1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the LoopInfo class that is used to identify natural loops 11 // and determine the loop depth of various nodes of the CFG. A natural loop 12 // has exactly one entry-point, which is called the header. Note that natural 13 // loops may actually be several loops that share the same header node. 14 // 15 // This analysis calculates the nesting structure of loops in a function. For 16 // each natural loop identified, this analysis identifies natural loops 17 // contained entirely within the loop and the basic blocks the make up the loop. 18 // 19 // It can calculate on the fly various bits of information, for example: 20 // 21 // * whether there is a preheader for the loop 22 // * the number of back edges to the header 23 // * whether or not a particular block branches out of the loop 24 // * the successor blocks of the loop 25 // * the loop depth 26 // * etc... 27 // 28 //===----------------------------------------------------------------------===// 29 30 #ifndef LLVM_ANALYSIS_LOOPINFO_H 31 #define LLVM_ANALYSIS_LOOPINFO_H 32 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/GraphTraits.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/Pass.h" 42 #include <algorithm> 43 44 namespace llvm { 45 46 // FIXME: Replace this brittle forward declaration with the include of the new 47 // PassManager.h when doing so doesn't break the PassManagerBuilder. 48 template <typename IRUnitT> class AnalysisManager; 49 class PreservedAnalyses; 50 51 class DominatorTree; 52 class LoopInfo; 53 class Loop; 54 class MDNode; 55 class PHINode; 56 class raw_ostream; 57 template<class N> class DominatorTreeBase; 58 template<class N, class M> class LoopInfoBase; 59 template<class N, class M> class LoopBase; 60 61 //===----------------------------------------------------------------------===// 62 /// LoopBase class - Instances of this class are used to represent loops that 63 /// are detected in the flow graph 64 /// 65 template<class BlockT, class LoopT> 66 class LoopBase { 67 LoopT *ParentLoop; 68 // SubLoops - Loops contained entirely within this one. 69 std::vector<LoopT *> SubLoops; 70 71 // Blocks - The list of blocks in this loop. First entry is the header node. 72 std::vector<BlockT*> Blocks; 73 74 SmallPtrSet<const BlockT*, 8> DenseBlockSet; 75 76 /// Indicator that this loops has been "unlooped", so there's no loop here 77 /// anymore. 78 bool IsUnloop = false; 79 80 LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 81 const LoopBase<BlockT, LoopT>& 82 operator=(const LoopBase<BlockT, LoopT> &) = delete; 83 public: 84 /// Loop ctor - This creates an empty loop. LoopBase()85 LoopBase() : ParentLoop(nullptr) {} ~LoopBase()86 ~LoopBase() { 87 for (size_t i = 0, e = SubLoops.size(); i != e; ++i) 88 delete SubLoops[i]; 89 } 90 91 /// getLoopDepth - Return the nesting level of this loop. An outer-most 92 /// loop has depth 1, for consistency with loop depth values used for basic 93 /// blocks, where depth 0 is used for blocks not inside any loops. getLoopDepth()94 unsigned getLoopDepth() const { 95 unsigned D = 1; 96 for (const LoopT *CurLoop = ParentLoop; CurLoop; 97 CurLoop = CurLoop->ParentLoop) 98 ++D; 99 return D; 100 } getHeader()101 BlockT *getHeader() const { return Blocks.front(); } getParentLoop()102 LoopT *getParentLoop() const { return ParentLoop; } 103 104 /// setParentLoop is a raw interface for bypassing addChildLoop. setParentLoop(LoopT * L)105 void setParentLoop(LoopT *L) { ParentLoop = L; } 106 107 /// contains - Return true if the specified loop is contained within in 108 /// this loop. 109 /// contains(const LoopT * L)110 bool contains(const LoopT *L) const { 111 if (L == this) return true; 112 if (!L) return false; 113 return contains(L->getParentLoop()); 114 } 115 116 /// contains - Return true if the specified basic block is in this loop. 117 /// contains(const BlockT * BB)118 bool contains(const BlockT *BB) const { 119 return DenseBlockSet.count(BB); 120 } 121 122 /// contains - Return true if the specified instruction is in this loop. 123 /// 124 template<class InstT> contains(const InstT * Inst)125 bool contains(const InstT *Inst) const { 126 return contains(Inst->getParent()); 127 } 128 129 /// iterator/begin/end - Return the loops contained entirely within this loop. 130 /// getSubLoops()131 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; } getSubLoopsVector()132 std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; } 133 typedef typename std::vector<LoopT *>::const_iterator iterator; 134 typedef typename std::vector<LoopT *>::const_reverse_iterator 135 reverse_iterator; begin()136 iterator begin() const { return SubLoops.begin(); } end()137 iterator end() const { return SubLoops.end(); } rbegin()138 reverse_iterator rbegin() const { return SubLoops.rbegin(); } rend()139 reverse_iterator rend() const { return SubLoops.rend(); } empty()140 bool empty() const { return SubLoops.empty(); } 141 142 /// getBlocks - Get a list of the basic blocks which make up this loop. 143 /// getBlocks()144 const std::vector<BlockT*> &getBlocks() const { return Blocks; } 145 typedef typename std::vector<BlockT*>::const_iterator block_iterator; block_begin()146 block_iterator block_begin() const { return Blocks.begin(); } block_end()147 block_iterator block_end() const { return Blocks.end(); } blocks()148 inline iterator_range<block_iterator> blocks() const { 149 return make_range(block_begin(), block_end()); 150 } 151 152 /// getNumBlocks - Get the number of blocks in this loop in constant time. getNumBlocks()153 unsigned getNumBlocks() const { 154 return Blocks.size(); 155 } 156 157 /// Mark this loop as having been unlooped - the last backedge was removed and 158 /// we no longer have a loop. markUnlooped()159 void markUnlooped() { IsUnloop = true; } 160 161 /// Return true if this no longer represents a loop. isUnloop()162 bool isUnloop() const { return IsUnloop; } 163 164 /// isLoopExiting - True if terminator in the block can branch to another 165 /// block that is outside of the current loop. 166 /// isLoopExiting(const BlockT * BB)167 bool isLoopExiting(const BlockT *BB) const { 168 typedef GraphTraits<const BlockT*> BlockTraits; 169 for (typename BlockTraits::ChildIteratorType SI = 170 BlockTraits::child_begin(BB), 171 SE = BlockTraits::child_end(BB); SI != SE; ++SI) { 172 if (!contains(*SI)) 173 return true; 174 } 175 return false; 176 } 177 178 /// getNumBackEdges - Calculate the number of back edges to the loop header 179 /// getNumBackEdges()180 unsigned getNumBackEdges() const { 181 unsigned NumBackEdges = 0; 182 BlockT *H = getHeader(); 183 184 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 185 for (typename InvBlockTraits::ChildIteratorType I = 186 InvBlockTraits::child_begin(H), 187 E = InvBlockTraits::child_end(H); I != E; ++I) 188 if (contains(*I)) 189 ++NumBackEdges; 190 191 return NumBackEdges; 192 } 193 194 //===--------------------------------------------------------------------===// 195 // APIs for simple analysis of the loop. 196 // 197 // Note that all of these methods can fail on general loops (ie, there may not 198 // be a preheader, etc). For best success, the loop simplification and 199 // induction variable canonicalization pass should be used to normalize loops 200 // for easy analysis. These methods assume canonical loops. 201 202 /// getExitingBlocks - Return all blocks inside the loop that have successors 203 /// outside of the loop. These are the blocks _inside of the current loop_ 204 /// which branch out. The returned list is always unique. 205 /// 206 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 207 208 /// getExitingBlock - If getExitingBlocks would return exactly one block, 209 /// return that block. Otherwise return null. 210 BlockT *getExitingBlock() const; 211 212 /// getExitBlocks - Return all of the successor blocks of this loop. These 213 /// are the blocks _outside of the current loop_ which are branched to. 214 /// 215 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const; 216 217 /// getExitBlock - If getExitBlocks would return exactly one block, 218 /// return that block. Otherwise return null. 219 BlockT *getExitBlock() const; 220 221 /// Edge type. 222 typedef std::pair<const BlockT*, const BlockT*> Edge; 223 224 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). 225 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 226 227 /// getLoopPreheader - If there is a preheader for this loop, return it. A 228 /// loop has a preheader if there is only one edge to the header of the loop 229 /// from outside of the loop. If this is the case, the block branching to the 230 /// header of the loop is the preheader node. 231 /// 232 /// This method returns null if there is no preheader for the loop. 233 /// 234 BlockT *getLoopPreheader() const; 235 236 /// getLoopPredecessor - If the given loop's header has exactly one unique 237 /// predecessor outside the loop, return it. Otherwise return null. 238 /// This is less strict that the loop "preheader" concept, which requires 239 /// the predecessor to have exactly one successor. 240 /// 241 BlockT *getLoopPredecessor() const; 242 243 /// getLoopLatch - If there is a single latch block for this loop, return it. 244 /// A latch block is a block that contains a branch back to the header. 245 BlockT *getLoopLatch() const; 246 247 /// getLoopLatches - Return all loop latch blocks of this loop. A latch block 248 /// is a block that contains a branch back to the header. getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)249 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 250 BlockT *H = getHeader(); 251 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; 252 for (typename InvBlockTraits::ChildIteratorType I = 253 InvBlockTraits::child_begin(H), 254 E = InvBlockTraits::child_end(H); I != E; ++I) 255 if (contains(*I)) 256 LoopLatches.push_back(*I); 257 } 258 259 //===--------------------------------------------------------------------===// 260 // APIs for updating loop information after changing the CFG 261 // 262 263 /// addBasicBlockToLoop - This method is used by other analyses to update loop 264 /// information. NewBB is set to be a new member of the current loop. 265 /// Because of this, it is added as a member of all parent loops, and is added 266 /// to the specified LoopInfo object as being in the current basic block. It 267 /// is not valid to replace the loop header with this method. 268 /// 269 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 270 271 /// replaceChildLoopWith - This is used when splitting loops up. It replaces 272 /// the OldChild entry in our children list with NewChild, and updates the 273 /// parent pointer of OldChild to be null and the NewChild to be this loop. 274 /// This updates the loop depth of the new child. 275 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 276 277 /// addChildLoop - Add the specified loop to be a child of this loop. This 278 /// updates the loop depth of the new child. 279 /// addChildLoop(LoopT * NewChild)280 void addChildLoop(LoopT *NewChild) { 281 assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 282 NewChild->ParentLoop = static_cast<LoopT *>(this); 283 SubLoops.push_back(NewChild); 284 } 285 286 /// removeChildLoop - This removes the specified child from being a subloop of 287 /// this loop. The loop is not deleted, as it will presumably be inserted 288 /// into another loop. removeChildLoop(iterator I)289 LoopT *removeChildLoop(iterator I) { 290 assert(I != SubLoops.end() && "Cannot remove end iterator!"); 291 LoopT *Child = *I; 292 assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 293 SubLoops.erase(SubLoops.begin()+(I-begin())); 294 Child->ParentLoop = nullptr; 295 return Child; 296 } 297 298 /// addBlockEntry - This adds a basic block directly to the basic block list. 299 /// This should only be used by transformations that create new loops. Other 300 /// transformations should use addBasicBlockToLoop. addBlockEntry(BlockT * BB)301 void addBlockEntry(BlockT *BB) { 302 Blocks.push_back(BB); 303 DenseBlockSet.insert(BB); 304 } 305 306 /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop reverseBlock(unsigned from)307 void reverseBlock(unsigned from) { 308 std::reverse(Blocks.begin() + from, Blocks.end()); 309 } 310 311 /// reserveBlocks- interface to do reserve() for Blocks reserveBlocks(unsigned size)312 void reserveBlocks(unsigned size) { 313 Blocks.reserve(size); 314 } 315 316 /// moveToHeader - This method is used to move BB (which must be part of this 317 /// loop) to be the loop header of the loop (the block that dominates all 318 /// others). moveToHeader(BlockT * BB)319 void moveToHeader(BlockT *BB) { 320 if (Blocks[0] == BB) return; 321 for (unsigned i = 0; ; ++i) { 322 assert(i != Blocks.size() && "Loop does not contain BB!"); 323 if (Blocks[i] == BB) { 324 Blocks[i] = Blocks[0]; 325 Blocks[0] = BB; 326 return; 327 } 328 } 329 } 330 331 /// removeBlockFromLoop - This removes the specified basic block from the 332 /// current loop, updating the Blocks as appropriate. This does not update 333 /// the mapping in the LoopInfo class. removeBlockFromLoop(BlockT * BB)334 void removeBlockFromLoop(BlockT *BB) { 335 auto I = std::find(Blocks.begin(), Blocks.end(), BB); 336 assert(I != Blocks.end() && "N is not in this list!"); 337 Blocks.erase(I); 338 339 DenseBlockSet.erase(BB); 340 } 341 342 /// verifyLoop - Verify loop structure 343 void verifyLoop() const; 344 345 /// verifyLoop - Verify loop structure of this loop and all nested loops. 346 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const; 347 348 void print(raw_ostream &OS, unsigned Depth = 0) const; 349 350 protected: 351 friend class LoopInfoBase<BlockT, LoopT>; LoopBase(BlockT * BB)352 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 353 Blocks.push_back(BB); 354 DenseBlockSet.insert(BB); 355 } 356 }; 357 358 template<class BlockT, class LoopT> 359 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 360 Loop.print(OS); 361 return OS; 362 } 363 364 // Implementation in LoopInfoImpl.h 365 extern template class LoopBase<BasicBlock, Loop>; 366 367 class Loop : public LoopBase<BasicBlock, Loop> { 368 public: Loop()369 Loop() {} 370 371 /// isLoopInvariant - Return true if the specified value is loop invariant 372 /// 373 bool isLoopInvariant(const Value *V) const; 374 375 /// hasLoopInvariantOperands - Return true if all the operands of the 376 /// specified instruction are loop invariant. 377 bool hasLoopInvariantOperands(const Instruction *I) const; 378 379 /// makeLoopInvariant - If the given value is an instruction inside of the 380 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 381 /// Return true if the value after any hoisting is loop invariant. This 382 /// function can be used as a slightly more aggressive replacement for 383 /// isLoopInvariant. 384 /// 385 /// If InsertPt is specified, it is the point to hoist instructions to. 386 /// If null, the terminator of the loop preheader is used. 387 /// 388 bool makeLoopInvariant(Value *V, bool &Changed, 389 Instruction *InsertPt = nullptr) const; 390 391 /// makeLoopInvariant - If the given instruction is inside of the 392 /// loop and it can be hoisted, do so to make it trivially loop-invariant. 393 /// Return true if the instruction after any hoisting is loop invariant. This 394 /// function can be used as a slightly more aggressive replacement for 395 /// isLoopInvariant. 396 /// 397 /// If InsertPt is specified, it is the point to hoist instructions to. 398 /// If null, the terminator of the loop preheader is used. 399 /// 400 bool makeLoopInvariant(Instruction *I, bool &Changed, 401 Instruction *InsertPt = nullptr) const; 402 403 /// getCanonicalInductionVariable - Check to see if the loop has a canonical 404 /// induction variable: an integer recurrence that starts at 0 and increments 405 /// by one each time through the loop. If so, return the phi node that 406 /// corresponds to it. 407 /// 408 /// The IndVarSimplify pass transforms loops to have a canonical induction 409 /// variable. 410 /// 411 PHINode *getCanonicalInductionVariable() const; 412 413 /// isLCSSAForm - Return true if the Loop is in LCSSA form 414 bool isLCSSAForm(DominatorTree &DT) const; 415 416 /// \brief Return true if this Loop and all inner subloops are in LCSSA form. 417 bool isRecursivelyLCSSAForm(DominatorTree &DT) const; 418 419 /// isLoopSimplifyForm - Return true if the Loop is in the form that 420 /// the LoopSimplify form transforms loops to, which is sometimes called 421 /// normal form. 422 bool isLoopSimplifyForm() const; 423 424 /// isSafeToClone - Return true if the loop body is safe to clone in practice. 425 bool isSafeToClone() const; 426 427 /// Returns true if the loop is annotated parallel. 428 /// 429 /// A parallel loop can be assumed to not contain any dependencies between 430 /// iterations by the compiler. That is, any loop-carried dependency checking 431 /// can be skipped completely when parallelizing the loop on the target 432 /// machine. Thus, if the parallel loop information originates from the 433 /// programmer, e.g. via the OpenMP parallel for pragma, it is the 434 /// programmer's responsibility to ensure there are no loop-carried 435 /// dependencies. The final execution order of the instructions across 436 /// iterations is not guaranteed, thus, the end result might or might not 437 /// implement actual concurrent execution of instructions across multiple 438 /// iterations. 439 bool isAnnotatedParallel() const; 440 441 /// Return the llvm.loop loop id metadata node for this loop if it is present. 442 /// 443 /// If this loop contains the same llvm.loop metadata on each branch to the 444 /// header then the node is returned. If any latch instruction does not 445 /// contain llvm.loop or or if multiple latches contain different nodes then 446 /// 0 is returned. 447 MDNode *getLoopID() const; 448 /// Set the llvm.loop loop id metadata for this loop. 449 /// 450 /// The LoopID metadata node will be added to each terminator instruction in 451 /// the loop that branches to the loop header. 452 /// 453 /// The LoopID metadata node should have one or more operands and the first 454 /// operand should should be the node itself. 455 void setLoopID(MDNode *LoopID) const; 456 457 /// hasDedicatedExits - Return true if no exit block for the loop 458 /// has a predecessor that is outside the loop. 459 bool hasDedicatedExits() const; 460 461 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. 462 /// These are the blocks _outside of the current loop_ which are branched to. 463 /// This assumes that loop exits are in canonical form. 464 /// 465 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const; 466 467 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one 468 /// block, return that block. Otherwise return null. 469 BasicBlock *getUniqueExitBlock() const; 470 471 void dump() const; 472 473 /// \brief Return the debug location of the start of this loop. 474 /// This looks for a BB terminating instruction with a known debug 475 /// location by looking at the preheader and header blocks. If it 476 /// cannot find a terminating instruction with location information, 477 /// it returns an unknown location. getStartLoc()478 DebugLoc getStartLoc() const { 479 BasicBlock *HeadBB; 480 481 // Try the pre-header first. 482 if ((HeadBB = getLoopPreheader()) != nullptr) 483 if (DebugLoc DL = HeadBB->getTerminator()->getDebugLoc()) 484 return DL; 485 486 // If we have no pre-header or there are no instructions with debug 487 // info in it, try the header. 488 HeadBB = getHeader(); 489 if (HeadBB) 490 return HeadBB->getTerminator()->getDebugLoc(); 491 492 return DebugLoc(); 493 } 494 495 private: 496 friend class LoopInfoBase<BasicBlock, Loop>; Loop(BasicBlock * BB)497 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 498 }; 499 500 //===----------------------------------------------------------------------===// 501 /// LoopInfo - This class builds and contains all of the top level loop 502 /// structures in the specified function. 503 /// 504 505 template<class BlockT, class LoopT> 506 class LoopInfoBase { 507 // BBMap - Mapping of basic blocks to the inner most loop they occur in 508 DenseMap<const BlockT *, LoopT *> BBMap; 509 std::vector<LoopT *> TopLevelLoops; 510 friend class LoopBase<BlockT, LoopT>; 511 friend class LoopInfo; 512 513 void operator=(const LoopInfoBase &) = delete; 514 LoopInfoBase(const LoopInfoBase &) = delete; 515 public: LoopInfoBase()516 LoopInfoBase() { } ~LoopInfoBase()517 ~LoopInfoBase() { releaseMemory(); } 518 LoopInfoBase(LoopInfoBase && Arg)519 LoopInfoBase(LoopInfoBase &&Arg) 520 : BBMap(std::move(Arg.BBMap)), 521 TopLevelLoops(std::move(Arg.TopLevelLoops)) { 522 // We have to clear the arguments top level loops as we've taken ownership. 523 Arg.TopLevelLoops.clear(); 524 } 525 LoopInfoBase &operator=(LoopInfoBase &&RHS) { 526 BBMap = std::move(RHS.BBMap); 527 528 for (auto *L : TopLevelLoops) 529 delete L; 530 TopLevelLoops = std::move(RHS.TopLevelLoops); 531 RHS.TopLevelLoops.clear(); 532 return *this; 533 } 534 releaseMemory()535 void releaseMemory() { 536 BBMap.clear(); 537 538 for (auto *L : TopLevelLoops) 539 delete L; 540 TopLevelLoops.clear(); 541 } 542 543 /// iterator/begin/end - The interface to the top-level loops in the current 544 /// function. 545 /// 546 typedef typename std::vector<LoopT *>::const_iterator iterator; 547 typedef typename std::vector<LoopT *>::const_reverse_iterator 548 reverse_iterator; begin()549 iterator begin() const { return TopLevelLoops.begin(); } end()550 iterator end() const { return TopLevelLoops.end(); } rbegin()551 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } rend()552 reverse_iterator rend() const { return TopLevelLoops.rend(); } empty()553 bool empty() const { return TopLevelLoops.empty(); } 554 555 /// getLoopFor - Return the inner most loop that BB lives in. If a basic 556 /// block is in no loop (for example the entry node), null is returned. 557 /// getLoopFor(const BlockT * BB)558 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 559 560 /// operator[] - same as getLoopFor... 561 /// 562 const LoopT *operator[](const BlockT *BB) const { 563 return getLoopFor(BB); 564 } 565 566 /// getLoopDepth - Return the loop nesting level of the specified block. A 567 /// depth of 0 means the block is not inside any loop. 568 /// getLoopDepth(const BlockT * BB)569 unsigned getLoopDepth(const BlockT *BB) const { 570 const LoopT *L = getLoopFor(BB); 571 return L ? L->getLoopDepth() : 0; 572 } 573 574 // isLoopHeader - True if the block is a loop header node isLoopHeader(const BlockT * BB)575 bool isLoopHeader(const BlockT *BB) const { 576 const LoopT *L = getLoopFor(BB); 577 return L && L->getHeader() == BB; 578 } 579 580 /// removeLoop - This removes the specified top-level loop from this loop info 581 /// object. The loop is not deleted, as it will presumably be inserted into 582 /// another loop. removeLoop(iterator I)583 LoopT *removeLoop(iterator I) { 584 assert(I != end() && "Cannot remove end iterator!"); 585 LoopT *L = *I; 586 assert(!L->getParentLoop() && "Not a top-level loop!"); 587 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); 588 return L; 589 } 590 591 /// changeLoopFor - Change the top-level loop that contains BB to the 592 /// specified loop. This should be used by transformations that restructure 593 /// the loop hierarchy tree. changeLoopFor(BlockT * BB,LoopT * L)594 void changeLoopFor(BlockT *BB, LoopT *L) { 595 if (!L) { 596 BBMap.erase(BB); 597 return; 598 } 599 BBMap[BB] = L; 600 } 601 602 /// changeTopLevelLoop - Replace the specified loop in the top-level loops 603 /// list with the indicated loop. changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)604 void changeTopLevelLoop(LoopT *OldLoop, 605 LoopT *NewLoop) { 606 auto I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); 607 assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 608 *I = NewLoop; 609 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 610 "Loops already embedded into a subloop!"); 611 } 612 613 /// addTopLevelLoop - This adds the specified loop to the collection of 614 /// top-level loops. addTopLevelLoop(LoopT * New)615 void addTopLevelLoop(LoopT *New) { 616 assert(!New->getParentLoop() && "Loop already in subloop!"); 617 TopLevelLoops.push_back(New); 618 } 619 620 /// removeBlock - This method completely removes BB from all data structures, 621 /// including all of the Loop objects it is nested in and our mapping from 622 /// BasicBlocks to loops. removeBlock(BlockT * BB)623 void removeBlock(BlockT *BB) { 624 auto I = BBMap.find(BB); 625 if (I != BBMap.end()) { 626 for (LoopT *L = I->second; L; L = L->getParentLoop()) 627 L->removeBlockFromLoop(BB); 628 629 BBMap.erase(I); 630 } 631 } 632 633 // Internals 634 isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)635 static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 636 const LoopT *ParentLoop) { 637 if (!SubLoop) return true; 638 if (SubLoop == ParentLoop) return false; 639 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 640 } 641 642 /// Create the loop forest using a stable algorithm. 643 void analyze(const DominatorTreeBase<BlockT> &DomTree); 644 645 // Debugging 646 void print(raw_ostream &OS) const; 647 648 void verify() const; 649 }; 650 651 // Implementation in LoopInfoImpl.h 652 extern template class LoopInfoBase<BasicBlock, Loop>; 653 654 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 655 typedef LoopInfoBase<BasicBlock, Loop> BaseT; 656 657 friend class LoopBase<BasicBlock, Loop>; 658 659 void operator=(const LoopInfo &) = delete; 660 LoopInfo(const LoopInfo &) = delete; 661 public: LoopInfo()662 LoopInfo() {} 663 explicit LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree); 664 LoopInfo(LoopInfo && Arg)665 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 666 LoopInfo &operator=(LoopInfo &&RHS) { 667 BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 668 return *this; 669 } 670 671 // Most of the public interface is provided via LoopInfoBase. 672 673 /// updateUnloop - Update LoopInfo after removing the last backedge from a 674 /// loop--now the "unloop". This updates the loop forest and parent loops for 675 /// each block so that Unloop is no longer referenced, but does not actually 676 /// delete the Unloop object. Generally, the loop pass manager should manage 677 /// deleting the Unloop. 678 void updateUnloop(Loop *Unloop); 679 680 /// replacementPreservesLCSSAForm - Returns true if replacing From with To 681 /// everywhere is guaranteed to preserve LCSSA form. replacementPreservesLCSSAForm(Instruction * From,Value * To)682 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 683 // Preserving LCSSA form is only problematic if the replacing value is an 684 // instruction. 685 Instruction *I = dyn_cast<Instruction>(To); 686 if (!I) return true; 687 // If both instructions are defined in the same basic block then replacement 688 // cannot break LCSSA form. 689 if (I->getParent() == From->getParent()) 690 return true; 691 // If the instruction is not defined in a loop then it can safely replace 692 // anything. 693 Loop *ToLoop = getLoopFor(I->getParent()); 694 if (!ToLoop) return true; 695 // If the replacing instruction is defined in the same loop as the original 696 // instruction, or in a loop that contains it as an inner loop, then using 697 // it as a replacement will not break LCSSA form. 698 return ToLoop->contains(getLoopFor(From->getParent())); 699 } 700 701 /// \brief Checks if moving a specific instruction can break LCSSA in any 702 /// loop. 703 /// 704 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 705 /// assuming that the function containing \p Inst and \p NewLoc is currently 706 /// in LCSSA form. movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)707 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 708 assert(Inst->getFunction() == NewLoc->getFunction() && 709 "Can't reason about IPO!"); 710 711 auto *OldBB = Inst->getParent(); 712 auto *NewBB = NewLoc->getParent(); 713 714 // Movement within the same loop does not break LCSSA (the equality check is 715 // to avoid doing a hashtable lookup in case of intra-block movement). 716 if (OldBB == NewBB) 717 return true; 718 719 auto *OldLoop = getLoopFor(OldBB); 720 auto *NewLoop = getLoopFor(NewBB); 721 722 if (OldLoop == NewLoop) 723 return true; 724 725 // Check if Outer contains Inner; with the null loop counting as the 726 // "outermost" loop. 727 auto Contains = [](const Loop *Outer, const Loop *Inner) { 728 return !Outer || Outer->contains(Inner); 729 }; 730 731 // To check that the movement of Inst to before NewLoc does not break LCSSA, 732 // we need to check two sets of uses for possible LCSSA violations at 733 // NewLoc: the users of NewInst, and the operands of NewInst. 734 735 // If we know we're hoisting Inst out of an inner loop to an outer loop, 736 // then the uses *of* Inst don't need to be checked. 737 738 if (!Contains(NewLoop, OldLoop)) { 739 for (Use &U : Inst->uses()) { 740 auto *UI = cast<Instruction>(U.getUser()); 741 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 742 : UI->getParent(); 743 if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 744 return false; 745 } 746 } 747 748 // If we know we're sinking Inst from an outer loop into an inner loop, then 749 // the *operands* of Inst don't need to be checked. 750 751 if (!Contains(OldLoop, NewLoop)) { 752 // See below on why we can't handle phi nodes here. 753 if (isa<PHINode>(Inst)) 754 return false; 755 756 for (Use &U : Inst->operands()) { 757 auto *DefI = dyn_cast<Instruction>(U.get()); 758 if (!DefI) 759 return false; 760 761 // This would need adjustment if we allow Inst to be a phi node -- the 762 // new use block won't simply be NewBB. 763 764 auto *DefBlock = DefI->getParent(); 765 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 766 return false; 767 } 768 } 769 770 return true; 771 } 772 }; 773 774 // Allow clients to walk the list of nested loops... 775 template <> struct GraphTraits<const Loop*> { 776 typedef const Loop NodeType; 777 typedef LoopInfo::iterator ChildIteratorType; 778 779 static NodeType *getEntryNode(const Loop *L) { return L; } 780 static inline ChildIteratorType child_begin(NodeType *N) { 781 return N->begin(); 782 } 783 static inline ChildIteratorType child_end(NodeType *N) { 784 return N->end(); 785 } 786 }; 787 788 template <> struct GraphTraits<Loop*> { 789 typedef Loop NodeType; 790 typedef LoopInfo::iterator ChildIteratorType; 791 792 static NodeType *getEntryNode(Loop *L) { return L; } 793 static inline ChildIteratorType child_begin(NodeType *N) { 794 return N->begin(); 795 } 796 static inline ChildIteratorType child_end(NodeType *N) { 797 return N->end(); 798 } 799 }; 800 801 /// \brief Analysis pass that exposes the \c LoopInfo for a function. 802 class LoopAnalysis { 803 static char PassID; 804 805 public: 806 typedef LoopInfo Result; 807 808 /// \brief Opaque, unique identifier for this analysis pass. 809 static void *ID() { return (void *)&PassID; } 810 811 /// \brief Provide a name for the analysis for debugging and logging. 812 static StringRef name() { return "LoopAnalysis"; } 813 814 LoopInfo run(Function &F, AnalysisManager<Function> *AM); 815 }; 816 817 /// \brief Printer pass for the \c LoopAnalysis results. 818 class LoopPrinterPass { 819 raw_ostream &OS; 820 821 public: 822 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 823 PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM); 824 825 static StringRef name() { return "LoopPrinterPass"; } 826 }; 827 828 /// \brief The legacy pass manager's analysis pass to compute loop information. 829 class LoopInfoWrapperPass : public FunctionPass { 830 LoopInfo LI; 831 832 public: 833 static char ID; // Pass identification, replacement for typeid 834 835 LoopInfoWrapperPass() : FunctionPass(ID) { 836 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 837 } 838 839 LoopInfo &getLoopInfo() { return LI; } 840 const LoopInfo &getLoopInfo() const { return LI; } 841 842 /// \brief Calculate the natural loop information for a given function. 843 bool runOnFunction(Function &F) override; 844 845 void verifyAnalysis() const override; 846 847 void releaseMemory() override { LI.releaseMemory(); } 848 849 void print(raw_ostream &O, const Module *M = nullptr) const override; 850 851 void getAnalysisUsage(AnalysisUsage &AU) const override; 852 }; 853 854 /// \brief Pass for printing a loop's contents as LLVM's text IR assembly. 855 class PrintLoopPass { 856 raw_ostream &OS; 857 std::string Banner; 858 859 public: 860 PrintLoopPass(); 861 PrintLoopPass(raw_ostream &OS, const std::string &Banner = ""); 862 863 PreservedAnalyses run(Loop &L); 864 static StringRef name() { return "PrintLoopPass"; } 865 }; 866 867 } // End llvm namespace 868 869 #endif 870