1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "linker_phdr.h"
30
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37
38 #include "linker.h"
39 #include "linker_debug.h"
40 #include "linker_utils.h"
41
42 #include "private/bionic_prctl.h"
43
GetTargetElfMachine()44 static int GetTargetElfMachine() {
45 #if defined(__arm__)
46 return EM_ARM;
47 #elif defined(__aarch64__)
48 return EM_AARCH64;
49 #elif defined(__i386__)
50 return EM_386;
51 #elif defined(__mips__)
52 return EM_MIPS;
53 #elif defined(__x86_64__)
54 return EM_X86_64;
55 #endif
56 }
57
58 /**
59 TECHNICAL NOTE ON ELF LOADING.
60
61 An ELF file's program header table contains one or more PT_LOAD
62 segments, which corresponds to portions of the file that need to
63 be mapped into the process' address space.
64
65 Each loadable segment has the following important properties:
66
67 p_offset -> segment file offset
68 p_filesz -> segment file size
69 p_memsz -> segment memory size (always >= p_filesz)
70 p_vaddr -> segment's virtual address
71 p_flags -> segment flags (e.g. readable, writable, executable)
72
73 We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
74
75 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
76 ranges of virtual addresses. A few rules apply:
77
78 - the virtual address ranges should not overlap.
79
80 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
81 between them should always be initialized to 0.
82
83 - ranges do not necessarily start or end at page boundaries. Two distinct
84 segments can have their start and end on the same page. In this case, the
85 page inherits the mapping flags of the latter segment.
86
87 Finally, the real load addrs of each segment is not p_vaddr. Instead the
88 loader decides where to load the first segment, then will load all others
89 relative to the first one to respect the initial range layout.
90
91 For example, consider the following list:
92
93 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
94 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
95
96 This corresponds to two segments that cover these virtual address ranges:
97
98 0x30000...0x34000
99 0x40000...0x48000
100
101 If the loader decides to load the first segment at address 0xa0000000
102 then the segments' load address ranges will be:
103
104 0xa0030000...0xa0034000
105 0xa0040000...0xa0048000
106
107 In other words, all segments must be loaded at an address that has the same
108 constant offset from their p_vaddr value. This offset is computed as the
109 difference between the first segment's load address, and its p_vaddr value.
110
111 However, in practice, segments do _not_ start at page boundaries. Since we
112 can only memory-map at page boundaries, this means that the bias is
113 computed as:
114
115 load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
116
117 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
118 possible wrap around UINT32_MAX for possible large p_vaddr values).
119
120 And that the phdr0_load_address must start at a page boundary, with
121 the segment's real content starting at:
122
123 phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
124
125 Note that ELF requires the following condition to make the mmap()-ing work:
126
127 PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
128
129 The load_bias must be added to any p_vaddr value read from the ELF file to
130 determine the corresponding memory address.
131
132 **/
133
134 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0)
135 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
136 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
137 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
138
ElfReader()139 ElfReader::ElfReader()
140 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
141 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
142 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
143 mapped_by_caller_(false) {
144 }
145
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
147 CHECK(!did_read_);
148 CHECK(!did_load_);
149 name_ = name;
150 fd_ = fd;
151 file_offset_ = file_offset;
152 file_size_ = file_size;
153
154 if (ReadElfHeader() &&
155 VerifyElfHeader() &&
156 ReadProgramHeaders() &&
157 ReadSectionHeaders() &&
158 ReadDynamicSection()) {
159 did_read_ = true;
160 }
161
162 return did_read_;
163 }
164
Load(const android_dlextinfo * extinfo)165 bool ElfReader::Load(const android_dlextinfo* extinfo) {
166 CHECK(did_read_);
167 CHECK(!did_load_);
168 if (ReserveAddressSpace(extinfo) &&
169 LoadSegments() &&
170 FindPhdr()) {
171 did_load_ = true;
172 }
173
174 return did_load_;
175 }
176
get_string(ElfW (Word)index) const177 const char* ElfReader::get_string(ElfW(Word) index) const {
178 CHECK(strtab_ != nullptr);
179 CHECK(index < strtab_size_);
180
181 return strtab_ + index;
182 }
183
ReadElfHeader()184 bool ElfReader::ReadElfHeader() {
185 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
186 if (rc < 0) {
187 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
188 return false;
189 }
190
191 if (rc != sizeof(header_)) {
192 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
193 static_cast<size_t>(rc));
194 return false;
195 }
196 return true;
197 }
198
VerifyElfHeader()199 bool ElfReader::VerifyElfHeader() {
200 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
201 DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
202 return false;
203 }
204
205 // Try to give a clear diagnostic for ELF class mismatches, since they're
206 // an easy mistake to make during the 32-bit/64-bit transition period.
207 int elf_class = header_.e_ident[EI_CLASS];
208 #if defined(__LP64__)
209 if (elf_class != ELFCLASS64) {
210 if (elf_class == ELFCLASS32) {
211 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
212 } else {
213 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
214 }
215 return false;
216 }
217 #else
218 if (elf_class != ELFCLASS32) {
219 if (elf_class == ELFCLASS64) {
220 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
221 } else {
222 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
223 }
224 return false;
225 }
226 #endif
227
228 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
229 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
230 return false;
231 }
232
233 if (header_.e_type != ET_DYN) {
234 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
235 return false;
236 }
237
238 if (header_.e_version != EV_CURRENT) {
239 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
240 return false;
241 }
242
243 if (header_.e_machine != GetTargetElfMachine()) {
244 DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
245 return false;
246 }
247
248 return true;
249 }
250
CheckFileRange(ElfW (Addr)offset,size_t size,size_t alignment)251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
252 off64_t range_start;
253 off64_t range_end;
254
255 return safe_add(&range_start, file_offset_, offset) &&
256 safe_add(&range_end, range_start, size) &&
257 (range_start < file_size_) &&
258 (range_end <= file_size_) &&
259 ((offset % alignment) == 0);
260 }
261
262 // Loads the program header table from an ELF file into a read-only private
263 // anonymous mmap-ed block.
ReadProgramHeaders()264 bool ElfReader::ReadProgramHeaders() {
265 phdr_num_ = header_.e_phnum;
266
267 // Like the kernel, we only accept program header tables that
268 // are smaller than 64KiB.
269 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
270 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
271 return false;
272 }
273
274 // Boundary checks
275 size_t size = phdr_num_ * sizeof(ElfW(Phdr));
276 if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
277 DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
278 name_.c_str(),
279 static_cast<size_t>(header_.e_phoff),
280 size);
281 return false;
282 }
283
284 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
285 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
286 return false;
287 }
288
289 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
290 return true;
291 }
292
ReadSectionHeaders()293 bool ElfReader::ReadSectionHeaders() {
294 shdr_num_ = header_.e_shnum;
295
296 if (shdr_num_ == 0) {
297 DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
298 return false;
299 }
300
301 size_t size = shdr_num_ * sizeof(ElfW(Shdr));
302 if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
303 DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
304 name_.c_str(),
305 static_cast<size_t>(header_.e_shoff),
306 size);
307 return false;
308 }
309
310 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
311 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
312 return false;
313 }
314
315 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
316 return true;
317 }
318
ReadDynamicSection()319 bool ElfReader::ReadDynamicSection() {
320 // 1. Find .dynamic section (in section headers)
321 const ElfW(Shdr)* dynamic_shdr = nullptr;
322 for (size_t i = 0; i < shdr_num_; ++i) {
323 if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
324 dynamic_shdr = &shdr_table_ [i];
325 break;
326 }
327 }
328
329 if (dynamic_shdr == nullptr) {
330 DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
331 return false;
332 }
333
334 if (dynamic_shdr->sh_link >= shdr_num_) {
335 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
336 name_.c_str(),
337 dynamic_shdr->sh_link);
338 return false;
339 }
340
341 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
342
343 if (strtab_shdr->sh_type != SHT_STRTAB) {
344 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
345 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
346 return false;
347 }
348
349 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
350 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
351 return false;
352 }
353
354 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
355 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
356 return false;
357 }
358
359 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
360
361 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
362 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
363 name_.c_str());
364 return false;
365 }
366
367 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
368 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
369 return false;
370 }
371
372 strtab_ = static_cast<const char*>(strtab_fragment_.data());
373 strtab_size_ = strtab_fragment_.size();
374 return true;
375 }
376
377 /* Returns the size of the extent of all the possibly non-contiguous
378 * loadable segments in an ELF program header table. This corresponds
379 * to the page-aligned size in bytes that needs to be reserved in the
380 * process' address space. If there are no loadable segments, 0 is
381 * returned.
382 *
383 * If out_min_vaddr or out_max_vaddr are not null, they will be
384 * set to the minimum and maximum addresses of pages to be reserved,
385 * or 0 if there is nothing to load.
386 */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)387 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
388 ElfW(Addr)* out_min_vaddr,
389 ElfW(Addr)* out_max_vaddr) {
390 ElfW(Addr) min_vaddr = UINTPTR_MAX;
391 ElfW(Addr) max_vaddr = 0;
392
393 bool found_pt_load = false;
394 for (size_t i = 0; i < phdr_count; ++i) {
395 const ElfW(Phdr)* phdr = &phdr_table[i];
396
397 if (phdr->p_type != PT_LOAD) {
398 continue;
399 }
400 found_pt_load = true;
401
402 if (phdr->p_vaddr < min_vaddr) {
403 min_vaddr = phdr->p_vaddr;
404 }
405
406 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
407 max_vaddr = phdr->p_vaddr + phdr->p_memsz;
408 }
409 }
410 if (!found_pt_load) {
411 min_vaddr = 0;
412 }
413
414 min_vaddr = PAGE_START(min_vaddr);
415 max_vaddr = PAGE_END(max_vaddr);
416
417 if (out_min_vaddr != nullptr) {
418 *out_min_vaddr = min_vaddr;
419 }
420 if (out_max_vaddr != nullptr) {
421 *out_max_vaddr = max_vaddr;
422 }
423 return max_vaddr - min_vaddr;
424 }
425
426 // Reserve a virtual address range big enough to hold all loadable
427 // segments of a program header table. This is done by creating a
428 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)429 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
430 ElfW(Addr) min_vaddr;
431 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
432 if (load_size_ == 0) {
433 DL_ERR("\"%s\" has no loadable segments", name_.c_str());
434 return false;
435 }
436
437 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
438 void* start;
439 size_t reserved_size = 0;
440 bool reserved_hint = true;
441 bool strict_hint = false;
442 // Assume position independent executable by default.
443 void* mmap_hint = nullptr;
444
445 if (extinfo != nullptr) {
446 if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
447 reserved_size = extinfo->reserved_size;
448 reserved_hint = false;
449 } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
450 reserved_size = extinfo->reserved_size;
451 }
452
453 if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
454 mmap_hint = addr;
455 } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
456 mmap_hint = extinfo->reserved_addr;
457 strict_hint = true;
458 }
459 }
460
461 if (load_size_ > reserved_size) {
462 if (!reserved_hint) {
463 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
464 reserved_size - load_size_, load_size_, name_.c_str());
465 return false;
466 }
467 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0);
469 if (start == MAP_FAILED) {
470 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
471 return false;
472 }
473 if (strict_hint && (start != mmap_hint)) {
474 munmap(start, load_size_);
475 DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
476 load_size_, mmap_hint, name_.c_str());
477 return false;
478 }
479 } else {
480 start = extinfo->reserved_addr;
481 mapped_by_caller_ = true;
482 }
483
484 load_start_ = start;
485 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
486 return true;
487 }
488
LoadSegments()489 bool ElfReader::LoadSegments() {
490 for (size_t i = 0; i < phdr_num_; ++i) {
491 const ElfW(Phdr)* phdr = &phdr_table_[i];
492
493 if (phdr->p_type != PT_LOAD) {
494 continue;
495 }
496
497 // Segment addresses in memory.
498 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
499 ElfW(Addr) seg_end = seg_start + phdr->p_memsz;
500
501 ElfW(Addr) seg_page_start = PAGE_START(seg_start);
502 ElfW(Addr) seg_page_end = PAGE_END(seg_end);
503
504 ElfW(Addr) seg_file_end = seg_start + phdr->p_filesz;
505
506 // File offsets.
507 ElfW(Addr) file_start = phdr->p_offset;
508 ElfW(Addr) file_end = file_start + phdr->p_filesz;
509
510 ElfW(Addr) file_page_start = PAGE_START(file_start);
511 ElfW(Addr) file_length = file_end - file_page_start;
512
513 if (file_size_ <= 0) {
514 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
515 return false;
516 }
517
518 if (file_end > static_cast<size_t>(file_size_)) {
519 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
520 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
521 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
522 reinterpret_cast<void*>(phdr->p_filesz),
523 reinterpret_cast<void*>(file_end), file_size_);
524 return false;
525 }
526
527 if (file_length != 0) {
528 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
529 file_length,
530 PFLAGS_TO_PROT(phdr->p_flags),
531 MAP_FIXED|MAP_PRIVATE,
532 fd_,
533 file_offset_ + file_page_start);
534 if (seg_addr == MAP_FAILED) {
535 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
536 return false;
537 }
538 }
539
540 // if the segment is writable, and does not end on a page boundary,
541 // zero-fill it until the page limit.
542 if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
543 memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
544 }
545
546 seg_file_end = PAGE_END(seg_file_end);
547
548 // seg_file_end is now the first page address after the file
549 // content. If seg_end is larger, we need to zero anything
550 // between them. This is done by using a private anonymous
551 // map for all extra pages.
552 if (seg_page_end > seg_file_end) {
553 size_t zeromap_size = seg_page_end - seg_file_end;
554 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
555 zeromap_size,
556 PFLAGS_TO_PROT(phdr->p_flags),
557 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
558 -1,
559 0);
560 if (zeromap == MAP_FAILED) {
561 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
562 return false;
563 }
564
565 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
566 }
567 }
568 return true;
569 }
570
571 /* Used internally. Used to set the protection bits of all loaded segments
572 * with optional extra flags (i.e. really PROT_WRITE). Used by
573 * phdr_table_protect_segments and phdr_table_unprotect_segments.
574 */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)575 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
576 ElfW(Addr) load_bias, int extra_prot_flags) {
577 const ElfW(Phdr)* phdr = phdr_table;
578 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
579
580 for (; phdr < phdr_limit; phdr++) {
581 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
582 continue;
583 }
584
585 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
586 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
587
588 int prot = PFLAGS_TO_PROT(phdr->p_flags);
589 if ((extra_prot_flags & PROT_WRITE) != 0) {
590 // make sure we're never simultaneously writable / executable
591 prot &= ~PROT_EXEC;
592 }
593
594 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
595 seg_page_end - seg_page_start,
596 prot | extra_prot_flags);
597 if (ret < 0) {
598 return -1;
599 }
600 }
601 return 0;
602 }
603
604 /* Restore the original protection modes for all loadable segments.
605 * You should only call this after phdr_table_unprotect_segments and
606 * applying all relocations.
607 *
608 * Input:
609 * phdr_table -> program header table
610 * phdr_count -> number of entries in tables
611 * load_bias -> load bias
612 * Return:
613 * 0 on error, -1 on failure (error code in errno).
614 */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)615 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
616 size_t phdr_count, ElfW(Addr) load_bias) {
617 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
618 }
619
620 /* Change the protection of all loaded segments in memory to writable.
621 * This is useful before performing relocations. Once completed, you
622 * will have to call phdr_table_protect_segments to restore the original
623 * protection flags on all segments.
624 *
625 * Note that some writable segments can also have their content turned
626 * to read-only by calling phdr_table_protect_gnu_relro. This is no
627 * performed here.
628 *
629 * Input:
630 * phdr_table -> program header table
631 * phdr_count -> number of entries in tables
632 * load_bias -> load bias
633 * Return:
634 * 0 on error, -1 on failure (error code in errno).
635 */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)636 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
637 size_t phdr_count, ElfW(Addr) load_bias) {
638 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
639 }
640
641 /* Used internally by phdr_table_protect_gnu_relro and
642 * phdr_table_unprotect_gnu_relro.
643 */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)644 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
645 ElfW(Addr) load_bias, int prot_flags) {
646 const ElfW(Phdr)* phdr = phdr_table;
647 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
648
649 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
650 if (phdr->p_type != PT_GNU_RELRO) {
651 continue;
652 }
653
654 // Tricky: what happens when the relro segment does not start
655 // or end at page boundaries? We're going to be over-protective
656 // here and put every page touched by the segment as read-only.
657
658 // This seems to match Ian Lance Taylor's description of the
659 // feature at http://www.airs.com/blog/archives/189.
660
661 // Extract:
662 // Note that the current dynamic linker code will only work
663 // correctly if the PT_GNU_RELRO segment starts on a page
664 // boundary. This is because the dynamic linker rounds the
665 // p_vaddr field down to the previous page boundary. If
666 // there is anything on the page which should not be read-only,
667 // the program is likely to fail at runtime. So in effect the
668 // linker must only emit a PT_GNU_RELRO segment if it ensures
669 // that it starts on a page boundary.
670 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
671 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
672
673 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
674 seg_page_end - seg_page_start,
675 prot_flags);
676 if (ret < 0) {
677 return -1;
678 }
679 }
680 return 0;
681 }
682
683 /* Apply GNU relro protection if specified by the program header. This will
684 * turn some of the pages of a writable PT_LOAD segment to read-only, as
685 * specified by one or more PT_GNU_RELRO segments. This must be always
686 * performed after relocations.
687 *
688 * The areas typically covered are .got and .data.rel.ro, these are
689 * read-only from the program's POV, but contain absolute addresses
690 * that need to be relocated before use.
691 *
692 * Input:
693 * phdr_table -> program header table
694 * phdr_count -> number of entries in tables
695 * load_bias -> load bias
696 * Return:
697 * 0 on error, -1 on failure (error code in errno).
698 */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)699 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
700 size_t phdr_count, ElfW(Addr) load_bias) {
701 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
702 }
703
704 /* Serialize the GNU relro segments to the given file descriptor. This can be
705 * performed after relocations to allow another process to later share the
706 * relocated segment, if it was loaded at the same address.
707 *
708 * Input:
709 * phdr_table -> program header table
710 * phdr_count -> number of entries in tables
711 * load_bias -> load bias
712 * fd -> writable file descriptor to use
713 * Return:
714 * 0 on error, -1 on failure (error code in errno).
715 */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)716 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
717 size_t phdr_count,
718 ElfW(Addr) load_bias,
719 int fd) {
720 const ElfW(Phdr)* phdr = phdr_table;
721 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
722 ssize_t file_offset = 0;
723
724 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
725 if (phdr->p_type != PT_GNU_RELRO) {
726 continue;
727 }
728
729 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
730 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
731 ssize_t size = seg_page_end - seg_page_start;
732
733 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
734 if (written != size) {
735 return -1;
736 }
737 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
738 MAP_PRIVATE|MAP_FIXED, fd, file_offset);
739 if (map == MAP_FAILED) {
740 return -1;
741 }
742 file_offset += size;
743 }
744 return 0;
745 }
746
747 /* Where possible, replace the GNU relro segments with mappings of the given
748 * file descriptor. This can be performed after relocations to allow a file
749 * previously created by phdr_table_serialize_gnu_relro in another process to
750 * replace the dirty relocated pages, saving memory, if it was loaded at the
751 * same address. We have to compare the data before we map over it, since some
752 * parts of the relro segment may not be identical due to other libraries in
753 * the process being loaded at different addresses.
754 *
755 * Input:
756 * phdr_table -> program header table
757 * phdr_count -> number of entries in tables
758 * load_bias -> load bias
759 * fd -> readable file descriptor to use
760 * Return:
761 * 0 on error, -1 on failure (error code in errno).
762 */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)763 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
764 size_t phdr_count,
765 ElfW(Addr) load_bias,
766 int fd) {
767 // Map the file at a temporary location so we can compare its contents.
768 struct stat file_stat;
769 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
770 return -1;
771 }
772 off_t file_size = file_stat.st_size;
773 void* temp_mapping = nullptr;
774 if (file_size > 0) {
775 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
776 if (temp_mapping == MAP_FAILED) {
777 return -1;
778 }
779 }
780 size_t file_offset = 0;
781
782 // Iterate over the relro segments and compare/remap the pages.
783 const ElfW(Phdr)* phdr = phdr_table;
784 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
785
786 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
787 if (phdr->p_type != PT_GNU_RELRO) {
788 continue;
789 }
790
791 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
792 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
793
794 char* file_base = static_cast<char*>(temp_mapping) + file_offset;
795 char* mem_base = reinterpret_cast<char*>(seg_page_start);
796 size_t match_offset = 0;
797 size_t size = seg_page_end - seg_page_start;
798
799 if (file_size - file_offset < size) {
800 // File is too short to compare to this segment. The contents are likely
801 // different as well (it's probably for a different library version) so
802 // just don't bother checking.
803 break;
804 }
805
806 while (match_offset < size) {
807 // Skip over dissimilar pages.
808 while (match_offset < size &&
809 memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
810 match_offset += PAGE_SIZE;
811 }
812
813 // Count similar pages.
814 size_t mismatch_offset = match_offset;
815 while (mismatch_offset < size &&
816 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
817 mismatch_offset += PAGE_SIZE;
818 }
819
820 // Map over similar pages.
821 if (mismatch_offset > match_offset) {
822 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
823 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
824 if (map == MAP_FAILED) {
825 munmap(temp_mapping, file_size);
826 return -1;
827 }
828 }
829
830 match_offset = mismatch_offset;
831 }
832
833 // Add to the base file offset in case there are multiple relro segments.
834 file_offset += size;
835 }
836 munmap(temp_mapping, file_size);
837 return 0;
838 }
839
840
841 #if defined(__arm__)
842
843 # ifndef PT_ARM_EXIDX
844 # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
845 # endif
846
847 /* Return the address and size of the .ARM.exidx section in memory,
848 * if present.
849 *
850 * Input:
851 * phdr_table -> program header table
852 * phdr_count -> number of entries in tables
853 * load_bias -> load bias
854 * Output:
855 * arm_exidx -> address of table in memory (null on failure).
856 * arm_exidx_count -> number of items in table (0 on failure).
857 * Return:
858 * 0 on error, -1 on failure (_no_ error code in errno)
859 */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)860 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
861 ElfW(Addr) load_bias,
862 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
863 const ElfW(Phdr)* phdr = phdr_table;
864 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
865
866 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
867 if (phdr->p_type != PT_ARM_EXIDX) {
868 continue;
869 }
870
871 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
872 *arm_exidx_count = phdr->p_memsz / 8;
873 return 0;
874 }
875 *arm_exidx = nullptr;
876 *arm_exidx_count = 0;
877 return -1;
878 }
879 #endif
880
881 /* Return the address and size of the ELF file's .dynamic section in memory,
882 * or null if missing.
883 *
884 * Input:
885 * phdr_table -> program header table
886 * phdr_count -> number of entries in tables
887 * load_bias -> load bias
888 * Output:
889 * dynamic -> address of table in memory (null on failure).
890 * dynamic_flags -> protection flags for section (unset on failure)
891 * Return:
892 * void
893 */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)894 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
895 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
896 ElfW(Word)* dynamic_flags) {
897 *dynamic = nullptr;
898 for (size_t i = 0; i<phdr_count; ++i) {
899 const ElfW(Phdr)& phdr = phdr_table[i];
900 if (phdr.p_type == PT_DYNAMIC) {
901 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
902 if (dynamic_flags) {
903 *dynamic_flags = phdr.p_flags;
904 }
905 return;
906 }
907 }
908 }
909
910 /* Return the program interpreter string, or nullptr if missing.
911 *
912 * Input:
913 * phdr_table -> program header table
914 * phdr_count -> number of entries in tables
915 * load_bias -> load bias
916 * Return:
917 * pointer to the program interpreter string.
918 */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)919 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
920 ElfW(Addr) load_bias) {
921 for (size_t i = 0; i<phdr_count; ++i) {
922 const ElfW(Phdr)& phdr = phdr_table[i];
923 if (phdr.p_type == PT_INTERP) {
924 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
925 }
926 }
927 return nullptr;
928 }
929
930 // Sets loaded_phdr_ to the address of the program header table as it appears
931 // in the loaded segments in memory. This is in contrast with phdr_table_,
932 // which is temporary and will be released before the library is relocated.
FindPhdr()933 bool ElfReader::FindPhdr() {
934 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
935
936 // If there is a PT_PHDR, use it directly.
937 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
938 if (phdr->p_type == PT_PHDR) {
939 return CheckPhdr(load_bias_ + phdr->p_vaddr);
940 }
941 }
942
943 // Otherwise, check the first loadable segment. If its file offset
944 // is 0, it starts with the ELF header, and we can trivially find the
945 // loaded program header from it.
946 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
947 if (phdr->p_type == PT_LOAD) {
948 if (phdr->p_offset == 0) {
949 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr;
950 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
951 ElfW(Addr) offset = ehdr->e_phoff;
952 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
953 }
954 break;
955 }
956 }
957
958 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
959 return false;
960 }
961
962 // Ensures that our program header is actually within a loadable
963 // segment. This should help catch badly-formed ELF files that
964 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)965 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
966 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
967 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
968 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
969 if (phdr->p_type != PT_LOAD) {
970 continue;
971 }
972 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
973 ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
974 if (seg_start <= loaded && loaded_end <= seg_end) {
975 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
976 return true;
977 }
978 }
979 DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
980 name_.c_str(), reinterpret_cast<void*>(loaded));
981 return false;
982 }
983