_cast<int32_t>('z' - 'a'));  // Is eax a lowercase letter?
241     Label convert_capture;
242     __ j(below_equal, &convert_capture);  // In range 'a'-'z'.
243     // Latin-1: Check for values in range [224,254] but not 247.
244     __ sub(ecx, Immediate(224 - 'a'));
245     __ cmp(ecx, Immediate(254 - 224));
246     __ j(above, &fail);  // Weren't Latin-1 letters.
247     __ cmp(ecx, Immediate(247 - 224));  // Check for 247.
248     __ j(equal, &fail);
249     __ bind(&convert_capture);
250     // Also convert capture character.
251     __ movzx_b(ecx, Operand(edx, 0));
252     __ or_(ecx, 0x20);
253 
254     __ cmp(eax, ecx);
255     __ j(not_equal, &fail);
256 
257     __ bind(&loop_increment);
258     // Increment pointers into match and capture strings.
259     __ add(edx, Immediate(1));
260     __ add(edi, Immediate(1));
261     // Compare to end of match, and loop if not done.
262     __ cmp(edi, ebx);
263     __ j(below, &loop);
264     __ jmp(&success);
265 
266     __ bind(&fail);
267     // Restore original values before failing.
268     __ pop(backtrack_stackpointer());
269     __ pop(edi);
270     BranchOrBacktrack(no_condition, on_no_match);
271 
272     __ bind(&success);
273     // Restore original value before continuing.
274     __ pop(backtrack_stackpointer());
275     // Drop original value of character position.
276     __ add(esp, Immediate(kPointerSize));
277     // Compute new value of character position after the matched part.
278     __ sub(edi, esi);
279     if (read_backward) {
280       // Subtract match length if we matched backward.
281       __ add(edi, register_location(start_reg));
282       __ sub(edi, register_location(start_reg + 1));
283     }
284   } else {
285     DCHECK(mode_ == UC16);
286     // Save registers before calling C function.
287     __ push(esi);
288     __ push(edi);
289     __ push(backtrack_stackpointer());
290     __ push(ebx);
291 
292     static const int argument_count = 4;
293     __ PrepareCallCFunction(argument_count, ecx);
294     // Put arguments into allocated stack area, last argument highest on stack.
295     // Parameters are
296     //   Address byte_offset1 - Address captured substring's start.
297     //   Address byte_offset2 - Address of current character position.
298     //   size_t byte_length - length of capture in bytes(!)
299     //   Isolate* isolate
300 
301     // Set isolate.
302     __ mov(Operand(esp, 3 * kPointerSize),
303            Immediate(ExternalReference::isolate_address(isolate())));
304     // Set byte_length.
305     __ mov(Operand(esp, 2 * kPointerSize), ebx);
306     // Set byte_offset2.
307     // Found by adding negative string-end offset of current position (edi)
308     // to end of string.
309     __ add(edi, esi);
310     if (read_backward) {
311       __ sub(edi, ebx);  // Offset by length when matching backwards.
312     }
313     __ mov(Operand(esp, 1 * kPointerSize), edi);
314     // Set byte_offset1.
315     // Start of capture, where edx already holds string-end negative offset.
316     __ add(edx, esi);
317     __ mov(Operand(esp, 0 * kPointerSize), edx);
318 
319     {
320       AllowExternalCallThatCantCauseGC scope(masm_);
321       ExternalReference compare =
322           ExternalReference::re_case_insensitive_compare_uc16(isolate());
323       __ CallCFunction(compare, argument_count);
324     }
325     // Pop original values before reacting on result value.
326     __ pop(ebx);
327     __ pop(backtrack_stackpointer());
328     __ pop(edi);
329     __ pop(esi);
330 
331     // Check if function returned non-zero for success or zero for failure.
332     __ or_(eax, eax);
333     BranchOrBacktrack(zero, on_no_match);
334     // On success, advance position by length of capture.
335     if (read_backward) {
336       __ sub(edi, ebx);
337     } else {
338       __ add(edi, ebx);
339     }
340   }
341   __ bind(&fallthrough);
342 }
343 
344 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)345 void RegExpMacroAssemblerIA32::CheckNotBackReference(int start_reg,
346                                                      bool read_backward,
347                                                      Label* on_no_match) {
348   Label fallthrough;
349   Label success;
350   Label fail;
351 
352   // Find length of back-referenced capture.
353   __ mov(edx, register_location(start_reg));
354   __ mov(eax, register_location(start_reg + 1));
355   __ sub(eax, edx);  // Length to check.
356 
357   // At this point, the capture registers are either both set or both cleared.
358   // If the capture length is zero, then the capture is either empty or cleared.
359   // Fall through in both cases.
360   __ j(equal, &fallthrough);
361 
362   // Check that there are sufficient characters left in the input.
363   if (read_backward) {
364     __ mov(ebx, Operand(ebp, kStringStartMinusOne));
365     __ add(ebx, eax);
366     __ cmp(edi, ebx);
367     BranchOrBacktrack(less_equal, on_no_match);
368   } else {
369     __ mov(ebx, edi);
370     __ add(ebx, eax);
371     BranchOrBacktrack(greater, on_no_match);
372   }
373 
374   // Save register to make it available below.
375   __ push(backtrack_stackpointer());
376 
377   // Compute pointers to match string and capture string
378   __ add(edx, esi);  // Start of capture.
379   __ lea(ebx, Operand(esi, edi, times_1, 0));  // Start of match.
380   if (read_backward) {
381     __ sub(ebx, eax);  // Offset by length when matching backwards.
382   }
383   __ lea(ecx, Operand(eax, ebx, times_1, 0));  // End of match
384 
385   Label loop;
386   __ bind(&loop);
387   if (mode_ == LATIN1) {
388     __ movzx_b(eax, Operand(edx, 0));
389     __ cmpb_al(Operand(ebx, 0));
390   } else {
391     DCHECK(mode_ == UC16);
392     __ movzx_w(eax, Operand(edx, 0));
393     __ cmpw_ax(Operand(ebx, 0));
394   }
395   __ j(not_equal, &fail);
396   // Increment pointers into capture and match string.
397   __ add(edx, Immediate(char_size()));
398   __ add(ebx, Immediate(char_size()));
399   // Check if we have reached end of match area.
400   __ cmp(ebx, ecx);
401   __ j(below, &loop);
402   __ jmp(&success);
403 
404   __ bind(&fail);
405   // Restore backtrack stackpointer.
406   __ pop(backtrack_stackpointer());
407   BranchOrBacktrack(no_condition, on_no_match);
408 
409   __ bind(&success);
410   // Move current character position to position after match.
411   __ mov(edi, ecx);
412   __ sub(edi, esi);
413   if (read_backward) {
414     // Subtract match length if we matched backward.
415     __ add(edi, register_location(start_reg));
416     __ sub(edi, register_location(start_reg + 1));
417   }
418   // Restore backtrack stackpointer.
419   __ pop(backtrack_stackpointer());
420 
421   __ bind(&fallthrough);
422 }
423 
424 
CheckNotCharacter(uint32_t c,Label * on_not_equal)425 void RegExpMacroAssemblerIA32::CheckNotCharacter(uint32_t c,
426                                                  Label* on_not_equal) {
427   __ cmp(current_character(), c);
428   BranchOrBacktrack(not_equal, on_not_equal);
429 }
430 
431 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)432 void RegExpMacroAssemblerIA32::CheckCharacterAfterAnd(uint32_t c,
433                                                       uint32_t mask,
434                                                       Label* on_equal) {
435   if (c == 0) {
436     __ test(current_character(), Immediate(mask));
437   } else {
438     __ mov(eax, mask);
439     __ and_(eax, current_character());
440     __ cmp(eax, c);
441   }
442   BranchOrBacktrack(equal, on_equal);
443 }
444 
445 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)446 void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c,
447                                                          uint32_t mask,
448                                                          Label* on_not_equal) {
449   if (c == 0) {
450     __ test(current_character(), Immediate(mask));
451   } else {
452     __ mov(eax, mask);
453     __ and_(eax, current_character());
454     __ cmp(eax, c);
455   }
456   BranchOrBacktrack(not_equal, on_not_equal);
457 }
458 
459 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)460 void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
461     uc16 c,
462     uc16 minus,
463     uc16 mask,
464     Label* on_not_equal) {
465   DCHECK(minus < String::kMaxUtf16CodeUnit);
466   __ lea(eax, Operand(current_character(), -minus));
467   if (c == 0) {
468     __ test(eax, Immediate(mask));
469   } else {
470     __ and_(eax, mask);
471     __ cmp(eax, c);
472   }
473   BranchOrBacktrack(not_equal, on_not_equal);
474 }
475 
476 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)477 void RegExpMacroAssemblerIA32::CheckCharacterInRange(
478     uc16 from,
479     uc16 to,
480     Label* on_in_range) {
481   __ lea(eax, Operand(current_character(), -from));
482   __ cmp(eax, to - from);
483   BranchOrBacktrack(below_equal, on_in_range);
484 }
485 
486 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)487 void RegExpMacroAssemblerIA32::CheckCharacterNotInRange(
488     uc16 from,
489     uc16 to,
490     Label* on_not_in_range) {
491   __ lea(eax, Operand(current_character(), -from));
492   __ cmp(eax, to - from);
493   BranchOrBacktrack(above, on_not_in_range);
494 }
495 
496 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)497 void RegExpMacroAssemblerIA32::CheckBitInTable(
498     Handle<ByteArray> table,
499     Label* on_bit_set) {
500   __ mov(eax, Immediate(table));
501   Register index = current_character();
502   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
503     __ mov(ebx, kTableSize - 1);
504     __ and_(ebx, current_character());
505     index = ebx;
506   }
507   __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
508   BranchOrBacktrack(not_equal, on_bit_set);
509 }
510 
511 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)512 bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
513                                                           Label* on_no_match) {
514   // Range checks (c in min..max) are generally implemented by an unsigned
515   // (c - min) <= (max - min) check
516   switch (type) {
517   case 's':
518     // Match space-characters
519     if (mode_ == LATIN1) {
520       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
521       Label success;
522       __ cmp(current_character(), ' ');
523       __ j(equal, &success, Label::kNear);
524       // Check range 0x09..0x0d
525       __ lea(eax, Operand(current_character(), -'\t'));
526       __ cmp(eax, '\r' - '\t');
527       __ j(below_equal, &success, Label::kNear);
528       // \u00a0 (NBSP).
529       __ cmp(eax, 0x00a0 - '\t');
530       BranchOrBacktrack(not_equal, on_no_match);
531       __ bind(&success);
532       return true;
533     }
534     return false;
535   case 'S':
536     // The emitted code for generic character classes is good enough.
537     return false;
538   case 'd':
539     // Match ASCII digits ('0'..'9')
540     __ lea(eax, Operand(current_character(), -'0'));
541     __ cmp(eax, '9' - '0');
542     BranchOrBacktrack(above, on_no_match);
543     return true;
544   case 'D':
545     // Match non ASCII-digits
546     __ lea(eax, Operand(current_character(), -'0'));
547     __ cmp(eax, '9' - '0');
548     BranchOrBacktrack(below_equal, on_no_match);
549     return true;
550   case '.': {
551     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
552     __ mov(eax, current_character());
553     __ xor_(eax, Immediate(0x01));
554     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
555     __ sub(eax, Immediate(0x0b));
556     __ cmp(eax, 0x0c - 0x0b);
557     BranchOrBacktrack(below_equal, on_no_match);
558     if (mode_ == UC16) {
559       // Compare original value to 0x2028 and 0x2029, using the already
560       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
561       // 0x201d (0x2028 - 0x0b) or 0x201e.
562       __ sub(eax, Immediate(0x2028 - 0x0b));
563       __ cmp(eax, 0x2029 - 0x2028);
564       BranchOrBacktrack(below_equal, on_no_match);
565     }
566     return true;
567   }
568   case 'w': {
569     if (mode_ != LATIN1) {
570       // Table is 256 entries, so all Latin1 characters can be tested.
571       __ cmp(current_character(), Immediate('z'));
572       BranchOrBacktrack(above, on_no_match);
573     }
574     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
575     ExternalReference word_map = ExternalReference::re_word_character_map();
576     __ test_b(current_character(),
577               Operand::StaticArray(current_character(), times_1, word_map));
578     BranchOrBacktrack(zero, on_no_match);
579     return true;
580   }
581   case 'W': {
582     Label done;
583     if (mode_ != LATIN1) {
584       // Table is 256 entries, so all Latin1 characters can be tested.
585       __ cmp(current_character(), Immediate('z'));
586       __ j(above, &done);
587     }
588     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
589     ExternalReference word_map = ExternalReference::re_word_character_map();
590     __ test_b(current_character(),
591               Operand::StaticArray(current_character(), times_1, word_map));
592     BranchOrBacktrack(not_zero, on_no_match);
593     if (mode_ != LATIN1) {
594       __ bind(&done);
595     }
596     return true;
597   }
598   // Non-standard classes (with no syntactic shorthand) used internally.
599   case '*':
600     // Match any character.
601     return true;
602   case 'n': {
603     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
604     // The opposite of '.'.
605     __ mov(eax, current_character());
606     __ xor_(eax, Immediate(0x01));
607     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
608     __ sub(eax, Immediate(0x0b));
609     __ cmp(eax, 0x0c - 0x0b);
610     if (mode_ == LATIN1) {
611       BranchOrBacktrack(above, on_no_match);
612     } else {
613       Label done;
614       BranchOrBacktrack(below_equal, &done);
615       DCHECK_EQ(UC16, mode_);
616       // Compare original value to 0x2028 and 0x2029, using the already
617       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
618       // 0x201d (0x2028 - 0x0b) or 0x201e.
619       __ sub(eax, Immediate(0x2028 - 0x0b));
620       __ cmp(eax, 1);
621       BranchOrBacktrack(above, on_no_match);
622       __ bind(&done);
623     }
624     return true;
625   }
626   // No custom implementation (yet): s(UC16), S(UC16).
627   default:
628     return false;
629   }
630 }
631 
632 
Fail()633 void RegExpMacroAssemblerIA32::Fail() {
634   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
635   if (!global()) {
636     __ Move(eax, Immediate(FAILURE));
637   }
638   __ jmp(&exit_label_);
639 }
640 
641 
GetCode(Handle<String> source)642 Handle<HeapObject> RegExpMacroAssemblerIA32::GetCode(Handle<String> source) {
643   Label return_eax;
644   // Finalize code - write the entry point code now we know how many
645   // registers we need.
646 
647   // Entry code:
648   __ bind(&entry_label_);
649 
650   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
651   // code is generated.
652   FrameScope scope(masm_, StackFrame::MANUAL);
653 
654   // Actually emit code to start a new stack frame.
655   __ push(ebp);
656   __ mov(ebp, esp);
657   // Save callee-save registers. Order here should correspond to order of
658   // kBackup_ebx etc.
659   __ push(esi);
660   __ push(edi);
661   __ push(ebx);  // Callee-save on MacOS.
662   __ push(Immediate(0));  // Number of successful matches in a global regexp.
663   __ push(Immediate(0));  // Make room for "string start - 1" constant.
664 
665   // Check if we have space on the stack for registers.
666   Label stack_limit_hit;
667   Label stack_ok;
668 
669   ExternalReference stack_limit =
670       ExternalReference::address_of_stack_limit(isolate());
671   __ mov(ecx, esp);
672   __ sub(ecx, Operand::StaticVariable(stack_limit));
673   // Handle it if the stack pointer is already below the stack limit.
674   __ j(below_equal, &stack_limit_hit);
675   // Check if there is room for the variable number of registers above
676   // the stack limit.
677   __ cmp(ecx, num_registers_ * kPointerSize);
678   __ j(above_equal, &stack_ok);
679   // Exit with OutOfMemory exception. There is not enough space on the stack
680   // for our working registers.
681   __ mov(eax, EXCEPTION);
682   __ jmp(&return_eax);
683 
684   __ bind(&stack_limit_hit);
685   CallCheckStackGuardState(ebx);
686   __ or_(eax, eax);
687   // If returned value is non-zero, we exit with the returned value as result.
688   __ j(not_zero, &return_eax);
689 
690   __ bind(&stack_ok);
691   // Load start index for later use.
692   __ mov(ebx, Operand(ebp, kStartIndex));
693 
694   // Allocate space on stack for registers.
695   __ sub(esp, Immediate(num_registers_ * kPointerSize));
696   // Load string length.
697   __ mov(esi, Operand(ebp, kInputEnd));
698   // Load input position.
699   __ mov(edi, Operand(ebp, kInputStart));
700   // Set up edi to be negative offset from string end.
701   __ sub(edi, esi);
702 
703   // Set eax to address of char before start of the string.
704   // (effectively string position -1).
705   __ neg(ebx);
706   if (mode_ == UC16) {
707     __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
708   } else {
709     __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
710   }
711   // Store this value in a local variable, for use when clearing
712   // position registers.
713   __ mov(Operand(ebp, kStringStartMinusOne), eax);
714 
715 #if V8_OS_WIN
716   // Ensure that we write to each stack page, in order. Skipping a page
717   // on Windows can cause segmentation faults. Assuming page size is 4k.
718   const int kPageSize = 4096;
719   const int kRegistersPerPage = kPageSize / kPointerSize;
720   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
721       i < num_registers_;
722       i += kRegistersPerPage) {
723     __ mov(register_location(i), eax);  // One write every page.
724   }
725 #endif  // V8_OS_WIN
726 
727   Label load_char_start_regexp, start_regexp;
728   // Load newline if index is at start, previous character otherwise.
729   __ cmp(Operand(ebp, kStartIndex), Immediate(0));
730   __ j(not_equal, &load_char_start_regexp, Label::kNear);
731   __ mov(current_character(), '\n');
732   __ jmp(&start_regexp, Label::kNear);
733 
734   // Global regexp restarts matching here.
735   __ bind(&load_char_start_regexp);
736   // Load previous char as initial value of current character register.
737   LoadCurrentCharacterUnchecked(-1, 1);
738   __ bind(&start_regexp);
739 
740   // Initialize on-stack registers.
741   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
742     // Fill saved registers with initial value = start offset - 1
743     // Fill in stack push order, to avoid accessing across an unwritten
744     // page (a problem on Windows).
745     if (num_saved_registers_ > 8) {
746       __ mov(ecx, kRegisterZero);
747       Label init_loop;
748       __ bind(&init_loop);
749       __ mov(Operand(ebp, ecx, times_1, 0), eax);
750       __ sub(ecx, Immediate(kPointerSize));
751       __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
752       __ j(greater, &init_loop);
753     } else {  // Unroll the loop.
754       for (int i = 0; i < num_saved_registers_; i++) {
755         __ mov(register_location(i), eax);
756       }
757     }
758   }
759 
760   // Initialize backtrack stack pointer.
761   __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
762 
763   __ jmp(&start_label_);
764 
765   // Exit code:
766   if (success_label_.is_linked()) {
767     // Save captures when successful.
768     __ bind(&success_label_);
769     if (num_saved_registers_ > 0) {
770       // copy captures to output
771       __ mov(ebx, Operand(ebp, kRegisterOutput));
772       __ mov(ecx, Operand(ebp, kInputEnd));
773       __ mov(edx, Operand(ebp, kStartIndex));
774       __ sub(ecx, Operand(ebp, kInputStart));
775       if (mode_ == UC16) {
776         __ lea(ecx, Operand(ecx, edx, times_2, 0));
777       } else {
778         __ add(ecx, edx);
779       }
780       for (int i = 0; i < num_saved_registers_; i++) {
781         __ mov(eax, register_location(i));
782         if (i == 0 && global_with_zero_length_check()) {
783           // Keep capture start in edx for the zero-length check later.
784           __ mov(edx, eax);
785         }
786         // Convert to index from start of string, not end.
787         __ add(eax, ecx);
788         if (mode_ == UC16) {
789           __ sar(eax, 1);  // Convert byte index to character index.
790         }
791         __ mov(Operand(ebx, i * kPointerSize), eax);
792       }
793     }
794 
795     if (global()) {
796       // Restart matching if the regular expression is flagged as global.
797       // Increment success counter.
798       __ inc(Operand(ebp, kSuccessfulCaptures));
799       // Capture results have been stored, so the number of remaining global
800       // output registers is reduced by the number of stored captures.
801       __ mov(ecx, Operand(ebp, kNumOutputRegisters));
802       __ sub(ecx, Immediate(num_saved_registers_));
803       // Check whether we have enough room for another set of capture results.
804       __ cmp(ecx, Immediate(num_saved_registers_));
805       __ j(less, &exit_label_);
806 
807       __ mov(Operand(ebp, kNumOutputRegisters), ecx);
808       // Advance the location for output.
809       __ add(Operand(ebp, kRegisterOutput),
810              Immediate(num_saved_registers_ * kPointerSize));
811 
812       // Prepare eax to initialize registers with its value in the next run.
813       __ mov(eax, Operand(ebp, kStringStartMinusOne));
814 
815       if (global_with_zero_length_check()) {
816         // Special case for zero-length matches.
817         // edx: capture start index
818         __ cmp(edi, edx);
819         // Not a zero-length match, restart.
820         __ j(not_equal, &load_char_start_regexp);
821         // edi (offset from the end) is zero if we already reached the end.
822         __ test(edi, edi);
823         __ j(zero, &exit_label_, Label::kNear);
824         // Advance current position after a zero-length match.
825         if (mode_ == UC16) {
826           __ add(edi, Immediate(2));
827         } else {
828           __ inc(edi);
829         }
830       }
831 
832       __ jmp(&load_char_start_regexp);
833     } else {
834       __ mov(eax, Immediate(SUCCESS));
835     }
836   }
837 
838   __ bind(&exit_label_);
839   if (global()) {
840     // Return the number of successful captures.
841     __ mov(eax, Operand(ebp, kSuccessfulCaptures));
842   }
843 
844   __ bind(&return_eax);
845   // Skip esp past regexp registers.
846   __ lea(esp, Operand(ebp, kBackup_ebx));
847   // Restore callee-save registers.
848   __ pop(ebx);
849   __ pop(edi);
850   __ pop(esi);
851   // Exit function frame, restore previous one.
852   __ pop(ebp);
853   __ ret(0);
854 
855   // Backtrack code (branch target for conditional backtracks).
856   if (backtrack_label_.is_linked()) {
857     __ bind(&backtrack_label_);
858     Backtrack();
859   }
860 
861   Label exit_with_exception;
862 
863   // Preempt-code
864   if (check_preempt_label_.is_linked()) {
865     SafeCallTarget(&check_preempt_label_);
866 
867     __ push(backtrack_stackpointer());
868     __ push(edi);
869 
870     CallCheckStackGuardState(ebx);
871     __ or_(eax, eax);
872     // If returning non-zero, we should end execution with the given
873     // result as return value.
874     __ j(not_zero, &return_eax);
875 
876     __ pop(edi);
877     __ pop(backtrack_stackpointer());
878     // String might have moved: Reload esi from frame.
879     __ mov(esi, Operand(ebp, kInputEnd));
880     SafeReturn();
881   }
882 
883   // Backtrack stack overflow code.
884   if (stack_overflow_label_.is_linked()) {
885     SafeCallTarget(&stack_overflow_label_);
886     // Reached if the backtrack-stack limit has been hit.
887 
888     Label grow_failed;
889     // Save registers before calling C function
890     __ push(esi);
891     __ push(edi);
892 
893     // Call GrowStack(backtrack_stackpointer())
894     static const int num_arguments = 3;
895     __ PrepareCallCFunction(num_arguments, ebx);
896     __ mov(Operand(esp, 2 * kPointerSize),
897            Immediate(ExternalReference::isolate_address(isolate())));
898     __ lea(eax, Operand(ebp, kStackHighEnd));
899     __ mov(Operand(esp, 1 * kPointerSize), eax);
900     __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
901     ExternalReference grow_stack =
902         ExternalReference::re_grow_stack(isolate());
903     __ CallCFunction(grow_stack, num_arguments);
904     // If return NULL, we have failed to grow the stack, and
905     // must exit with a stack-overflow exception.
906     __ or_(eax, eax);
907     __ j(equal, &exit_with_exception);
908     // Otherwise use return value as new stack pointer.
909     __ mov(backtrack_stackpointer(), eax);
910     // Restore saved registers and continue.
911     __ pop(edi);
912     __ pop(esi);
913     SafeReturn();
914   }
915 
916   if (exit_with_exception.is_linked()) {
917     // If any of the code above needed to exit with an exception.
918     __ bind(&exit_with_exception);
919     // Exit with Result EXCEPTION(-1) to signal thrown exception.
920     __ mov(eax, EXCEPTION);
921     __ jmp(&return_eax);
922   }
923 
924   CodeDesc code_desc;
925   masm_->GetCode(&code_desc);
926   Handle<Code> code =
927       isolate()->factory()->NewCode(code_desc,
928                                     Code::ComputeFlags(Code::REGEXP),
929                                     masm_->CodeObject());
930   PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
931   return Handle<HeapObject>::cast(code);
932 }
933 
934 
GoTo(Label * to)935 void RegExpMacroAssemblerIA32::GoTo(Label* to) {
936   BranchOrBacktrack(no_condition, to);
937 }
938 
939 
IfRegisterGE(int reg,int comparand,Label * if_ge)940 void RegExpMacroAssemblerIA32::IfRegisterGE(int reg,
941                                             int comparand,
942                                             Label* if_ge) {
943   __ cmp(register_location(reg), Immediate(comparand));
944   BranchOrBacktrack(greater_equal, if_ge);
945 }
946 
947 
IfRegisterLT(int reg,int comparand,Label * if_lt)948 void RegExpMacroAssemblerIA32::IfRegisterLT(int reg,
949                                             int comparand,
950                                             Label* if_lt) {
951   __ cmp(register_location(reg), Immediate(comparand));
952   BranchOrBacktrack(less, if_lt);
953 }
954 
955 
IfRegisterEqPos(int reg,Label * if_eq)956 void RegExpMacroAssemblerIA32::IfRegisterEqPos(int reg,
957                                                Label* if_eq) {
958   __ cmp(edi, register_location(reg));
959   BranchOrBacktrack(equal, if_eq);
960 }
961 
962 
963 RegExpMacroAssembler::IrregexpImplementation
Implementation()964     RegExpMacroAssemblerIA32::Implementation() {
965   return kIA32Implementation;
966 }
967 
968 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)969 void RegExpMacroAssemblerIA32::LoadCurrentCharacter(int cp_offset,
970                                                     Label* on_end_of_input,
971                                                     bool check_bounds,
972                                                     int characters) {
973   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
974   if (check_bounds) {
975     if (cp_offset >= 0) {
976       CheckPosition(cp_offset + characters - 1, on_end_of_input);
977     } else {
978       CheckPosition(cp_offset, on_end_of_input);
979     }
980   }
981   LoadCurrentCharacterUnchecked(cp_offset, characters);
982 }
983 
984 
PopCurrentPosition()985 void RegExpMacroAssemblerIA32::PopCurrentPosition() {
986   Pop(edi);
987 }
988 
989 
PopRegister(int register_index)990 void RegExpMacroAssemblerIA32::PopRegister(int register_index) {
991   Pop(eax);
992   __ mov(register_location(register_index), eax);
993 }
994 
995 
PushBacktrack(Label * label)996 void RegExpMacroAssemblerIA32::PushBacktrack(Label* label) {
997   Push(Immediate::CodeRelativeOffset(label));
998   CheckStackLimit();
999 }
1000 
1001 
PushCurrentPosition()1002 void RegExpMacroAssemblerIA32::PushCurrentPosition() {
1003   Push(edi);
1004 }
1005 
1006 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1007 void RegExpMacroAssemblerIA32::PushRegister(int register_index,
1008                                             StackCheckFlag check_stack_limit) {
1009   __ mov(eax, register_location(register_index));
1010   Push(eax);
1011   if (check_stack_limit) CheckStackLimit();
1012 }
1013 
1014 
ReadCurrentPositionFromRegister(int reg)1015 void RegExpMacroAssemblerIA32::ReadCurrentPositionFromRegister(int reg) {
1016   __ mov(edi, register_location(reg));
1017 }
1018 
1019 
ReadStackPointerFromRegister(int reg)1020 void RegExpMacroAssemblerIA32::ReadStackPointerFromRegister(int reg) {
1021   __ mov(backtrack_stackpointer(), register_location(reg));
1022   __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
1023 }
1024 
SetCurrentPositionFromEnd(int by)1025 void RegExpMacroAssemblerIA32::SetCurrentPositionFromEnd(int by)  {
1026   Label after_position;
1027   __ cmp(edi, -by * char_size());
1028   __ j(greater_equal, &after_position, Label::kNear);
1029   __ mov(edi, -by * char_size());
1030   // On RegExp code entry (where this operation is used), the character before
1031   // the current position is expected to be already loaded.
1032   // We have advanced the position, so it's safe to read backwards.
1033   LoadCurrentCharacterUnchecked(-1, 1);
1034   __ bind(&after_position);
1035 }
1036 
1037 
SetRegister(int register_index,int to)1038 void RegExpMacroAssemblerIA32::SetRegister(int register_index, int to) {
1039   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1040   __ mov(register_location(register_index), Immediate(to));
1041 }
1042 
1043 
Succeed()1044 bool RegExpMacroAssemblerIA32::Succeed() {
1045   __ jmp(&success_label_);
1046   return global();
1047 }
1048 
1049 
WriteCurrentPositionToRegister(int reg,int cp_offset)1050 void RegExpMacroAssemblerIA32::WriteCurrentPositionToRegister(int reg,
1051                                                               int cp_offset) {
1052   if (cp_offset == 0) {
1053     __ mov(register_location(reg), edi);
1054   } else {
1055     __ lea(eax, Operand(edi, cp_offset * char_size()));
1056     __ mov(register_location(reg), eax);
1057   }
1058 }
1059 
1060 
ClearRegisters(int reg_from,int reg_to)1061 void RegExpMacroAssemblerIA32::ClearRegisters(int reg_from, int reg_to) {
1062   DCHECK(reg_from <= reg_to);
1063   __ mov(eax, Operand(ebp, kStringStartMinusOne));
1064   for (int reg = reg_from; reg <= reg_to; reg++) {
1065     __ mov(register_location(reg), eax);
1066   }
1067 }
1068 
1069 
WriteStackPointerToRegister(int reg)1070 void RegExpMacroAssemblerIA32::WriteStackPointerToRegister(int reg) {
1071   __ mov(eax, backtrack_stackpointer());
1072   __ sub(eax, Operand(ebp, kStackHighEnd));
1073   __ mov(register_location(reg), eax);
1074 }
1075 
1076 
1077 // Private methods:
1078 
CallCheckStackGuardState(Register scratch)1079 void RegExpMacroAssemblerIA32::CallCheckStackGuardState(Register scratch) {
1080   static const int num_arguments = 3;
1081   __ PrepareCallCFunction(num_arguments, scratch);
1082   // RegExp code frame pointer.
1083   __ mov(Operand(esp, 2 * kPointerSize), ebp);
1084   // Code* of self.
1085   __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
1086   // Next address on the stack (will be address of return address).
1087   __ lea(eax, Operand(esp, -kPointerSize));
1088   __ mov(Operand(esp, 0 * kPointerSize), eax);
1089   ExternalReference check_stack_guard =
1090       ExternalReference::re_check_stack_guard_state(isolate());
1091   __ CallCFunction(check_stack_guard, num_arguments);
1092 }
1093 
1094 
1095 // Helper function for reading a value out of a stack frame.
1096 template <typename T>
frame_entry(Address re_frame,int frame_offset)1097 static T& frame_entry(Address re_frame, int frame_offset) {
1098   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1099 }
1100 
1101 
1102 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1103 static T* frame_entry_address(Address re_frame, int frame_offset) {
1104   return reinterpret_cast<T*>(re_frame + frame_offset);
1105 }
1106 
1107 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1108 int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address,
1109                                                    Code* re_code,
1110                                                    Address re_frame) {
1111   return NativeRegExpMacroAssembler::CheckStackGuardState(
1112       frame_entry<Isolate*>(re_frame, kIsolate),
1113       frame_entry<int>(re_frame, kStartIndex),
1114       frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
1115       frame_entry_address<String*>(re_frame, kInputString),
1116       frame_entry_address<const byte*>(re_frame, kInputStart),
1117       frame_entry_address<const byte*>(re_frame, kInputEnd));
1118 }
1119 
1120 
register_location(int register_index)1121 Operand RegExpMacroAssemblerIA32::register_location(int register_index) {
1122   DCHECK(register_index < (1<<30));
1123   if (num_registers_ <= register_index) {
1124     num_registers_ = register_index + 1;
1125   }
1126   return Operand(ebp, kRegisterZero - register_index * kPointerSize);
1127 }
1128 
1129 
CheckPosition(int cp_offset,Label * on_outside_input)1130 void RegExpMacroAssemblerIA32::CheckPosition(int cp_offset,
1131                                              Label* on_outside_input) {
1132   if (cp_offset >= 0) {
1133     __ cmp(edi, -cp_offset * char_size());
1134     BranchOrBacktrack(greater_equal, on_outside_input);
1135   } else {
1136     __ lea(eax, Operand(edi, cp_offset * char_size()));
1137     __ cmp(eax, Operand(ebp, kStringStartMinusOne));
1138     BranchOrBacktrack(less_equal, on_outside_input);
1139   }
1140 }
1141 
1142 
BranchOrBacktrack(Condition condition,Label * to)1143 void RegExpMacroAssemblerIA32::BranchOrBacktrack(Condition condition,
1144                                                  Label* to) {
1145   if (condition < 0) {  // No condition
1146     if (to == NULL) {
1147       Backtrack();
1148       return;
1149     }
1150     __ jmp(to);
1151     return;
1152   }
1153   if (to == NULL) {
1154     __ j(condition, &backtrack_label_);
1155     return;
1156   }
1157   __ j(condition, to);
1158 }
1159 
1160 
SafeCall(Label * to)1161 void RegExpMacroAssemblerIA32::SafeCall(Label* to) {
1162   Label return_to;
1163   __ push(Immediate::CodeRelativeOffset(&return_to));
1164   __ jmp(to);
1165   __ bind(&return_to);
1166 }
1167 
1168 
SafeReturn()1169 void RegExpMacroAssemblerIA32::SafeReturn() {
1170   __ pop(ebx);
1171   __ add(ebx, Immediate(masm_->CodeObject()));
1172   __ jmp(ebx);
1173 }
1174 
1175 
SafeCallTarget(Label * name)1176 void RegExpMacroAssemblerIA32::SafeCallTarget(Label* name) {
1177   __ bind(name);
1178 }
1179 
1180 
Push(Register source)1181 void RegExpMacroAssemblerIA32::Push(Register source) {
1182   DCHECK(!source.is(backtrack_stackpointer()));
1183   // Notice: This updates flags, unlike normal Push.
1184   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1185   __ mov(Operand(backtrack_stackpointer(), 0), source);
1186 }
1187 
1188 
Push(Immediate value)1189 void RegExpMacroAssemblerIA32::Push(Immediate value) {
1190   // Notice: This updates flags, unlike normal Push.
1191   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1192   __ mov(Operand(backtrack_stackpointer(), 0), value);
1193 }
1194 
1195 
Pop(Register target)1196 void RegExpMacroAssemblerIA32::Pop(Register target) {
1197   DCHECK(!target.is(backtrack_stackpointer()));
1198   __ mov(target, Operand(backtrack_stackpointer(), 0));
1199   // Notice: This updates flags, unlike normal Pop.
1200   __ add(backtrack_stackpointer(), Immediate(kPointerSize));
1201 }
1202 
1203 
CheckPreemption()1204 void RegExpMacroAssemblerIA32::CheckPreemption() {
1205   // Check for preemption.
1206   Label no_preempt;
1207   ExternalReference stack_limit =
1208       ExternalReference::address_of_stack_limit(isolate());
1209   __ cmp(esp, Operand::StaticVariable(stack_limit));
1210   __ j(above, &no_preempt);
1211 
1212   SafeCall(&check_preempt_label_);
1213 
1214   __ bind(&no_preempt);
1215 }
1216 
1217 
CheckStackLimit()1218 void RegExpMacroAssemblerIA32::CheckStackLimit() {
1219   Label no_stack_overflow;
1220   ExternalReference stack_limit =
1221       ExternalReference::address_of_regexp_stack_limit(isolate());
1222   __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
1223   __ j(above, &no_stack_overflow);
1224 
1225   SafeCall(&stack_overflow_label_);
1226 
1227   __ bind(&no_stack_overflow);
1228 }
1229 
1230 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1231 void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset,
1232                                                              int characters) {
1233   if (mode_ == LATIN1) {
1234     if (characters == 4) {
1235       __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
1236     } else if (characters == 2) {
1237       __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
1238     } else {
1239       DCHECK(characters == 1);
1240       __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
1241     }
1242   } else {
1243     DCHECK(mode_ == UC16);
1244     if (characters == 2) {
1245       __ mov(current_character(),
1246              Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1247     } else {
1248       DCHECK(characters == 1);
1249       __ movzx_w(current_character(),
1250                  Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1251     }
1252   }
1253 }
1254 
1255 
1256 #undef __
1257 
1258 #endif  // V8_INTERPRETED_REGEXP
1259 
1260 }  // namespace internal
1261 }  // namespace v8
1262 
1263 #endif  // V8_TARGET_ARCH_IA32
1264