• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_arm64.h"
18 
19 #include "arch/arm64/instruction_set_features_arm64.h"
20 #include "art_method.h"
21 #include "code_generator_utils.h"
22 #include "compiled_method.h"
23 #include "entrypoints/quick/quick_entrypoints.h"
24 #include "entrypoints/quick/quick_entrypoints_enum.h"
25 #include "gc/accounting/card_table.h"
26 #include "intrinsics.h"
27 #include "intrinsics_arm64.h"
28 #include "mirror/array-inl.h"
29 #include "mirror/class-inl.h"
30 #include "offsets.h"
31 #include "thread.h"
32 #include "utils/arm64/assembler_arm64.h"
33 #include "utils/assembler.h"
34 #include "utils/stack_checks.h"
35 
36 
37 using namespace vixl;   // NOLINT(build/namespaces)
38 
39 #ifdef __
40 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
41 #endif
42 
43 namespace art {
44 
45 template<class MirrorType>
46 class GcRoot;
47 
48 namespace arm64 {
49 
50 using helpers::CPURegisterFrom;
51 using helpers::DRegisterFrom;
52 using helpers::FPRegisterFrom;
53 using helpers::HeapOperand;
54 using helpers::HeapOperandFrom;
55 using helpers::InputCPURegisterAt;
56 using helpers::InputFPRegisterAt;
57 using helpers::InputRegisterAt;
58 using helpers::InputOperandAt;
59 using helpers::Int64ConstantFrom;
60 using helpers::LocationFrom;
61 using helpers::OperandFromMemOperand;
62 using helpers::OutputCPURegister;
63 using helpers::OutputFPRegister;
64 using helpers::OutputRegister;
65 using helpers::RegisterFrom;
66 using helpers::StackOperandFrom;
67 using helpers::VIXLRegCodeFromART;
68 using helpers::WRegisterFrom;
69 using helpers::XRegisterFrom;
70 using helpers::ARM64EncodableConstantOrRegister;
71 using helpers::ArtVixlRegCodeCoherentForRegSet;
72 
73 static constexpr int kCurrentMethodStackOffset = 0;
74 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
75 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
76 // generates less code/data with a small num_entries.
77 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
78 
ARM64Condition(IfCondition cond)79 inline Condition ARM64Condition(IfCondition cond) {
80   switch (cond) {
81     case kCondEQ: return eq;
82     case kCondNE: return ne;
83     case kCondLT: return lt;
84     case kCondLE: return le;
85     case kCondGT: return gt;
86     case kCondGE: return ge;
87     case kCondB:  return lo;
88     case kCondBE: return ls;
89     case kCondA:  return hi;
90     case kCondAE: return hs;
91   }
92   LOG(FATAL) << "Unreachable";
93   UNREACHABLE();
94 }
95 
ARM64FPCondition(IfCondition cond,bool gt_bias)96 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
97   // The ARM64 condition codes can express all the necessary branches, see the
98   // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
99   // There is no dex instruction or HIR that would need the missing conditions
100   // "equal or unordered" or "not equal".
101   switch (cond) {
102     case kCondEQ: return eq;
103     case kCondNE: return ne /* unordered */;
104     case kCondLT: return gt_bias ? cc : lt /* unordered */;
105     case kCondLE: return gt_bias ? ls : le /* unordered */;
106     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
107     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
108     default:
109       LOG(FATAL) << "UNREACHABLE";
110       UNREACHABLE();
111   }
112 }
113 
ARM64ReturnLocation(Primitive::Type return_type)114 Location ARM64ReturnLocation(Primitive::Type return_type) {
115   // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
116   // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
117   // but we use the exact registers for clarity.
118   if (return_type == Primitive::kPrimFloat) {
119     return LocationFrom(s0);
120   } else if (return_type == Primitive::kPrimDouble) {
121     return LocationFrom(d0);
122   } else if (return_type == Primitive::kPrimLong) {
123     return LocationFrom(x0);
124   } else if (return_type == Primitive::kPrimVoid) {
125     return Location::NoLocation();
126   } else {
127     return LocationFrom(w0);
128   }
129 }
130 
GetReturnLocation(Primitive::Type return_type)131 Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
132   return ARM64ReturnLocation(return_type);
133 }
134 
135 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
136 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
137 
138 // Calculate memory accessing operand for save/restore live registers.
SaveRestoreLiveRegistersHelper(CodeGenerator * codegen,RegisterSet * register_set,int64_t spill_offset,bool is_save)139 static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
140                                            RegisterSet* register_set,
141                                            int64_t spill_offset,
142                                            bool is_save) {
143   DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(),
144                                          codegen->GetNumberOfCoreRegisters(),
145                                          register_set->GetFloatingPointRegisters(),
146                                          codegen->GetNumberOfFloatingPointRegisters()));
147 
148   CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize,
149       register_set->GetCoreRegisters() & (~callee_saved_core_registers.list()));
150   CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize,
151       register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list()));
152 
153   MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
154   UseScratchRegisterScope temps(masm);
155 
156   Register base = masm->StackPointer();
157   int64_t core_spill_size = core_list.TotalSizeInBytes();
158   int64_t fp_spill_size = fp_list.TotalSizeInBytes();
159   int64_t reg_size = kXRegSizeInBytes;
160   int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
161   uint32_t ls_access_size = WhichPowerOf2(reg_size);
162   if (((core_list.Count() > 1) || (fp_list.Count() > 1)) &&
163       !masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
164     // If the offset does not fit in the instruction's immediate field, use an alternate register
165     // to compute the base address(float point registers spill base address).
166     Register new_base = temps.AcquireSameSizeAs(base);
167     __ Add(new_base, base, Operand(spill_offset + core_spill_size));
168     base = new_base;
169     spill_offset = -core_spill_size;
170     int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
171     DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
172     DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
173   }
174 
175   if (is_save) {
176     __ StoreCPURegList(core_list, MemOperand(base, spill_offset));
177     __ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
178   } else {
179     __ LoadCPURegList(core_list, MemOperand(base, spill_offset));
180     __ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
181   }
182 }
183 
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)184 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
185   RegisterSet* register_set = locations->GetLiveRegisters();
186   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
187   for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
188     if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) {
189       // If the register holds an object, update the stack mask.
190       if (locations->RegisterContainsObject(i)) {
191         locations->SetStackBit(stack_offset / kVRegSize);
192       }
193       DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
194       DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
195       saved_core_stack_offsets_[i] = stack_offset;
196       stack_offset += kXRegSizeInBytes;
197     }
198   }
199 
200   for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
201     if (!codegen->IsFloatingPointCalleeSaveRegister(i) &&
202         register_set->ContainsFloatingPointRegister(i)) {
203       DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
204       DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
205       saved_fpu_stack_offsets_[i] = stack_offset;
206       stack_offset += kDRegSizeInBytes;
207     }
208   }
209 
210   SaveRestoreLiveRegistersHelper(codegen, register_set,
211                                  codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
212 }
213 
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)214 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
215   RegisterSet* register_set = locations->GetLiveRegisters();
216   SaveRestoreLiveRegistersHelper(codegen, register_set,
217                                  codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
218 }
219 
220 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
221  public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)222   explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
223 
EmitNativeCode(CodeGenerator * codegen)224   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
225     LocationSummary* locations = instruction_->GetLocations();
226     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
227 
228     __ Bind(GetEntryLabel());
229     if (instruction_->CanThrowIntoCatchBlock()) {
230       // Live registers will be restored in the catch block if caught.
231       SaveLiveRegisters(codegen, instruction_->GetLocations());
232     }
233     // We're moving two locations to locations that could overlap, so we need a parallel
234     // move resolver.
235     InvokeRuntimeCallingConvention calling_convention;
236     codegen->EmitParallelMoves(
237         locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt,
238         locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt);
239     arm64_codegen->InvokeRuntime(
240         QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
241     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
242   }
243 
IsFatal() const244   bool IsFatal() const OVERRIDE { return true; }
245 
GetDescription() const246   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
247 
248  private:
249   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
250 };
251 
252 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
253  public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)254   explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
255 
EmitNativeCode(CodeGenerator * codegen)256   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
257     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
258     __ Bind(GetEntryLabel());
259     if (instruction_->CanThrowIntoCatchBlock()) {
260       // Live registers will be restored in the catch block if caught.
261       SaveLiveRegisters(codegen, instruction_->GetLocations());
262     }
263     arm64_codegen->InvokeRuntime(
264         QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
265     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
266   }
267 
IsFatal() const268   bool IsFatal() const OVERRIDE { return true; }
269 
GetDescription() const270   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
271 
272  private:
273   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
274 };
275 
276 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
277  public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)278   LoadClassSlowPathARM64(HLoadClass* cls,
279                          HInstruction* at,
280                          uint32_t dex_pc,
281                          bool do_clinit)
282       : SlowPathCodeARM64(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
283     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
284   }
285 
EmitNativeCode(CodeGenerator * codegen)286   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
287     LocationSummary* locations = at_->GetLocations();
288     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
289 
290     __ Bind(GetEntryLabel());
291     SaveLiveRegisters(codegen, locations);
292 
293     InvokeRuntimeCallingConvention calling_convention;
294     __ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
295     int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
296                                             : QUICK_ENTRY_POINT(pInitializeType);
297     arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
298     if (do_clinit_) {
299       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
300     } else {
301       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
302     }
303 
304     // Move the class to the desired location.
305     Location out = locations->Out();
306     if (out.IsValid()) {
307       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
308       Primitive::Type type = at_->GetType();
309       arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
310     }
311 
312     RestoreLiveRegisters(codegen, locations);
313     __ B(GetExitLabel());
314   }
315 
GetDescription() const316   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
317 
318  private:
319   // The class this slow path will load.
320   HLoadClass* const cls_;
321 
322   // The instruction where this slow path is happening.
323   // (Might be the load class or an initialization check).
324   HInstruction* const at_;
325 
326   // The dex PC of `at_`.
327   const uint32_t dex_pc_;
328 
329   // Whether to initialize the class.
330   const bool do_clinit_;
331 
332   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
333 };
334 
335 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
336  public:
LoadStringSlowPathARM64(HLoadString * instruction)337   explicit LoadStringSlowPathARM64(HLoadString* instruction) : SlowPathCodeARM64(instruction) {}
338 
EmitNativeCode(CodeGenerator * codegen)339   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
340     LocationSummary* locations = instruction_->GetLocations();
341     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
342     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
343 
344     __ Bind(GetEntryLabel());
345     SaveLiveRegisters(codegen, locations);
346 
347     InvokeRuntimeCallingConvention calling_convention;
348     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
349     __ Mov(calling_convention.GetRegisterAt(0).W(), string_index);
350     arm64_codegen->InvokeRuntime(
351         QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
352     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
353     Primitive::Type type = instruction_->GetType();
354     arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
355 
356     RestoreLiveRegisters(codegen, locations);
357     __ B(GetExitLabel());
358   }
359 
GetDescription() const360   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
361 
362  private:
363   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
364 };
365 
366 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
367  public:
NullCheckSlowPathARM64(HNullCheck * instr)368   explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
369 
EmitNativeCode(CodeGenerator * codegen)370   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
371     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
372     __ Bind(GetEntryLabel());
373     if (instruction_->CanThrowIntoCatchBlock()) {
374       // Live registers will be restored in the catch block if caught.
375       SaveLiveRegisters(codegen, instruction_->GetLocations());
376     }
377     arm64_codegen->InvokeRuntime(
378         QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
379     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
380   }
381 
IsFatal() const382   bool IsFatal() const OVERRIDE { return true; }
383 
GetDescription() const384   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
385 
386  private:
387   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
388 };
389 
390 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
391  public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)392   SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
393       : SlowPathCodeARM64(instruction), successor_(successor) {}
394 
EmitNativeCode(CodeGenerator * codegen)395   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
396     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
397     __ Bind(GetEntryLabel());
398     SaveLiveRegisters(codegen, instruction_->GetLocations());
399     arm64_codegen->InvokeRuntime(
400         QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
401     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
402     RestoreLiveRegisters(codegen, instruction_->GetLocations());
403     if (successor_ == nullptr) {
404       __ B(GetReturnLabel());
405     } else {
406       __ B(arm64_codegen->GetLabelOf(successor_));
407     }
408   }
409 
GetReturnLabel()410   vixl::Label* GetReturnLabel() {
411     DCHECK(successor_ == nullptr);
412     return &return_label_;
413   }
414 
GetSuccessor() const415   HBasicBlock* GetSuccessor() const {
416     return successor_;
417   }
418 
GetDescription() const419   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
420 
421  private:
422   // If not null, the block to branch to after the suspend check.
423   HBasicBlock* const successor_;
424 
425   // If `successor_` is null, the label to branch to after the suspend check.
426   vixl::Label return_label_;
427 
428   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
429 };
430 
431 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
432  public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)433   TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
434       : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
435 
EmitNativeCode(CodeGenerator * codegen)436   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
437     LocationSummary* locations = instruction_->GetLocations();
438     Location class_to_check = locations->InAt(1);
439     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
440                                                         : locations->Out();
441     DCHECK(instruction_->IsCheckCast()
442            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
443     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
444     uint32_t dex_pc = instruction_->GetDexPc();
445 
446     __ Bind(GetEntryLabel());
447 
448     if (!is_fatal_) {
449       SaveLiveRegisters(codegen, locations);
450     }
451 
452     // We're moving two locations to locations that could overlap, so we need a parallel
453     // move resolver.
454     InvokeRuntimeCallingConvention calling_convention;
455     codegen->EmitParallelMoves(
456         class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot,
457         object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot);
458 
459     if (instruction_->IsInstanceOf()) {
460       arm64_codegen->InvokeRuntime(
461           QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this);
462       CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
463                            const mirror::Class*, const mirror::Class*>();
464       Primitive::Type ret_type = instruction_->GetType();
465       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
466       arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
467     } else {
468       DCHECK(instruction_->IsCheckCast());
469       arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this);
470       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
471     }
472 
473     if (!is_fatal_) {
474       RestoreLiveRegisters(codegen, locations);
475       __ B(GetExitLabel());
476     }
477   }
478 
GetDescription() const479   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
IsFatal() const480   bool IsFatal() const { return is_fatal_; }
481 
482  private:
483   const bool is_fatal_;
484 
485   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
486 };
487 
488 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
489  public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)490   explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
491       : SlowPathCodeARM64(instruction) {}
492 
EmitNativeCode(CodeGenerator * codegen)493   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
494     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
495     __ Bind(GetEntryLabel());
496     SaveLiveRegisters(codegen, instruction_->GetLocations());
497     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
498                                  instruction_,
499                                  instruction_->GetDexPc(),
500                                  this);
501     CheckEntrypointTypes<kQuickDeoptimize, void, void>();
502   }
503 
GetDescription() const504   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
505 
506  private:
507   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
508 };
509 
510 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
511  public:
ArraySetSlowPathARM64(HInstruction * instruction)512   explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
513 
EmitNativeCode(CodeGenerator * codegen)514   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
515     LocationSummary* locations = instruction_->GetLocations();
516     __ Bind(GetEntryLabel());
517     SaveLiveRegisters(codegen, locations);
518 
519     InvokeRuntimeCallingConvention calling_convention;
520     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
521     parallel_move.AddMove(
522         locations->InAt(0),
523         LocationFrom(calling_convention.GetRegisterAt(0)),
524         Primitive::kPrimNot,
525         nullptr);
526     parallel_move.AddMove(
527         locations->InAt(1),
528         LocationFrom(calling_convention.GetRegisterAt(1)),
529         Primitive::kPrimInt,
530         nullptr);
531     parallel_move.AddMove(
532         locations->InAt(2),
533         LocationFrom(calling_convention.GetRegisterAt(2)),
534         Primitive::kPrimNot,
535         nullptr);
536     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
537 
538     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
539     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
540                                  instruction_,
541                                  instruction_->GetDexPc(),
542                                  this);
543     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
544     RestoreLiveRegisters(codegen, locations);
545     __ B(GetExitLabel());
546   }
547 
GetDescription() const548   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
549 
550  private:
551   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
552 };
553 
EmitTable(CodeGeneratorARM64 * codegen)554 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
555   uint32_t num_entries = switch_instr_->GetNumEntries();
556   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
557 
558   // We are about to use the assembler to place literals directly. Make sure we have enough
559   // underlying code buffer and we have generated the jump table with right size.
560   CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t),
561                              CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize);
562 
563   __ Bind(&table_start_);
564   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
565   for (uint32_t i = 0; i < num_entries; i++) {
566     vixl::Label* target_label = codegen->GetLabelOf(successors[i]);
567     DCHECK(target_label->IsBound());
568     ptrdiff_t jump_offset = target_label->location() - table_start_.location();
569     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
570     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
571     Literal<int32_t> literal(jump_offset);
572     __ place(&literal);
573   }
574 }
575 
576 // Slow path marking an object during a read barrier.
577 class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
578  public:
ReadBarrierMarkSlowPathARM64(HInstruction * instruction,Location out,Location obj)579   ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj)
580       : SlowPathCodeARM64(instruction), out_(out), obj_(obj) {
581     DCHECK(kEmitCompilerReadBarrier);
582   }
583 
GetDescription() const584   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
585 
EmitNativeCode(CodeGenerator * codegen)586   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
587     LocationSummary* locations = instruction_->GetLocations();
588     Primitive::Type type = Primitive::kPrimNot;
589     DCHECK(locations->CanCall());
590     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
591     DCHECK(instruction_->IsInstanceFieldGet() ||
592            instruction_->IsStaticFieldGet() ||
593            instruction_->IsArrayGet() ||
594            instruction_->IsLoadClass() ||
595            instruction_->IsLoadString() ||
596            instruction_->IsInstanceOf() ||
597            instruction_->IsCheckCast())
598         << "Unexpected instruction in read barrier marking slow path: "
599         << instruction_->DebugName();
600 
601     __ Bind(GetEntryLabel());
602     SaveLiveRegisters(codegen, locations);
603 
604     InvokeRuntimeCallingConvention calling_convention;
605     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
606     arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type);
607     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
608                                  instruction_,
609                                  instruction_->GetDexPc(),
610                                  this);
611     CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
612     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
613 
614     RestoreLiveRegisters(codegen, locations);
615     __ B(GetExitLabel());
616   }
617 
618  private:
619   const Location out_;
620   const Location obj_;
621 
622   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
623 };
624 
625 // Slow path generating a read barrier for a heap reference.
626 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
627  public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)628   ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
629                                            Location out,
630                                            Location ref,
631                                            Location obj,
632                                            uint32_t offset,
633                                            Location index)
634       : SlowPathCodeARM64(instruction),
635         out_(out),
636         ref_(ref),
637         obj_(obj),
638         offset_(offset),
639         index_(index) {
640     DCHECK(kEmitCompilerReadBarrier);
641     // If `obj` is equal to `out` or `ref`, it means the initial object
642     // has been overwritten by (or after) the heap object reference load
643     // to be instrumented, e.g.:
644     //
645     //   __ Ldr(out, HeapOperand(out, class_offset);
646     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
647     //
648     // In that case, we have lost the information about the original
649     // object, and the emitted read barrier cannot work properly.
650     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
651     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
652   }
653 
EmitNativeCode(CodeGenerator * codegen)654   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
655     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
656     LocationSummary* locations = instruction_->GetLocations();
657     Primitive::Type type = Primitive::kPrimNot;
658     DCHECK(locations->CanCall());
659     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
660     DCHECK(!instruction_->IsInvoke() ||
661            (instruction_->IsInvokeStaticOrDirect() &&
662             instruction_->GetLocations()->Intrinsified()))
663         << "Unexpected instruction in read barrier for heap reference slow path: "
664         << instruction_->DebugName();
665     // The read barrier instrumentation does not support the
666     // HArm64IntermediateAddress instruction yet.
667     DCHECK(!(instruction_->IsArrayGet() &&
668              instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress()));
669 
670     __ Bind(GetEntryLabel());
671 
672     SaveLiveRegisters(codegen, locations);
673 
674     // We may have to change the index's value, but as `index_` is a
675     // constant member (like other "inputs" of this slow path),
676     // introduce a copy of it, `index`.
677     Location index = index_;
678     if (index_.IsValid()) {
679       // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
680       if (instruction_->IsArrayGet()) {
681         // Compute the actual memory offset and store it in `index`.
682         Register index_reg = RegisterFrom(index_, Primitive::kPrimInt);
683         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
684         if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
685           // We are about to change the value of `index_reg` (see the
686           // calls to vixl::MacroAssembler::Lsl and
687           // vixl::MacroAssembler::Mov below), but it has
688           // not been saved by the previous call to
689           // art::SlowPathCode::SaveLiveRegisters, as it is a
690           // callee-save register --
691           // art::SlowPathCode::SaveLiveRegisters does not consider
692           // callee-save registers, as it has been designed with the
693           // assumption that callee-save registers are supposed to be
694           // handled by the called function.  So, as a callee-save
695           // register, `index_reg` _would_ eventually be saved onto
696           // the stack, but it would be too late: we would have
697           // changed its value earlier.  Therefore, we manually save
698           // it here into another freely available register,
699           // `free_reg`, chosen of course among the caller-save
700           // registers (as a callee-save `free_reg` register would
701           // exhibit the same problem).
702           //
703           // Note we could have requested a temporary register from
704           // the register allocator instead; but we prefer not to, as
705           // this is a slow path, and we know we can find a
706           // caller-save register that is available.
707           Register free_reg = FindAvailableCallerSaveRegister(codegen);
708           __ Mov(free_reg.W(), index_reg);
709           index_reg = free_reg;
710           index = LocationFrom(index_reg);
711         } else {
712           // The initial register stored in `index_` has already been
713           // saved in the call to art::SlowPathCode::SaveLiveRegisters
714           // (as it is not a callee-save register), so we can freely
715           // use it.
716         }
717         // Shifting the index value contained in `index_reg` by the scale
718         // factor (2) cannot overflow in practice, as the runtime is
719         // unable to allocate object arrays with a size larger than
720         // 2^26 - 1 (that is, 2^28 - 4 bytes).
721         __ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type));
722         static_assert(
723             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
724             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
725         __ Add(index_reg, index_reg, Operand(offset_));
726       } else {
727         DCHECK(instruction_->IsInvoke());
728         DCHECK(instruction_->GetLocations()->Intrinsified());
729         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
730                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
731             << instruction_->AsInvoke()->GetIntrinsic();
732         DCHECK_EQ(offset_, 0U);
733         DCHECK(index_.IsRegisterPair());
734         // UnsafeGet's offset location is a register pair, the low
735         // part contains the correct offset.
736         index = index_.ToLow();
737       }
738     }
739 
740     // We're moving two or three locations to locations that could
741     // overlap, so we need a parallel move resolver.
742     InvokeRuntimeCallingConvention calling_convention;
743     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
744     parallel_move.AddMove(ref_,
745                           LocationFrom(calling_convention.GetRegisterAt(0)),
746                           type,
747                           nullptr);
748     parallel_move.AddMove(obj_,
749                           LocationFrom(calling_convention.GetRegisterAt(1)),
750                           type,
751                           nullptr);
752     if (index.IsValid()) {
753       parallel_move.AddMove(index,
754                             LocationFrom(calling_convention.GetRegisterAt(2)),
755                             Primitive::kPrimInt,
756                             nullptr);
757       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
758     } else {
759       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
760       arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
761     }
762     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
763                                  instruction_,
764                                  instruction_->GetDexPc(),
765                                  this);
766     CheckEntrypointTypes<
767         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
768     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
769 
770     RestoreLiveRegisters(codegen, locations);
771 
772     __ B(GetExitLabel());
773   }
774 
GetDescription() const775   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
776 
777  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)778   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
779     size_t ref = static_cast<int>(XRegisterFrom(ref_).code());
780     size_t obj = static_cast<int>(XRegisterFrom(obj_).code());
781     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
782       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
783         return Register(VIXLRegCodeFromART(i), kXRegSize);
784       }
785     }
786     // We shall never fail to find a free caller-save register, as
787     // there are more than two core caller-save registers on ARM64
788     // (meaning it is possible to find one which is different from
789     // `ref` and `obj`).
790     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
791     LOG(FATAL) << "Could not find a free register";
792     UNREACHABLE();
793   }
794 
795   const Location out_;
796   const Location ref_;
797   const Location obj_;
798   const uint32_t offset_;
799   // An additional location containing an index to an array.
800   // Only used for HArrayGet and the UnsafeGetObject &
801   // UnsafeGetObjectVolatile intrinsics.
802   const Location index_;
803 
804   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
805 };
806 
807 // Slow path generating a read barrier for a GC root.
808 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
809  public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)810   ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
811       : SlowPathCodeARM64(instruction), out_(out), root_(root) {
812     DCHECK(kEmitCompilerReadBarrier);
813   }
814 
EmitNativeCode(CodeGenerator * codegen)815   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
816     LocationSummary* locations = instruction_->GetLocations();
817     Primitive::Type type = Primitive::kPrimNot;
818     DCHECK(locations->CanCall());
819     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
820     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
821         << "Unexpected instruction in read barrier for GC root slow path: "
822         << instruction_->DebugName();
823 
824     __ Bind(GetEntryLabel());
825     SaveLiveRegisters(codegen, locations);
826 
827     InvokeRuntimeCallingConvention calling_convention;
828     CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
829     // The argument of the ReadBarrierForRootSlow is not a managed
830     // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
831     // thus we need a 64-bit move here, and we cannot use
832     //
833     //   arm64_codegen->MoveLocation(
834     //       LocationFrom(calling_convention.GetRegisterAt(0)),
835     //       root_,
836     //       type);
837     //
838     // which would emit a 32-bit move, as `type` is a (32-bit wide)
839     // reference type (`Primitive::kPrimNot`).
840     __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
841     arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
842                                  instruction_,
843                                  instruction_->GetDexPc(),
844                                  this);
845     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
846     arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
847 
848     RestoreLiveRegisters(codegen, locations);
849     __ B(GetExitLabel());
850   }
851 
GetDescription() const852   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
853 
854  private:
855   const Location out_;
856   const Location root_;
857 
858   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
859 };
860 
861 #undef __
862 
GetNextLocation(Primitive::Type type)863 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) {
864   Location next_location;
865   if (type == Primitive::kPrimVoid) {
866     LOG(FATAL) << "Unreachable type " << type;
867   }
868 
869   if (Primitive::IsFloatingPointType(type) &&
870       (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
871     next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
872   } else if (!Primitive::IsFloatingPointType(type) &&
873              (gp_index_ < calling_convention.GetNumberOfRegisters())) {
874     next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
875   } else {
876     size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
877     next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
878                                                  : Location::StackSlot(stack_offset);
879   }
880 
881   // Space on the stack is reserved for all arguments.
882   stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
883   return next_location;
884 }
885 
GetMethodLocation() const886 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
887   return LocationFrom(kArtMethodRegister);
888 }
889 
CodeGeneratorARM64(HGraph * graph,const Arm64InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)890 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
891                                        const Arm64InstructionSetFeatures& isa_features,
892                                        const CompilerOptions& compiler_options,
893                                        OptimizingCompilerStats* stats)
894     : CodeGenerator(graph,
895                     kNumberOfAllocatableRegisters,
896                     kNumberOfAllocatableFPRegisters,
897                     kNumberOfAllocatableRegisterPairs,
898                     callee_saved_core_registers.list(),
899                     callee_saved_fp_registers.list(),
900                     compiler_options,
901                     stats),
902       block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
903       jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
904       location_builder_(graph, this),
905       instruction_visitor_(graph, this),
906       move_resolver_(graph->GetArena(), this),
907       assembler_(graph->GetArena()),
908       isa_features_(isa_features),
909       uint32_literals_(std::less<uint32_t>(),
910                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
911       uint64_literals_(std::less<uint64_t>(),
912                        graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
913       method_patches_(MethodReferenceComparator(),
914                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
915       call_patches_(MethodReferenceComparator(),
916                     graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
917       relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
918       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
919       boot_image_string_patches_(StringReferenceValueComparator(),
920                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
921       pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
922       boot_image_address_patches_(std::less<uint32_t>(),
923                                   graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
924   // Save the link register (containing the return address) to mimic Quick.
925   AddAllocatedRegister(LocationFrom(lr));
926 }
927 
928 #define __ GetVIXLAssembler()->
929 
EmitJumpTables()930 void CodeGeneratorARM64::EmitJumpTables() {
931   for (auto&& jump_table : jump_tables_) {
932     jump_table->EmitTable(this);
933   }
934 }
935 
Finalize(CodeAllocator * allocator)936 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
937   EmitJumpTables();
938   // Ensure we emit the literal pool.
939   __ FinalizeCode();
940 
941   CodeGenerator::Finalize(allocator);
942 }
943 
PrepareForEmitNativeCode()944 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
945   // Note: There are 6 kinds of moves:
946   // 1. constant -> GPR/FPR (non-cycle)
947   // 2. constant -> stack (non-cycle)
948   // 3. GPR/FPR -> GPR/FPR
949   // 4. GPR/FPR -> stack
950   // 5. stack -> GPR/FPR
951   // 6. stack -> stack (non-cycle)
952   // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
953   // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
954   // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
955   // dependency.
956   vixl_temps_.Open(GetVIXLAssembler());
957 }
958 
FinishEmitNativeCode()959 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
960   vixl_temps_.Close();
961 }
962 
AllocateScratchLocationFor(Location::Kind kind)963 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
964   DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister ||
965          kind == Location::kStackSlot || kind == Location::kDoubleStackSlot);
966   kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister;
967   Location scratch = GetScratchLocation(kind);
968   if (!scratch.Equals(Location::NoLocation())) {
969     return scratch;
970   }
971   // Allocate from VIXL temp registers.
972   if (kind == Location::kRegister) {
973     scratch = LocationFrom(vixl_temps_.AcquireX());
974   } else {
975     DCHECK(kind == Location::kFpuRegister);
976     scratch = LocationFrom(vixl_temps_.AcquireD());
977   }
978   AddScratchLocation(scratch);
979   return scratch;
980 }
981 
FreeScratchLocation(Location loc)982 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
983   if (loc.IsRegister()) {
984     vixl_temps_.Release(XRegisterFrom(loc));
985   } else {
986     DCHECK(loc.IsFpuRegister());
987     vixl_temps_.Release(DRegisterFrom(loc));
988   }
989   RemoveScratchLocation(loc);
990 }
991 
EmitMove(size_t index)992 void ParallelMoveResolverARM64::EmitMove(size_t index) {
993   MoveOperands* move = moves_[index];
994   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid);
995 }
996 
GenerateFrameEntry()997 void CodeGeneratorARM64::GenerateFrameEntry() {
998   MacroAssembler* masm = GetVIXLAssembler();
999   BlockPoolsScope block_pools(masm);
1000   __ Bind(&frame_entry_label_);
1001 
1002   bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
1003   if (do_overflow_check) {
1004     UseScratchRegisterScope temps(masm);
1005     Register temp = temps.AcquireX();
1006     DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1007     __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
1008     __ Ldr(wzr, MemOperand(temp, 0));
1009     RecordPcInfo(nullptr, 0);
1010   }
1011 
1012   if (!HasEmptyFrame()) {
1013     int frame_size = GetFrameSize();
1014     // Stack layout:
1015     //      sp[frame_size - 8]        : lr.
1016     //      ...                       : other preserved core registers.
1017     //      ...                       : other preserved fp registers.
1018     //      ...                       : reserved frame space.
1019     //      sp[0]                     : current method.
1020     __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1021     GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1022     GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
1023         frame_size - GetCoreSpillSize());
1024     GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
1025         frame_size - FrameEntrySpillSize());
1026   }
1027 }
1028 
GenerateFrameExit()1029 void CodeGeneratorARM64::GenerateFrameExit() {
1030   BlockPoolsScope block_pools(GetVIXLAssembler());
1031   GetAssembler()->cfi().RememberState();
1032   if (!HasEmptyFrame()) {
1033     int frame_size = GetFrameSize();
1034     GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
1035         frame_size - FrameEntrySpillSize());
1036     GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
1037         frame_size - GetCoreSpillSize());
1038     __ Drop(frame_size);
1039     GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1040   }
1041   __ Ret();
1042   GetAssembler()->cfi().RestoreState();
1043   GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1044 }
1045 
GetFramePreservedCoreRegisters() const1046 vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1047   DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1048   return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize,
1049                           core_spill_mask_);
1050 }
1051 
GetFramePreservedFPRegisters() const1052 vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1053   DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1054                                          GetNumberOfFloatingPointRegisters()));
1055   return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize,
1056                           fpu_spill_mask_);
1057 }
1058 
Bind(HBasicBlock * block)1059 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1060   __ Bind(GetLabelOf(block));
1061 }
1062 
MoveConstant(Location location,int32_t value)1063 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1064   DCHECK(location.IsRegister());
1065   __ Mov(RegisterFrom(location, Primitive::kPrimInt), value);
1066 }
1067 
AddLocationAsTemp(Location location,LocationSummary * locations)1068 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1069   if (location.IsRegister()) {
1070     locations->AddTemp(location);
1071   } else {
1072     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1073   }
1074 }
1075 
MarkGCCard(Register object,Register value,bool value_can_be_null)1076 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
1077   UseScratchRegisterScope temps(GetVIXLAssembler());
1078   Register card = temps.AcquireX();
1079   Register temp = temps.AcquireW();   // Index within the CardTable - 32bit.
1080   vixl::Label done;
1081   if (value_can_be_null) {
1082     __ Cbz(value, &done);
1083   }
1084   __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
1085   __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1086   __ Strb(card, MemOperand(card, temp.X()));
1087   if (value_can_be_null) {
1088     __ Bind(&done);
1089   }
1090 }
1091 
SetupBlockedRegisters() const1092 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1093   // Blocked core registers:
1094   //      lr        : Runtime reserved.
1095   //      tr        : Runtime reserved.
1096   //      xSuspend  : Runtime reserved. TODO: Unblock this when the runtime stops using it.
1097   //      ip1       : VIXL core temp.
1098   //      ip0       : VIXL core temp.
1099   //
1100   // Blocked fp registers:
1101   //      d31       : VIXL fp temp.
1102   CPURegList reserved_core_registers = vixl_reserved_core_registers;
1103   reserved_core_registers.Combine(runtime_reserved_core_registers);
1104   while (!reserved_core_registers.IsEmpty()) {
1105     blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
1106   }
1107 
1108   CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1109   while (!reserved_fp_registers.IsEmpty()) {
1110     blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
1111   }
1112 
1113   if (GetGraph()->IsDebuggable()) {
1114     // Stubs do not save callee-save floating point registers. If the graph
1115     // is debuggable, we need to deal with these registers differently. For
1116     // now, just block them.
1117     CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1118     while (!reserved_fp_registers_debuggable.IsEmpty()) {
1119       blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true;
1120     }
1121   }
1122 }
1123 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1124 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1125   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1126   __ Str(reg, MemOperand(sp, stack_index));
1127   return kArm64WordSize;
1128 }
1129 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1130 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1131   Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1132   __ Ldr(reg, MemOperand(sp, stack_index));
1133   return kArm64WordSize;
1134 }
1135 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)1136 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1137   FPRegister reg = FPRegister(reg_id, kDRegSize);
1138   __ Str(reg, MemOperand(sp, stack_index));
1139   return kArm64WordSize;
1140 }
1141 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)1142 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1143   FPRegister reg = FPRegister(reg_id, kDRegSize);
1144   __ Ldr(reg, MemOperand(sp, stack_index));
1145   return kArm64WordSize;
1146 }
1147 
DumpCoreRegister(std::ostream & stream,int reg) const1148 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1149   stream << XRegister(reg);
1150 }
1151 
DumpFloatingPointRegister(std::ostream & stream,int reg) const1152 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1153   stream << DRegister(reg);
1154 }
1155 
MoveConstant(CPURegister destination,HConstant * constant)1156 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1157   if (constant->IsIntConstant()) {
1158     __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1159   } else if (constant->IsLongConstant()) {
1160     __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1161   } else if (constant->IsNullConstant()) {
1162     __ Mov(Register(destination), 0);
1163   } else if (constant->IsFloatConstant()) {
1164     __ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
1165   } else {
1166     DCHECK(constant->IsDoubleConstant());
1167     __ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
1168   }
1169 }
1170 
1171 
CoherentConstantAndType(Location constant,Primitive::Type type)1172 static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
1173   DCHECK(constant.IsConstant());
1174   HConstant* cst = constant.GetConstant();
1175   return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
1176          // Null is mapped to a core W register, which we associate with kPrimInt.
1177          (cst->IsNullConstant() && type == Primitive::kPrimInt) ||
1178          (cst->IsLongConstant() && type == Primitive::kPrimLong) ||
1179          (cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
1180          (cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
1181 }
1182 
MoveLocation(Location destination,Location source,Primitive::Type dst_type)1183 void CodeGeneratorARM64::MoveLocation(Location destination,
1184                                       Location source,
1185                                       Primitive::Type dst_type) {
1186   if (source.Equals(destination)) {
1187     return;
1188   }
1189 
1190   // A valid move can always be inferred from the destination and source
1191   // locations. When moving from and to a register, the argument type can be
1192   // used to generate 32bit instead of 64bit moves. In debug mode we also
1193   // checks the coherency of the locations and the type.
1194   bool unspecified_type = (dst_type == Primitive::kPrimVoid);
1195 
1196   if (destination.IsRegister() || destination.IsFpuRegister()) {
1197     if (unspecified_type) {
1198       HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1199       if (source.IsStackSlot() ||
1200           (src_cst != nullptr && (src_cst->IsIntConstant()
1201                                   || src_cst->IsFloatConstant()
1202                                   || src_cst->IsNullConstant()))) {
1203         // For stack slots and 32bit constants, a 64bit type is appropriate.
1204         dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
1205       } else {
1206         // If the source is a double stack slot or a 64bit constant, a 64bit
1207         // type is appropriate. Else the source is a register, and since the
1208         // type has not been specified, we chose a 64bit type to force a 64bit
1209         // move.
1210         dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
1211       }
1212     }
1213     DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) ||
1214            (destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type)));
1215     CPURegister dst = CPURegisterFrom(destination, dst_type);
1216     if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1217       DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1218       __ Ldr(dst, StackOperandFrom(source));
1219     } else if (source.IsConstant()) {
1220       DCHECK(CoherentConstantAndType(source, dst_type));
1221       MoveConstant(dst, source.GetConstant());
1222     } else if (source.IsRegister()) {
1223       if (destination.IsRegister()) {
1224         __ Mov(Register(dst), RegisterFrom(source, dst_type));
1225       } else {
1226         DCHECK(destination.IsFpuRegister());
1227         Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1228             ? Primitive::kPrimLong
1229             : Primitive::kPrimInt;
1230         __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1231       }
1232     } else {
1233       DCHECK(source.IsFpuRegister());
1234       if (destination.IsRegister()) {
1235         Primitive::Type source_type = Primitive::Is64BitType(dst_type)
1236             ? Primitive::kPrimDouble
1237             : Primitive::kPrimFloat;
1238         __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1239       } else {
1240         DCHECK(destination.IsFpuRegister());
1241         __ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
1242       }
1243     }
1244   } else {  // The destination is not a register. It must be a stack slot.
1245     DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1246     if (source.IsRegister() || source.IsFpuRegister()) {
1247       if (unspecified_type) {
1248         if (source.IsRegister()) {
1249           dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
1250         } else {
1251           dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
1252         }
1253       }
1254       DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) &&
1255              (source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type)));
1256       __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1257     } else if (source.IsConstant()) {
1258       DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1259           << source << " " << dst_type;
1260       UseScratchRegisterScope temps(GetVIXLAssembler());
1261       HConstant* src_cst = source.GetConstant();
1262       CPURegister temp;
1263       if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
1264         temp = temps.AcquireW();
1265       } else if (src_cst->IsLongConstant()) {
1266         temp = temps.AcquireX();
1267       } else if (src_cst->IsFloatConstant()) {
1268         temp = temps.AcquireS();
1269       } else {
1270         DCHECK(src_cst->IsDoubleConstant());
1271         temp = temps.AcquireD();
1272       }
1273       MoveConstant(temp, src_cst);
1274       __ Str(temp, StackOperandFrom(destination));
1275     } else {
1276       DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1277       DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1278       UseScratchRegisterScope temps(GetVIXLAssembler());
1279       // There is generally less pressure on FP registers.
1280       FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
1281       __ Ldr(temp, StackOperandFrom(source));
1282       __ Str(temp, StackOperandFrom(destination));
1283     }
1284   }
1285 }
1286 
Load(Primitive::Type type,CPURegister dst,const MemOperand & src)1287 void CodeGeneratorARM64::Load(Primitive::Type type,
1288                               CPURegister dst,
1289                               const MemOperand& src) {
1290   switch (type) {
1291     case Primitive::kPrimBoolean:
1292       __ Ldrb(Register(dst), src);
1293       break;
1294     case Primitive::kPrimByte:
1295       __ Ldrsb(Register(dst), src);
1296       break;
1297     case Primitive::kPrimShort:
1298       __ Ldrsh(Register(dst), src);
1299       break;
1300     case Primitive::kPrimChar:
1301       __ Ldrh(Register(dst), src);
1302       break;
1303     case Primitive::kPrimInt:
1304     case Primitive::kPrimNot:
1305     case Primitive::kPrimLong:
1306     case Primitive::kPrimFloat:
1307     case Primitive::kPrimDouble:
1308       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1309       __ Ldr(dst, src);
1310       break;
1311     case Primitive::kPrimVoid:
1312       LOG(FATAL) << "Unreachable type " << type;
1313   }
1314 }
1315 
LoadAcquire(HInstruction * instruction,CPURegister dst,const MemOperand & src,bool needs_null_check)1316 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1317                                      CPURegister dst,
1318                                      const MemOperand& src,
1319                                      bool needs_null_check) {
1320   MacroAssembler* masm = GetVIXLAssembler();
1321   BlockPoolsScope block_pools(masm);
1322   UseScratchRegisterScope temps(masm);
1323   Register temp_base = temps.AcquireX();
1324   Primitive::Type type = instruction->GetType();
1325 
1326   DCHECK(!src.IsPreIndex());
1327   DCHECK(!src.IsPostIndex());
1328 
1329   // TODO(vixl): Let the MacroAssembler handle MemOperand.
1330   __ Add(temp_base, src.base(), OperandFromMemOperand(src));
1331   MemOperand base = MemOperand(temp_base);
1332   switch (type) {
1333     case Primitive::kPrimBoolean:
1334       __ Ldarb(Register(dst), base);
1335       if (needs_null_check) {
1336         MaybeRecordImplicitNullCheck(instruction);
1337       }
1338       break;
1339     case Primitive::kPrimByte:
1340       __ Ldarb(Register(dst), base);
1341       if (needs_null_check) {
1342         MaybeRecordImplicitNullCheck(instruction);
1343       }
1344       __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1345       break;
1346     case Primitive::kPrimChar:
1347       __ Ldarh(Register(dst), base);
1348       if (needs_null_check) {
1349         MaybeRecordImplicitNullCheck(instruction);
1350       }
1351       break;
1352     case Primitive::kPrimShort:
1353       __ Ldarh(Register(dst), base);
1354       if (needs_null_check) {
1355         MaybeRecordImplicitNullCheck(instruction);
1356       }
1357       __ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
1358       break;
1359     case Primitive::kPrimInt:
1360     case Primitive::kPrimNot:
1361     case Primitive::kPrimLong:
1362       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1363       __ Ldar(Register(dst), base);
1364       if (needs_null_check) {
1365         MaybeRecordImplicitNullCheck(instruction);
1366       }
1367       break;
1368     case Primitive::kPrimFloat:
1369     case Primitive::kPrimDouble: {
1370       DCHECK(dst.IsFPRegister());
1371       DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
1372 
1373       Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1374       __ Ldar(temp, base);
1375       if (needs_null_check) {
1376         MaybeRecordImplicitNullCheck(instruction);
1377       }
1378       __ Fmov(FPRegister(dst), temp);
1379       break;
1380     }
1381     case Primitive::kPrimVoid:
1382       LOG(FATAL) << "Unreachable type " << type;
1383   }
1384 }
1385 
Store(Primitive::Type type,CPURegister src,const MemOperand & dst)1386 void CodeGeneratorARM64::Store(Primitive::Type type,
1387                                CPURegister src,
1388                                const MemOperand& dst) {
1389   switch (type) {
1390     case Primitive::kPrimBoolean:
1391     case Primitive::kPrimByte:
1392       __ Strb(Register(src), dst);
1393       break;
1394     case Primitive::kPrimChar:
1395     case Primitive::kPrimShort:
1396       __ Strh(Register(src), dst);
1397       break;
1398     case Primitive::kPrimInt:
1399     case Primitive::kPrimNot:
1400     case Primitive::kPrimLong:
1401     case Primitive::kPrimFloat:
1402     case Primitive::kPrimDouble:
1403       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1404       __ Str(src, dst);
1405       break;
1406     case Primitive::kPrimVoid:
1407       LOG(FATAL) << "Unreachable type " << type;
1408   }
1409 }
1410 
StoreRelease(Primitive::Type type,CPURegister src,const MemOperand & dst)1411 void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
1412                                       CPURegister src,
1413                                       const MemOperand& dst) {
1414   UseScratchRegisterScope temps(GetVIXLAssembler());
1415   Register temp_base = temps.AcquireX();
1416 
1417   DCHECK(!dst.IsPreIndex());
1418   DCHECK(!dst.IsPostIndex());
1419 
1420   // TODO(vixl): Let the MacroAssembler handle this.
1421   Operand op = OperandFromMemOperand(dst);
1422   __ Add(temp_base, dst.base(), op);
1423   MemOperand base = MemOperand(temp_base);
1424   switch (type) {
1425     case Primitive::kPrimBoolean:
1426     case Primitive::kPrimByte:
1427       __ Stlrb(Register(src), base);
1428       break;
1429     case Primitive::kPrimChar:
1430     case Primitive::kPrimShort:
1431       __ Stlrh(Register(src), base);
1432       break;
1433     case Primitive::kPrimInt:
1434     case Primitive::kPrimNot:
1435     case Primitive::kPrimLong:
1436       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1437       __ Stlr(Register(src), base);
1438       break;
1439     case Primitive::kPrimFloat:
1440     case Primitive::kPrimDouble: {
1441       DCHECK(src.IsFPRegister());
1442       DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
1443 
1444       Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1445       __ Fmov(temp, FPRegister(src));
1446       __ Stlr(temp, base);
1447       break;
1448     }
1449     case Primitive::kPrimVoid:
1450       LOG(FATAL) << "Unreachable type " << type;
1451   }
1452 }
1453 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1454 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1455                                        HInstruction* instruction,
1456                                        uint32_t dex_pc,
1457                                        SlowPathCode* slow_path) {
1458   InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(),
1459                 instruction,
1460                 dex_pc,
1461                 slow_path);
1462 }
1463 
InvokeRuntime(int32_t entry_point_offset,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1464 void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
1465                                        HInstruction* instruction,
1466                                        uint32_t dex_pc,
1467                                        SlowPathCode* slow_path) {
1468   ValidateInvokeRuntime(instruction, slow_path);
1469   BlockPoolsScope block_pools(GetVIXLAssembler());
1470   __ Ldr(lr, MemOperand(tr, entry_point_offset));
1471   __ Blr(lr);
1472   RecordPcInfo(instruction, dex_pc, slow_path);
1473 }
1474 
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,vixl::Register class_reg)1475 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1476                                                                      vixl::Register class_reg) {
1477   UseScratchRegisterScope temps(GetVIXLAssembler());
1478   Register temp = temps.AcquireW();
1479   size_t status_offset = mirror::Class::StatusOffset().SizeValue();
1480 
1481   // Even if the initialized flag is set, we need to ensure consistent memory ordering.
1482   // TODO(vixl): Let the MacroAssembler handle MemOperand.
1483   __ Add(temp, class_reg, status_offset);
1484   __ Ldar(temp, HeapOperand(temp));
1485   __ Cmp(temp, mirror::Class::kStatusInitialized);
1486   __ B(lt, slow_path->GetEntryLabel());
1487   __ Bind(slow_path->GetExitLabel());
1488 }
1489 
GenerateMemoryBarrier(MemBarrierKind kind)1490 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
1491   BarrierType type = BarrierAll;
1492 
1493   switch (kind) {
1494     case MemBarrierKind::kAnyAny:
1495     case MemBarrierKind::kAnyStore: {
1496       type = BarrierAll;
1497       break;
1498     }
1499     case MemBarrierKind::kLoadAny: {
1500       type = BarrierReads;
1501       break;
1502     }
1503     case MemBarrierKind::kStoreStore: {
1504       type = BarrierWrites;
1505       break;
1506     }
1507     default:
1508       LOG(FATAL) << "Unexpected memory barrier " << kind;
1509   }
1510   __ Dmb(InnerShareable, type);
1511 }
1512 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)1513 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
1514                                                          HBasicBlock* successor) {
1515   SuspendCheckSlowPathARM64* slow_path =
1516       down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
1517   if (slow_path == nullptr) {
1518     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
1519     instruction->SetSlowPath(slow_path);
1520     codegen_->AddSlowPath(slow_path);
1521     if (successor != nullptr) {
1522       DCHECK(successor->IsLoopHeader());
1523       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
1524     }
1525   } else {
1526     DCHECK_EQ(slow_path->GetSuccessor(), successor);
1527   }
1528 
1529   UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
1530   Register temp = temps.AcquireW();
1531 
1532   __ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
1533   if (successor == nullptr) {
1534     __ Cbnz(temp, slow_path->GetEntryLabel());
1535     __ Bind(slow_path->GetReturnLabel());
1536   } else {
1537     __ Cbz(temp, codegen_->GetLabelOf(successor));
1538     __ B(slow_path->GetEntryLabel());
1539     // slow_path will return to GetLabelOf(successor).
1540   }
1541 }
1542 
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)1543 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
1544                                                              CodeGeneratorARM64* codegen)
1545       : InstructionCodeGenerator(graph, codegen),
1546         assembler_(codegen->GetAssembler()),
1547         codegen_(codegen) {}
1548 
1549 #define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M)              \
1550   /* No unimplemented IR. */
1551 
1552 #define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
1553 
1554 enum UnimplementedInstructionBreakCode {
1555   // Using a base helps identify when we hit such breakpoints.
1556   UnimplementedInstructionBreakCodeBaseCode = 0x900,
1557 #define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
1558   FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
1559 #undef ENUM_UNIMPLEMENTED_INSTRUCTION
1560 };
1561 
1562 #define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name)                               \
1563   void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) {  \
1564     __ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name));                               \
1565   }                                                                                   \
1566   void LocationsBuilderARM64::Visit##name(H##name* instr) {                           \
1567     LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
1568     locations->SetOut(Location::Any());                                               \
1569   }
FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)1570   FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
1571 #undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
1572 
1573 #undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
1574 #undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
1575 
1576 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
1577   DCHECK_EQ(instr->InputCount(), 2U);
1578   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1579   Primitive::Type type = instr->GetResultType();
1580   switch (type) {
1581     case Primitive::kPrimInt:
1582     case Primitive::kPrimLong:
1583       locations->SetInAt(0, Location::RequiresRegister());
1584       locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
1585       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1586       break;
1587 
1588     case Primitive::kPrimFloat:
1589     case Primitive::kPrimDouble:
1590       locations->SetInAt(0, Location::RequiresFpuRegister());
1591       locations->SetInAt(1, Location::RequiresFpuRegister());
1592       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1593       break;
1594 
1595     default:
1596       LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
1597   }
1598 }
1599 
HandleFieldGet(HInstruction * instruction)1600 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) {
1601   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1602 
1603   bool object_field_get_with_read_barrier =
1604       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
1605   LocationSummary* locations =
1606       new (GetGraph()->GetArena()) LocationSummary(instruction,
1607                                                    object_field_get_with_read_barrier ?
1608                                                        LocationSummary::kCallOnSlowPath :
1609                                                        LocationSummary::kNoCall);
1610   locations->SetInAt(0, Location::RequiresRegister());
1611   if (Primitive::IsFloatingPointType(instruction->GetType())) {
1612     locations->SetOut(Location::RequiresFpuRegister());
1613   } else {
1614     // The output overlaps for an object field get when read barriers
1615     // are enabled: we do not want the load to overwrite the object's
1616     // location, as we need it to emit the read barrier.
1617     locations->SetOut(
1618         Location::RequiresRegister(),
1619         object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
1620   }
1621 }
1622 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)1623 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
1624                                                    const FieldInfo& field_info) {
1625   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
1626   LocationSummary* locations = instruction->GetLocations();
1627   Location base_loc = locations->InAt(0);
1628   Location out = locations->Out();
1629   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
1630   Primitive::Type field_type = field_info.GetFieldType();
1631   BlockPoolsScope block_pools(GetVIXLAssembler());
1632   MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
1633 
1634   if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1635     // Object FieldGet with Baker's read barrier case.
1636     MacroAssembler* masm = GetVIXLAssembler();
1637     UseScratchRegisterScope temps(masm);
1638     // /* HeapReference<Object> */ out = *(base + offset)
1639     Register base = RegisterFrom(base_loc, Primitive::kPrimNot);
1640     Register temp = temps.AcquireW();
1641     // Note that potential implicit null checks are handled in this
1642     // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
1643     codegen_->GenerateFieldLoadWithBakerReadBarrier(
1644         instruction,
1645         out,
1646         base,
1647         offset,
1648         temp,
1649         /* needs_null_check */ true,
1650         field_info.IsVolatile());
1651   } else {
1652     // General case.
1653     if (field_info.IsVolatile()) {
1654       // Note that a potential implicit null check is handled in this
1655       // CodeGeneratorARM64::LoadAcquire call.
1656       // NB: LoadAcquire will record the pc info if needed.
1657       codegen_->LoadAcquire(
1658           instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
1659     } else {
1660       codegen_->Load(field_type, OutputCPURegister(instruction), field);
1661       codegen_->MaybeRecordImplicitNullCheck(instruction);
1662     }
1663     if (field_type == Primitive::kPrimNot) {
1664       // If read barriers are enabled, emit read barriers other than
1665       // Baker's using a slow path (and also unpoison the loaded
1666       // reference, if heap poisoning is enabled).
1667       codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
1668     }
1669   }
1670 }
1671 
HandleFieldSet(HInstruction * instruction)1672 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
1673   LocationSummary* locations =
1674       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1675   locations->SetInAt(0, Location::RequiresRegister());
1676   if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
1677     locations->SetInAt(1, Location::RequiresFpuRegister());
1678   } else {
1679     locations->SetInAt(1, Location::RequiresRegister());
1680   }
1681 }
1682 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)1683 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
1684                                                    const FieldInfo& field_info,
1685                                                    bool value_can_be_null) {
1686   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
1687   BlockPoolsScope block_pools(GetVIXLAssembler());
1688 
1689   Register obj = InputRegisterAt(instruction, 0);
1690   CPURegister value = InputCPURegisterAt(instruction, 1);
1691   CPURegister source = value;
1692   Offset offset = field_info.GetFieldOffset();
1693   Primitive::Type field_type = field_info.GetFieldType();
1694 
1695   {
1696     // We use a block to end the scratch scope before the write barrier, thus
1697     // freeing the temporary registers so they can be used in `MarkGCCard`.
1698     UseScratchRegisterScope temps(GetVIXLAssembler());
1699 
1700     if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) {
1701       DCHECK(value.IsW());
1702       Register temp = temps.AcquireW();
1703       __ Mov(temp, value.W());
1704       GetAssembler()->PoisonHeapReference(temp.W());
1705       source = temp;
1706     }
1707 
1708     if (field_info.IsVolatile()) {
1709       codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset));
1710       codegen_->MaybeRecordImplicitNullCheck(instruction);
1711     } else {
1712       codegen_->Store(field_type, source, HeapOperand(obj, offset));
1713       codegen_->MaybeRecordImplicitNullCheck(instruction);
1714     }
1715   }
1716 
1717   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
1718     codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
1719   }
1720 }
1721 
HandleBinaryOp(HBinaryOperation * instr)1722 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
1723   Primitive::Type type = instr->GetType();
1724 
1725   switch (type) {
1726     case Primitive::kPrimInt:
1727     case Primitive::kPrimLong: {
1728       Register dst = OutputRegister(instr);
1729       Register lhs = InputRegisterAt(instr, 0);
1730       Operand rhs = InputOperandAt(instr, 1);
1731       if (instr->IsAdd()) {
1732         __ Add(dst, lhs, rhs);
1733       } else if (instr->IsAnd()) {
1734         __ And(dst, lhs, rhs);
1735       } else if (instr->IsOr()) {
1736         __ Orr(dst, lhs, rhs);
1737       } else if (instr->IsSub()) {
1738         __ Sub(dst, lhs, rhs);
1739       } else if (instr->IsRor()) {
1740         if (rhs.IsImmediate()) {
1741           uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1);
1742           __ Ror(dst, lhs, shift);
1743         } else {
1744           // Ensure shift distance is in the same size register as the result. If
1745           // we are rotating a long and the shift comes in a w register originally,
1746           // we don't need to sxtw for use as an x since the shift distances are
1747           // all & reg_bits - 1.
1748           __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
1749         }
1750       } else {
1751         DCHECK(instr->IsXor());
1752         __ Eor(dst, lhs, rhs);
1753       }
1754       break;
1755     }
1756     case Primitive::kPrimFloat:
1757     case Primitive::kPrimDouble: {
1758       FPRegister dst = OutputFPRegister(instr);
1759       FPRegister lhs = InputFPRegisterAt(instr, 0);
1760       FPRegister rhs = InputFPRegisterAt(instr, 1);
1761       if (instr->IsAdd()) {
1762         __ Fadd(dst, lhs, rhs);
1763       } else if (instr->IsSub()) {
1764         __ Fsub(dst, lhs, rhs);
1765       } else {
1766         LOG(FATAL) << "Unexpected floating-point binary operation";
1767       }
1768       break;
1769     }
1770     default:
1771       LOG(FATAL) << "Unexpected binary operation type " << type;
1772   }
1773 }
1774 
HandleShift(HBinaryOperation * instr)1775 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
1776   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1777 
1778   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1779   Primitive::Type type = instr->GetResultType();
1780   switch (type) {
1781     case Primitive::kPrimInt:
1782     case Primitive::kPrimLong: {
1783       locations->SetInAt(0, Location::RequiresRegister());
1784       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
1785       locations->SetOut(Location::RequiresRegister());
1786       break;
1787     }
1788     default:
1789       LOG(FATAL) << "Unexpected shift type " << type;
1790   }
1791 }
1792 
HandleShift(HBinaryOperation * instr)1793 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
1794   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
1795 
1796   Primitive::Type type = instr->GetType();
1797   switch (type) {
1798     case Primitive::kPrimInt:
1799     case Primitive::kPrimLong: {
1800       Register dst = OutputRegister(instr);
1801       Register lhs = InputRegisterAt(instr, 0);
1802       Operand rhs = InputOperandAt(instr, 1);
1803       if (rhs.IsImmediate()) {
1804         uint32_t shift_value = rhs.immediate() &
1805             (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
1806         if (instr->IsShl()) {
1807           __ Lsl(dst, lhs, shift_value);
1808         } else if (instr->IsShr()) {
1809           __ Asr(dst, lhs, shift_value);
1810         } else {
1811           __ Lsr(dst, lhs, shift_value);
1812         }
1813       } else {
1814         Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
1815 
1816         if (instr->IsShl()) {
1817           __ Lsl(dst, lhs, rhs_reg);
1818         } else if (instr->IsShr()) {
1819           __ Asr(dst, lhs, rhs_reg);
1820         } else {
1821           __ Lsr(dst, lhs, rhs_reg);
1822         }
1823       }
1824       break;
1825     }
1826     default:
1827       LOG(FATAL) << "Unexpected shift operation type " << type;
1828   }
1829 }
1830 
VisitAdd(HAdd * instruction)1831 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
1832   HandleBinaryOp(instruction);
1833 }
1834 
VisitAdd(HAdd * instruction)1835 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
1836   HandleBinaryOp(instruction);
1837 }
1838 
VisitAnd(HAnd * instruction)1839 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
1840   HandleBinaryOp(instruction);
1841 }
1842 
VisitAnd(HAnd * instruction)1843 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
1844   HandleBinaryOp(instruction);
1845 }
1846 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)1847 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
1848   DCHECK(Primitive::IsIntegralType(instr->GetType())) << instr->GetType();
1849   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
1850   locations->SetInAt(0, Location::RequiresRegister());
1851   // There is no immediate variant of negated bitwise instructions in AArch64.
1852   locations->SetInAt(1, Location::RequiresRegister());
1853   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1854 }
1855 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)1856 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
1857   Register dst = OutputRegister(instr);
1858   Register lhs = InputRegisterAt(instr, 0);
1859   Register rhs = InputRegisterAt(instr, 1);
1860 
1861   switch (instr->GetOpKind()) {
1862     case HInstruction::kAnd:
1863       __ Bic(dst, lhs, rhs);
1864       break;
1865     case HInstruction::kOr:
1866       __ Orn(dst, lhs, rhs);
1867       break;
1868     case HInstruction::kXor:
1869       __ Eon(dst, lhs, rhs);
1870       break;
1871     default:
1872       LOG(FATAL) << "Unreachable";
1873   }
1874 }
1875 
VisitArm64DataProcWithShifterOp(HArm64DataProcWithShifterOp * instruction)1876 void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp(
1877     HArm64DataProcWithShifterOp* instruction) {
1878   DCHECK(instruction->GetType() == Primitive::kPrimInt ||
1879          instruction->GetType() == Primitive::kPrimLong);
1880   LocationSummary* locations =
1881       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1882   if (instruction->GetInstrKind() == HInstruction::kNeg) {
1883     locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
1884   } else {
1885     locations->SetInAt(0, Location::RequiresRegister());
1886   }
1887   locations->SetInAt(1, Location::RequiresRegister());
1888   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1889 }
1890 
VisitArm64DataProcWithShifterOp(HArm64DataProcWithShifterOp * instruction)1891 void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
1892     HArm64DataProcWithShifterOp* instruction) {
1893   Primitive::Type type = instruction->GetType();
1894   HInstruction::InstructionKind kind = instruction->GetInstrKind();
1895   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1896   Register out = OutputRegister(instruction);
1897   Register left;
1898   if (kind != HInstruction::kNeg) {
1899     left = InputRegisterAt(instruction, 0);
1900   }
1901   // If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the
1902   // shifter operand operation, the IR generating `right_reg` (input to the type
1903   // conversion) can have a different type from the current instruction's type,
1904   // so we manually indicate the type.
1905   Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
1906   int64_t shift_amount = instruction->GetShiftAmount() &
1907       (type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
1908 
1909   Operand right_operand(0);
1910 
1911   HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
1912   if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) {
1913     right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
1914   } else {
1915     right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount);
1916   }
1917 
1918   // Logical binary operations do not support extension operations in the
1919   // operand. Note that VIXL would still manage if it was passed by generating
1920   // the extension as a separate instruction.
1921   // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
1922   DCHECK(!right_operand.IsExtendedRegister() ||
1923          (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
1924           kind != HInstruction::kNeg));
1925   switch (kind) {
1926     case HInstruction::kAdd:
1927       __ Add(out, left, right_operand);
1928       break;
1929     case HInstruction::kAnd:
1930       __ And(out, left, right_operand);
1931       break;
1932     case HInstruction::kNeg:
1933       DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
1934       __ Neg(out, right_operand);
1935       break;
1936     case HInstruction::kOr:
1937       __ Orr(out, left, right_operand);
1938       break;
1939     case HInstruction::kSub:
1940       __ Sub(out, left, right_operand);
1941       break;
1942     case HInstruction::kXor:
1943       __ Eor(out, left, right_operand);
1944       break;
1945     default:
1946       LOG(FATAL) << "Unexpected operation kind: " << kind;
1947       UNREACHABLE();
1948   }
1949 }
1950 
VisitArm64IntermediateAddress(HArm64IntermediateAddress * instruction)1951 void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) {
1952   // The read barrier instrumentation does not support the
1953   // HArm64IntermediateAddress instruction yet.
1954   DCHECK(!kEmitCompilerReadBarrier);
1955   LocationSummary* locations =
1956       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
1957   locations->SetInAt(0, Location::RequiresRegister());
1958   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
1959   locations->SetOut(Location::RequiresRegister());
1960 }
1961 
VisitArm64IntermediateAddress(HArm64IntermediateAddress * instruction)1962 void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress(
1963     HArm64IntermediateAddress* instruction) {
1964   // The read barrier instrumentation does not support the
1965   // HArm64IntermediateAddress instruction yet.
1966   DCHECK(!kEmitCompilerReadBarrier);
1967   __ Add(OutputRegister(instruction),
1968          InputRegisterAt(instruction, 0),
1969          Operand(InputOperandAt(instruction, 1)));
1970 }
1971 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)1972 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
1973   LocationSummary* locations =
1974       new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
1975   HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
1976   if (instr->GetOpKind() == HInstruction::kSub &&
1977       accumulator->IsConstant() &&
1978       accumulator->AsConstant()->IsArithmeticZero()) {
1979     // Don't allocate register for Mneg instruction.
1980   } else {
1981     locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
1982                        Location::RequiresRegister());
1983   }
1984   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
1985   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
1986   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1987 }
1988 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)1989 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
1990   Register res = OutputRegister(instr);
1991   Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
1992   Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
1993 
1994   // Avoid emitting code that could trigger Cortex A53's erratum 835769.
1995   // This fixup should be carried out for all multiply-accumulate instructions:
1996   // madd, msub, smaddl, smsubl, umaddl and umsubl.
1997   if (instr->GetType() == Primitive::kPrimLong &&
1998       codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
1999     MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2000     vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize;
2001     if (prev->IsLoadOrStore()) {
2002       // Make sure we emit only exactly one nop.
2003       vixl::CodeBufferCheckScope scope(masm,
2004                                        vixl::kInstructionSize,
2005                                        vixl::CodeBufferCheckScope::kCheck,
2006                                        vixl::CodeBufferCheckScope::kExactSize);
2007       __ nop();
2008     }
2009   }
2010 
2011   if (instr->GetOpKind() == HInstruction::kAdd) {
2012     Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2013     __ Madd(res, mul_left, mul_right, accumulator);
2014   } else {
2015     DCHECK(instr->GetOpKind() == HInstruction::kSub);
2016     HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2017     if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2018       __ Mneg(res, mul_left, mul_right);
2019     } else {
2020       Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2021       __ Msub(res, mul_left, mul_right, accumulator);
2022     }
2023   }
2024 }
2025 
VisitArrayGet(HArrayGet * instruction)2026 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2027   bool object_array_get_with_read_barrier =
2028       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
2029   LocationSummary* locations =
2030       new (GetGraph()->GetArena()) LocationSummary(instruction,
2031                                                    object_array_get_with_read_barrier ?
2032                                                        LocationSummary::kCallOnSlowPath :
2033                                                        LocationSummary::kNoCall);
2034   locations->SetInAt(0, Location::RequiresRegister());
2035   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2036   if (Primitive::IsFloatingPointType(instruction->GetType())) {
2037     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2038   } else {
2039     // The output overlaps in the case of an object array get with
2040     // read barriers enabled: we do not want the move to overwrite the
2041     // array's location, as we need it to emit the read barrier.
2042     locations->SetOut(
2043         Location::RequiresRegister(),
2044         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2045   }
2046 }
2047 
VisitArrayGet(HArrayGet * instruction)2048 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2049   Primitive::Type type = instruction->GetType();
2050   Register obj = InputRegisterAt(instruction, 0);
2051   LocationSummary* locations = instruction->GetLocations();
2052   Location index = locations->InAt(1);
2053   uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
2054   Location out = locations->Out();
2055 
2056   MacroAssembler* masm = GetVIXLAssembler();
2057   UseScratchRegisterScope temps(masm);
2058   // Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
2059   BlockPoolsScope block_pools(masm);
2060 
2061   if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2062     // Object ArrayGet with Baker's read barrier case.
2063     Register temp = temps.AcquireW();
2064     // The read barrier instrumentation does not support the
2065     // HArm64IntermediateAddress instruction yet.
2066     DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2067     // Note that a potential implicit null check is handled in the
2068     // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2069     codegen_->GenerateArrayLoadWithBakerReadBarrier(
2070         instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true);
2071   } else {
2072     // General case.
2073     MemOperand source = HeapOperand(obj);
2074     if (index.IsConstant()) {
2075       offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
2076       source = HeapOperand(obj, offset);
2077     } else {
2078       Register temp = temps.AcquireSameSizeAs(obj);
2079       if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2080         // The read barrier instrumentation does not support the
2081         // HArm64IntermediateAddress instruction yet.
2082         DCHECK(!kEmitCompilerReadBarrier);
2083         // We do not need to compute the intermediate address from the array: the
2084         // input instruction has done it already. See the comment in
2085         // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2086         if (kIsDebugBuild) {
2087           HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2088           DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2089         }
2090         temp = obj;
2091       } else {
2092         __ Add(temp, obj, offset);
2093       }
2094       source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
2095     }
2096 
2097     codegen_->Load(type, OutputCPURegister(instruction), source);
2098     codegen_->MaybeRecordImplicitNullCheck(instruction);
2099 
2100     if (type == Primitive::kPrimNot) {
2101       static_assert(
2102           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2103           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2104       Location obj_loc = locations->InAt(0);
2105       if (index.IsConstant()) {
2106         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2107       } else {
2108         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2109       }
2110     }
2111   }
2112 }
2113 
VisitArrayLength(HArrayLength * instruction)2114 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2115   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2116   locations->SetInAt(0, Location::RequiresRegister());
2117   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2118 }
2119 
VisitArrayLength(HArrayLength * instruction)2120 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2121   BlockPoolsScope block_pools(GetVIXLAssembler());
2122   __ Ldr(OutputRegister(instruction),
2123          HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
2124   codegen_->MaybeRecordImplicitNullCheck(instruction);
2125 }
2126 
VisitArraySet(HArraySet * instruction)2127 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2128   Primitive::Type value_type = instruction->GetComponentType();
2129 
2130   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2131   bool object_array_set_with_read_barrier =
2132       kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
2133   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
2134       instruction,
2135       (may_need_runtime_call_for_type_check  || object_array_set_with_read_barrier) ?
2136           LocationSummary::kCallOnSlowPath :
2137           LocationSummary::kNoCall);
2138   locations->SetInAt(0, Location::RequiresRegister());
2139   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2140   if (Primitive::IsFloatingPointType(value_type)) {
2141     locations->SetInAt(2, Location::RequiresFpuRegister());
2142   } else {
2143     locations->SetInAt(2, Location::RequiresRegister());
2144   }
2145 }
2146 
VisitArraySet(HArraySet * instruction)2147 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2148   Primitive::Type value_type = instruction->GetComponentType();
2149   LocationSummary* locations = instruction->GetLocations();
2150   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
2151   bool needs_write_barrier =
2152       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2153 
2154   Register array = InputRegisterAt(instruction, 0);
2155   CPURegister value = InputCPURegisterAt(instruction, 2);
2156   CPURegister source = value;
2157   Location index = locations->InAt(1);
2158   size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
2159   MemOperand destination = HeapOperand(array);
2160   MacroAssembler* masm = GetVIXLAssembler();
2161   BlockPoolsScope block_pools(masm);
2162 
2163   if (!needs_write_barrier) {
2164     DCHECK(!may_need_runtime_call_for_type_check);
2165     if (index.IsConstant()) {
2166       offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2167       destination = HeapOperand(array, offset);
2168     } else {
2169       UseScratchRegisterScope temps(masm);
2170       Register temp = temps.AcquireSameSizeAs(array);
2171       if (instruction->GetArray()->IsArm64IntermediateAddress()) {
2172         // The read barrier instrumentation does not support the
2173         // HArm64IntermediateAddress instruction yet.
2174         DCHECK(!kEmitCompilerReadBarrier);
2175         // We do not need to compute the intermediate address from the array: the
2176         // input instruction has done it already. See the comment in
2177         // `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
2178         if (kIsDebugBuild) {
2179           HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
2180           DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2181         }
2182         temp = array;
2183       } else {
2184         __ Add(temp, array, offset);
2185       }
2186       destination = HeapOperand(temp,
2187                                 XRegisterFrom(index),
2188                                 LSL,
2189                                 Primitive::ComponentSizeShift(value_type));
2190     }
2191     codegen_->Store(value_type, value, destination);
2192     codegen_->MaybeRecordImplicitNullCheck(instruction);
2193   } else {
2194     DCHECK(needs_write_barrier);
2195     DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
2196     vixl::Label done;
2197     SlowPathCodeARM64* slow_path = nullptr;
2198     {
2199       // We use a block to end the scratch scope before the write barrier, thus
2200       // freeing the temporary registers so they can be used in `MarkGCCard`.
2201       UseScratchRegisterScope temps(masm);
2202       Register temp = temps.AcquireSameSizeAs(array);
2203       if (index.IsConstant()) {
2204         offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
2205         destination = HeapOperand(array, offset);
2206       } else {
2207         destination = HeapOperand(temp,
2208                                   XRegisterFrom(index),
2209                                   LSL,
2210                                   Primitive::ComponentSizeShift(value_type));
2211       }
2212 
2213       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2214       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2215       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2216 
2217       if (may_need_runtime_call_for_type_check) {
2218         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction);
2219         codegen_->AddSlowPath(slow_path);
2220         if (instruction->GetValueCanBeNull()) {
2221           vixl::Label non_zero;
2222           __ Cbnz(Register(value), &non_zero);
2223           if (!index.IsConstant()) {
2224             __ Add(temp, array, offset);
2225           }
2226           __ Str(wzr, destination);
2227           codegen_->MaybeRecordImplicitNullCheck(instruction);
2228           __ B(&done);
2229           __ Bind(&non_zero);
2230         }
2231 
2232         if (kEmitCompilerReadBarrier) {
2233           // When read barriers are enabled, the type checking
2234           // instrumentation requires two read barriers:
2235           //
2236           //   __ Mov(temp2, temp);
2237           //   // /* HeapReference<Class> */ temp = temp->component_type_
2238           //   __ Ldr(temp, HeapOperand(temp, component_offset));
2239           //   codegen_->GenerateReadBarrierSlow(
2240           //       instruction, temp_loc, temp_loc, temp2_loc, component_offset);
2241           //
2242           //   // /* HeapReference<Class> */ temp2 = value->klass_
2243           //   __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2244           //   codegen_->GenerateReadBarrierSlow(
2245           //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc);
2246           //
2247           //   __ Cmp(temp, temp2);
2248           //
2249           // However, the second read barrier may trash `temp`, as it
2250           // is a temporary register, and as such would not be saved
2251           // along with live registers before calling the runtime (nor
2252           // restored afterwards).  So in this case, we bail out and
2253           // delegate the work to the array set slow path.
2254           //
2255           // TODO: Extend the register allocator to support a new
2256           // "(locally) live temp" location so as to avoid always
2257           // going into the slow path when read barriers are enabled.
2258           __ B(slow_path->GetEntryLabel());
2259         } else {
2260           Register temp2 = temps.AcquireSameSizeAs(array);
2261           // /* HeapReference<Class> */ temp = array->klass_
2262           __ Ldr(temp, HeapOperand(array, class_offset));
2263           codegen_->MaybeRecordImplicitNullCheck(instruction);
2264           GetAssembler()->MaybeUnpoisonHeapReference(temp);
2265 
2266           // /* HeapReference<Class> */ temp = temp->component_type_
2267           __ Ldr(temp, HeapOperand(temp, component_offset));
2268           // /* HeapReference<Class> */ temp2 = value->klass_
2269           __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2270           // If heap poisoning is enabled, no need to unpoison `temp`
2271           // nor `temp2`, as we are comparing two poisoned references.
2272           __ Cmp(temp, temp2);
2273 
2274           if (instruction->StaticTypeOfArrayIsObjectArray()) {
2275             vixl::Label do_put;
2276             __ B(eq, &do_put);
2277             // If heap poisoning is enabled, the `temp` reference has
2278             // not been unpoisoned yet; unpoison it now.
2279             GetAssembler()->MaybeUnpoisonHeapReference(temp);
2280 
2281             // /* HeapReference<Class> */ temp = temp->super_class_
2282             __ Ldr(temp, HeapOperand(temp, super_offset));
2283             // If heap poisoning is enabled, no need to unpoison
2284             // `temp`, as we are comparing against null below.
2285             __ Cbnz(temp, slow_path->GetEntryLabel());
2286             __ Bind(&do_put);
2287           } else {
2288             __ B(ne, slow_path->GetEntryLabel());
2289           }
2290           temps.Release(temp2);
2291         }
2292       }
2293 
2294       if (kPoisonHeapReferences) {
2295         Register temp2 = temps.AcquireSameSizeAs(array);
2296           DCHECK(value.IsW());
2297         __ Mov(temp2, value.W());
2298         GetAssembler()->PoisonHeapReference(temp2);
2299         source = temp2;
2300       }
2301 
2302       if (!index.IsConstant()) {
2303         __ Add(temp, array, offset);
2304       }
2305       __ Str(source, destination);
2306 
2307       if (!may_need_runtime_call_for_type_check) {
2308         codegen_->MaybeRecordImplicitNullCheck(instruction);
2309       }
2310     }
2311 
2312     codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
2313 
2314     if (done.IsLinked()) {
2315       __ Bind(&done);
2316     }
2317 
2318     if (slow_path != nullptr) {
2319       __ Bind(slow_path->GetExitLabel());
2320     }
2321   }
2322 }
2323 
VisitBoundsCheck(HBoundsCheck * instruction)2324 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2325   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2326       ? LocationSummary::kCallOnSlowPath
2327       : LocationSummary::kNoCall;
2328   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2329   locations->SetInAt(0, Location::RequiresRegister());
2330   locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2331   if (instruction->HasUses()) {
2332     locations->SetOut(Location::SameAsFirstInput());
2333   }
2334 }
2335 
VisitBoundsCheck(HBoundsCheck * instruction)2336 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
2337   BoundsCheckSlowPathARM64* slow_path =
2338       new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction);
2339   codegen_->AddSlowPath(slow_path);
2340 
2341   __ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
2342   __ B(slow_path->GetEntryLabel(), hs);
2343 }
2344 
VisitClinitCheck(HClinitCheck * check)2345 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
2346   LocationSummary* locations =
2347       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
2348   locations->SetInAt(0, Location::RequiresRegister());
2349   if (check->HasUses()) {
2350     locations->SetOut(Location::SameAsFirstInput());
2351   }
2352 }
2353 
VisitClinitCheck(HClinitCheck * check)2354 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
2355   // We assume the class is not null.
2356   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
2357       check->GetLoadClass(), check, check->GetDexPc(), true);
2358   codegen_->AddSlowPath(slow_path);
2359   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
2360 }
2361 
IsFloatingPointZeroConstant(HInstruction * inst)2362 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
2363   return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
2364       || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
2365 }
2366 
GenerateFcmp(HInstruction * instruction)2367 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
2368   FPRegister lhs_reg = InputFPRegisterAt(instruction, 0);
2369   Location rhs_loc = instruction->GetLocations()->InAt(1);
2370   if (rhs_loc.IsConstant()) {
2371     // 0.0 is the only immediate that can be encoded directly in
2372     // an FCMP instruction.
2373     //
2374     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
2375     // specify that in a floating-point comparison, positive zero
2376     // and negative zero are considered equal, so we can use the
2377     // literal 0.0 for both cases here.
2378     //
2379     // Note however that some methods (Float.equal, Float.compare,
2380     // Float.compareTo, Double.equal, Double.compare,
2381     // Double.compareTo, Math.max, Math.min, StrictMath.max,
2382     // StrictMath.min) consider 0.0 to be (strictly) greater than
2383     // -0.0. So if we ever translate calls to these methods into a
2384     // HCompare instruction, we must handle the -0.0 case with
2385     // care here.
2386     DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
2387     __ Fcmp(lhs_reg, 0.0);
2388   } else {
2389     __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
2390   }
2391 }
2392 
VisitCompare(HCompare * compare)2393 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
2394   LocationSummary* locations =
2395       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
2396   Primitive::Type in_type = compare->InputAt(0)->GetType();
2397   switch (in_type) {
2398     case Primitive::kPrimBoolean:
2399     case Primitive::kPrimByte:
2400     case Primitive::kPrimShort:
2401     case Primitive::kPrimChar:
2402     case Primitive::kPrimInt:
2403     case Primitive::kPrimLong: {
2404       locations->SetInAt(0, Location::RequiresRegister());
2405       locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
2406       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2407       break;
2408     }
2409     case Primitive::kPrimFloat:
2410     case Primitive::kPrimDouble: {
2411       locations->SetInAt(0, Location::RequiresFpuRegister());
2412       locations->SetInAt(1,
2413                          IsFloatingPointZeroConstant(compare->InputAt(1))
2414                              ? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
2415                              : Location::RequiresFpuRegister());
2416       locations->SetOut(Location::RequiresRegister());
2417       break;
2418     }
2419     default:
2420       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
2421   }
2422 }
2423 
VisitCompare(HCompare * compare)2424 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
2425   Primitive::Type in_type = compare->InputAt(0)->GetType();
2426 
2427   //  0 if: left == right
2428   //  1 if: left  > right
2429   // -1 if: left  < right
2430   switch (in_type) {
2431     case Primitive::kPrimBoolean:
2432     case Primitive::kPrimByte:
2433     case Primitive::kPrimShort:
2434     case Primitive::kPrimChar:
2435     case Primitive::kPrimInt:
2436     case Primitive::kPrimLong: {
2437       Register result = OutputRegister(compare);
2438       Register left = InputRegisterAt(compare, 0);
2439       Operand right = InputOperandAt(compare, 1);
2440       __ Cmp(left, right);
2441       __ Cset(result, ne);          // result == +1 if NE or 0 otherwise
2442       __ Cneg(result, result, lt);  // result == -1 if LT or unchanged otherwise
2443       break;
2444     }
2445     case Primitive::kPrimFloat:
2446     case Primitive::kPrimDouble: {
2447       Register result = OutputRegister(compare);
2448       GenerateFcmp(compare);
2449       __ Cset(result, ne);
2450       __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
2451       break;
2452     }
2453     default:
2454       LOG(FATAL) << "Unimplemented compare type " << in_type;
2455   }
2456 }
2457 
HandleCondition(HCondition * instruction)2458 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
2459   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
2460 
2461   if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2462     locations->SetInAt(0, Location::RequiresFpuRegister());
2463     locations->SetInAt(1,
2464                        IsFloatingPointZeroConstant(instruction->InputAt(1))
2465                            ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
2466                            : Location::RequiresFpuRegister());
2467   } else {
2468     // Integer cases.
2469     locations->SetInAt(0, Location::RequiresRegister());
2470     locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
2471   }
2472 
2473   if (!instruction->IsEmittedAtUseSite()) {
2474     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2475   }
2476 }
2477 
HandleCondition(HCondition * instruction)2478 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
2479   if (instruction->IsEmittedAtUseSite()) {
2480     return;
2481   }
2482 
2483   LocationSummary* locations = instruction->GetLocations();
2484   Register res = RegisterFrom(locations->Out(), instruction->GetType());
2485   IfCondition if_cond = instruction->GetCondition();
2486 
2487   if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
2488     GenerateFcmp(instruction);
2489     __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
2490   } else {
2491     // Integer cases.
2492     Register lhs = InputRegisterAt(instruction, 0);
2493     Operand rhs = InputOperandAt(instruction, 1);
2494     __ Cmp(lhs, rhs);
2495     __ Cset(res, ARM64Condition(if_cond));
2496   }
2497 }
2498 
2499 #define FOR_EACH_CONDITION_INSTRUCTION(M)                                                \
2500   M(Equal)                                                                               \
2501   M(NotEqual)                                                                            \
2502   M(LessThan)                                                                            \
2503   M(LessThanOrEqual)                                                                     \
2504   M(GreaterThan)                                                                         \
2505   M(GreaterThanOrEqual)                                                                  \
2506   M(Below)                                                                               \
2507   M(BelowOrEqual)                                                                        \
2508   M(Above)                                                                               \
2509   M(AboveOrEqual)
2510 #define DEFINE_CONDITION_VISITORS(Name)                                                  \
2511 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }         \
2512 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)2513 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
2514 #undef DEFINE_CONDITION_VISITORS
2515 #undef FOR_EACH_CONDITION_INSTRUCTION
2516 
2517 void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
2518   DCHECK(instruction->IsDiv() || instruction->IsRem());
2519 
2520   LocationSummary* locations = instruction->GetLocations();
2521   Location second = locations->InAt(1);
2522   DCHECK(second.IsConstant());
2523 
2524   Register out = OutputRegister(instruction);
2525   Register dividend = InputRegisterAt(instruction, 0);
2526   int64_t imm = Int64FromConstant(second.GetConstant());
2527   DCHECK(imm == 1 || imm == -1);
2528 
2529   if (instruction->IsRem()) {
2530     __ Mov(out, 0);
2531   } else {
2532     if (imm == 1) {
2533       __ Mov(out, dividend);
2534     } else {
2535       __ Neg(out, dividend);
2536     }
2537   }
2538 }
2539 
DivRemByPowerOfTwo(HBinaryOperation * instruction)2540 void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
2541   DCHECK(instruction->IsDiv() || instruction->IsRem());
2542 
2543   LocationSummary* locations = instruction->GetLocations();
2544   Location second = locations->InAt(1);
2545   DCHECK(second.IsConstant());
2546 
2547   Register out = OutputRegister(instruction);
2548   Register dividend = InputRegisterAt(instruction, 0);
2549   int64_t imm = Int64FromConstant(second.GetConstant());
2550   uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
2551   int ctz_imm = CTZ(abs_imm);
2552 
2553   UseScratchRegisterScope temps(GetVIXLAssembler());
2554   Register temp = temps.AcquireSameSizeAs(out);
2555 
2556   if (instruction->IsDiv()) {
2557     __ Add(temp, dividend, abs_imm - 1);
2558     __ Cmp(dividend, 0);
2559     __ Csel(out, temp, dividend, lt);
2560     if (imm > 0) {
2561       __ Asr(out, out, ctz_imm);
2562     } else {
2563       __ Neg(out, Operand(out, ASR, ctz_imm));
2564     }
2565   } else {
2566     int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64;
2567     __ Asr(temp, dividend, bits - 1);
2568     __ Lsr(temp, temp, bits - ctz_imm);
2569     __ Add(out, dividend, temp);
2570     __ And(out, out, abs_imm - 1);
2571     __ Sub(out, out, temp);
2572   }
2573 }
2574 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)2575 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
2576   DCHECK(instruction->IsDiv() || instruction->IsRem());
2577 
2578   LocationSummary* locations = instruction->GetLocations();
2579   Location second = locations->InAt(1);
2580   DCHECK(second.IsConstant());
2581 
2582   Register out = OutputRegister(instruction);
2583   Register dividend = InputRegisterAt(instruction, 0);
2584   int64_t imm = Int64FromConstant(second.GetConstant());
2585 
2586   Primitive::Type type = instruction->GetResultType();
2587   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
2588 
2589   int64_t magic;
2590   int shift;
2591   CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift);
2592 
2593   UseScratchRegisterScope temps(GetVIXLAssembler());
2594   Register temp = temps.AcquireSameSizeAs(out);
2595 
2596   // temp = get_high(dividend * magic)
2597   __ Mov(temp, magic);
2598   if (type == Primitive::kPrimLong) {
2599     __ Smulh(temp, dividend, temp);
2600   } else {
2601     __ Smull(temp.X(), dividend, temp);
2602     __ Lsr(temp.X(), temp.X(), 32);
2603   }
2604 
2605   if (imm > 0 && magic < 0) {
2606     __ Add(temp, temp, dividend);
2607   } else if (imm < 0 && magic > 0) {
2608     __ Sub(temp, temp, dividend);
2609   }
2610 
2611   if (shift != 0) {
2612     __ Asr(temp, temp, shift);
2613   }
2614 
2615   if (instruction->IsDiv()) {
2616     __ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2617   } else {
2618     __ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
2619     // TODO: Strength reduction for msub.
2620     Register temp_imm = temps.AcquireSameSizeAs(out);
2621     __ Mov(temp_imm, imm);
2622     __ Msub(out, temp, temp_imm, dividend);
2623   }
2624 }
2625 
GenerateDivRemIntegral(HBinaryOperation * instruction)2626 void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
2627   DCHECK(instruction->IsDiv() || instruction->IsRem());
2628   Primitive::Type type = instruction->GetResultType();
2629   DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
2630 
2631   LocationSummary* locations = instruction->GetLocations();
2632   Register out = OutputRegister(instruction);
2633   Location second = locations->InAt(1);
2634 
2635   if (second.IsConstant()) {
2636     int64_t imm = Int64FromConstant(second.GetConstant());
2637 
2638     if (imm == 0) {
2639       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
2640     } else if (imm == 1 || imm == -1) {
2641       DivRemOneOrMinusOne(instruction);
2642     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
2643       DivRemByPowerOfTwo(instruction);
2644     } else {
2645       DCHECK(imm <= -2 || imm >= 2);
2646       GenerateDivRemWithAnyConstant(instruction);
2647     }
2648   } else {
2649     Register dividend = InputRegisterAt(instruction, 0);
2650     Register divisor = InputRegisterAt(instruction, 1);
2651     if (instruction->IsDiv()) {
2652       __ Sdiv(out, dividend, divisor);
2653     } else {
2654       UseScratchRegisterScope temps(GetVIXLAssembler());
2655       Register temp = temps.AcquireSameSizeAs(out);
2656       __ Sdiv(temp, dividend, divisor);
2657       __ Msub(out, temp, divisor, dividend);
2658     }
2659   }
2660 }
2661 
VisitDiv(HDiv * div)2662 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
2663   LocationSummary* locations =
2664       new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
2665   switch (div->GetResultType()) {
2666     case Primitive::kPrimInt:
2667     case Primitive::kPrimLong:
2668       locations->SetInAt(0, Location::RequiresRegister());
2669       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
2670       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2671       break;
2672 
2673     case Primitive::kPrimFloat:
2674     case Primitive::kPrimDouble:
2675       locations->SetInAt(0, Location::RequiresFpuRegister());
2676       locations->SetInAt(1, Location::RequiresFpuRegister());
2677       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2678       break;
2679 
2680     default:
2681       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
2682   }
2683 }
2684 
VisitDiv(HDiv * div)2685 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
2686   Primitive::Type type = div->GetResultType();
2687   switch (type) {
2688     case Primitive::kPrimInt:
2689     case Primitive::kPrimLong:
2690       GenerateDivRemIntegral(div);
2691       break;
2692 
2693     case Primitive::kPrimFloat:
2694     case Primitive::kPrimDouble:
2695       __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
2696       break;
2697 
2698     default:
2699       LOG(FATAL) << "Unexpected div type " << type;
2700   }
2701 }
2702 
VisitDivZeroCheck(HDivZeroCheck * instruction)2703 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2704   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
2705       ? LocationSummary::kCallOnSlowPath
2706       : LocationSummary::kNoCall;
2707   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
2708   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
2709   if (instruction->HasUses()) {
2710     locations->SetOut(Location::SameAsFirstInput());
2711   }
2712 }
2713 
VisitDivZeroCheck(HDivZeroCheck * instruction)2714 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
2715   SlowPathCodeARM64* slow_path =
2716       new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
2717   codegen_->AddSlowPath(slow_path);
2718   Location value = instruction->GetLocations()->InAt(0);
2719 
2720   Primitive::Type type = instruction->GetType();
2721 
2722   if (!Primitive::IsIntegralType(type)) {
2723     LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
2724     return;
2725   }
2726 
2727   if (value.IsConstant()) {
2728     int64_t divisor = Int64ConstantFrom(value);
2729     if (divisor == 0) {
2730       __ B(slow_path->GetEntryLabel());
2731     } else {
2732       // A division by a non-null constant is valid. We don't need to perform
2733       // any check, so simply fall through.
2734     }
2735   } else {
2736     __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
2737   }
2738 }
2739 
VisitDoubleConstant(HDoubleConstant * constant)2740 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
2741   LocationSummary* locations =
2742       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2743   locations->SetOut(Location::ConstantLocation(constant));
2744 }
2745 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)2746 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
2747     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2748   // Will be generated at use site.
2749 }
2750 
VisitExit(HExit * exit)2751 void LocationsBuilderARM64::VisitExit(HExit* exit) {
2752   exit->SetLocations(nullptr);
2753 }
2754 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2755 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2756 }
2757 
VisitFloatConstant(HFloatConstant * constant)2758 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
2759   LocationSummary* locations =
2760       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2761   locations->SetOut(Location::ConstantLocation(constant));
2762 }
2763 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)2764 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2765   // Will be generated at use site.
2766 }
2767 
HandleGoto(HInstruction * got,HBasicBlock * successor)2768 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2769   DCHECK(!successor->IsExitBlock());
2770   HBasicBlock* block = got->GetBlock();
2771   HInstruction* previous = got->GetPrevious();
2772   HLoopInformation* info = block->GetLoopInformation();
2773 
2774   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2775     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
2776     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2777     return;
2778   }
2779   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2780     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2781   }
2782   if (!codegen_->GoesToNextBlock(block, successor)) {
2783     __ B(codegen_->GetLabelOf(successor));
2784   }
2785 }
2786 
VisitGoto(HGoto * got)2787 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
2788   got->SetLocations(nullptr);
2789 }
2790 
VisitGoto(HGoto * got)2791 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
2792   HandleGoto(got, got->GetSuccessor());
2793 }
2794 
VisitTryBoundary(HTryBoundary * try_boundary)2795 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2796   try_boundary->SetLocations(nullptr);
2797 }
2798 
VisitTryBoundary(HTryBoundary * try_boundary)2799 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
2800   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2801   if (!successor->IsExitBlock()) {
2802     HandleGoto(try_boundary, successor);
2803   }
2804 }
2805 
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::Label * true_target,vixl::Label * false_target)2806 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
2807                                                           size_t condition_input_index,
2808                                                           vixl::Label* true_target,
2809                                                           vixl::Label* false_target) {
2810   // FP branching requires both targets to be explicit. If either of the targets
2811   // is nullptr (fallthrough) use and bind `fallthrough_target` instead.
2812   vixl::Label fallthrough_target;
2813   HInstruction* cond = instruction->InputAt(condition_input_index);
2814 
2815   if (true_target == nullptr && false_target == nullptr) {
2816     // Nothing to do. The code always falls through.
2817     return;
2818   } else if (cond->IsIntConstant()) {
2819     // Constant condition, statically compared against "true" (integer value 1).
2820     if (cond->AsIntConstant()->IsTrue()) {
2821       if (true_target != nullptr) {
2822         __ B(true_target);
2823       }
2824     } else {
2825       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
2826       if (false_target != nullptr) {
2827         __ B(false_target);
2828       }
2829     }
2830     return;
2831   }
2832 
2833   // The following code generates these patterns:
2834   //  (1) true_target == nullptr && false_target != nullptr
2835   //        - opposite condition true => branch to false_target
2836   //  (2) true_target != nullptr && false_target == nullptr
2837   //        - condition true => branch to true_target
2838   //  (3) true_target != nullptr && false_target != nullptr
2839   //        - condition true => branch to true_target
2840   //        - branch to false_target
2841   if (IsBooleanValueOrMaterializedCondition(cond)) {
2842     // The condition instruction has been materialized, compare the output to 0.
2843     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2844     DCHECK(cond_val.IsRegister());
2845       if (true_target == nullptr) {
2846       __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
2847     } else {
2848       __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
2849     }
2850   } else {
2851     // The condition instruction has not been materialized, use its inputs as
2852     // the comparison and its condition as the branch condition.
2853     HCondition* condition = cond->AsCondition();
2854 
2855     Primitive::Type type = condition->InputAt(0)->GetType();
2856     if (Primitive::IsFloatingPointType(type)) {
2857       GenerateFcmp(condition);
2858       if (true_target == nullptr) {
2859         IfCondition opposite_condition = condition->GetOppositeCondition();
2860         __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
2861       } else {
2862         __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
2863       }
2864     } else {
2865       // Integer cases.
2866       Register lhs = InputRegisterAt(condition, 0);
2867       Operand rhs = InputOperandAt(condition, 1);
2868 
2869       Condition arm64_cond;
2870       vixl::Label* non_fallthrough_target;
2871       if (true_target == nullptr) {
2872         arm64_cond = ARM64Condition(condition->GetOppositeCondition());
2873         non_fallthrough_target = false_target;
2874       } else {
2875         arm64_cond = ARM64Condition(condition->GetCondition());
2876         non_fallthrough_target = true_target;
2877       }
2878 
2879       if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
2880           rhs.IsImmediate() && (rhs.immediate() == 0)) {
2881         switch (arm64_cond) {
2882           case eq:
2883             __ Cbz(lhs, non_fallthrough_target);
2884             break;
2885           case ne:
2886             __ Cbnz(lhs, non_fallthrough_target);
2887             break;
2888           case lt:
2889             // Test the sign bit and branch accordingly.
2890             __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2891             break;
2892           case ge:
2893             // Test the sign bit and branch accordingly.
2894             __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
2895             break;
2896           default:
2897             // Without the `static_cast` the compiler throws an error for
2898             // `-Werror=sign-promo`.
2899             LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
2900         }
2901       } else {
2902         __ Cmp(lhs, rhs);
2903         __ B(arm64_cond, non_fallthrough_target);
2904       }
2905     }
2906   }
2907 
2908   // If neither branch falls through (case 3), the conditional branch to `true_target`
2909   // was already emitted (case 2) and we need to emit a jump to `false_target`.
2910   if (true_target != nullptr && false_target != nullptr) {
2911     __ B(false_target);
2912   }
2913 
2914   if (fallthrough_target.IsLinked()) {
2915     __ Bind(&fallthrough_target);
2916   }
2917 }
2918 
VisitIf(HIf * if_instr)2919 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
2920   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
2921   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2922     locations->SetInAt(0, Location::RequiresRegister());
2923   }
2924 }
2925 
VisitIf(HIf * if_instr)2926 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
2927   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2928   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2929   vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2930       nullptr : codegen_->GetLabelOf(true_successor);
2931   vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2932       nullptr : codegen_->GetLabelOf(false_successor);
2933   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
2934 }
2935 
VisitDeoptimize(HDeoptimize * deoptimize)2936 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2937   LocationSummary* locations = new (GetGraph()->GetArena())
2938       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2939   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2940     locations->SetInAt(0, Location::RequiresRegister());
2941   }
2942 }
2943 
VisitDeoptimize(HDeoptimize * deoptimize)2944 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
2945   SlowPathCodeARM64* slow_path =
2946       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
2947   GenerateTestAndBranch(deoptimize,
2948                         /* condition_input_index */ 0,
2949                         slow_path->GetEntryLabel(),
2950                         /* false_target */ nullptr);
2951 }
2952 
2953 enum SelectVariant {
2954   kCsel,
2955   kCselFalseConst,
2956   kCselTrueConst,
2957   kFcsel,
2958 };
2959 
IsConditionOnFloatingPointValues(HInstruction * condition)2960 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
2961   return condition->IsCondition() &&
2962          Primitive::IsFloatingPointType(condition->InputAt(0)->GetType());
2963 }
2964 
IsRecognizedCselConstant(HInstruction * constant)2965 static inline bool IsRecognizedCselConstant(HInstruction* constant) {
2966   if (constant->IsConstant()) {
2967     int64_t value = Int64FromConstant(constant->AsConstant());
2968     if ((value == -1) || (value == 0) || (value == 1)) {
2969       return true;
2970     }
2971   }
2972   return false;
2973 }
2974 
GetSelectVariant(HSelect * select)2975 static inline SelectVariant GetSelectVariant(HSelect* select) {
2976   if (Primitive::IsFloatingPointType(select->GetType())) {
2977     return kFcsel;
2978   } else if (IsRecognizedCselConstant(select->GetFalseValue())) {
2979     return kCselFalseConst;
2980   } else if (IsRecognizedCselConstant(select->GetTrueValue())) {
2981     return kCselTrueConst;
2982   } else {
2983     return kCsel;
2984   }
2985 }
2986 
HasSwappedInputs(SelectVariant variant)2987 static inline bool HasSwappedInputs(SelectVariant variant) {
2988   return variant == kCselTrueConst;
2989 }
2990 
GetConditionForSelect(HCondition * condition,SelectVariant variant)2991 static inline Condition GetConditionForSelect(HCondition* condition, SelectVariant variant) {
2992   IfCondition cond = HasSwappedInputs(variant) ? condition->GetOppositeCondition()
2993                                                : condition->GetCondition();
2994   return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
2995                                                      : ARM64Condition(cond);
2996 }
2997 
VisitSelect(HSelect * select)2998 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
2999   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
3000   switch (GetSelectVariant(select)) {
3001     case kCsel:
3002       locations->SetInAt(0, Location::RequiresRegister());
3003       locations->SetInAt(1, Location::RequiresRegister());
3004       locations->SetOut(Location::RequiresRegister());
3005       break;
3006     case kCselFalseConst:
3007       locations->SetInAt(0, Location::ConstantLocation(select->InputAt(0)->AsConstant()));
3008       locations->SetInAt(1, Location::RequiresRegister());
3009       locations->SetOut(Location::RequiresRegister());
3010       break;
3011     case kCselTrueConst:
3012       locations->SetInAt(0, Location::RequiresRegister());
3013       locations->SetInAt(1, Location::ConstantLocation(select->InputAt(1)->AsConstant()));
3014       locations->SetOut(Location::RequiresRegister());
3015       break;
3016     case kFcsel:
3017       locations->SetInAt(0, Location::RequiresFpuRegister());
3018       locations->SetInAt(1, Location::RequiresFpuRegister());
3019       locations->SetOut(Location::RequiresFpuRegister());
3020       break;
3021   }
3022   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3023     locations->SetInAt(2, Location::RequiresRegister());
3024   }
3025 }
3026 
VisitSelect(HSelect * select)3027 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3028   HInstruction* cond = select->GetCondition();
3029   SelectVariant variant = GetSelectVariant(select);
3030   Condition csel_cond;
3031 
3032   if (IsBooleanValueOrMaterializedCondition(cond)) {
3033     if (cond->IsCondition() && cond->GetNext() == select) {
3034       // Condition codes set from previous instruction.
3035       csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3036     } else {
3037       __ Cmp(InputRegisterAt(select, 2), 0);
3038       csel_cond = HasSwappedInputs(variant) ? eq : ne;
3039     }
3040   } else if (IsConditionOnFloatingPointValues(cond)) {
3041     GenerateFcmp(cond);
3042     csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3043   } else {
3044     __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3045     csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
3046   }
3047 
3048   switch (variant) {
3049     case kCsel:
3050     case kCselFalseConst:
3051       __ Csel(OutputRegister(select),
3052               InputRegisterAt(select, 1),
3053               InputOperandAt(select, 0),
3054               csel_cond);
3055       break;
3056     case kCselTrueConst:
3057       __ Csel(OutputRegister(select),
3058               InputRegisterAt(select, 0),
3059               InputOperandAt(select, 1),
3060               csel_cond);
3061       break;
3062     case kFcsel:
3063       __ Fcsel(OutputFPRegister(select),
3064                InputFPRegisterAt(select, 1),
3065                InputFPRegisterAt(select, 0),
3066                csel_cond);
3067       break;
3068   }
3069 }
3070 
VisitNativeDebugInfo(HNativeDebugInfo * info)3071 void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
3072   new (GetGraph()->GetArena()) LocationSummary(info);
3073 }
3074 
VisitNativeDebugInfo(HNativeDebugInfo *)3075 void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
3076   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
3077 }
3078 
GenerateNop()3079 void CodeGeneratorARM64::GenerateNop() {
3080   __ Nop();
3081 }
3082 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3083 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3084   HandleFieldGet(instruction);
3085 }
3086 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3087 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3088   HandleFieldGet(instruction, instruction->GetFieldInfo());
3089 }
3090 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3091 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3092   HandleFieldSet(instruction);
3093 }
3094 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3095 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3096   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
3097 }
3098 
TypeCheckNeedsATemporary(TypeCheckKind type_check_kind)3099 static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
3100   return kEmitCompilerReadBarrier &&
3101       (kUseBakerReadBarrier ||
3102        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3103        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3104        type_check_kind == TypeCheckKind::kArrayObjectCheck);
3105 }
3106 
VisitInstanceOf(HInstanceOf * instruction)3107 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
3108   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3109   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3110   switch (type_check_kind) {
3111     case TypeCheckKind::kExactCheck:
3112     case TypeCheckKind::kAbstractClassCheck:
3113     case TypeCheckKind::kClassHierarchyCheck:
3114     case TypeCheckKind::kArrayObjectCheck:
3115       call_kind =
3116           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3117       break;
3118     case TypeCheckKind::kArrayCheck:
3119     case TypeCheckKind::kUnresolvedCheck:
3120     case TypeCheckKind::kInterfaceCheck:
3121       call_kind = LocationSummary::kCallOnSlowPath;
3122       break;
3123   }
3124 
3125   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3126   locations->SetInAt(0, Location::RequiresRegister());
3127   locations->SetInAt(1, Location::RequiresRegister());
3128   // The "out" register is used as a temporary, so it overlaps with the inputs.
3129   // Note that TypeCheckSlowPathARM64 uses this register too.
3130   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3131   // When read barriers are enabled, we need a temporary register for
3132   // some cases.
3133   if (TypeCheckNeedsATemporary(type_check_kind)) {
3134     locations->AddTemp(Location::RequiresRegister());
3135   }
3136 }
3137 
VisitInstanceOf(HInstanceOf * instruction)3138 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
3139   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3140   LocationSummary* locations = instruction->GetLocations();
3141   Location obj_loc = locations->InAt(0);
3142   Register obj = InputRegisterAt(instruction, 0);
3143   Register cls = InputRegisterAt(instruction, 1);
3144   Location out_loc = locations->Out();
3145   Register out = OutputRegister(instruction);
3146   Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3147       locations->GetTemp(0) :
3148       Location::NoLocation();
3149   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3150   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3151   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3152   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3153 
3154   vixl::Label done, zero;
3155   SlowPathCodeARM64* slow_path = nullptr;
3156 
3157   // Return 0 if `obj` is null.
3158   // Avoid null check if we know `obj` is not null.
3159   if (instruction->MustDoNullCheck()) {
3160     __ Cbz(obj, &zero);
3161   }
3162 
3163   // /* HeapReference<Class> */ out = obj->klass_
3164   GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
3165 
3166   switch (type_check_kind) {
3167     case TypeCheckKind::kExactCheck: {
3168       __ Cmp(out, cls);
3169       __ Cset(out, eq);
3170       if (zero.IsLinked()) {
3171         __ B(&done);
3172       }
3173       break;
3174     }
3175 
3176     case TypeCheckKind::kAbstractClassCheck: {
3177       // If the class is abstract, we eagerly fetch the super class of the
3178       // object to avoid doing a comparison we know will fail.
3179       vixl::Label loop, success;
3180       __ Bind(&loop);
3181       // /* HeapReference<Class> */ out = out->super_class_
3182       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3183       // If `out` is null, we use it for the result, and jump to `done`.
3184       __ Cbz(out, &done);
3185       __ Cmp(out, cls);
3186       __ B(ne, &loop);
3187       __ Mov(out, 1);
3188       if (zero.IsLinked()) {
3189         __ B(&done);
3190       }
3191       break;
3192     }
3193 
3194     case TypeCheckKind::kClassHierarchyCheck: {
3195       // Walk over the class hierarchy to find a match.
3196       vixl::Label loop, success;
3197       __ Bind(&loop);
3198       __ Cmp(out, cls);
3199       __ B(eq, &success);
3200       // /* HeapReference<Class> */ out = out->super_class_
3201       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
3202       __ Cbnz(out, &loop);
3203       // If `out` is null, we use it for the result, and jump to `done`.
3204       __ B(&done);
3205       __ Bind(&success);
3206       __ Mov(out, 1);
3207       if (zero.IsLinked()) {
3208         __ B(&done);
3209       }
3210       break;
3211     }
3212 
3213     case TypeCheckKind::kArrayObjectCheck: {
3214       // Do an exact check.
3215       vixl::Label exact_check;
3216       __ Cmp(out, cls);
3217       __ B(eq, &exact_check);
3218       // Otherwise, we need to check that the object's class is a non-primitive array.
3219       // /* HeapReference<Class> */ out = out->component_type_
3220       GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
3221       // If `out` is null, we use it for the result, and jump to `done`.
3222       __ Cbz(out, &done);
3223       __ Ldrh(out, HeapOperand(out, primitive_offset));
3224       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3225       __ Cbnz(out, &zero);
3226       __ Bind(&exact_check);
3227       __ Mov(out, 1);
3228       __ B(&done);
3229       break;
3230     }
3231 
3232     case TypeCheckKind::kArrayCheck: {
3233       __ Cmp(out, cls);
3234       DCHECK(locations->OnlyCallsOnSlowPath());
3235       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3236                                                                       /* is_fatal */ false);
3237       codegen_->AddSlowPath(slow_path);
3238       __ B(ne, slow_path->GetEntryLabel());
3239       __ Mov(out, 1);
3240       if (zero.IsLinked()) {
3241         __ B(&done);
3242       }
3243       break;
3244     }
3245 
3246     case TypeCheckKind::kUnresolvedCheck:
3247     case TypeCheckKind::kInterfaceCheck: {
3248       // Note that we indeed only call on slow path, but we always go
3249       // into the slow path for the unresolved and interface check
3250       // cases.
3251       //
3252       // We cannot directly call the InstanceofNonTrivial runtime
3253       // entry point without resorting to a type checking slow path
3254       // here (i.e. by calling InvokeRuntime directly), as it would
3255       // require to assign fixed registers for the inputs of this
3256       // HInstanceOf instruction (following the runtime calling
3257       // convention), which might be cluttered by the potential first
3258       // read barrier emission at the beginning of this method.
3259       //
3260       // TODO: Introduce a new runtime entry point taking the object
3261       // to test (instead of its class) as argument, and let it deal
3262       // with the read barrier issues. This will let us refactor this
3263       // case of the `switch` code as it was previously (with a direct
3264       // call to the runtime not using a type checking slow path).
3265       // This should also be beneficial for the other cases above.
3266       DCHECK(locations->OnlyCallsOnSlowPath());
3267       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3268                                                                       /* is_fatal */ false);
3269       codegen_->AddSlowPath(slow_path);
3270       __ B(slow_path->GetEntryLabel());
3271       if (zero.IsLinked()) {
3272         __ B(&done);
3273       }
3274       break;
3275     }
3276   }
3277 
3278   if (zero.IsLinked()) {
3279     __ Bind(&zero);
3280     __ Mov(out, 0);
3281   }
3282 
3283   if (done.IsLinked()) {
3284     __ Bind(&done);
3285   }
3286 
3287   if (slow_path != nullptr) {
3288     __ Bind(slow_path->GetExitLabel());
3289   }
3290 }
3291 
VisitCheckCast(HCheckCast * instruction)3292 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
3293   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3294   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
3295 
3296   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3297   switch (type_check_kind) {
3298     case TypeCheckKind::kExactCheck:
3299     case TypeCheckKind::kAbstractClassCheck:
3300     case TypeCheckKind::kClassHierarchyCheck:
3301     case TypeCheckKind::kArrayObjectCheck:
3302       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
3303           LocationSummary::kCallOnSlowPath :
3304           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
3305       break;
3306     case TypeCheckKind::kArrayCheck:
3307     case TypeCheckKind::kUnresolvedCheck:
3308     case TypeCheckKind::kInterfaceCheck:
3309       call_kind = LocationSummary::kCallOnSlowPath;
3310       break;
3311   }
3312 
3313   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3314   locations->SetInAt(0, Location::RequiresRegister());
3315   locations->SetInAt(1, Location::RequiresRegister());
3316   // Note that TypeCheckSlowPathARM64 uses this "temp" register too.
3317   locations->AddTemp(Location::RequiresRegister());
3318   // When read barriers are enabled, we need an additional temporary
3319   // register for some cases.
3320   if (TypeCheckNeedsATemporary(type_check_kind)) {
3321     locations->AddTemp(Location::RequiresRegister());
3322   }
3323 }
3324 
VisitCheckCast(HCheckCast * instruction)3325 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
3326   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3327   LocationSummary* locations = instruction->GetLocations();
3328   Location obj_loc = locations->InAt(0);
3329   Register obj = InputRegisterAt(instruction, 0);
3330   Register cls = InputRegisterAt(instruction, 1);
3331   Location temp_loc = locations->GetTemp(0);
3332   Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
3333       locations->GetTemp(1) :
3334       Location::NoLocation();
3335   Register temp = WRegisterFrom(temp_loc);
3336   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3337   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3338   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3339   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3340 
3341   bool is_type_check_slow_path_fatal =
3342       (type_check_kind == TypeCheckKind::kExactCheck ||
3343        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3344        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3345        type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
3346       !instruction->CanThrowIntoCatchBlock();
3347   SlowPathCodeARM64* type_check_slow_path =
3348       new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
3349                                                           is_type_check_slow_path_fatal);
3350   codegen_->AddSlowPath(type_check_slow_path);
3351 
3352   vixl::Label done;
3353   // Avoid null check if we know obj is not null.
3354   if (instruction->MustDoNullCheck()) {
3355     __ Cbz(obj, &done);
3356   }
3357 
3358   // /* HeapReference<Class> */ temp = obj->klass_
3359   GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3360 
3361   switch (type_check_kind) {
3362     case TypeCheckKind::kExactCheck:
3363     case TypeCheckKind::kArrayCheck: {
3364       __ Cmp(temp, cls);
3365       // Jump to slow path for throwing the exception or doing a
3366       // more involved array check.
3367       __ B(ne, type_check_slow_path->GetEntryLabel());
3368       break;
3369     }
3370 
3371     case TypeCheckKind::kAbstractClassCheck: {
3372       // If the class is abstract, we eagerly fetch the super class of the
3373       // object to avoid doing a comparison we know will fail.
3374       vixl::Label loop, compare_classes;
3375       __ Bind(&loop);
3376       // /* HeapReference<Class> */ temp = temp->super_class_
3377       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3378 
3379       // If the class reference currently in `temp` is not null, jump
3380       // to the `compare_classes` label to compare it with the checked
3381       // class.
3382       __ Cbnz(temp, &compare_classes);
3383       // Otherwise, jump to the slow path to throw the exception.
3384       //
3385       // But before, move back the object's class into `temp` before
3386       // going into the slow path, as it has been overwritten in the
3387       // meantime.
3388       // /* HeapReference<Class> */ temp = obj->klass_
3389       GenerateReferenceLoadTwoRegisters(
3390           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3391       __ B(type_check_slow_path->GetEntryLabel());
3392 
3393       __ Bind(&compare_classes);
3394       __ Cmp(temp, cls);
3395       __ B(ne, &loop);
3396       break;
3397     }
3398 
3399     case TypeCheckKind::kClassHierarchyCheck: {
3400       // Walk over the class hierarchy to find a match.
3401       vixl::Label loop;
3402       __ Bind(&loop);
3403       __ Cmp(temp, cls);
3404       __ B(eq, &done);
3405 
3406       // /* HeapReference<Class> */ temp = temp->super_class_
3407       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
3408 
3409       // If the class reference currently in `temp` is not null, jump
3410       // back at the beginning of the loop.
3411       __ Cbnz(temp, &loop);
3412       // Otherwise, jump to the slow path to throw the exception.
3413       //
3414       // But before, move back the object's class into `temp` before
3415       // going into the slow path, as it has been overwritten in the
3416       // meantime.
3417       // /* HeapReference<Class> */ temp = obj->klass_
3418       GenerateReferenceLoadTwoRegisters(
3419           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3420       __ B(type_check_slow_path->GetEntryLabel());
3421       break;
3422     }
3423 
3424     case TypeCheckKind::kArrayObjectCheck: {
3425       // Do an exact check.
3426       vixl::Label check_non_primitive_component_type;
3427       __ Cmp(temp, cls);
3428       __ B(eq, &done);
3429 
3430       // Otherwise, we need to check that the object's class is a non-primitive array.
3431       // /* HeapReference<Class> */ temp = temp->component_type_
3432       GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
3433 
3434       // If the component type is not null (i.e. the object is indeed
3435       // an array), jump to label `check_non_primitive_component_type`
3436       // to further check that this component type is not a primitive
3437       // type.
3438       __ Cbnz(temp, &check_non_primitive_component_type);
3439       // Otherwise, jump to the slow path to throw the exception.
3440       //
3441       // But before, move back the object's class into `temp` before
3442       // going into the slow path, as it has been overwritten in the
3443       // meantime.
3444       // /* HeapReference<Class> */ temp = obj->klass_
3445       GenerateReferenceLoadTwoRegisters(
3446           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3447       __ B(type_check_slow_path->GetEntryLabel());
3448 
3449       __ Bind(&check_non_primitive_component_type);
3450       __ Ldrh(temp, HeapOperand(temp, primitive_offset));
3451       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3452       __ Cbz(temp, &done);
3453       // Same comment as above regarding `temp` and the slow path.
3454       // /* HeapReference<Class> */ temp = obj->klass_
3455       GenerateReferenceLoadTwoRegisters(
3456           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
3457       __ B(type_check_slow_path->GetEntryLabel());
3458       break;
3459     }
3460 
3461     case TypeCheckKind::kUnresolvedCheck:
3462     case TypeCheckKind::kInterfaceCheck:
3463       // We always go into the type check slow path for the unresolved
3464       // and interface check cases.
3465       //
3466       // We cannot directly call the CheckCast runtime entry point
3467       // without resorting to a type checking slow path here (i.e. by
3468       // calling InvokeRuntime directly), as it would require to
3469       // assign fixed registers for the inputs of this HInstanceOf
3470       // instruction (following the runtime calling convention), which
3471       // might be cluttered by the potential first read barrier
3472       // emission at the beginning of this method.
3473       //
3474       // TODO: Introduce a new runtime entry point taking the object
3475       // to test (instead of its class) as argument, and let it deal
3476       // with the read barrier issues. This will let us refactor this
3477       // case of the `switch` code as it was previously (with a direct
3478       // call to the runtime not using a type checking slow path).
3479       // This should also be beneficial for the other cases above.
3480       __ B(type_check_slow_path->GetEntryLabel());
3481       break;
3482   }
3483   __ Bind(&done);
3484 
3485   __ Bind(type_check_slow_path->GetExitLabel());
3486 }
3487 
VisitIntConstant(HIntConstant * constant)3488 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
3489   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3490   locations->SetOut(Location::ConstantLocation(constant));
3491 }
3492 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3493 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3494   // Will be generated at use site.
3495 }
3496 
VisitNullConstant(HNullConstant * constant)3497 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
3498   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
3499   locations->SetOut(Location::ConstantLocation(constant));
3500 }
3501 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3502 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3503   // Will be generated at use site.
3504 }
3505 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3506 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3507   // The trampoline uses the same calling convention as dex calling conventions,
3508   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3509   // the method_idx.
3510   HandleInvoke(invoke);
3511 }
3512 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3513 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3514   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3515 }
3516 
HandleInvoke(HInvoke * invoke)3517 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
3518   InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
3519   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3520 }
3521 
VisitInvokeInterface(HInvokeInterface * invoke)3522 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3523   HandleInvoke(invoke);
3524 }
3525 
VisitInvokeInterface(HInvokeInterface * invoke)3526 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
3527   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3528   LocationSummary* locations = invoke->GetLocations();
3529   Register temp = XRegisterFrom(locations->GetTemp(0));
3530   Location receiver = locations->InAt(0);
3531   Offset class_offset = mirror::Object::ClassOffset();
3532   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3533 
3534   // The register ip1 is required to be used for the hidden argument in
3535   // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
3536   MacroAssembler* masm = GetVIXLAssembler();
3537   UseScratchRegisterScope scratch_scope(masm);
3538   BlockPoolsScope block_pools(masm);
3539   scratch_scope.Exclude(ip1);
3540   __ Mov(ip1, invoke->GetDexMethodIndex());
3541 
3542   if (receiver.IsStackSlot()) {
3543     __ Ldr(temp.W(), StackOperandFrom(receiver));
3544     // /* HeapReference<Class> */ temp = temp->klass_
3545     __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
3546   } else {
3547     // /* HeapReference<Class> */ temp = receiver->klass_
3548     __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
3549   }
3550   codegen_->MaybeRecordImplicitNullCheck(invoke);
3551   // Instead of simply (possibly) unpoisoning `temp` here, we should
3552   // emit a read barrier for the previous class reference load.
3553   // However this is not required in practice, as this is an
3554   // intermediate/temporary reference and because the current
3555   // concurrent copying collector keeps the from-space memory
3556   // intact/accessible until the end of the marking phase (the
3557   // concurrent copying collector may not in the future).
3558   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3559   __ Ldr(temp,
3560       MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
3561   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3562       invoke->GetImtIndex() % ImTable::kSize, kArm64PointerSize));
3563   // temp = temp->GetImtEntryAt(method_offset);
3564   __ Ldr(temp, MemOperand(temp, method_offset));
3565   // lr = temp->GetEntryPoint();
3566   __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
3567   // lr();
3568   __ Blr(lr);
3569   DCHECK(!codegen_->IsLeafMethod());
3570   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3571 }
3572 
VisitInvokeVirtual(HInvokeVirtual * invoke)3573 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3574   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3575   if (intrinsic.TryDispatch(invoke)) {
3576     return;
3577   }
3578 
3579   HandleInvoke(invoke);
3580 }
3581 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3582 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3583   // Explicit clinit checks triggered by static invokes must have been pruned by
3584   // art::PrepareForRegisterAllocation.
3585   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3586 
3587   IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
3588   if (intrinsic.TryDispatch(invoke)) {
3589     return;
3590   }
3591 
3592   HandleInvoke(invoke);
3593 }
3594 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)3595 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
3596   if (invoke->GetLocations()->Intrinsified()) {
3597     IntrinsicCodeGeneratorARM64 intrinsic(codegen);
3598     intrinsic.Dispatch(invoke);
3599     return true;
3600   }
3601   return false;
3602 }
3603 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,MethodReference target_method ATTRIBUTE_UNUSED)3604 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
3605       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
3606       MethodReference target_method ATTRIBUTE_UNUSED) {
3607   // On ARM64 we support all dispatch types.
3608   return desired_dispatch_info;
3609 }
3610 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp)3611 void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
3612   // For better instruction scheduling we load the direct code pointer before the method pointer.
3613   bool direct_code_loaded = false;
3614   switch (invoke->GetCodePtrLocation()) {
3615     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3616       // LR = code address from literal pool with link-time patch.
3617       __ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
3618       direct_code_loaded = true;
3619       break;
3620     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3621       // LR = invoke->GetDirectCodePtr();
3622       __ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr()));
3623       direct_code_loaded = true;
3624       break;
3625     default:
3626       break;
3627   }
3628 
3629   // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
3630   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
3631   switch (invoke->GetMethodLoadKind()) {
3632     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
3633       // temp = thread->string_init_entrypoint
3634       __ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset()));
3635       break;
3636     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
3637       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3638       break;
3639     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
3640       // Load method address from literal pool.
3641       __ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
3642       break;
3643     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
3644       // Load method address from literal pool with a link-time patch.
3645       __ Ldr(XRegisterFrom(temp),
3646              DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
3647       break;
3648     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
3649       // Add ADRP with its PC-relative DexCache access patch.
3650       const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
3651       uint32_t element_offset = invoke->GetDexCacheArrayOffset();
3652       vixl::Label* adrp_label = NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
3653       {
3654         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3655         __ Bind(adrp_label);
3656         __ adrp(XRegisterFrom(temp), /* offset placeholder */ 0);
3657       }
3658       // Add LDR with its PC-relative DexCache access patch.
3659       vixl::Label* ldr_label =
3660           NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
3661       {
3662         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3663         __ Bind(ldr_label);
3664         __ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), /* offset placeholder */ 0));
3665       }
3666       break;
3667     }
3668     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
3669       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
3670       Register reg = XRegisterFrom(temp);
3671       Register method_reg;
3672       if (current_method.IsRegister()) {
3673         method_reg = XRegisterFrom(current_method);
3674       } else {
3675         DCHECK(invoke->GetLocations()->Intrinsified());
3676         DCHECK(!current_method.IsValid());
3677         method_reg = reg;
3678         __ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset));
3679       }
3680 
3681       // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
3682       __ Ldr(reg.X(),
3683              MemOperand(method_reg.X(),
3684                         ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value()));
3685       // temp = temp[index_in_cache];
3686       // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
3687       uint32_t index_in_cache = invoke->GetDexMethodIndex();
3688     __ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache)));
3689       break;
3690     }
3691   }
3692 
3693   switch (invoke->GetCodePtrLocation()) {
3694     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
3695       __ Bl(&frame_entry_label_);
3696       break;
3697     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
3698       relative_call_patches_.emplace_back(invoke->GetTargetMethod());
3699       vixl::Label* label = &relative_call_patches_.back().label;
3700       vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
3701       __ Bind(label);
3702       __ bl(0);  // Branch and link to itself. This will be overriden at link time.
3703       break;
3704     }
3705     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
3706     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
3707       // LR prepared above for better instruction scheduling.
3708       DCHECK(direct_code_loaded);
3709       // lr()
3710       __ Blr(lr);
3711       break;
3712     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
3713       // LR = callee_method->entry_point_from_quick_compiled_code_;
3714       __ Ldr(lr, MemOperand(
3715           XRegisterFrom(callee_method),
3716           ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
3717       // lr()
3718       __ Blr(lr);
3719       break;
3720   }
3721 
3722   DCHECK(!IsLeafMethod());
3723 }
3724 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in)3725 void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
3726   // Use the calling convention instead of the location of the receiver, as
3727   // intrinsics may have put the receiver in a different register. In the intrinsics
3728   // slow path, the arguments have been moved to the right place, so here we are
3729   // guaranteed that the receiver is the first register of the calling convention.
3730   InvokeDexCallingConvention calling_convention;
3731   Register receiver = calling_convention.GetRegisterAt(0);
3732   Register temp = XRegisterFrom(temp_in);
3733   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
3734       invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
3735   Offset class_offset = mirror::Object::ClassOffset();
3736   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
3737 
3738   BlockPoolsScope block_pools(GetVIXLAssembler());
3739 
3740   DCHECK(receiver.IsRegister());
3741   // /* HeapReference<Class> */ temp = receiver->klass_
3742   __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
3743   MaybeRecordImplicitNullCheck(invoke);
3744   // Instead of simply (possibly) unpoisoning `temp` here, we should
3745   // emit a read barrier for the previous class reference load.
3746   // intermediate/temporary reference and because the current
3747   // concurrent copying collector keeps the from-space memory
3748   // intact/accessible until the end of the marking phase (the
3749   // concurrent copying collector may not in the future).
3750   GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
3751   // temp = temp->GetMethodAt(method_offset);
3752   __ Ldr(temp, MemOperand(temp, method_offset));
3753   // lr = temp->GetEntryPoint();
3754   __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
3755   // lr();
3756   __ Blr(lr);
3757 }
3758 
NewPcRelativeStringPatch(const DexFile & dex_file,uint32_t string_index,vixl::Label * adrp_label)3759 vixl::Label* CodeGeneratorARM64::NewPcRelativeStringPatch(const DexFile& dex_file,
3760                                                           uint32_t string_index,
3761                                                           vixl::Label* adrp_label) {
3762   return NewPcRelativePatch(dex_file, string_index, adrp_label, &pc_relative_string_patches_);
3763 }
3764 
NewPcRelativeDexCacheArrayPatch(const DexFile & dex_file,uint32_t element_offset,vixl::Label * adrp_label)3765 vixl::Label* CodeGeneratorARM64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
3766                                                                  uint32_t element_offset,
3767                                                                  vixl::Label* adrp_label) {
3768   return NewPcRelativePatch(dex_file, element_offset, adrp_label, &pc_relative_dex_cache_patches_);
3769 }
3770 
NewPcRelativePatch(const DexFile & dex_file,uint32_t offset_or_index,vixl::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)3771 vixl::Label* CodeGeneratorARM64::NewPcRelativePatch(const DexFile& dex_file,
3772                                                     uint32_t offset_or_index,
3773                                                     vixl::Label* adrp_label,
3774                                                     ArenaDeque<PcRelativePatchInfo>* patches) {
3775   // Add a patch entry and return the label.
3776   patches->emplace_back(dex_file, offset_or_index);
3777   PcRelativePatchInfo* info = &patches->back();
3778   vixl::Label* label = &info->label;
3779   // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
3780   info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
3781   return label;
3782 }
3783 
DeduplicateBootImageStringLiteral(const DexFile & dex_file,uint32_t string_index)3784 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageStringLiteral(
3785     const DexFile& dex_file, uint32_t string_index) {
3786   return boot_image_string_patches_.GetOrCreate(
3787       StringReference(&dex_file, string_index),
3788       [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); });
3789 }
3790 
DeduplicateBootImageAddressLiteral(uint64_t address)3791 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(uint64_t address) {
3792   bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
3793   Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
3794   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
3795 }
3796 
DeduplicateDexCacheAddressLiteral(uint64_t address)3797 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateDexCacheAddressLiteral(uint64_t address) {
3798   return DeduplicateUint64Literal(address);
3799 }
3800 
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)3801 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
3802   DCHECK(linker_patches->empty());
3803   size_t size =
3804       method_patches_.size() +
3805       call_patches_.size() +
3806       relative_call_patches_.size() +
3807       pc_relative_dex_cache_patches_.size() +
3808       boot_image_string_patches_.size() +
3809       pc_relative_string_patches_.size() +
3810       boot_image_address_patches_.size();
3811   linker_patches->reserve(size);
3812   for (const auto& entry : method_patches_) {
3813     const MethodReference& target_method = entry.first;
3814     vixl::Literal<uint64_t>* literal = entry.second;
3815     linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(),
3816                                                        target_method.dex_file,
3817                                                        target_method.dex_method_index));
3818   }
3819   for (const auto& entry : call_patches_) {
3820     const MethodReference& target_method = entry.first;
3821     vixl::Literal<uint64_t>* literal = entry.second;
3822     linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(),
3823                                                      target_method.dex_file,
3824                                                      target_method.dex_method_index));
3825   }
3826   for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) {
3827     linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(),
3828                                                              info.target_method.dex_file,
3829                                                              info.target_method.dex_method_index));
3830   }
3831   for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
3832     linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(),
3833                                                               &info.target_dex_file,
3834                                                               info.pc_insn_label->location(),
3835                                                               info.offset_or_index));
3836   }
3837   for (const auto& entry : boot_image_string_patches_) {
3838     const StringReference& target_string = entry.first;
3839     vixl::Literal<uint32_t>* literal = entry.second;
3840     linker_patches->push_back(LinkerPatch::StringPatch(literal->offset(),
3841                                                        target_string.dex_file,
3842                                                        target_string.string_index));
3843   }
3844   for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
3845     linker_patches->push_back(LinkerPatch::RelativeStringPatch(info.label.location(),
3846                                                                &info.target_dex_file,
3847                                                                info.pc_insn_label->location(),
3848                                                                info.offset_or_index));
3849   }
3850   for (const auto& entry : boot_image_address_patches_) {
3851     DCHECK(GetCompilerOptions().GetIncludePatchInformation());
3852     vixl::Literal<uint32_t>* literal = entry.second;
3853     linker_patches->push_back(LinkerPatch::RecordPosition(literal->offset()));
3854   }
3855 }
3856 
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)3857 vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value,
3858                                                                       Uint32ToLiteralMap* map) {
3859   return map->GetOrCreate(
3860       value,
3861       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
3862 }
3863 
DeduplicateUint64Literal(uint64_t value)3864 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
3865   return uint64_literals_.GetOrCreate(
3866       value,
3867       [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
3868 }
3869 
DeduplicateMethodLiteral(MethodReference target_method,MethodToLiteralMap * map)3870 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral(
3871     MethodReference target_method,
3872     MethodToLiteralMap* map) {
3873   return map->GetOrCreate(
3874       target_method,
3875       [this]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(/* placeholder */ 0u); });
3876 }
3877 
DeduplicateMethodAddressLiteral(MethodReference target_method)3878 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral(
3879     MethodReference target_method) {
3880   return DeduplicateMethodLiteral(target_method, &method_patches_);
3881 }
3882 
DeduplicateMethodCodeLiteral(MethodReference target_method)3883 vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral(
3884     MethodReference target_method) {
3885   return DeduplicateMethodLiteral(target_method, &call_patches_);
3886 }
3887 
3888 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3889 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3890   // Explicit clinit checks triggered by static invokes must have been pruned by
3891   // art::PrepareForRegisterAllocation.
3892   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3893 
3894   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3895     return;
3896   }
3897 
3898   BlockPoolsScope block_pools(GetVIXLAssembler());
3899   LocationSummary* locations = invoke->GetLocations();
3900   codegen_->GenerateStaticOrDirectCall(
3901       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3902   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3903 }
3904 
VisitInvokeVirtual(HInvokeVirtual * invoke)3905 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3906   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3907     return;
3908   }
3909 
3910   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3911   DCHECK(!codegen_->IsLeafMethod());
3912   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3913 }
3914 
VisitLoadClass(HLoadClass * cls)3915 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
3916   InvokeRuntimeCallingConvention calling_convention;
3917   CodeGenerator::CreateLoadClassLocationSummary(
3918       cls,
3919       LocationFrom(calling_convention.GetRegisterAt(0)),
3920       LocationFrom(vixl::x0),
3921       /* code_generator_supports_read_barrier */ true);
3922 }
3923 
VisitLoadClass(HLoadClass * cls)3924 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
3925   if (cls->NeedsAccessCheck()) {
3926     codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex());
3927     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
3928                             cls,
3929                             cls->GetDexPc(),
3930                             nullptr);
3931     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
3932     return;
3933   }
3934 
3935   Location out_loc = cls->GetLocations()->Out();
3936   Register out = OutputRegister(cls);
3937   Register current_method = InputRegisterAt(cls, 0);
3938   if (cls->IsReferrersClass()) {
3939     DCHECK(!cls->CanCallRuntime());
3940     DCHECK(!cls->MustGenerateClinitCheck());
3941     // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
3942     GenerateGcRootFieldLoad(
3943         cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
3944   } else {
3945     MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize);
3946     // /* GcRoot<mirror::Class>[] */ out =
3947     //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
3948     __ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value()));
3949     // /* GcRoot<mirror::Class> */ out = out[type_index]
3950     GenerateGcRootFieldLoad(
3951         cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
3952 
3953     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
3954       DCHECK(cls->CanCallRuntime());
3955       SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
3956           cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
3957       codegen_->AddSlowPath(slow_path);
3958       if (!cls->IsInDexCache()) {
3959         __ Cbz(out, slow_path->GetEntryLabel());
3960       }
3961       if (cls->MustGenerateClinitCheck()) {
3962         GenerateClassInitializationCheck(slow_path, out);
3963       } else {
3964         __ Bind(slow_path->GetExitLabel());
3965       }
3966     }
3967   }
3968 }
3969 
GetExceptionTlsAddress()3970 static MemOperand GetExceptionTlsAddress() {
3971   return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
3972 }
3973 
VisitLoadException(HLoadException * load)3974 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
3975   LocationSummary* locations =
3976       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
3977   locations->SetOut(Location::RequiresRegister());
3978 }
3979 
VisitLoadException(HLoadException * instruction)3980 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
3981   __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
3982 }
3983 
VisitClearException(HClearException * clear)3984 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
3985   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
3986 }
3987 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)3988 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
3989   __ Str(wzr, GetExceptionTlsAddress());
3990 }
3991 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)3992 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
3993     HLoadString::LoadKind desired_string_load_kind) {
3994   if (kEmitCompilerReadBarrier) {
3995     switch (desired_string_load_kind) {
3996       case HLoadString::LoadKind::kBootImageLinkTimeAddress:
3997       case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
3998       case HLoadString::LoadKind::kBootImageAddress:
3999         // TODO: Implement for read barrier.
4000         return HLoadString::LoadKind::kDexCacheViaMethod;
4001       default:
4002         break;
4003     }
4004   }
4005   switch (desired_string_load_kind) {
4006     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
4007       DCHECK(!GetCompilerOptions().GetCompilePic());
4008       break;
4009     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
4010       DCHECK(GetCompilerOptions().GetCompilePic());
4011       break;
4012     case HLoadString::LoadKind::kBootImageAddress:
4013       break;
4014     case HLoadString::LoadKind::kDexCacheAddress:
4015       DCHECK(Runtime::Current()->UseJitCompilation());
4016       break;
4017     case HLoadString::LoadKind::kDexCachePcRelative:
4018       DCHECK(!Runtime::Current()->UseJitCompilation());
4019       break;
4020     case HLoadString::LoadKind::kDexCacheViaMethod:
4021       break;
4022   }
4023   return desired_string_load_kind;
4024 }
4025 
VisitLoadString(HLoadString * load)4026 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
4027   LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
4028       ? LocationSummary::kCallOnSlowPath
4029       : LocationSummary::kNoCall;
4030   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
4031   if (load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod) {
4032     locations->SetInAt(0, Location::RequiresRegister());
4033   }
4034   locations->SetOut(Location::RequiresRegister());
4035 }
4036 
VisitLoadString(HLoadString * load)4037 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
4038   Location out_loc = load->GetLocations()->Out();
4039   Register out = OutputRegister(load);
4040 
4041   switch (load->GetLoadKind()) {
4042     case HLoadString::LoadKind::kBootImageLinkTimeAddress:
4043       DCHECK(!kEmitCompilerReadBarrier);
4044       __ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
4045                                                               load->GetStringIndex()));
4046       return;  // No dex cache slow path.
4047     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
4048       DCHECK(!kEmitCompilerReadBarrier);
4049       // Add ADRP with its PC-relative String patch.
4050       const DexFile& dex_file = load->GetDexFile();
4051       uint32_t string_index = load->GetStringIndex();
4052       vixl::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index);
4053       {
4054         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4055         __ Bind(adrp_label);
4056         __ adrp(out.X(), /* offset placeholder */ 0);
4057       }
4058       // Add ADD with its PC-relative String patch.
4059       vixl::Label* add_label =
4060           codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label);
4061       {
4062         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4063         __ Bind(add_label);
4064         __ add(out.X(), out.X(), Operand(/* offset placeholder */ 0));
4065       }
4066       return;  // No dex cache slow path.
4067     }
4068     case HLoadString::LoadKind::kBootImageAddress: {
4069       DCHECK(!kEmitCompilerReadBarrier);
4070       DCHECK(load->GetAddress() != 0u && IsUint<32>(load->GetAddress()));
4071       __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(load->GetAddress()));
4072       return;  // No dex cache slow path.
4073     }
4074     case HLoadString::LoadKind::kDexCacheAddress: {
4075       DCHECK_NE(load->GetAddress(), 0u);
4076       // LDR immediate has a 12-bit offset multiplied by the size and for 32-bit loads
4077       // that gives a 16KiB range. To try and reduce the number of literals if we load
4078       // multiple strings, simply split the dex cache address to a 16KiB aligned base
4079       // loaded from a literal and the remaining offset embedded in the load.
4080       static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes.");
4081       DCHECK_ALIGNED(load->GetAddress(), 4u);
4082       constexpr size_t offset_bits = /* encoded bits */ 12 + /* scale */ 2;
4083       uint64_t base_address = load->GetAddress() & ~MaxInt<uint64_t>(offset_bits);
4084       uint32_t offset = load->GetAddress() & MaxInt<uint64_t>(offset_bits);
4085       __ Ldr(out.X(), codegen_->DeduplicateDexCacheAddressLiteral(base_address));
4086       GenerateGcRootFieldLoad(load, out_loc, out.X(), offset);
4087       break;
4088     }
4089     case HLoadString::LoadKind::kDexCachePcRelative: {
4090       // Add ADRP with its PC-relative DexCache access patch.
4091       const DexFile& dex_file = load->GetDexFile();
4092       uint32_t element_offset = load->GetDexCacheElementOffset();
4093       vixl::Label* adrp_label = codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
4094       {
4095         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4096         __ Bind(adrp_label);
4097         __ adrp(out.X(), /* offset placeholder */ 0);
4098       }
4099       // Add LDR with its PC-relative DexCache access patch.
4100       vixl::Label* ldr_label =
4101           codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
4102       GenerateGcRootFieldLoad(load, out_loc, out.X(), /* offset placeholder */ 0, ldr_label);
4103       break;
4104     }
4105     case HLoadString::LoadKind::kDexCacheViaMethod: {
4106       Register current_method = InputRegisterAt(load, 0);
4107       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
4108       GenerateGcRootFieldLoad(
4109           load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
4110       // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
4111       __ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value()));
4112       // /* GcRoot<mirror::String> */ out = out[string_index]
4113       GenerateGcRootFieldLoad(
4114           load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex()));
4115       break;
4116     }
4117     default:
4118       LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
4119       UNREACHABLE();
4120   }
4121 
4122   if (!load->IsInDexCache()) {
4123     SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
4124     codegen_->AddSlowPath(slow_path);
4125     __ Cbz(out, slow_path->GetEntryLabel());
4126     __ Bind(slow_path->GetExitLabel());
4127   }
4128 }
4129 
VisitLongConstant(HLongConstant * constant)4130 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
4131   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
4132   locations->SetOut(Location::ConstantLocation(constant));
4133 }
4134 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)4135 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
4136   // Will be generated at use site.
4137 }
4138 
VisitMonitorOperation(HMonitorOperation * instruction)4139 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
4140   LocationSummary* locations =
4141       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4142   InvokeRuntimeCallingConvention calling_convention;
4143   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4144 }
4145 
VisitMonitorOperation(HMonitorOperation * instruction)4146 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
4147   codegen_->InvokeRuntime(instruction->IsEnter()
4148         ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
4149       instruction,
4150       instruction->GetDexPc(),
4151       nullptr);
4152   if (instruction->IsEnter()) {
4153     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
4154   } else {
4155     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
4156   }
4157 }
4158 
VisitMul(HMul * mul)4159 void LocationsBuilderARM64::VisitMul(HMul* mul) {
4160   LocationSummary* locations =
4161       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
4162   switch (mul->GetResultType()) {
4163     case Primitive::kPrimInt:
4164     case Primitive::kPrimLong:
4165       locations->SetInAt(0, Location::RequiresRegister());
4166       locations->SetInAt(1, Location::RequiresRegister());
4167       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4168       break;
4169 
4170     case Primitive::kPrimFloat:
4171     case Primitive::kPrimDouble:
4172       locations->SetInAt(0, Location::RequiresFpuRegister());
4173       locations->SetInAt(1, Location::RequiresFpuRegister());
4174       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4175       break;
4176 
4177     default:
4178       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4179   }
4180 }
4181 
VisitMul(HMul * mul)4182 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
4183   switch (mul->GetResultType()) {
4184     case Primitive::kPrimInt:
4185     case Primitive::kPrimLong:
4186       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4187       break;
4188 
4189     case Primitive::kPrimFloat:
4190     case Primitive::kPrimDouble:
4191       __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
4192       break;
4193 
4194     default:
4195       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4196   }
4197 }
4198 
VisitNeg(HNeg * neg)4199 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
4200   LocationSummary* locations =
4201       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
4202   switch (neg->GetResultType()) {
4203     case Primitive::kPrimInt:
4204     case Primitive::kPrimLong:
4205       locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
4206       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4207       break;
4208 
4209     case Primitive::kPrimFloat:
4210     case Primitive::kPrimDouble:
4211       locations->SetInAt(0, Location::RequiresFpuRegister());
4212       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4213       break;
4214 
4215     default:
4216       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4217   }
4218 }
4219 
VisitNeg(HNeg * neg)4220 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
4221   switch (neg->GetResultType()) {
4222     case Primitive::kPrimInt:
4223     case Primitive::kPrimLong:
4224       __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
4225       break;
4226 
4227     case Primitive::kPrimFloat:
4228     case Primitive::kPrimDouble:
4229       __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
4230       break;
4231 
4232     default:
4233       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
4234   }
4235 }
4236 
VisitNewArray(HNewArray * instruction)4237 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
4238   LocationSummary* locations =
4239       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4240   InvokeRuntimeCallingConvention calling_convention;
4241   locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
4242   locations->SetOut(LocationFrom(x0));
4243   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
4244   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2)));
4245 }
4246 
VisitNewArray(HNewArray * instruction)4247 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
4248   LocationSummary* locations = instruction->GetLocations();
4249   InvokeRuntimeCallingConvention calling_convention;
4250   Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
4251   DCHECK(type_index.Is(w0));
4252   __ Mov(type_index, instruction->GetTypeIndex());
4253   // Note: if heap poisoning is enabled, the entry point takes cares
4254   // of poisoning the reference.
4255   codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4256                           instruction,
4257                           instruction->GetDexPc(),
4258                           nullptr);
4259   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
4260 }
4261 
VisitNewInstance(HNewInstance * instruction)4262 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
4263   LocationSummary* locations =
4264       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4265   InvokeRuntimeCallingConvention calling_convention;
4266   if (instruction->IsStringAlloc()) {
4267     locations->AddTemp(LocationFrom(kArtMethodRegister));
4268   } else {
4269     locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4270     locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4271   }
4272   locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
4273 }
4274 
VisitNewInstance(HNewInstance * instruction)4275 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
4276   // Note: if heap poisoning is enabled, the entry point takes cares
4277   // of poisoning the reference.
4278   if (instruction->IsStringAlloc()) {
4279     // String is allocated through StringFactory. Call NewEmptyString entry point.
4280     Location temp = instruction->GetLocations()->GetTemp(0);
4281     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
4282     __ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
4283     __ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
4284     __ Blr(lr);
4285     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4286   } else {
4287     codegen_->InvokeRuntime(instruction->GetEntrypoint(),
4288                             instruction,
4289                             instruction->GetDexPc(),
4290                             nullptr);
4291     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
4292   }
4293 }
4294 
VisitNot(HNot * instruction)4295 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
4296   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4297   locations->SetInAt(0, Location::RequiresRegister());
4298   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4299 }
4300 
VisitNot(HNot * instruction)4301 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
4302   switch (instruction->GetResultType()) {
4303     case Primitive::kPrimInt:
4304     case Primitive::kPrimLong:
4305       __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
4306       break;
4307 
4308     default:
4309       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
4310   }
4311 }
4312 
VisitBooleanNot(HBooleanNot * instruction)4313 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
4314   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4315   locations->SetInAt(0, Location::RequiresRegister());
4316   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4317 }
4318 
VisitBooleanNot(HBooleanNot * instruction)4319 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
4320   __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
4321 }
4322 
VisitNullCheck(HNullCheck * instruction)4323 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
4324   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4325       ? LocationSummary::kCallOnSlowPath
4326       : LocationSummary::kNoCall;
4327   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4328   locations->SetInAt(0, Location::RequiresRegister());
4329   if (instruction->HasUses()) {
4330     locations->SetOut(Location::SameAsFirstInput());
4331   }
4332 }
4333 
GenerateImplicitNullCheck(HNullCheck * instruction)4334 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
4335   if (CanMoveNullCheckToUser(instruction)) {
4336     return;
4337   }
4338 
4339   BlockPoolsScope block_pools(GetVIXLAssembler());
4340   Location obj = instruction->GetLocations()->InAt(0);
4341   __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
4342   RecordPcInfo(instruction, instruction->GetDexPc());
4343 }
4344 
GenerateExplicitNullCheck(HNullCheck * instruction)4345 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
4346   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
4347   AddSlowPath(slow_path);
4348 
4349   LocationSummary* locations = instruction->GetLocations();
4350   Location obj = locations->InAt(0);
4351 
4352   __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
4353 }
4354 
VisitNullCheck(HNullCheck * instruction)4355 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
4356   codegen_->GenerateNullCheck(instruction);
4357 }
4358 
VisitOr(HOr * instruction)4359 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
4360   HandleBinaryOp(instruction);
4361 }
4362 
VisitOr(HOr * instruction)4363 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
4364   HandleBinaryOp(instruction);
4365 }
4366 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)4367 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
4368   LOG(FATAL) << "Unreachable";
4369 }
4370 
VisitParallelMove(HParallelMove * instruction)4371 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
4372   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
4373 }
4374 
VisitParameterValue(HParameterValue * instruction)4375 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
4376   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4377   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4378   if (location.IsStackSlot()) {
4379     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4380   } else if (location.IsDoubleStackSlot()) {
4381     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4382   }
4383   locations->SetOut(location);
4384 }
4385 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4386 void InstructionCodeGeneratorARM64::VisitParameterValue(
4387     HParameterValue* instruction ATTRIBUTE_UNUSED) {
4388   // Nothing to do, the parameter is already at its location.
4389 }
4390 
VisitCurrentMethod(HCurrentMethod * instruction)4391 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
4392   LocationSummary* locations =
4393       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4394   locations->SetOut(LocationFrom(kArtMethodRegister));
4395 }
4396 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4397 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
4398     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4399   // Nothing to do, the method is already at its location.
4400 }
4401 
VisitPhi(HPhi * instruction)4402 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
4403   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4404   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
4405     locations->SetInAt(i, Location::Any());
4406   }
4407   locations->SetOut(Location::Any());
4408 }
4409 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)4410 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4411   LOG(FATAL) << "Unreachable";
4412 }
4413 
VisitRem(HRem * rem)4414 void LocationsBuilderARM64::VisitRem(HRem* rem) {
4415   Primitive::Type type = rem->GetResultType();
4416   LocationSummary::CallKind call_kind =
4417       Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
4418   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
4419 
4420   switch (type) {
4421     case Primitive::kPrimInt:
4422     case Primitive::kPrimLong:
4423       locations->SetInAt(0, Location::RequiresRegister());
4424       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
4425       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4426       break;
4427 
4428     case Primitive::kPrimFloat:
4429     case Primitive::kPrimDouble: {
4430       InvokeRuntimeCallingConvention calling_convention;
4431       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4432       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4433       locations->SetOut(calling_convention.GetReturnLocation(type));
4434 
4435       break;
4436     }
4437 
4438     default:
4439       LOG(FATAL) << "Unexpected rem type " << type;
4440   }
4441 }
4442 
VisitRem(HRem * rem)4443 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
4444   Primitive::Type type = rem->GetResultType();
4445 
4446   switch (type) {
4447     case Primitive::kPrimInt:
4448     case Primitive::kPrimLong: {
4449       GenerateDivRemIntegral(rem);
4450       break;
4451     }
4452 
4453     case Primitive::kPrimFloat:
4454     case Primitive::kPrimDouble: {
4455       int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
4456                                                              : QUICK_ENTRY_POINT(pFmod);
4457       codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
4458       if (type == Primitive::kPrimFloat) {
4459         CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4460       } else {
4461         CheckEntrypointTypes<kQuickFmod, double, double, double>();
4462       }
4463       break;
4464     }
4465 
4466     default:
4467       LOG(FATAL) << "Unexpected rem type " << type;
4468       UNREACHABLE();
4469   }
4470 }
4471 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)4472 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4473   memory_barrier->SetLocations(nullptr);
4474 }
4475 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)4476 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
4477   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
4478 }
4479 
VisitReturn(HReturn * instruction)4480 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
4481   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
4482   Primitive::Type return_type = instruction->InputAt(0)->GetType();
4483   locations->SetInAt(0, ARM64ReturnLocation(return_type));
4484 }
4485 
VisitReturn(HReturn * instruction ATTRIBUTE_UNUSED)4486 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
4487   codegen_->GenerateFrameExit();
4488 }
4489 
VisitReturnVoid(HReturnVoid * instruction)4490 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
4491   instruction->SetLocations(nullptr);
4492 }
4493 
VisitReturnVoid(HReturnVoid * instruction ATTRIBUTE_UNUSED)4494 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
4495   codegen_->GenerateFrameExit();
4496 }
4497 
VisitRor(HRor * ror)4498 void LocationsBuilderARM64::VisitRor(HRor* ror) {
4499   HandleBinaryOp(ror);
4500 }
4501 
VisitRor(HRor * ror)4502 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
4503   HandleBinaryOp(ror);
4504 }
4505 
VisitShl(HShl * shl)4506 void LocationsBuilderARM64::VisitShl(HShl* shl) {
4507   HandleShift(shl);
4508 }
4509 
VisitShl(HShl * shl)4510 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
4511   HandleShift(shl);
4512 }
4513 
VisitShr(HShr * shr)4514 void LocationsBuilderARM64::VisitShr(HShr* shr) {
4515   HandleShift(shr);
4516 }
4517 
VisitShr(HShr * shr)4518 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
4519   HandleShift(shr);
4520 }
4521 
VisitSub(HSub * instruction)4522 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
4523   HandleBinaryOp(instruction);
4524 }
4525 
VisitSub(HSub * instruction)4526 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
4527   HandleBinaryOp(instruction);
4528 }
4529 
VisitStaticFieldGet(HStaticFieldGet * instruction)4530 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4531   HandleFieldGet(instruction);
4532 }
4533 
VisitStaticFieldGet(HStaticFieldGet * instruction)4534 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4535   HandleFieldGet(instruction, instruction->GetFieldInfo());
4536 }
4537 
VisitStaticFieldSet(HStaticFieldSet * instruction)4538 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4539   HandleFieldSet(instruction);
4540 }
4541 
VisitStaticFieldSet(HStaticFieldSet * instruction)4542 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4543   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4544 }
4545 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4546 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
4547     HUnresolvedInstanceFieldGet* instruction) {
4548   FieldAccessCallingConventionARM64 calling_convention;
4549   codegen_->CreateUnresolvedFieldLocationSummary(
4550       instruction, instruction->GetFieldType(), calling_convention);
4551 }
4552 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)4553 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
4554     HUnresolvedInstanceFieldGet* instruction) {
4555   FieldAccessCallingConventionARM64 calling_convention;
4556   codegen_->GenerateUnresolvedFieldAccess(instruction,
4557                                           instruction->GetFieldType(),
4558                                           instruction->GetFieldIndex(),
4559                                           instruction->GetDexPc(),
4560                                           calling_convention);
4561 }
4562 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4563 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
4564     HUnresolvedInstanceFieldSet* instruction) {
4565   FieldAccessCallingConventionARM64 calling_convention;
4566   codegen_->CreateUnresolvedFieldLocationSummary(
4567       instruction, instruction->GetFieldType(), calling_convention);
4568 }
4569 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)4570 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
4571     HUnresolvedInstanceFieldSet* instruction) {
4572   FieldAccessCallingConventionARM64 calling_convention;
4573   codegen_->GenerateUnresolvedFieldAccess(instruction,
4574                                           instruction->GetFieldType(),
4575                                           instruction->GetFieldIndex(),
4576                                           instruction->GetDexPc(),
4577                                           calling_convention);
4578 }
4579 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4580 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
4581     HUnresolvedStaticFieldGet* instruction) {
4582   FieldAccessCallingConventionARM64 calling_convention;
4583   codegen_->CreateUnresolvedFieldLocationSummary(
4584       instruction, instruction->GetFieldType(), calling_convention);
4585 }
4586 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)4587 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
4588     HUnresolvedStaticFieldGet* instruction) {
4589   FieldAccessCallingConventionARM64 calling_convention;
4590   codegen_->GenerateUnresolvedFieldAccess(instruction,
4591                                           instruction->GetFieldType(),
4592                                           instruction->GetFieldIndex(),
4593                                           instruction->GetDexPc(),
4594                                           calling_convention);
4595 }
4596 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4597 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
4598     HUnresolvedStaticFieldSet* instruction) {
4599   FieldAccessCallingConventionARM64 calling_convention;
4600   codegen_->CreateUnresolvedFieldLocationSummary(
4601       instruction, instruction->GetFieldType(), calling_convention);
4602 }
4603 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)4604 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
4605     HUnresolvedStaticFieldSet* instruction) {
4606   FieldAccessCallingConventionARM64 calling_convention;
4607   codegen_->GenerateUnresolvedFieldAccess(instruction,
4608                                           instruction->GetFieldType(),
4609                                           instruction->GetFieldIndex(),
4610                                           instruction->GetDexPc(),
4611                                           calling_convention);
4612 }
4613 
VisitSuspendCheck(HSuspendCheck * instruction)4614 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4615   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4616 }
4617 
VisitSuspendCheck(HSuspendCheck * instruction)4618 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
4619   HBasicBlock* block = instruction->GetBlock();
4620   if (block->GetLoopInformation() != nullptr) {
4621     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
4622     // The back edge will generate the suspend check.
4623     return;
4624   }
4625   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
4626     // The goto will generate the suspend check.
4627     return;
4628   }
4629   GenerateSuspendCheck(instruction, nullptr);
4630 }
4631 
VisitThrow(HThrow * instruction)4632 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
4633   LocationSummary* locations =
4634       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
4635   InvokeRuntimeCallingConvention calling_convention;
4636   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4637 }
4638 
VisitThrow(HThrow * instruction)4639 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
4640   codegen_->InvokeRuntime(
4641       QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
4642   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
4643 }
4644 
VisitTypeConversion(HTypeConversion * conversion)4645 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
4646   LocationSummary* locations =
4647       new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
4648   Primitive::Type input_type = conversion->GetInputType();
4649   Primitive::Type result_type = conversion->GetResultType();
4650   DCHECK_NE(input_type, result_type);
4651   if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
4652       (result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
4653     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
4654   }
4655 
4656   if (Primitive::IsFloatingPointType(input_type)) {
4657     locations->SetInAt(0, Location::RequiresFpuRegister());
4658   } else {
4659     locations->SetInAt(0, Location::RequiresRegister());
4660   }
4661 
4662   if (Primitive::IsFloatingPointType(result_type)) {
4663     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4664   } else {
4665     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4666   }
4667 }
4668 
VisitTypeConversion(HTypeConversion * conversion)4669 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
4670   Primitive::Type result_type = conversion->GetResultType();
4671   Primitive::Type input_type = conversion->GetInputType();
4672 
4673   DCHECK_NE(input_type, result_type);
4674 
4675   if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
4676     int result_size = Primitive::ComponentSize(result_type);
4677     int input_size = Primitive::ComponentSize(input_type);
4678     int min_size = std::min(result_size, input_size);
4679     Register output = OutputRegister(conversion);
4680     Register source = InputRegisterAt(conversion, 0);
4681     if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) {
4682       // 'int' values are used directly as W registers, discarding the top
4683       // bits, so we don't need to sign-extend and can just perform a move.
4684       // We do not pass the `kDiscardForSameWReg` argument to force clearing the
4685       // top 32 bits of the target register. We theoretically could leave those
4686       // bits unchanged, but we would have to make sure that no code uses a
4687       // 32bit input value as a 64bit value assuming that the top 32 bits are
4688       // zero.
4689       __ Mov(output.W(), source.W());
4690     } else if (result_type == Primitive::kPrimChar ||
4691                (input_type == Primitive::kPrimChar && input_size < result_size)) {
4692       __ Ubfx(output,
4693               output.IsX() ? source.X() : source.W(),
4694               0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte);
4695     } else {
4696       __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
4697     }
4698   } else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
4699     __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
4700   } else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
4701     CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
4702     __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
4703   } else if (Primitive::IsFloatingPointType(result_type) &&
4704              Primitive::IsFloatingPointType(input_type)) {
4705     __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
4706   } else {
4707     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
4708                 << " to " << result_type;
4709   }
4710 }
4711 
VisitUShr(HUShr * ushr)4712 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
4713   HandleShift(ushr);
4714 }
4715 
VisitUShr(HUShr * ushr)4716 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
4717   HandleShift(ushr);
4718 }
4719 
VisitXor(HXor * instruction)4720 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
4721   HandleBinaryOp(instruction);
4722 }
4723 
VisitXor(HXor * instruction)4724 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
4725   HandleBinaryOp(instruction);
4726 }
4727 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)4728 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4729   // Nothing to do, this should be removed during prepare for register allocator.
4730   LOG(FATAL) << "Unreachable";
4731 }
4732 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)4733 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
4734   // Nothing to do, this should be removed during prepare for register allocator.
4735   LOG(FATAL) << "Unreachable";
4736 }
4737 
4738 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)4739 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4740   LocationSummary* locations =
4741       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
4742   locations->SetInAt(0, Location::RequiresRegister());
4743 }
4744 
VisitPackedSwitch(HPackedSwitch * switch_instr)4745 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
4746   int32_t lower_bound = switch_instr->GetStartValue();
4747   uint32_t num_entries = switch_instr->GetNumEntries();
4748   Register value_reg = InputRegisterAt(switch_instr, 0);
4749   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
4750 
4751   // Roughly set 16 as max average assemblies generated per HIR in a graph.
4752   static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize;
4753   // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
4754   // make sure we don't emit it if the target may run out of range.
4755   // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
4756   // ranges and emit the tables only as required.
4757   static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
4758 
4759   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
4760       // Current instruction id is an upper bound of the number of HIRs in the graph.
4761       GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
4762     // Create a series of compare/jumps.
4763     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4764     Register temp = temps.AcquireW();
4765     __ Subs(temp, value_reg, Operand(lower_bound));
4766 
4767     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
4768     // Jump to successors[0] if value == lower_bound.
4769     __ B(eq, codegen_->GetLabelOf(successors[0]));
4770     int32_t last_index = 0;
4771     for (; num_entries - last_index > 2; last_index += 2) {
4772       __ Subs(temp, temp, Operand(2));
4773       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
4774       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
4775       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
4776       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
4777     }
4778     if (num_entries - last_index == 2) {
4779       // The last missing case_value.
4780       __ Cmp(temp, Operand(1));
4781       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
4782     }
4783 
4784     // And the default for any other value.
4785     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
4786       __ B(codegen_->GetLabelOf(default_block));
4787     }
4788   } else {
4789     JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
4790 
4791     UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
4792 
4793     // Below instructions should use at most one blocked register. Since there are two blocked
4794     // registers, we are free to block one.
4795     Register temp_w = temps.AcquireW();
4796     Register index;
4797     // Remove the bias.
4798     if (lower_bound != 0) {
4799       index = temp_w;
4800       __ Sub(index, value_reg, Operand(lower_bound));
4801     } else {
4802       index = value_reg;
4803     }
4804 
4805     // Jump to default block if index is out of the range.
4806     __ Cmp(index, Operand(num_entries));
4807     __ B(hs, codegen_->GetLabelOf(default_block));
4808 
4809     // In current VIXL implementation, it won't require any blocked registers to encode the
4810     // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
4811     // register pressure.
4812     Register table_base = temps.AcquireX();
4813     // Load jump offset from the table.
4814     __ Adr(table_base, jump_table->GetTableStartLabel());
4815     Register jump_offset = temp_w;
4816     __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
4817 
4818     // Jump to target block by branching to table_base(pc related) + offset.
4819     Register target_address = table_base;
4820     __ Add(target_address, table_base, Operand(jump_offset, SXTW));
4821     __ Br(target_address);
4822   }
4823 }
4824 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp)4825 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction,
4826                                                                      Location out,
4827                                                                      uint32_t offset,
4828                                                                      Location maybe_temp) {
4829   Primitive::Type type = Primitive::kPrimNot;
4830   Register out_reg = RegisterFrom(out, type);
4831   if (kEmitCompilerReadBarrier) {
4832     Register temp_reg = RegisterFrom(maybe_temp, type);
4833     if (kUseBakerReadBarrier) {
4834       // Load with fast path based Baker's read barrier.
4835       // /* HeapReference<Object> */ out = *(out + offset)
4836       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4837                                                       out,
4838                                                       out_reg,
4839                                                       offset,
4840                                                       temp_reg,
4841                                                       /* needs_null_check */ false,
4842                                                       /* use_load_acquire */ false);
4843     } else {
4844       // Load with slow path based read barrier.
4845       // Save the value of `out` into `maybe_temp` before overwriting it
4846       // in the following move operation, as we will need it for the
4847       // read barrier below.
4848       __ Mov(temp_reg, out_reg);
4849       // /* HeapReference<Object> */ out = *(out + offset)
4850       __ Ldr(out_reg, HeapOperand(out_reg, offset));
4851       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
4852     }
4853   } else {
4854     // Plain load with no read barrier.
4855     // /* HeapReference<Object> */ out = *(out + offset)
4856     __ Ldr(out_reg, HeapOperand(out_reg, offset));
4857     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4858   }
4859 }
4860 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp)4861 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
4862                                                                       Location out,
4863                                                                       Location obj,
4864                                                                       uint32_t offset,
4865                                                                       Location maybe_temp) {
4866   Primitive::Type type = Primitive::kPrimNot;
4867   Register out_reg = RegisterFrom(out, type);
4868   Register obj_reg = RegisterFrom(obj, type);
4869   if (kEmitCompilerReadBarrier) {
4870     if (kUseBakerReadBarrier) {
4871       // Load with fast path based Baker's read barrier.
4872       Register temp_reg = RegisterFrom(maybe_temp, type);
4873       // /* HeapReference<Object> */ out = *(obj + offset)
4874       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
4875                                                       out,
4876                                                       obj_reg,
4877                                                       offset,
4878                                                       temp_reg,
4879                                                       /* needs_null_check */ false,
4880                                                       /* use_load_acquire */ false);
4881     } else {
4882       // Load with slow path based read barrier.
4883       // /* HeapReference<Object> */ out = *(obj + offset)
4884       __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4885       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
4886     }
4887   } else {
4888     // Plain load with no read barrier.
4889     // /* HeapReference<Object> */ out = *(obj + offset)
4890     __ Ldr(out_reg, HeapOperand(obj_reg, offset));
4891     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
4892   }
4893 }
4894 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl::Register obj,uint32_t offset,vixl::Label * fixup_label)4895 void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction,
4896                                                             Location root,
4897                                                             vixl::Register obj,
4898                                                             uint32_t offset,
4899                                                             vixl::Label* fixup_label) {
4900   Register root_reg = RegisterFrom(root, Primitive::kPrimNot);
4901   if (kEmitCompilerReadBarrier) {
4902     if (kUseBakerReadBarrier) {
4903       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
4904       // Baker's read barrier are used:
4905       //
4906       //   root = obj.field;
4907       //   if (Thread::Current()->GetIsGcMarking()) {
4908       //     root = ReadBarrier::Mark(root)
4909       //   }
4910 
4911       // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4912       if (fixup_label == nullptr) {
4913         __ Ldr(root_reg, MemOperand(obj, offset));
4914       } else {
4915         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4916         __ Bind(fixup_label);
4917         __ ldr(root_reg, MemOperand(obj, offset));
4918       }
4919       static_assert(
4920           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
4921           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
4922           "have different sizes.");
4923       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
4924                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
4925                     "have different sizes.");
4926 
4927       // Slow path used to mark the GC root `root`.
4928       SlowPathCodeARM64* slow_path =
4929           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root);
4930       codegen_->AddSlowPath(slow_path);
4931 
4932       MacroAssembler* masm = GetVIXLAssembler();
4933       UseScratchRegisterScope temps(masm);
4934       Register temp = temps.AcquireW();
4935       // temp = Thread::Current()->GetIsGcMarking()
4936       __ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value()));
4937       __ Cbnz(temp, slow_path->GetEntryLabel());
4938       __ Bind(slow_path->GetExitLabel());
4939     } else {
4940       // GC root loaded through a slow path for read barriers other
4941       // than Baker's.
4942       // /* GcRoot<mirror::Object>* */ root = obj + offset
4943       if (fixup_label == nullptr) {
4944         __ Add(root_reg.X(), obj.X(), offset);
4945       } else {
4946         vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4947         __ Bind(fixup_label);
4948         __ add(root_reg.X(), obj.X(), offset);
4949       }
4950       // /* mirror::Object* */ root = root->Read()
4951       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
4952     }
4953   } else {
4954     // Plain GC root load with no read barrier.
4955     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
4956     if (fixup_label == nullptr) {
4957       __ Ldr(root_reg, MemOperand(obj, offset));
4958     } else {
4959       vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
4960       __ Bind(fixup_label);
4961       __ ldr(root_reg, MemOperand(obj, offset));
4962     }
4963     // Note that GC roots are not affected by heap poisoning, thus we
4964     // do not have to unpoison `root_reg` here.
4965   }
4966 }
4967 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::Register obj,uint32_t offset,Register temp,bool needs_null_check,bool use_load_acquire)4968 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
4969                                                                Location ref,
4970                                                                vixl::Register obj,
4971                                                                uint32_t offset,
4972                                                                Register temp,
4973                                                                bool needs_null_check,
4974                                                                bool use_load_acquire) {
4975   DCHECK(kEmitCompilerReadBarrier);
4976   DCHECK(kUseBakerReadBarrier);
4977 
4978   // /* HeapReference<Object> */ ref = *(obj + offset)
4979   Location no_index = Location::NoLocation();
4980   GenerateReferenceLoadWithBakerReadBarrier(
4981       instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire);
4982 }
4983 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::Register obj,uint32_t data_offset,Location index,Register temp,bool needs_null_check)4984 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
4985                                                                Location ref,
4986                                                                vixl::Register obj,
4987                                                                uint32_t data_offset,
4988                                                                Location index,
4989                                                                Register temp,
4990                                                                bool needs_null_check) {
4991   DCHECK(kEmitCompilerReadBarrier);
4992   DCHECK(kUseBakerReadBarrier);
4993 
4994   // Array cells are never volatile variables, therefore array loads
4995   // never use Load-Acquire instructions on ARM64.
4996   const bool use_load_acquire = false;
4997 
4998   // /* HeapReference<Object> */ ref =
4999   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
5000   GenerateReferenceLoadWithBakerReadBarrier(
5001       instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire);
5002 }
5003 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::Register obj,uint32_t offset,Location index,Register temp,bool needs_null_check,bool use_load_acquire)5004 void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
5005                                                                    Location ref,
5006                                                                    vixl::Register obj,
5007                                                                    uint32_t offset,
5008                                                                    Location index,
5009                                                                    Register temp,
5010                                                                    bool needs_null_check,
5011                                                                    bool use_load_acquire) {
5012   DCHECK(kEmitCompilerReadBarrier);
5013   DCHECK(kUseBakerReadBarrier);
5014   // If `index` is a valid location, then we are emitting an array
5015   // load, so we shouldn't be using a Load Acquire instruction.
5016   // In other words: `index.IsValid()` => `!use_load_acquire`.
5017   DCHECK(!index.IsValid() || !use_load_acquire);
5018 
5019   MacroAssembler* masm = GetVIXLAssembler();
5020   UseScratchRegisterScope temps(masm);
5021 
5022   // In slow path based read barriers, the read barrier call is
5023   // inserted after the original load. However, in fast path based
5024   // Baker's read barriers, we need to perform the load of
5025   // mirror::Object::monitor_ *before* the original reference load.
5026   // This load-load ordering is required by the read barrier.
5027   // The fast path/slow path (for Baker's algorithm) should look like:
5028   //
5029   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
5030   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
5031   //   HeapReference<Object> ref = *src;  // Original reference load.
5032   //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
5033   //   if (is_gray) {
5034   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
5035   //   }
5036   //
5037   // Note: the original implementation in ReadBarrier::Barrier is
5038   // slightly more complex as it performs additional checks that we do
5039   // not do here for performance reasons.
5040 
5041   Primitive::Type type = Primitive::kPrimNot;
5042   Register ref_reg = RegisterFrom(ref, type);
5043   DCHECK(obj.IsW());
5044   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
5045 
5046   // /* int32_t */ monitor = obj->monitor_
5047   __ Ldr(temp, HeapOperand(obj, monitor_offset));
5048   if (needs_null_check) {
5049     MaybeRecordImplicitNullCheck(instruction);
5050   }
5051   // /* LockWord */ lock_word = LockWord(monitor)
5052   static_assert(sizeof(LockWord) == sizeof(int32_t),
5053                 "art::LockWord and int32_t have different sizes.");
5054   // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
5055   __ Lsr(temp, temp, LockWord::kReadBarrierStateShift);
5056   __ And(temp, temp, Operand(LockWord::kReadBarrierStateMask));
5057   static_assert(
5058       LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
5059       "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
5060 
5061   // Introduce a dependency on the high bits of rb_state, which shall
5062   // be all zeroes, to prevent load-load reordering, and without using
5063   // a memory barrier (which would be more expensive).
5064   // temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0
5065   Register temp2 = temps.AcquireW();
5066   __ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask));
5067   // obj is unchanged by this operation, but its value now depends on
5068   // temp2, which depends on temp.
5069   __ Add(obj, obj, Operand(temp2));
5070   temps.Release(temp2);
5071 
5072   // The actual reference load.
5073   if (index.IsValid()) {
5074     static_assert(
5075         sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5076         "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5077     // /* HeapReference<Object> */ ref =
5078     //     *(obj + offset + index * sizeof(HeapReference<Object>))
5079     const size_t shift_amount = Primitive::ComponentSizeShift(type);
5080     if (index.IsConstant()) {
5081       uint32_t computed_offset = offset + (Int64ConstantFrom(index) << shift_amount);
5082       Load(type, ref_reg, HeapOperand(obj, computed_offset));
5083     } else {
5084       temp2 = temps.AcquireW();
5085       __ Add(temp2, obj, offset);
5086       Load(type, ref_reg, HeapOperand(temp2, XRegisterFrom(index), LSL, shift_amount));
5087       temps.Release(temp2);
5088     }
5089   } else {
5090     // /* HeapReference<Object> */ ref = *(obj + offset)
5091     MemOperand field = HeapOperand(obj, offset);
5092     if (use_load_acquire) {
5093       LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
5094     } else {
5095       Load(type, ref_reg, field);
5096     }
5097   }
5098 
5099   // Object* ref = ref_addr->AsMirrorPtr()
5100   GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
5101 
5102   // Slow path used to mark the object `ref` when it is gray.
5103   SlowPathCodeARM64* slow_path =
5104       new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref);
5105   AddSlowPath(slow_path);
5106 
5107   // if (rb_state == ReadBarrier::gray_ptr_)
5108   //   ref = ReadBarrier::Mark(ref);
5109   __ Cmp(temp, ReadBarrier::gray_ptr_);
5110   __ B(eq, slow_path->GetEntryLabel());
5111   __ Bind(slow_path->GetExitLabel());
5112 }
5113 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)5114 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
5115                                                  Location out,
5116                                                  Location ref,
5117                                                  Location obj,
5118                                                  uint32_t offset,
5119                                                  Location index) {
5120   DCHECK(kEmitCompilerReadBarrier);
5121 
5122   // Insert a slow path based read barrier *after* the reference load.
5123   //
5124   // If heap poisoning is enabled, the unpoisoning of the loaded
5125   // reference will be carried out by the runtime within the slow
5126   // path.
5127   //
5128   // Note that `ref` currently does not get unpoisoned (when heap
5129   // poisoning is enabled), which is alright as the `ref` argument is
5130   // not used by the artReadBarrierSlow entry point.
5131   //
5132   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
5133   SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
5134       ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
5135   AddSlowPath(slow_path);
5136 
5137   __ B(slow_path->GetEntryLabel());
5138   __ Bind(slow_path->GetExitLabel());
5139 }
5140 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)5141 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
5142                                                       Location out,
5143                                                       Location ref,
5144                                                       Location obj,
5145                                                       uint32_t offset,
5146                                                       Location index) {
5147   if (kEmitCompilerReadBarrier) {
5148     // Baker's read barriers shall be handled by the fast path
5149     // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
5150     DCHECK(!kUseBakerReadBarrier);
5151     // If heap poisoning is enabled, unpoisoning will be taken care of
5152     // by the runtime within the slow path.
5153     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
5154   } else if (kPoisonHeapReferences) {
5155     GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
5156   }
5157 }
5158 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)5159 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
5160                                                         Location out,
5161                                                         Location root) {
5162   DCHECK(kEmitCompilerReadBarrier);
5163 
5164   // Insert a slow path based read barrier *after* the GC root load.
5165   //
5166   // Note that GC roots are not affected by heap poisoning, so we do
5167   // not need to do anything special for this here.
5168   SlowPathCodeARM64* slow_path =
5169       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
5170   AddSlowPath(slow_path);
5171 
5172   __ B(slow_path->GetEntryLabel());
5173   __ Bind(slow_path->GetExitLabel());
5174 }
5175 
VisitClassTableGet(HClassTableGet * instruction)5176 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
5177   LocationSummary* locations =
5178       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5179   locations->SetInAt(0, Location::RequiresRegister());
5180   locations->SetOut(Location::RequiresRegister());
5181 }
5182 
VisitClassTableGet(HClassTableGet * instruction)5183 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
5184   LocationSummary* locations = instruction->GetLocations();
5185   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
5186     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
5187         instruction->GetIndex(), kArm64PointerSize).SizeValue();
5188     __ Ldr(XRegisterFrom(locations->Out()),
5189            MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
5190   } else {
5191     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
5192         instruction->GetIndex() % ImTable::kSize, kArm64PointerSize));
5193     __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
5194         mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
5195     __ Ldr(XRegisterFrom(locations->Out()),
5196            MemOperand(XRegisterFrom(locations->Out()), method_offset));
5197   }
5198 }
5199 
5200 
5201 
5202 #undef __
5203 #undef QUICK_ENTRY_POINT
5204 
5205 }  // namespace arm64
5206 }  // namespace art
5207