• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "test_precomp.hpp"
44 
45 namespace
46 {
47     // http://www.christian-seiler.de/projekte/fpmath/
48     class FpuControl
49     {
50     public:
51         FpuControl();
52         ~FpuControl();
53 
54     private:
55     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
56         fpu_control_t fpu_oldcw, fpu_cw;
57     #elif defined(_WIN32) && !defined(_WIN64)
58         unsigned int fpu_oldcw, fpu_cw;
59     #endif
60     };
61 
FpuControl()62     FpuControl::FpuControl()
63     {
64     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
65         _FPU_GETCW(fpu_oldcw);
66         fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE;
67         _FPU_SETCW(fpu_cw);
68     #elif defined(_WIN32) && !defined(_WIN64)
69         _controlfp_s(&fpu_cw, 0, 0);
70         fpu_oldcw = fpu_cw;
71         _controlfp_s(&fpu_cw, _PC_24, _MCW_PC);
72     #endif
73     }
74 
~FpuControl()75     FpuControl::~FpuControl()
76     {
77     #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) && !defined(__aarch64__)
78         _FPU_SETCW(fpu_oldcw);
79     #elif defined(_WIN32) && !defined(_WIN64)
80         _controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC);
81     #endif
82     }
83 }
84 
TestHaarCascadeApplication(std::string testName_,NCVTestSourceProvider<Ncv8u> & src_,std::string cascadeName_,Ncv32u width_,Ncv32u height_)85 TestHaarCascadeApplication::TestHaarCascadeApplication(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_,
86                                                        std::string cascadeName_, Ncv32u width_, Ncv32u height_)
87     :
88     NCVTestProvider(testName_),
89     src(src_),
90     cascadeName(cascadeName_),
91     width(width_),
92     height(height_)
93 {
94 }
95 
96 
toString(std::ofstream & strOut)97 bool TestHaarCascadeApplication::toString(std::ofstream &strOut)
98 {
99     strOut << "cascadeName=" << cascadeName << std::endl;
100     strOut << "width=" << width << std::endl;
101     strOut << "height=" << height << std::endl;
102     return true;
103 }
104 
105 
init()106 bool TestHaarCascadeApplication::init()
107 {
108     return true;
109 }
110 
process()111 bool TestHaarCascadeApplication::process()
112 {
113     NCVStatus ncvStat;
114     bool rcode = false;
115 
116     Ncv32u numStages, numNodes, numFeatures;
117 
118     ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
119     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
120 
121     NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
122     ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
123     NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
124     ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
125     NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
126     ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
127 
128     NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages);
129     ncvAssertReturn(d_HaarStages.isMemAllocated(), false);
130     NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes);
131     ncvAssertReturn(d_HaarNodes.isMemAllocated(), false);
132     NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures);
133     ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false);
134 
135     HaarClassifierCascadeDescriptor haar;
136     haar.ClassifierSize.width = haar.ClassifierSize.height = 1;
137     haar.bNeedsTiltedII = false;
138     haar.NumClassifierRootNodes = numNodes;
139     haar.NumClassifierTotalNodes = numNodes;
140     haar.NumFeatures = numFeatures;
141     haar.NumStages = numStages;
142 
143     NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
144     NCV_SKIP_COND_BEGIN
145 
146     ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
147     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
148 
149     ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false);
150     ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false);
151     ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false);
152     ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
153 
154     NCV_SKIP_COND_END
155 
156     NcvSize32s srcRoi, srcIIRoi, searchRoi;
157     srcRoi.width = this->width;
158     srcRoi.height = this->height;
159     srcIIRoi.width = srcRoi.width + 1;
160     srcIIRoi.height = srcRoi.height + 1;
161     searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width;
162     searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height;
163     if (searchRoi.width <= 0 || searchRoi.height <= 0)
164     {
165         return false;
166     }
167     NcvSize32u searchRoiU(searchRoi.width, searchRoi.height);
168 
169     NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height);
170     ncvAssertReturn(d_img.isMemAllocated(), false);
171     NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height);
172     ncvAssertReturn(h_img.isMemAllocated(), false);
173 
174     Ncv32u integralWidth = this->width + 1;
175     Ncv32u integralHeight = this->height + 1;
176 
177     NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
178     ncvAssertReturn(d_integralImage.isMemAllocated(), false);
179     NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight);
180     ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false);
181     NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
182     ncvAssertReturn(h_integralImage.isMemAllocated(), false);
183     NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight);
184     ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false);
185 
186     NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height);
187     ncvAssertReturn(d_rectStdDev.isMemAllocated(), false);
188     NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height);
189     ncvAssertReturn(d_pixelMask.isMemAllocated(), false);
190     NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height);
191     ncvAssertReturn(h_rectStdDev.isMemAllocated(), false);
192     NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height);
193     ncvAssertReturn(h_pixelMask.isMemAllocated(), false);
194 
195     NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height);
196     ncvAssertReturn(d_hypotheses.isMemAllocated(), false);
197     NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height);
198     ncvAssertReturn(h_hypotheses.isMemAllocated(), false);
199 
200     NCVStatus nppStat;
201     Ncv32u szTmpBufIntegral, szTmpBufSqIntegral;
202     nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp);
203     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
204     nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp);
205     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
206     NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral));
207     ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false);
208 
209     Ncv32u detectionsOnThisScale_d = 0;
210     Ncv32u detectionsOnThisScale_h = 0;
211 
212     NCV_SKIP_COND_BEGIN
213 
214     ncvAssertReturn(this->src.fill(h_img), false);
215     ncvStat = h_img.copySolid(d_img, 0);
216     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
217     ncvAssertCUDAReturn(cudaStreamSynchronize(0), false);
218 
219     nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(),
220                                        d_integralImage.ptr(), d_integralImage.pitch(),
221                                        NcvSize32u(d_img.width(), d_img.height()),
222                                        d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp);
223     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
224 
225     nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(),
226                                           d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
227                                           NcvSize32u(d_img.width(), d_img.height()),
228                                           d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp);
229     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
230 
231     const NcvRect32u rect(
232         HAAR_STDDEV_BORDER,
233         HAAR_STDDEV_BORDER,
234         haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER,
235         haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER);
236     nppStat = nppiStRectStdDev_32f_C1R(
237         d_integralImage.ptr(), d_integralImage.pitch(),
238         d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(),
239         d_rectStdDev.ptr(), d_rectStdDev.pitch(),
240         NcvSize32u(searchRoi.width, searchRoi.height), rect,
241         1.0f, true);
242     ncvAssertReturn(nppStat == NPPST_SUCCESS, false);
243 
244     ncvStat = d_integralImage.copySolid(h_integralImage, 0);
245     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
246     ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0);
247     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
248 
249     for (Ncv32u i=0; i<searchRoiU.height; i++)
250     {
251         for (Ncv32u j=0; j<h_pixelMask.stride(); j++)
252         {
253             if (j<searchRoiU.width)
254             {
255                 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j;
256             }
257             else
258             {
259                 h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U;
260             }
261         }
262     }
263     ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false);
264 
265     {
266         // calculations here
267         FpuControl fpu;
268         (void) fpu;
269 
270         ncvStat = ncvApplyHaarClassifierCascade_host(
271             h_integralImage, h_rectStdDev, h_pixelMask,
272             detectionsOnThisScale_h,
273             haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false,
274             searchRoiU, 1, 1.0f);
275         ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
276     }
277 
278     NCV_SKIP_COND_END
279 
280     int devId;
281     ncvAssertCUDAReturn(cudaGetDevice(&devId), false);
282     cudaDeviceProp _devProp;
283     ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false);
284 
285     ncvStat = ncvApplyHaarClassifierCascade_device(
286         d_integralImage, d_rectStdDev, d_pixelMask,
287         detectionsOnThisScale_d,
288         haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false,
289         searchRoiU, 1, 1.0f,
290         *this->allocatorGPU.get(), *this->allocatorCPU.get(),
291         _devProp, 0);
292     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
293 
294     NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height);
295     ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false);
296 
297     //bit-to-bit check
298     bool bLoopVirgin = true;
299 
300     NCV_SKIP_COND_BEGIN
301 
302     ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0);
303     ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
304 
305     if (detectionsOnThisScale_d != detectionsOnThisScale_h)
306     {
307         bLoopVirgin = false;
308     }
309     else
310     {
311         std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d);
312         for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++)
313         {
314             if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i])
315             {
316                 bLoopVirgin = false;
317             }
318         }
319     }
320 
321     NCV_SKIP_COND_END
322 
323     if (bLoopVirgin)
324     {
325         rcode = true;
326     }
327 
328     return rcode;
329 }
330 
331 
deinit()332 bool TestHaarCascadeApplication::deinit()
333 {
334     return true;
335 }
336