1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11
to_vector(const Sk2s & x)12 static SkVector to_vector(const Sk2s& x) {
13 SkVector vector;
14 x.store(&vector);
15 return vector;
16 }
17
18 /** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
19 involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
20 May also introduce overflow of fixed when we compute our setup.
21 */
22 // #define DIRECT_EVAL_OF_POLYNOMIALS
23
24 ////////////////////////////////////////////////////////////////////////
25
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)26 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
27 SkScalar ab = a - b;
28 SkScalar bc = b - c;
29 if (ab < 0) {
30 bc = -bc;
31 }
32 return ab == 0 || bc < 0;
33 }
34
35 ////////////////////////////////////////////////////////////////////////
36
is_unit_interval(SkScalar x)37 static bool is_unit_interval(SkScalar x) {
38 return x > 0 && x < SK_Scalar1;
39 }
40
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)41 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
42 SkASSERT(ratio);
43
44 if (numer < 0) {
45 numer = -numer;
46 denom = -denom;
47 }
48
49 if (denom == 0 || numer == 0 || numer >= denom) {
50 return 0;
51 }
52
53 SkScalar r = numer / denom;
54 if (SkScalarIsNaN(r)) {
55 return 0;
56 }
57 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
58 if (r == 0) { // catch underflow if numer <<<< denom
59 return 0;
60 }
61 *ratio = r;
62 return 1;
63 }
64
65 /** From Numerical Recipes in C.
66
67 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
68 x1 = Q / A
69 x2 = C / Q
70 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])71 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
72 SkASSERT(roots);
73
74 if (A == 0) {
75 return valid_unit_divide(-C, B, roots);
76 }
77
78 SkScalar* r = roots;
79
80 SkScalar R = B*B - 4*A*C;
81 if (R < 0 || !SkScalarIsFinite(R)) { // complex roots
82 // if R is infinite, it's possible that it may still produce
83 // useful results if the operation was repeated in doubles
84 // the flipside is determining if the more precise answer
85 // isn't useful because surrounding machinery (e.g., subtracting
86 // the axis offset from C) already discards the extra precision
87 // more investigation and unit tests required...
88 return 0;
89 }
90 R = SkScalarSqrt(R);
91
92 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
93 r += valid_unit_divide(Q, A, r);
94 r += valid_unit_divide(C, Q, r);
95 if (r - roots == 2) {
96 if (roots[0] > roots[1])
97 SkTSwap<SkScalar>(roots[0], roots[1]);
98 else if (roots[0] == roots[1]) // nearly-equal?
99 r -= 1; // skip the double root
100 }
101 return (int)(r - roots);
102 }
103
104 ///////////////////////////////////////////////////////////////////////////////
105 ///////////////////////////////////////////////////////////////////////////////
106
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)107 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
108 SkASSERT(src);
109 SkASSERT(t >= 0 && t <= SK_Scalar1);
110
111 if (pt) {
112 *pt = SkEvalQuadAt(src, t);
113 }
114 if (tangent) {
115 *tangent = SkEvalQuadTangentAt(src, t);
116 }
117 }
118
SkEvalQuadAt(const SkPoint src[3],SkScalar t)119 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
120 return to_point(SkQuadCoeff(src).eval(t));
121 }
122
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)123 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
124 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
125 // zero tangent vector when t is 0 or 1, and the control point is equal
126 // to the end point. In this case, use the quad end points to compute the tangent.
127 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
128 return src[2] - src[0];
129 }
130 SkASSERT(src);
131 SkASSERT(t >= 0 && t <= SK_Scalar1);
132
133 Sk2s P0 = from_point(src[0]);
134 Sk2s P1 = from_point(src[1]);
135 Sk2s P2 = from_point(src[2]);
136
137 Sk2s B = P1 - P0;
138 Sk2s A = P2 - P1 - B;
139 Sk2s T = A * Sk2s(t) + B;
140
141 return to_vector(T + T);
142 }
143
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)144 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
145 return v0 + (v1 - v0) * t;
146 }
147
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)148 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
149 SkASSERT(t > 0 && t < SK_Scalar1);
150
151 Sk2s p0 = from_point(src[0]);
152 Sk2s p1 = from_point(src[1]);
153 Sk2s p2 = from_point(src[2]);
154 Sk2s tt(t);
155
156 Sk2s p01 = interp(p0, p1, tt);
157 Sk2s p12 = interp(p1, p2, tt);
158
159 dst[0] = to_point(p0);
160 dst[1] = to_point(p01);
161 dst[2] = to_point(interp(p01, p12, tt));
162 dst[3] = to_point(p12);
163 dst[4] = to_point(p2);
164 }
165
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])166 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
167 SkChopQuadAt(src, dst, 0.5f);
168 }
169
170 /** Quad'(t) = At + B, where
171 A = 2(a - 2b + c)
172 B = 2(b - a)
173 Solve for t, only if it fits between 0 < t < 1
174 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])175 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
176 /* At + B == 0
177 t = -B / A
178 */
179 return valid_unit_divide(a - b, a - b - b + c, tValue);
180 }
181
flatten_double_quad_extrema(SkScalar coords[14])182 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
183 coords[2] = coords[6] = coords[4];
184 }
185
186 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
187 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
188 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])189 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
190 SkASSERT(src);
191 SkASSERT(dst);
192
193 SkScalar a = src[0].fY;
194 SkScalar b = src[1].fY;
195 SkScalar c = src[2].fY;
196
197 if (is_not_monotonic(a, b, c)) {
198 SkScalar tValue;
199 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
200 SkChopQuadAt(src, dst, tValue);
201 flatten_double_quad_extrema(&dst[0].fY);
202 return 1;
203 }
204 // if we get here, we need to force dst to be monotonic, even though
205 // we couldn't compute a unit_divide value (probably underflow).
206 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
207 }
208 dst[0].set(src[0].fX, a);
209 dst[1].set(src[1].fX, b);
210 dst[2].set(src[2].fX, c);
211 return 0;
212 }
213
214 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
215 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
216 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])217 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
218 SkASSERT(src);
219 SkASSERT(dst);
220
221 SkScalar a = src[0].fX;
222 SkScalar b = src[1].fX;
223 SkScalar c = src[2].fX;
224
225 if (is_not_monotonic(a, b, c)) {
226 SkScalar tValue;
227 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
228 SkChopQuadAt(src, dst, tValue);
229 flatten_double_quad_extrema(&dst[0].fX);
230 return 1;
231 }
232 // if we get here, we need to force dst to be monotonic, even though
233 // we couldn't compute a unit_divide value (probably underflow).
234 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
235 }
236 dst[0].set(a, src[0].fY);
237 dst[1].set(b, src[1].fY);
238 dst[2].set(c, src[2].fY);
239 return 0;
240 }
241
242 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
243 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
244 // F''(t) = 2 (a - 2b + c)
245 //
246 // A = 2 (b - a)
247 // B = 2 (a - 2b + c)
248 //
249 // Maximum curvature for a quadratic means solving
250 // Fx' Fx'' + Fy' Fy'' = 0
251 //
252 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
253 //
SkFindQuadMaxCurvature(const SkPoint src[3])254 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
255 SkScalar Ax = src[1].fX - src[0].fX;
256 SkScalar Ay = src[1].fY - src[0].fY;
257 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
258 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
259 SkScalar t = 0; // 0 means don't chop
260
261 (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
262 return t;
263 }
264
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])265 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
266 SkScalar t = SkFindQuadMaxCurvature(src);
267 if (t == 0) {
268 memcpy(dst, src, 3 * sizeof(SkPoint));
269 return 1;
270 } else {
271 SkChopQuadAt(src, dst, t);
272 return 2;
273 }
274 }
275
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])276 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
277 Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
278 Sk2s s0 = from_point(src[0]);
279 Sk2s s1 = from_point(src[1]);
280 Sk2s s2 = from_point(src[2]);
281
282 dst[0] = src[0];
283 dst[1] = to_point(s0 + (s1 - s0) * scale);
284 dst[2] = to_point(s2 + (s1 - s2) * scale);
285 dst[3] = src[2];
286 }
287
288 //////////////////////////////////////////////////////////////////////////////
289 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
290 //////////////////////////////////////////////////////////////////////////////
291
292 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
eval_cubic(const SkScalar src[],SkScalar t)293 static SkScalar eval_cubic(const SkScalar src[], SkScalar t) {
294 SkASSERT(src);
295 SkASSERT(t >= 0 && t <= SK_Scalar1);
296
297 if (t == 0) {
298 return src[0];
299 }
300
301 #ifdef DIRECT_EVAL_OF_POLYNOMIALS
302 SkScalar D = src[0];
303 SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
304 SkScalar B = 3*(src[4] - src[2] - src[2] + D);
305 SkScalar C = 3*(src[2] - D);
306
307 return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
308 #else
309 SkScalar ab = SkScalarInterp(src[0], src[2], t);
310 SkScalar bc = SkScalarInterp(src[2], src[4], t);
311 SkScalar cd = SkScalarInterp(src[4], src[6], t);
312 SkScalar abc = SkScalarInterp(ab, bc, t);
313 SkScalar bcd = SkScalarInterp(bc, cd, t);
314 return SkScalarInterp(abc, bcd, t);
315 #endif
316 }
317 #endif
318
eval_cubic_derivative(const SkPoint src[4],SkScalar t)319 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
320 SkQuadCoeff coeff;
321 Sk2s P0 = from_point(src[0]);
322 Sk2s P1 = from_point(src[1]);
323 Sk2s P2 = from_point(src[2]);
324 Sk2s P3 = from_point(src[3]);
325
326 coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
327 coeff.fB = times_2(P2 - times_2(P1) + P0);
328 coeff.fC = P1 - P0;
329 return to_vector(coeff.eval(t));
330 }
331
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)332 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
333 Sk2s P0 = from_point(src[0]);
334 Sk2s P1 = from_point(src[1]);
335 Sk2s P2 = from_point(src[2]);
336 Sk2s P3 = from_point(src[3]);
337 Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
338 Sk2s B = P2 - times_2(P1) + P0;
339
340 return to_vector(A * Sk2s(t) + B);
341 }
342
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)343 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
344 SkVector* tangent, SkVector* curvature) {
345 SkASSERT(src);
346 SkASSERT(t >= 0 && t <= SK_Scalar1);
347
348 if (loc) {
349 #ifdef SK_SUPPORT_LEGACY_EVAL_CUBIC
350 loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
351 #else
352 *loc = to_point(SkCubicCoeff(src).eval(t));
353 #endif
354 }
355 if (tangent) {
356 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
357 // adjacent control point is equal to the end point. In this case, use the
358 // next control point or the end points to compute the tangent.
359 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
360 if (t == 0) {
361 *tangent = src[2] - src[0];
362 } else {
363 *tangent = src[3] - src[1];
364 }
365 if (!tangent->fX && !tangent->fY) {
366 *tangent = src[3] - src[0];
367 }
368 } else {
369 *tangent = eval_cubic_derivative(src, t);
370 }
371 }
372 if (curvature) {
373 *curvature = eval_cubic_2ndDerivative(src, t);
374 }
375 }
376
377 /** Cubic'(t) = At^2 + Bt + C, where
378 A = 3(-a + 3(b - c) + d)
379 B = 6(a - 2b + c)
380 C = 3(b - a)
381 Solve for t, keeping only those that fit betwee 0 < t < 1
382 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])383 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
384 SkScalar tValues[2]) {
385 // we divide A,B,C by 3 to simplify
386 SkScalar A = d - a + 3*(b - c);
387 SkScalar B = 2*(a - b - b + c);
388 SkScalar C = b - a;
389
390 return SkFindUnitQuadRoots(A, B, C, tValues);
391 }
392
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)393 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
394 SkASSERT(t > 0 && t < SK_Scalar1);
395
396 Sk2s p0 = from_point(src[0]);
397 Sk2s p1 = from_point(src[1]);
398 Sk2s p2 = from_point(src[2]);
399 Sk2s p3 = from_point(src[3]);
400 Sk2s tt(t);
401
402 Sk2s ab = interp(p0, p1, tt);
403 Sk2s bc = interp(p1, p2, tt);
404 Sk2s cd = interp(p2, p3, tt);
405 Sk2s abc = interp(ab, bc, tt);
406 Sk2s bcd = interp(bc, cd, tt);
407 Sk2s abcd = interp(abc, bcd, tt);
408
409 dst[0] = src[0];
410 dst[1] = to_point(ab);
411 dst[2] = to_point(abc);
412 dst[3] = to_point(abcd);
413 dst[4] = to_point(bcd);
414 dst[5] = to_point(cd);
415 dst[6] = src[3];
416 }
417
418 /* http://code.google.com/p/skia/issues/detail?id=32
419
420 This test code would fail when we didn't check the return result of
421 valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
422 that after the first chop, the parameters to valid_unit_divide are equal
423 (thanks to finite float precision and rounding in the subtracts). Thus
424 even though the 2nd tValue looks < 1.0, after we renormalize it, we end
425 up with 1.0, hence the need to check and just return the last cubic as
426 a degenerate clump of 4 points in the sampe place.
427
428 static void test_cubic() {
429 SkPoint src[4] = {
430 { 556.25000, 523.03003 },
431 { 556.23999, 522.96002 },
432 { 556.21997, 522.89001 },
433 { 556.21997, 522.82001 }
434 };
435 SkPoint dst[10];
436 SkScalar tval[] = { 0.33333334f, 0.99999994f };
437 SkChopCubicAt(src, dst, tval, 2);
438 }
439 */
440
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)441 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
442 const SkScalar tValues[], int roots) {
443 #ifdef SK_DEBUG
444 {
445 for (int i = 0; i < roots - 1; i++)
446 {
447 SkASSERT(is_unit_interval(tValues[i]));
448 SkASSERT(is_unit_interval(tValues[i+1]));
449 SkASSERT(tValues[i] < tValues[i+1]);
450 }
451 }
452 #endif
453
454 if (dst) {
455 if (roots == 0) { // nothing to chop
456 memcpy(dst, src, 4*sizeof(SkPoint));
457 } else {
458 SkScalar t = tValues[0];
459 SkPoint tmp[4];
460
461 for (int i = 0; i < roots; i++) {
462 SkChopCubicAt(src, dst, t);
463 if (i == roots - 1) {
464 break;
465 }
466
467 dst += 3;
468 // have src point to the remaining cubic (after the chop)
469 memcpy(tmp, dst, 4 * sizeof(SkPoint));
470 src = tmp;
471
472 // watch out in case the renormalized t isn't in range
473 if (!valid_unit_divide(tValues[i+1] - tValues[i],
474 SK_Scalar1 - tValues[i], &t)) {
475 // if we can't, just create a degenerate cubic
476 dst[4] = dst[5] = dst[6] = src[3];
477 break;
478 }
479 }
480 }
481 }
482 }
483
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])484 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
485 SkChopCubicAt(src, dst, 0.5f);
486 }
487
flatten_double_cubic_extrema(SkScalar coords[14])488 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
489 coords[4] = coords[8] = coords[6];
490 }
491
492 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
493 the resulting beziers are monotonic in Y. This is called by the scan
494 converter. Depending on what is returned, dst[] is treated as follows:
495 0 dst[0..3] is the original cubic
496 1 dst[0..3] and dst[3..6] are the two new cubics
497 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
498 If dst == null, it is ignored and only the count is returned.
499 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])500 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
501 SkScalar tValues[2];
502 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
503 src[3].fY, tValues);
504
505 SkChopCubicAt(src, dst, tValues, roots);
506 if (dst && roots > 0) {
507 // we do some cleanup to ensure our Y extrema are flat
508 flatten_double_cubic_extrema(&dst[0].fY);
509 if (roots == 2) {
510 flatten_double_cubic_extrema(&dst[3].fY);
511 }
512 }
513 return roots;
514 }
515
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])516 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
517 SkScalar tValues[2];
518 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
519 src[3].fX, tValues);
520
521 SkChopCubicAt(src, dst, tValues, roots);
522 if (dst && roots > 0) {
523 // we do some cleanup to ensure our Y extrema are flat
524 flatten_double_cubic_extrema(&dst[0].fX);
525 if (roots == 2) {
526 flatten_double_cubic_extrema(&dst[3].fX);
527 }
528 }
529 return roots;
530 }
531
532 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
533
534 Inflection means that curvature is zero.
535 Curvature is [F' x F''] / [F'^3]
536 So we solve F'x X F''y - F'y X F''y == 0
537 After some canceling of the cubic term, we get
538 A = b - a
539 B = c - 2b + a
540 C = d - 3c + 3b - a
541 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
542 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])543 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
544 SkScalar Ax = src[1].fX - src[0].fX;
545 SkScalar Ay = src[1].fY - src[0].fY;
546 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
547 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
548 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
549 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
550
551 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
552 Ax*Cy - Ay*Cx,
553 Ax*By - Ay*Bx,
554 tValues);
555 }
556
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])557 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
558 SkScalar tValues[2];
559 int count = SkFindCubicInflections(src, tValues);
560
561 if (dst) {
562 if (count == 0) {
563 memcpy(dst, src, 4 * sizeof(SkPoint));
564 } else {
565 SkChopCubicAt(src, dst, tValues, count);
566 }
567 }
568 return count + 1;
569 }
570
571 // See http://http.developer.nvidia.com/GPUGems3/gpugems3_ch25.html (from the book GPU Gems 3)
572 // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
573 // Classification:
574 // discr(I) > 0 Serpentine
575 // discr(I) = 0 Cusp
576 // discr(I) < 0 Loop
577 // d0 = d1 = 0 Quadratic
578 // d0 = d1 = d2 = 0 Line
579 // p0 = p1 = p2 = p3 Point
classify_cubic(const SkPoint p[4],const SkScalar d[3])580 static SkCubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
581 if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
582 return kPoint_SkCubicType;
583 }
584 const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
585 if (discr > SK_ScalarNearlyZero) {
586 return kSerpentine_SkCubicType;
587 } else if (discr < -SK_ScalarNearlyZero) {
588 return kLoop_SkCubicType;
589 } else {
590 if (0.f == d[0] && 0.f == d[1]) {
591 return (0.f == d[2] ? kLine_SkCubicType : kQuadratic_SkCubicType);
592 } else {
593 return kCusp_SkCubicType;
594 }
595 }
596 }
597
598 // Assumes the third component of points is 1.
599 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)600 static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
601 const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
602 const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
603 const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
604 return (xComp + yComp + wComp);
605 }
606
607 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
608 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
609 // d0 = a1 - 2*a2+3*a3
610 // d1 = -a2 + 3*a3
611 // d2 = 3*a3
612 // a1 = p0 . (p3 x p2)
613 // a2 = p1 . (p0 x p3)
614 // a3 = p2 . (p1 x p0)
615 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],SkScalar d[3])616 static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
617 SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
618 SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
619 SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
620
621 // need to scale a's or values in later calculations will grow to high
622 SkScalar max = SkScalarAbs(a1);
623 max = SkMaxScalar(max, SkScalarAbs(a2));
624 max = SkMaxScalar(max, SkScalarAbs(a3));
625 max = 1.f/max;
626 a1 = a1 * max;
627 a2 = a2 * max;
628 a3 = a3 * max;
629
630 d[2] = 3.f * a3;
631 d[1] = d[2] - a2;
632 d[0] = d[1] - a2 + a1;
633 }
634
SkClassifyCubic(const SkPoint src[4],SkScalar d[3])635 SkCubicType SkClassifyCubic(const SkPoint src[4], SkScalar d[3]) {
636 calc_cubic_inflection_func(src, d);
637 return classify_cubic(src, d);
638 }
639
bubble_sort(T array[],int count)640 template <typename T> void bubble_sort(T array[], int count) {
641 for (int i = count - 1; i > 0; --i)
642 for (int j = i; j > 0; --j)
643 if (array[j] < array[j-1])
644 {
645 T tmp(array[j]);
646 array[j] = array[j-1];
647 array[j-1] = tmp;
648 }
649 }
650
651 /**
652 * Given an array and count, remove all pair-wise duplicates from the array,
653 * keeping the existing sorting, and return the new count
654 */
collaps_duplicates(SkScalar array[],int count)655 static int collaps_duplicates(SkScalar array[], int count) {
656 for (int n = count; n > 1; --n) {
657 if (array[0] == array[1]) {
658 for (int i = 1; i < n; ++i) {
659 array[i - 1] = array[i];
660 }
661 count -= 1;
662 } else {
663 array += 1;
664 }
665 }
666 return count;
667 }
668
669 #ifdef SK_DEBUG
670
671 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
672
test_collaps_duplicates()673 static void test_collaps_duplicates() {
674 static bool gOnce;
675 if (gOnce) { return; }
676 gOnce = true;
677 const SkScalar src0[] = { 0 };
678 const SkScalar src1[] = { 0, 0 };
679 const SkScalar src2[] = { 0, 1 };
680 const SkScalar src3[] = { 0, 0, 0 };
681 const SkScalar src4[] = { 0, 0, 1 };
682 const SkScalar src5[] = { 0, 1, 1 };
683 const SkScalar src6[] = { 0, 1, 2 };
684 const struct {
685 const SkScalar* fData;
686 int fCount;
687 int fCollapsedCount;
688 } data[] = {
689 { TEST_COLLAPS_ENTRY(src0), 1 },
690 { TEST_COLLAPS_ENTRY(src1), 1 },
691 { TEST_COLLAPS_ENTRY(src2), 2 },
692 { TEST_COLLAPS_ENTRY(src3), 1 },
693 { TEST_COLLAPS_ENTRY(src4), 2 },
694 { TEST_COLLAPS_ENTRY(src5), 2 },
695 { TEST_COLLAPS_ENTRY(src6), 3 },
696 };
697 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
698 SkScalar dst[3];
699 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
700 int count = collaps_duplicates(dst, data[i].fCount);
701 SkASSERT(data[i].fCollapsedCount == count);
702 for (int j = 1; j < count; ++j) {
703 SkASSERT(dst[j-1] < dst[j]);
704 }
705 }
706 }
707 #endif
708
SkScalarCubeRoot(SkScalar x)709 static SkScalar SkScalarCubeRoot(SkScalar x) {
710 return SkScalarPow(x, 0.3333333f);
711 }
712
713 /* Solve coeff(t) == 0, returning the number of roots that
714 lie withing 0 < t < 1.
715 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
716
717 Eliminates repeated roots (so that all tValues are distinct, and are always
718 in increasing order.
719 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])720 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
721 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
722 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
723 }
724
725 SkScalar a, b, c, Q, R;
726
727 {
728 SkASSERT(coeff[0] != 0);
729
730 SkScalar inva = SkScalarInvert(coeff[0]);
731 a = coeff[1] * inva;
732 b = coeff[2] * inva;
733 c = coeff[3] * inva;
734 }
735 Q = (a*a - b*3) / 9;
736 R = (2*a*a*a - 9*a*b + 27*c) / 54;
737
738 SkScalar Q3 = Q * Q * Q;
739 SkScalar R2MinusQ3 = R * R - Q3;
740 SkScalar adiv3 = a / 3;
741
742 SkScalar* roots = tValues;
743 SkScalar r;
744
745 if (R2MinusQ3 < 0) { // we have 3 real roots
746 SkScalar theta = SkScalarACos(R / SkScalarSqrt(Q3));
747 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
748
749 r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
750 if (is_unit_interval(r)) {
751 *roots++ = r;
752 }
753 r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
754 if (is_unit_interval(r)) {
755 *roots++ = r;
756 }
757 r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
758 if (is_unit_interval(r)) {
759 *roots++ = r;
760 }
761 SkDEBUGCODE(test_collaps_duplicates();)
762
763 // now sort the roots
764 int count = (int)(roots - tValues);
765 SkASSERT((unsigned)count <= 3);
766 bubble_sort(tValues, count);
767 count = collaps_duplicates(tValues, count);
768 roots = tValues + count; // so we compute the proper count below
769 } else { // we have 1 real root
770 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
771 A = SkScalarCubeRoot(A);
772 if (R > 0) {
773 A = -A;
774 }
775 if (A != 0) {
776 A += Q / A;
777 }
778 r = A - adiv3;
779 if (is_unit_interval(r)) {
780 *roots++ = r;
781 }
782 }
783
784 return (int)(roots - tValues);
785 }
786
787 /* Looking for F' dot F'' == 0
788
789 A = b - a
790 B = c - 2b + a
791 C = d - 3c + 3b - a
792
793 F' = 3Ct^2 + 6Bt + 3A
794 F'' = 6Ct + 6B
795
796 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
797 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])798 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
799 SkScalar a = src[2] - src[0];
800 SkScalar b = src[4] - 2 * src[2] + src[0];
801 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
802
803 coeff[0] = c * c;
804 coeff[1] = 3 * b * c;
805 coeff[2] = 2 * b * b + c * a;
806 coeff[3] = a * b;
807 }
808
809 /* Looking for F' dot F'' == 0
810
811 A = b - a
812 B = c - 2b + a
813 C = d - 3c + 3b - a
814
815 F' = 3Ct^2 + 6Bt + 3A
816 F'' = 6Ct + 6B
817
818 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
819 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])820 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
821 SkScalar coeffX[4], coeffY[4];
822 int i;
823
824 formulate_F1DotF2(&src[0].fX, coeffX);
825 formulate_F1DotF2(&src[0].fY, coeffY);
826
827 for (i = 0; i < 4; i++) {
828 coeffX[i] += coeffY[i];
829 }
830
831 SkScalar t[3];
832 int count = solve_cubic_poly(coeffX, t);
833 int maxCount = 0;
834
835 // now remove extrema where the curvature is zero (mins)
836 // !!!! need a test for this !!!!
837 for (i = 0; i < count; i++) {
838 // if (not_min_curvature())
839 if (t[i] > 0 && t[i] < SK_Scalar1) {
840 tValues[maxCount++] = t[i];
841 }
842 }
843 return maxCount;
844 }
845
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])846 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
847 SkScalar tValues[3]) {
848 SkScalar t_storage[3];
849
850 if (tValues == nullptr) {
851 tValues = t_storage;
852 }
853
854 int count = SkFindCubicMaxCurvature(src, tValues);
855
856 if (dst) {
857 if (count == 0) {
858 memcpy(dst, src, 4 * sizeof(SkPoint));
859 } else {
860 SkChopCubicAt(src, dst, tValues, count);
861 }
862 }
863 return count + 1;
864 }
865
866 #include "../pathops/SkPathOpsCubic.h"
867
868 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
869
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)870 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
871 InterceptProc method) {
872 SkDCubic cubic;
873 double roots[3];
874 int count = (cubic.set(src).*method)(intercept, roots);
875 if (count > 0) {
876 SkDCubicPair pair = cubic.chopAt(roots[0]);
877 for (int i = 0; i < 7; ++i) {
878 dst[i] = pair.pts[i].asSkPoint();
879 }
880 return true;
881 }
882 return false;
883 }
884
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])885 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
886 return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
887 }
888
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])889 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
890 return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
891 }
892
893 ///////////////////////////////////////////////////////////////////////////////
894 //
895 // NURB representation for conics. Helpful explanations at:
896 //
897 // http://citeseerx.ist.psu.edu/viewdoc/
898 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
899 // and
900 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
901 //
902 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
903 // ------------------------------------------
904 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
905 //
906 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
907 // ------------------------------------------------
908 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
909 //
910
911 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
912 //
913 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
914 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
915 // t^0 : -2 P0 w + 2 P1 w
916 //
917 // We disregard magnitude, so we can freely ignore the denominator of F', and
918 // divide the numerator by 2
919 //
920 // coeff[0] for t^2
921 // coeff[1] for t^1
922 // coeff[2] for t^0
923 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])924 static void conic_deriv_coeff(const SkScalar src[],
925 SkScalar w,
926 SkScalar coeff[3]) {
927 const SkScalar P20 = src[4] - src[0];
928 const SkScalar P10 = src[2] - src[0];
929 const SkScalar wP10 = w * P10;
930 coeff[0] = w * P20 - P20;
931 coeff[1] = P20 - 2 * wP10;
932 coeff[2] = wP10;
933 }
934
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)935 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
936 SkScalar coeff[3];
937 conic_deriv_coeff(src, w, coeff);
938
939 SkScalar tValues[2];
940 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
941 SkASSERT(0 == roots || 1 == roots);
942
943 if (1 == roots) {
944 *t = tValues[0];
945 return true;
946 }
947 return false;
948 }
949
950 struct SkP3D {
951 SkScalar fX, fY, fZ;
952
setSkP3D953 void set(SkScalar x, SkScalar y, SkScalar z) {
954 fX = x; fY = y; fZ = z;
955 }
956
projectDownSkP3D957 void projectDown(SkPoint* dst) const {
958 dst->set(fX / fZ, fY / fZ);
959 }
960 };
961
962 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)963 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
964 SkScalar ab = SkScalarInterp(src[0], src[3], t);
965 SkScalar bc = SkScalarInterp(src[3], src[6], t);
966 dst[0] = ab;
967 dst[3] = SkScalarInterp(ab, bc, t);
968 dst[6] = bc;
969 }
970
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkP3D dst[])971 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
972 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
973 dst[1].set(src[1].fX * w, src[1].fY * w, w);
974 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
975 }
976
chopAt(SkScalar t,SkConic dst[2]) const977 void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
978 SkP3D tmp[3], tmp2[3];
979
980 ratquad_mapTo3D(fPts, fW, tmp);
981
982 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
983 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
984 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
985
986 dst[0].fPts[0] = fPts[0];
987 tmp2[0].projectDown(&dst[0].fPts[1]);
988 tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
989 tmp2[2].projectDown(&dst[1].fPts[1]);
990 dst[1].fPts[2] = fPts[2];
991
992 // to put in "standard form", where w0 and w2 are both 1, we compute the
993 // new w1 as sqrt(w1*w1/w0*w2)
994 // or
995 // w1 /= sqrt(w0*w2)
996 //
997 // However, in our case, we know that for dst[0]:
998 // w0 == 1, and for dst[1], w2 == 1
999 //
1000 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1001 dst[0].fW = tmp2[0].fZ / root;
1002 dst[1].fW = tmp2[2].fZ / root;
1003 }
1004
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1005 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1006 if (0 == t1 || 1 == t2) {
1007 if (0 == t1 && 1 == t2) {
1008 *dst = *this;
1009 } else {
1010 SkConic pair[2];
1011 this->chopAt(t1 ? t1 : t2, pair);
1012 *dst = pair[SkToBool(t1)];
1013 }
1014 return;
1015 }
1016 SkConicCoeff coeff(*this);
1017 Sk2s tt1(t1);
1018 Sk2s aXY = coeff.fNumer.eval(tt1);
1019 Sk2s aZZ = coeff.fDenom.eval(tt1);
1020 Sk2s midTT((t1 + t2) / 2);
1021 Sk2s dXY = coeff.fNumer.eval(midTT);
1022 Sk2s dZZ = coeff.fDenom.eval(midTT);
1023 Sk2s tt2(t2);
1024 Sk2s cXY = coeff.fNumer.eval(tt2);
1025 Sk2s cZZ = coeff.fDenom.eval(tt2);
1026 Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1027 Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1028 dst->fPts[0] = to_point(aXY / aZZ);
1029 dst->fPts[1] = to_point(bXY / bZZ);
1030 dst->fPts[2] = to_point(cXY / cZZ);
1031 Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1032 dst->fW = ww[0];
1033 }
1034
evalAt(SkScalar t) const1035 SkPoint SkConic::evalAt(SkScalar t) const {
1036 return to_point(SkConicCoeff(*this).eval(t));
1037 }
1038
evalTangentAt(SkScalar t) const1039 SkVector SkConic::evalTangentAt(SkScalar t) const {
1040 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1041 // and the control point is equal to the end point.
1042 // In this case, use the conic endpoints to compute the tangent.
1043 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1044 return fPts[2] - fPts[0];
1045 }
1046 Sk2s p0 = from_point(fPts[0]);
1047 Sk2s p1 = from_point(fPts[1]);
1048 Sk2s p2 = from_point(fPts[2]);
1049 Sk2s ww(fW);
1050
1051 Sk2s p20 = p2 - p0;
1052 Sk2s p10 = p1 - p0;
1053
1054 Sk2s C = ww * p10;
1055 Sk2s A = ww * p20 - p20;
1056 Sk2s B = p20 - C - C;
1057
1058 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1059 }
1060
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1061 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1062 SkASSERT(t >= 0 && t <= SK_Scalar1);
1063
1064 if (pt) {
1065 *pt = this->evalAt(t);
1066 }
1067 if (tangent) {
1068 *tangent = this->evalTangentAt(t);
1069 }
1070 }
1071
subdivide_w_value(SkScalar w)1072 static SkScalar subdivide_w_value(SkScalar w) {
1073 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1074 }
1075
chop(SkConic * SK_RESTRICT dst) const1076 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1077 Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1078 SkScalar newW = subdivide_w_value(fW);
1079
1080 Sk2s p0 = from_point(fPts[0]);
1081 Sk2s p1 = from_point(fPts[1]);
1082 Sk2s p2 = from_point(fPts[2]);
1083 Sk2s ww(fW);
1084
1085 Sk2s wp1 = ww * p1;
1086 Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1087
1088 dst[0].fPts[0] = fPts[0];
1089 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1090 dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
1091 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1092 dst[1].fPts[2] = fPts[2];
1093
1094 dst[0].fW = dst[1].fW = newW;
1095 }
1096
1097 /*
1098 * "High order approximation of conic sections by quadratic splines"
1099 * by Michael Floater, 1993
1100 */
1101 #define AS_QUAD_ERROR_SETUP \
1102 SkScalar a = fW - 1; \
1103 SkScalar k = a / (4 * (2 + a)); \
1104 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1105 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1106
computeAsQuadError(SkVector * err) const1107 void SkConic::computeAsQuadError(SkVector* err) const {
1108 AS_QUAD_ERROR_SETUP
1109 err->set(x, y);
1110 }
1111
asQuadTol(SkScalar tol) const1112 bool SkConic::asQuadTol(SkScalar tol) const {
1113 AS_QUAD_ERROR_SETUP
1114 return (x * x + y * y) <= tol * tol;
1115 }
1116
1117 // Limit the number of suggested quads to approximate a conic
1118 #define kMaxConicToQuadPOW2 5
1119
computeQuadPOW2(SkScalar tol) const1120 int SkConic::computeQuadPOW2(SkScalar tol) const {
1121 if (tol < 0 || !SkScalarIsFinite(tol)) {
1122 return 0;
1123 }
1124
1125 AS_QUAD_ERROR_SETUP
1126
1127 SkScalar error = SkScalarSqrt(x * x + y * y);
1128 int pow2;
1129 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1130 if (error <= tol) {
1131 break;
1132 }
1133 error *= 0.25f;
1134 }
1135 // float version -- using ceil gives the same results as the above.
1136 if (false) {
1137 SkScalar err = SkScalarSqrt(x * x + y * y);
1138 if (err <= tol) {
1139 return 0;
1140 }
1141 SkScalar tol2 = tol * tol;
1142 if (tol2 == 0) {
1143 return kMaxConicToQuadPOW2;
1144 }
1145 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1146 int altPow2 = SkScalarCeilToInt(fpow2);
1147 if (altPow2 != pow2) {
1148 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1149 }
1150 pow2 = altPow2;
1151 }
1152 return pow2;
1153 }
1154
subdivide(const SkConic & src,SkPoint pts[],int level)1155 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1156 SkASSERT(level >= 0);
1157
1158 if (0 == level) {
1159 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1160 return pts + 2;
1161 } else {
1162 SkConic dst[2];
1163 src.chop(dst);
1164 --level;
1165 pts = subdivide(dst[0], pts, level);
1166 return subdivide(dst[1], pts, level);
1167 }
1168 }
1169
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1170 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1171 SkASSERT(pow2 >= 0);
1172 *pts = fPts[0];
1173 SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1174 SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1175 return 1 << pow2;
1176 }
1177
findXExtrema(SkScalar * t) const1178 bool SkConic::findXExtrema(SkScalar* t) const {
1179 return conic_find_extrema(&fPts[0].fX, fW, t);
1180 }
1181
findYExtrema(SkScalar * t) const1182 bool SkConic::findYExtrema(SkScalar* t) const {
1183 return conic_find_extrema(&fPts[0].fY, fW, t);
1184 }
1185
chopAtXExtrema(SkConic dst[2]) const1186 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1187 SkScalar t;
1188 if (this->findXExtrema(&t)) {
1189 this->chopAt(t, dst);
1190 // now clean-up the middle, since we know t was meant to be at
1191 // an X-extrema
1192 SkScalar value = dst[0].fPts[2].fX;
1193 dst[0].fPts[1].fX = value;
1194 dst[1].fPts[0].fX = value;
1195 dst[1].fPts[1].fX = value;
1196 return true;
1197 }
1198 return false;
1199 }
1200
chopAtYExtrema(SkConic dst[2]) const1201 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1202 SkScalar t;
1203 if (this->findYExtrema(&t)) {
1204 this->chopAt(t, dst);
1205 // now clean-up the middle, since we know t was meant to be at
1206 // an Y-extrema
1207 SkScalar value = dst[0].fPts[2].fY;
1208 dst[0].fPts[1].fY = value;
1209 dst[1].fPts[0].fY = value;
1210 dst[1].fPts[1].fY = value;
1211 return true;
1212 }
1213 return false;
1214 }
1215
computeTightBounds(SkRect * bounds) const1216 void SkConic::computeTightBounds(SkRect* bounds) const {
1217 SkPoint pts[4];
1218 pts[0] = fPts[0];
1219 pts[1] = fPts[2];
1220 int count = 2;
1221
1222 SkScalar t;
1223 if (this->findXExtrema(&t)) {
1224 this->evalAt(t, &pts[count++]);
1225 }
1226 if (this->findYExtrema(&t)) {
1227 this->evalAt(t, &pts[count++]);
1228 }
1229 bounds->set(pts, count);
1230 }
1231
computeFastBounds(SkRect * bounds) const1232 void SkConic::computeFastBounds(SkRect* bounds) const {
1233 bounds->set(fPts, 3);
1234 }
1235
1236 #if 0 // unimplemented
1237 bool SkConic::findMaxCurvature(SkScalar* t) const {
1238 // TODO: Implement me
1239 return false;
1240 }
1241 #endif
1242
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1243 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
1244 const SkMatrix& matrix) {
1245 if (!matrix.hasPerspective()) {
1246 return w;
1247 }
1248
1249 SkP3D src[3], dst[3];
1250
1251 ratquad_mapTo3D(pts, w, src);
1252
1253 matrix.mapHomogeneousPoints(&dst[0].fX, &src[0].fX, 3);
1254
1255 // w' = sqrt(w1*w1/w0*w2)
1256 SkScalar w0 = dst[0].fZ;
1257 SkScalar w1 = dst[1].fZ;
1258 SkScalar w2 = dst[2].fZ;
1259 w = SkScalarSqrt((w1 * w1) / (w0 * w2));
1260 return w;
1261 }
1262
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1263 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1264 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1265 // rotate by x,y so that uStart is (1.0)
1266 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1267 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1268
1269 SkScalar absY = SkScalarAbs(y);
1270
1271 // check for (effectively) coincident vectors
1272 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1273 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1274 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1275 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1276 return 0;
1277 }
1278
1279 if (dir == kCCW_SkRotationDirection) {
1280 y = -y;
1281 }
1282
1283 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1284 // 0 == [0 .. 90)
1285 // 1 == [90 ..180)
1286 // 2 == [180..270)
1287 // 3 == [270..360)
1288 //
1289 int quadrant = 0;
1290 if (0 == y) {
1291 quadrant = 2; // 180
1292 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1293 } else if (0 == x) {
1294 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1295 quadrant = y > 0 ? 1 : 3; // 90 : 270
1296 } else {
1297 if (y < 0) {
1298 quadrant += 2;
1299 }
1300 if ((x < 0) != (y < 0)) {
1301 quadrant += 1;
1302 }
1303 }
1304
1305 const SkPoint quadrantPts[] = {
1306 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1307 };
1308 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1309
1310 int conicCount = quadrant;
1311 for (int i = 0; i < conicCount; ++i) {
1312 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1313 }
1314
1315 // Now compute any remaing (sub-90-degree) arc for the last conic
1316 const SkPoint finalP = { x, y };
1317 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1318 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1319 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1320
1321 if (dot < 1) {
1322 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1323 // compute the bisector vector, and then rescale to be the off-curve point.
1324 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1325 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1326 // This is nice, since our computed weight is cos(theta/2) as well!
1327 //
1328 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1329 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1330 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1331 conicCount += 1;
1332 }
1333
1334 // now handle counter-clockwise and the initial unitStart rotation
1335 SkMatrix matrix;
1336 matrix.setSinCos(uStart.fY, uStart.fX);
1337 if (dir == kCCW_SkRotationDirection) {
1338 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1339 }
1340 if (userMatrix) {
1341 matrix.postConcat(*userMatrix);
1342 }
1343 for (int i = 0; i < conicCount; ++i) {
1344 matrix.mapPoints(dst[i].fPts, 3);
1345 }
1346 return conicCount;
1347 }
1348