1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // CallSite Class
31 //===----------------------------------------------------------------------===//
32
getCallee() const33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
35 return isCall()
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43
44 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()45 TerminatorInst::~TerminatorInst() {
46 }
47
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51
52 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()53 UnaryInstruction::~UnaryInstruction() {
54 }
55
56 //===----------------------------------------------------------------------===//
57 // SelectInst Class
58 //===----------------------------------------------------------------------===//
59
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
65
66 if (Op1->getType()->isTokenTy())
67 return "select values cannot have token type";
68
69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
70 // Vector select.
71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
72 return "vector select condition element type must be i1";
73 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
74 if (!ET)
75 return "selected values for vector select must be vectors";
76 if (ET->getNumElements() != VT->getNumElements())
77 return "vector select requires selected vectors to have "
78 "the same vector length as select condition";
79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
80 return "select condition must be i1 or <n x i1>";
81 }
82 return nullptr;
83 }
84
85
86 //===----------------------------------------------------------------------===//
87 // PHINode Class
88 //===----------------------------------------------------------------------===//
89
anchor()90 void PHINode::anchor() {}
91
PHINode(const PHINode & PN)92 PHINode::PHINode(const PHINode &PN)
93 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
94 ReservedSpace(PN.getNumOperands()) {
95 allocHungoffUses(PN.getNumOperands());
96 std::copy(PN.op_begin(), PN.op_end(), op_begin());
97 std::copy(PN.block_begin(), PN.block_end(), block_begin());
98 SubclassOptionalData = PN.SubclassOptionalData;
99 }
100
101 // removeIncomingValue - Remove an incoming value. This is useful if a
102 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
104 Value *Removed = getIncomingValue(Idx);
105
106 // Move everything after this operand down.
107 //
108 // FIXME: we could just swap with the end of the list, then erase. However,
109 // clients might not expect this to happen. The code as it is thrashes the
110 // use/def lists, which is kinda lame.
111 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
112 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
113
114 // Nuke the last value.
115 Op<-1>().set(nullptr);
116 setNumHungOffUseOperands(getNumOperands() - 1);
117
118 // If the PHI node is dead, because it has zero entries, nuke it now.
119 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
120 // If anyone is using this PHI, make them use a dummy value instead...
121 replaceAllUsesWith(UndefValue::get(getType()));
122 eraseFromParent();
123 }
124 return Removed;
125 }
126
127 /// growOperands - grow operands - This grows the operand list in response
128 /// to a push_back style of operation. This grows the number of ops by 1.5
129 /// times.
130 ///
growOperands()131 void PHINode::growOperands() {
132 unsigned e = getNumOperands();
133 unsigned NumOps = e + e / 2;
134 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
135
136 ReservedSpace = NumOps;
137 growHungoffUses(ReservedSpace, /* IsPhi */ true);
138 }
139
140 /// hasConstantValue - If the specified PHI node always merges together the same
141 /// value, return the value, otherwise return null.
hasConstantValue() const142 Value *PHINode::hasConstantValue() const {
143 // Exploit the fact that phi nodes always have at least one entry.
144 Value *ConstantValue = getIncomingValue(0);
145 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
146 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
147 if (ConstantValue != this)
148 return nullptr; // Incoming values not all the same.
149 // The case where the first value is this PHI.
150 ConstantValue = getIncomingValue(i);
151 }
152 if (ConstantValue == this)
153 return UndefValue::get(getType());
154 return ConstantValue;
155 }
156
157 //===----------------------------------------------------------------------===//
158 // LandingPadInst Implementation
159 //===----------------------------------------------------------------------===//
160
LandingPadInst(Type * RetTy,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)161 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
162 const Twine &NameStr, Instruction *InsertBefore)
163 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
164 init(NumReservedValues, NameStr);
165 }
166
LandingPadInst(Type * RetTy,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)167 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
168 const Twine &NameStr, BasicBlock *InsertAtEnd)
169 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
170 init(NumReservedValues, NameStr);
171 }
172
LandingPadInst(const LandingPadInst & LP)173 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
174 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
175 LP.getNumOperands()),
176 ReservedSpace(LP.getNumOperands()) {
177 allocHungoffUses(LP.getNumOperands());
178 Use *OL = getOperandList();
179 const Use *InOL = LP.getOperandList();
180 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
181 OL[I] = InOL[I];
182
183 setCleanup(LP.isCleanup());
184 }
185
Create(Type * RetTy,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)186 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
187 const Twine &NameStr,
188 Instruction *InsertBefore) {
189 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
190 }
191
Create(Type * RetTy,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)192 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
193 const Twine &NameStr,
194 BasicBlock *InsertAtEnd) {
195 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
196 }
197
init(unsigned NumReservedValues,const Twine & NameStr)198 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
199 ReservedSpace = NumReservedValues;
200 setNumHungOffUseOperands(0);
201 allocHungoffUses(ReservedSpace);
202 setName(NameStr);
203 setCleanup(false);
204 }
205
206 /// growOperands - grow operands - This grows the operand list in response to a
207 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)208 void LandingPadInst::growOperands(unsigned Size) {
209 unsigned e = getNumOperands();
210 if (ReservedSpace >= e + Size) return;
211 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
212 growHungoffUses(ReservedSpace);
213 }
214
addClause(Constant * Val)215 void LandingPadInst::addClause(Constant *Val) {
216 unsigned OpNo = getNumOperands();
217 growOperands(1);
218 assert(OpNo < ReservedSpace && "Growing didn't work!");
219 setNumHungOffUseOperands(getNumOperands() + 1);
220 getOperandList()[OpNo] = Val;
221 }
222
223 //===----------------------------------------------------------------------===//
224 // CallInst Implementation
225 //===----------------------------------------------------------------------===//
226
~CallInst()227 CallInst::~CallInst() {
228 }
229
init(FunctionType * FTy,Value * Func,ArrayRef<Value * > Args,ArrayRef<OperandBundleDef> Bundles,const Twine & NameStr)230 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
231 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
232 this->FTy = FTy;
233 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
234 "NumOperands not set up?");
235 Op<-1>() = Func;
236
237 #ifndef NDEBUG
238 assert((Args.size() == FTy->getNumParams() ||
239 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
240 "Calling a function with bad signature!");
241
242 for (unsigned i = 0; i != Args.size(); ++i)
243 assert((i >= FTy->getNumParams() ||
244 FTy->getParamType(i) == Args[i]->getType()) &&
245 "Calling a function with a bad signature!");
246 #endif
247
248 std::copy(Args.begin(), Args.end(), op_begin());
249
250 auto It = populateBundleOperandInfos(Bundles, Args.size());
251 (void)It;
252 assert(It + 1 == op_end() && "Should add up!");
253
254 setName(NameStr);
255 }
256
init(Value * Func,const Twine & NameStr)257 void CallInst::init(Value *Func, const Twine &NameStr) {
258 FTy =
259 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
260 assert(getNumOperands() == 1 && "NumOperands not set up?");
261 Op<-1>() = Func;
262
263 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
264
265 setName(NameStr);
266 }
267
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)268 CallInst::CallInst(Value *Func, const Twine &Name,
269 Instruction *InsertBefore)
270 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
271 ->getElementType())->getReturnType(),
272 Instruction::Call,
273 OperandTraits<CallInst>::op_end(this) - 1,
274 1, InsertBefore) {
275 init(Func, Name);
276 }
277
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)278 CallInst::CallInst(Value *Func, const Twine &Name,
279 BasicBlock *InsertAtEnd)
280 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
281 ->getElementType())->getReturnType(),
282 Instruction::Call,
283 OperandTraits<CallInst>::op_end(this) - 1,
284 1, InsertAtEnd) {
285 init(Func, Name);
286 }
287
CallInst(const CallInst & CI)288 CallInst::CallInst(const CallInst &CI)
289 : Instruction(CI.getType(), Instruction::Call,
290 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
291 CI.getNumOperands()),
292 AttributeList(CI.AttributeList), FTy(CI.FTy) {
293 setTailCallKind(CI.getTailCallKind());
294 setCallingConv(CI.getCallingConv());
295
296 std::copy(CI.op_begin(), CI.op_end(), op_begin());
297 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
298 bundle_op_info_begin());
299 SubclassOptionalData = CI.SubclassOptionalData;
300 }
301
Create(CallInst * CI,ArrayRef<OperandBundleDef> OpB,Instruction * InsertPt)302 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
303 Instruction *InsertPt) {
304 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
305
306 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
307 InsertPt);
308 NewCI->setTailCallKind(CI->getTailCallKind());
309 NewCI->setCallingConv(CI->getCallingConv());
310 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
311 NewCI->setAttributes(CI->getAttributes());
312 return NewCI;
313 }
314
addAttribute(unsigned i,Attribute::AttrKind attr)315 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
316 AttributeSet PAL = getAttributes();
317 PAL = PAL.addAttribute(getContext(), i, attr);
318 setAttributes(PAL);
319 }
320
addAttribute(unsigned i,StringRef Kind,StringRef Value)321 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) {
322 AttributeSet PAL = getAttributes();
323 PAL = PAL.addAttribute(getContext(), i, Kind, Value);
324 setAttributes(PAL);
325 }
326
removeAttribute(unsigned i,Attribute attr)327 void CallInst::removeAttribute(unsigned i, Attribute attr) {
328 AttributeSet PAL = getAttributes();
329 AttrBuilder B(attr);
330 LLVMContext &Context = getContext();
331 PAL = PAL.removeAttributes(Context, i,
332 AttributeSet::get(Context, i, B));
333 setAttributes(PAL);
334 }
335
addDereferenceableAttr(unsigned i,uint64_t Bytes)336 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
337 AttributeSet PAL = getAttributes();
338 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
339 setAttributes(PAL);
340 }
341
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)342 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
343 AttributeSet PAL = getAttributes();
344 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
345 setAttributes(PAL);
346 }
347
paramHasAttr(unsigned i,Attribute::AttrKind A) const348 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
349 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
350
351 if (AttributeList.hasAttribute(i, A))
352 return true;
353 if (const Function *F = getCalledFunction())
354 return F->getAttributes().hasAttribute(i, A);
355 return false;
356 }
357
dataOperandHasImpliedAttr(unsigned i,Attribute::AttrKind A) const358 bool CallInst::dataOperandHasImpliedAttr(unsigned i,
359 Attribute::AttrKind A) const {
360
361 // There are getNumOperands() - 1 data operands. The last operand is the
362 // callee.
363 assert(i < getNumOperands() && "Data operand index out of bounds!");
364
365 // The attribute A can either be directly specified, if the operand in
366 // question is a call argument; or be indirectly implied by the kind of its
367 // containing operand bundle, if the operand is a bundle operand.
368
369 if (i < (getNumArgOperands() + 1))
370 return paramHasAttr(i, A);
371
372 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
373 "Must be either a call argument or an operand bundle!");
374 return bundleOperandHasAttr(i - 1, A);
375 }
376
377 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)378 static bool IsConstantOne(Value *val) {
379 assert(val && "IsConstantOne does not work with nullptr val");
380 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
381 return CVal && CVal->isOne();
382 }
383
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)384 static Instruction *createMalloc(Instruction *InsertBefore,
385 BasicBlock *InsertAtEnd, Type *IntPtrTy,
386 Type *AllocTy, Value *AllocSize,
387 Value *ArraySize, Function *MallocF,
388 const Twine &Name) {
389 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
390 "createMalloc needs either InsertBefore or InsertAtEnd");
391
392 // malloc(type) becomes:
393 // bitcast (i8* malloc(typeSize)) to type*
394 // malloc(type, arraySize) becomes:
395 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
396 if (!ArraySize)
397 ArraySize = ConstantInt::get(IntPtrTy, 1);
398 else if (ArraySize->getType() != IntPtrTy) {
399 if (InsertBefore)
400 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
401 "", InsertBefore);
402 else
403 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
404 "", InsertAtEnd);
405 }
406
407 if (!IsConstantOne(ArraySize)) {
408 if (IsConstantOne(AllocSize)) {
409 AllocSize = ArraySize; // Operand * 1 = Operand
410 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
411 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
412 false /*ZExt*/);
413 // Malloc arg is constant product of type size and array size
414 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
415 } else {
416 // Multiply type size by the array size...
417 if (InsertBefore)
418 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
419 "mallocsize", InsertBefore);
420 else
421 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
422 "mallocsize", InsertAtEnd);
423 }
424 }
425
426 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
427 // Create the call to Malloc.
428 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
429 Module* M = BB->getParent()->getParent();
430 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
431 Value *MallocFunc = MallocF;
432 if (!MallocFunc)
433 // prototype malloc as "void *malloc(size_t)"
434 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
435 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
436 CallInst *MCall = nullptr;
437 Instruction *Result = nullptr;
438 if (InsertBefore) {
439 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
440 Result = MCall;
441 if (Result->getType() != AllocPtrType)
442 // Create a cast instruction to convert to the right type...
443 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
444 } else {
445 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
446 Result = MCall;
447 if (Result->getType() != AllocPtrType) {
448 InsertAtEnd->getInstList().push_back(MCall);
449 // Create a cast instruction to convert to the right type...
450 Result = new BitCastInst(MCall, AllocPtrType, Name);
451 }
452 }
453 MCall->setTailCall();
454 if (Function *F = dyn_cast<Function>(MallocFunc)) {
455 MCall->setCallingConv(F->getCallingConv());
456 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
457 }
458 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
459
460 return Result;
461 }
462
463 /// CreateMalloc - Generate the IR for a call to malloc:
464 /// 1. Compute the malloc call's argument as the specified type's size,
465 /// possibly multiplied by the array size if the array size is not
466 /// constant 1.
467 /// 2. Call malloc with that argument.
468 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)469 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
470 Type *IntPtrTy, Type *AllocTy,
471 Value *AllocSize, Value *ArraySize,
472 Function * MallocF,
473 const Twine &Name) {
474 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
475 ArraySize, MallocF, Name);
476 }
477
478 /// CreateMalloc - Generate the IR for a call to malloc:
479 /// 1. Compute the malloc call's argument as the specified type's size,
480 /// possibly multiplied by the array size if the array size is not
481 /// constant 1.
482 /// 2. Call malloc with that argument.
483 /// 3. Bitcast the result of the malloc call to the specified type.
484 /// Note: This function does not add the bitcast to the basic block, that is the
485 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)486 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
487 Type *IntPtrTy, Type *AllocTy,
488 Value *AllocSize, Value *ArraySize,
489 Function *MallocF, const Twine &Name) {
490 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
491 ArraySize, MallocF, Name);
492 }
493
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)494 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
495 BasicBlock *InsertAtEnd) {
496 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
497 "createFree needs either InsertBefore or InsertAtEnd");
498 assert(Source->getType()->isPointerTy() &&
499 "Can not free something of nonpointer type!");
500
501 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
502 Module* M = BB->getParent()->getParent();
503
504 Type *VoidTy = Type::getVoidTy(M->getContext());
505 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
506 // prototype free as "void free(void*)"
507 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
508 CallInst* Result = nullptr;
509 Value *PtrCast = Source;
510 if (InsertBefore) {
511 if (Source->getType() != IntPtrTy)
512 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
513 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
514 } else {
515 if (Source->getType() != IntPtrTy)
516 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
517 Result = CallInst::Create(FreeFunc, PtrCast, "");
518 }
519 Result->setTailCall();
520 if (Function *F = dyn_cast<Function>(FreeFunc))
521 Result->setCallingConv(F->getCallingConv());
522
523 return Result;
524 }
525
526 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)527 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
528 return createFree(Source, InsertBefore, nullptr);
529 }
530
531 /// CreateFree - Generate the IR for a call to the builtin free function.
532 /// Note: This function does not add the call to the basic block, that is the
533 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)534 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
535 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
536 assert(FreeCall && "CreateFree did not create a CallInst");
537 return FreeCall;
538 }
539
540 //===----------------------------------------------------------------------===//
541 // InvokeInst Implementation
542 //===----------------------------------------------------------------------===//
543
init(FunctionType * FTy,Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,ArrayRef<OperandBundleDef> Bundles,const Twine & NameStr)544 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
545 BasicBlock *IfException, ArrayRef<Value *> Args,
546 ArrayRef<OperandBundleDef> Bundles,
547 const Twine &NameStr) {
548 this->FTy = FTy;
549
550 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
551 "NumOperands not set up?");
552 Op<-3>() = Fn;
553 Op<-2>() = IfNormal;
554 Op<-1>() = IfException;
555
556 #ifndef NDEBUG
557 assert(((Args.size() == FTy->getNumParams()) ||
558 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
559 "Invoking a function with bad signature");
560
561 for (unsigned i = 0, e = Args.size(); i != e; i++)
562 assert((i >= FTy->getNumParams() ||
563 FTy->getParamType(i) == Args[i]->getType()) &&
564 "Invoking a function with a bad signature!");
565 #endif
566
567 std::copy(Args.begin(), Args.end(), op_begin());
568
569 auto It = populateBundleOperandInfos(Bundles, Args.size());
570 (void)It;
571 assert(It + 3 == op_end() && "Should add up!");
572
573 setName(NameStr);
574 }
575
InvokeInst(const InvokeInst & II)576 InvokeInst::InvokeInst(const InvokeInst &II)
577 : TerminatorInst(II.getType(), Instruction::Invoke,
578 OperandTraits<InvokeInst>::op_end(this) -
579 II.getNumOperands(),
580 II.getNumOperands()),
581 AttributeList(II.AttributeList), FTy(II.FTy) {
582 setCallingConv(II.getCallingConv());
583 std::copy(II.op_begin(), II.op_end(), op_begin());
584 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
585 bundle_op_info_begin());
586 SubclassOptionalData = II.SubclassOptionalData;
587 }
588
Create(InvokeInst * II,ArrayRef<OperandBundleDef> OpB,Instruction * InsertPt)589 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
590 Instruction *InsertPt) {
591 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
592
593 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
594 II->getUnwindDest(), Args, OpB,
595 II->getName(), InsertPt);
596 NewII->setCallingConv(II->getCallingConv());
597 NewII->SubclassOptionalData = II->SubclassOptionalData;
598 NewII->setAttributes(II->getAttributes());
599 return NewII;
600 }
601
getSuccessorV(unsigned idx) const602 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
603 return getSuccessor(idx);
604 }
getNumSuccessorsV() const605 unsigned InvokeInst::getNumSuccessorsV() const {
606 return getNumSuccessors();
607 }
setSuccessorV(unsigned idx,BasicBlock * B)608 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
609 return setSuccessor(idx, B);
610 }
611
hasFnAttrImpl(Attribute::AttrKind A) const612 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
613 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
614 return true;
615
616 // Operand bundles override attributes on the called function, but don't
617 // override attributes directly present on the invoke instruction.
618 if (isFnAttrDisallowedByOpBundle(A))
619 return false;
620
621 if (const Function *F = getCalledFunction())
622 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
623 return false;
624 }
625
paramHasAttr(unsigned i,Attribute::AttrKind A) const626 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
627 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
628
629 if (AttributeList.hasAttribute(i, A))
630 return true;
631 if (const Function *F = getCalledFunction())
632 return F->getAttributes().hasAttribute(i, A);
633 return false;
634 }
635
dataOperandHasImpliedAttr(unsigned i,Attribute::AttrKind A) const636 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i,
637 Attribute::AttrKind A) const {
638 // There are getNumOperands() - 3 data operands. The last three operands are
639 // the callee and the two successor basic blocks.
640 assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
641
642 // The attribute A can either be directly specified, if the operand in
643 // question is an invoke argument; or be indirectly implied by the kind of its
644 // containing operand bundle, if the operand is a bundle operand.
645
646 if (i < (getNumArgOperands() + 1))
647 return paramHasAttr(i, A);
648
649 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
650 "Must be either an invoke argument or an operand bundle!");
651 return bundleOperandHasAttr(i - 1, A);
652 }
653
addAttribute(unsigned i,Attribute::AttrKind attr)654 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
655 AttributeSet PAL = getAttributes();
656 PAL = PAL.addAttribute(getContext(), i, attr);
657 setAttributes(PAL);
658 }
659
removeAttribute(unsigned i,Attribute attr)660 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
661 AttributeSet PAL = getAttributes();
662 AttrBuilder B(attr);
663 PAL = PAL.removeAttributes(getContext(), i,
664 AttributeSet::get(getContext(), i, B));
665 setAttributes(PAL);
666 }
667
addDereferenceableAttr(unsigned i,uint64_t Bytes)668 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
669 AttributeSet PAL = getAttributes();
670 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
671 setAttributes(PAL);
672 }
673
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)674 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
675 AttributeSet PAL = getAttributes();
676 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
677 setAttributes(PAL);
678 }
679
getLandingPadInst() const680 LandingPadInst *InvokeInst::getLandingPadInst() const {
681 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
682 }
683
684 //===----------------------------------------------------------------------===//
685 // ReturnInst Implementation
686 //===----------------------------------------------------------------------===//
687
ReturnInst(const ReturnInst & RI)688 ReturnInst::ReturnInst(const ReturnInst &RI)
689 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
690 OperandTraits<ReturnInst>::op_end(this) -
691 RI.getNumOperands(),
692 RI.getNumOperands()) {
693 if (RI.getNumOperands())
694 Op<0>() = RI.Op<0>();
695 SubclassOptionalData = RI.SubclassOptionalData;
696 }
697
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)698 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
699 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
700 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
701 InsertBefore) {
702 if (retVal)
703 Op<0>() = retVal;
704 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)705 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
706 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
707 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
708 InsertAtEnd) {
709 if (retVal)
710 Op<0>() = retVal;
711 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)712 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
713 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
714 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
715 }
716
getNumSuccessorsV() const717 unsigned ReturnInst::getNumSuccessorsV() const {
718 return getNumSuccessors();
719 }
720
721 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
722 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)723 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
724 llvm_unreachable("ReturnInst has no successors!");
725 }
726
getSuccessorV(unsigned idx) const727 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
728 llvm_unreachable("ReturnInst has no successors!");
729 }
730
~ReturnInst()731 ReturnInst::~ReturnInst() {
732 }
733
734 //===----------------------------------------------------------------------===//
735 // ResumeInst Implementation
736 //===----------------------------------------------------------------------===//
737
ResumeInst(const ResumeInst & RI)738 ResumeInst::ResumeInst(const ResumeInst &RI)
739 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
740 OperandTraits<ResumeInst>::op_begin(this), 1) {
741 Op<0>() = RI.Op<0>();
742 }
743
ResumeInst(Value * Exn,Instruction * InsertBefore)744 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
745 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
746 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
747 Op<0>() = Exn;
748 }
749
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)750 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
751 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
752 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
753 Op<0>() = Exn;
754 }
755
getNumSuccessorsV() const756 unsigned ResumeInst::getNumSuccessorsV() const {
757 return getNumSuccessors();
758 }
759
setSuccessorV(unsigned idx,BasicBlock * NewSucc)760 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
761 llvm_unreachable("ResumeInst has no successors!");
762 }
763
getSuccessorV(unsigned idx) const764 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
765 llvm_unreachable("ResumeInst has no successors!");
766 }
767
768 //===----------------------------------------------------------------------===//
769 // CleanupReturnInst Implementation
770 //===----------------------------------------------------------------------===//
771
CleanupReturnInst(const CleanupReturnInst & CRI)772 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
773 : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
774 OperandTraits<CleanupReturnInst>::op_end(this) -
775 CRI.getNumOperands(),
776 CRI.getNumOperands()) {
777 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
778 Op<0>() = CRI.Op<0>();
779 if (CRI.hasUnwindDest())
780 Op<1>() = CRI.Op<1>();
781 }
782
init(Value * CleanupPad,BasicBlock * UnwindBB)783 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
784 if (UnwindBB)
785 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
786
787 Op<0>() = CleanupPad;
788 if (UnwindBB)
789 Op<1>() = UnwindBB;
790 }
791
CleanupReturnInst(Value * CleanupPad,BasicBlock * UnwindBB,unsigned Values,Instruction * InsertBefore)792 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
793 unsigned Values, Instruction *InsertBefore)
794 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
795 Instruction::CleanupRet,
796 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
797 Values, InsertBefore) {
798 init(CleanupPad, UnwindBB);
799 }
800
CleanupReturnInst(Value * CleanupPad,BasicBlock * UnwindBB,unsigned Values,BasicBlock * InsertAtEnd)801 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
802 unsigned Values, BasicBlock *InsertAtEnd)
803 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
804 Instruction::CleanupRet,
805 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
806 Values, InsertAtEnd) {
807 init(CleanupPad, UnwindBB);
808 }
809
getSuccessorV(unsigned Idx) const810 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const {
811 assert(Idx == 0);
812 return getUnwindDest();
813 }
getNumSuccessorsV() const814 unsigned CleanupReturnInst::getNumSuccessorsV() const {
815 return getNumSuccessors();
816 }
setSuccessorV(unsigned Idx,BasicBlock * B)817 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
818 assert(Idx == 0);
819 setUnwindDest(B);
820 }
821
822 //===----------------------------------------------------------------------===//
823 // CatchReturnInst Implementation
824 //===----------------------------------------------------------------------===//
init(Value * CatchPad,BasicBlock * BB)825 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
826 Op<0>() = CatchPad;
827 Op<1>() = BB;
828 }
829
CatchReturnInst(const CatchReturnInst & CRI)830 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
831 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
832 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
833 Op<0>() = CRI.Op<0>();
834 Op<1>() = CRI.Op<1>();
835 }
836
CatchReturnInst(Value * CatchPad,BasicBlock * BB,Instruction * InsertBefore)837 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
838 Instruction *InsertBefore)
839 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
840 OperandTraits<CatchReturnInst>::op_begin(this), 2,
841 InsertBefore) {
842 init(CatchPad, BB);
843 }
844
CatchReturnInst(Value * CatchPad,BasicBlock * BB,BasicBlock * InsertAtEnd)845 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
846 BasicBlock *InsertAtEnd)
847 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
848 OperandTraits<CatchReturnInst>::op_begin(this), 2,
849 InsertAtEnd) {
850 init(CatchPad, BB);
851 }
852
getSuccessorV(unsigned Idx) const853 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const {
854 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
855 return getSuccessor();
856 }
getNumSuccessorsV() const857 unsigned CatchReturnInst::getNumSuccessorsV() const {
858 return getNumSuccessors();
859 }
setSuccessorV(unsigned Idx,BasicBlock * B)860 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
861 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
862 setSuccessor(B);
863 }
864
865 //===----------------------------------------------------------------------===//
866 // CatchSwitchInst Implementation
867 //===----------------------------------------------------------------------===//
868
CatchSwitchInst(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)869 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
870 unsigned NumReservedValues,
871 const Twine &NameStr,
872 Instruction *InsertBefore)
873 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
874 InsertBefore) {
875 if (UnwindDest)
876 ++NumReservedValues;
877 init(ParentPad, UnwindDest, NumReservedValues + 1);
878 setName(NameStr);
879 }
880
CatchSwitchInst(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)881 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
882 unsigned NumReservedValues,
883 const Twine &NameStr, BasicBlock *InsertAtEnd)
884 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
885 InsertAtEnd) {
886 if (UnwindDest)
887 ++NumReservedValues;
888 init(ParentPad, UnwindDest, NumReservedValues + 1);
889 setName(NameStr);
890 }
891
CatchSwitchInst(const CatchSwitchInst & CSI)892 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
893 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
894 CSI.getNumOperands()) {
895 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
896 setNumHungOffUseOperands(ReservedSpace);
897 Use *OL = getOperandList();
898 const Use *InOL = CSI.getOperandList();
899 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
900 OL[I] = InOL[I];
901 }
902
init(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues)903 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
904 unsigned NumReservedValues) {
905 assert(ParentPad && NumReservedValues);
906
907 ReservedSpace = NumReservedValues;
908 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
909 allocHungoffUses(ReservedSpace);
910
911 Op<0>() = ParentPad;
912 if (UnwindDest) {
913 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
914 setUnwindDest(UnwindDest);
915 }
916 }
917
918 /// growOperands - grow operands - This grows the operand list in response to a
919 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)920 void CatchSwitchInst::growOperands(unsigned Size) {
921 unsigned NumOperands = getNumOperands();
922 assert(NumOperands >= 1);
923 if (ReservedSpace >= NumOperands + Size)
924 return;
925 ReservedSpace = (NumOperands + Size / 2) * 2;
926 growHungoffUses(ReservedSpace);
927 }
928
addHandler(BasicBlock * Handler)929 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
930 unsigned OpNo = getNumOperands();
931 growOperands(1);
932 assert(OpNo < ReservedSpace && "Growing didn't work!");
933 setNumHungOffUseOperands(getNumOperands() + 1);
934 getOperandList()[OpNo] = Handler;
935 }
936
getSuccessorV(unsigned idx) const937 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const {
938 return getSuccessor(idx);
939 }
getNumSuccessorsV() const940 unsigned CatchSwitchInst::getNumSuccessorsV() const {
941 return getNumSuccessors();
942 }
setSuccessorV(unsigned idx,BasicBlock * B)943 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
944 setSuccessor(idx, B);
945 }
946
947 //===----------------------------------------------------------------------===//
948 // FuncletPadInst Implementation
949 //===----------------------------------------------------------------------===//
init(Value * ParentPad,ArrayRef<Value * > Args,const Twine & NameStr)950 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
951 const Twine &NameStr) {
952 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
953 std::copy(Args.begin(), Args.end(), op_begin());
954 setParentPad(ParentPad);
955 setName(NameStr);
956 }
957
FuncletPadInst(const FuncletPadInst & FPI)958 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
959 : Instruction(FPI.getType(), FPI.getOpcode(),
960 OperandTraits<FuncletPadInst>::op_end(this) -
961 FPI.getNumOperands(),
962 FPI.getNumOperands()) {
963 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
964 setParentPad(FPI.getParentPad());
965 }
966
FuncletPadInst(Instruction::FuncletPadOps Op,Value * ParentPad,ArrayRef<Value * > Args,unsigned Values,const Twine & NameStr,Instruction * InsertBefore)967 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
968 ArrayRef<Value *> Args, unsigned Values,
969 const Twine &NameStr, Instruction *InsertBefore)
970 : Instruction(ParentPad->getType(), Op,
971 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
972 InsertBefore) {
973 init(ParentPad, Args, NameStr);
974 }
975
FuncletPadInst(Instruction::FuncletPadOps Op,Value * ParentPad,ArrayRef<Value * > Args,unsigned Values,const Twine & NameStr,BasicBlock * InsertAtEnd)976 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
977 ArrayRef<Value *> Args, unsigned Values,
978 const Twine &NameStr, BasicBlock *InsertAtEnd)
979 : Instruction(ParentPad->getType(), Op,
980 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
981 InsertAtEnd) {
982 init(ParentPad, Args, NameStr);
983 }
984
985 //===----------------------------------------------------------------------===//
986 // UnreachableInst Implementation
987 //===----------------------------------------------------------------------===//
988
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)989 UnreachableInst::UnreachableInst(LLVMContext &Context,
990 Instruction *InsertBefore)
991 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
992 nullptr, 0, InsertBefore) {
993 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)994 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
995 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
996 nullptr, 0, InsertAtEnd) {
997 }
998
getNumSuccessorsV() const999 unsigned UnreachableInst::getNumSuccessorsV() const {
1000 return getNumSuccessors();
1001 }
1002
setSuccessorV(unsigned idx,BasicBlock * NewSucc)1003 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
1004 llvm_unreachable("UnreachableInst has no successors!");
1005 }
1006
getSuccessorV(unsigned idx) const1007 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
1008 llvm_unreachable("UnreachableInst has no successors!");
1009 }
1010
1011 //===----------------------------------------------------------------------===//
1012 // BranchInst Implementation
1013 //===----------------------------------------------------------------------===//
1014
AssertOK()1015 void BranchInst::AssertOK() {
1016 if (isConditional())
1017 assert(getCondition()->getType()->isIntegerTy(1) &&
1018 "May only branch on boolean predicates!");
1019 }
1020
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)1021 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1022 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1023 OperandTraits<BranchInst>::op_end(this) - 1,
1024 1, InsertBefore) {
1025 assert(IfTrue && "Branch destination may not be null!");
1026 Op<-1>() = IfTrue;
1027 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)1028 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1029 Instruction *InsertBefore)
1030 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1031 OperandTraits<BranchInst>::op_end(this) - 3,
1032 3, InsertBefore) {
1033 Op<-1>() = IfTrue;
1034 Op<-2>() = IfFalse;
1035 Op<-3>() = Cond;
1036 #ifndef NDEBUG
1037 AssertOK();
1038 #endif
1039 }
1040
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)1041 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1042 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1043 OperandTraits<BranchInst>::op_end(this) - 1,
1044 1, InsertAtEnd) {
1045 assert(IfTrue && "Branch destination may not be null!");
1046 Op<-1>() = IfTrue;
1047 }
1048
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)1049 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1050 BasicBlock *InsertAtEnd)
1051 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1052 OperandTraits<BranchInst>::op_end(this) - 3,
1053 3, InsertAtEnd) {
1054 Op<-1>() = IfTrue;
1055 Op<-2>() = IfFalse;
1056 Op<-3>() = Cond;
1057 #ifndef NDEBUG
1058 AssertOK();
1059 #endif
1060 }
1061
1062
BranchInst(const BranchInst & BI)1063 BranchInst::BranchInst(const BranchInst &BI) :
1064 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1065 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1066 BI.getNumOperands()) {
1067 Op<-1>() = BI.Op<-1>();
1068 if (BI.getNumOperands() != 1) {
1069 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1070 Op<-3>() = BI.Op<-3>();
1071 Op<-2>() = BI.Op<-2>();
1072 }
1073 SubclassOptionalData = BI.SubclassOptionalData;
1074 }
1075
swapSuccessors()1076 void BranchInst::swapSuccessors() {
1077 assert(isConditional() &&
1078 "Cannot swap successors of an unconditional branch");
1079 Op<-1>().swap(Op<-2>());
1080
1081 // Update profile metadata if present and it matches our structural
1082 // expectations.
1083 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
1084 if (!ProfileData || ProfileData->getNumOperands() != 3)
1085 return;
1086
1087 // The first operand is the name. Fetch them backwards and build a new one.
1088 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
1089 ProfileData->getOperand(1)};
1090 setMetadata(LLVMContext::MD_prof,
1091 MDNode::get(ProfileData->getContext(), Ops));
1092 }
1093
getSuccessorV(unsigned idx) const1094 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
1095 return getSuccessor(idx);
1096 }
getNumSuccessorsV() const1097 unsigned BranchInst::getNumSuccessorsV() const {
1098 return getNumSuccessors();
1099 }
setSuccessorV(unsigned idx,BasicBlock * B)1100 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1101 setSuccessor(idx, B);
1102 }
1103
1104
1105 //===----------------------------------------------------------------------===//
1106 // AllocaInst Implementation
1107 //===----------------------------------------------------------------------===//
1108
getAISize(LLVMContext & Context,Value * Amt)1109 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1110 if (!Amt)
1111 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1112 else {
1113 assert(!isa<BasicBlock>(Amt) &&
1114 "Passed basic block into allocation size parameter! Use other ctor");
1115 assert(Amt->getType()->isIntegerTy() &&
1116 "Allocation array size is not an integer!");
1117 }
1118 return Amt;
1119 }
1120
AllocaInst(Type * Ty,const Twine & Name,Instruction * InsertBefore)1121 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
1122 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1123
AllocaInst(Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1124 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
1125 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1126
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)1127 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1128 Instruction *InsertBefore)
1129 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1130
AllocaInst(Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)1131 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1132 BasicBlock *InsertAtEnd)
1133 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1134
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)1135 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1136 const Twine &Name, Instruction *InsertBefore)
1137 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1138 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1139 AllocatedType(Ty) {
1140 setAlignment(Align);
1141 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1142 setName(Name);
1143 }
1144
AllocaInst(Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)1145 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1146 const Twine &Name, BasicBlock *InsertAtEnd)
1147 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1148 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1149 AllocatedType(Ty) {
1150 setAlignment(Align);
1151 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1152 setName(Name);
1153 }
1154
1155 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()1156 AllocaInst::~AllocaInst() {
1157 }
1158
setAlignment(unsigned Align)1159 void AllocaInst::setAlignment(unsigned Align) {
1160 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1161 assert(Align <= MaximumAlignment &&
1162 "Alignment is greater than MaximumAlignment!");
1163 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1164 (Log2_32(Align) + 1));
1165 assert(getAlignment() == Align && "Alignment representation error!");
1166 }
1167
isArrayAllocation() const1168 bool AllocaInst::isArrayAllocation() const {
1169 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1170 return !CI->isOne();
1171 return true;
1172 }
1173
1174 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1175 /// function and is a constant size. If so, the code generator will fold it
1176 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const1177 bool AllocaInst::isStaticAlloca() const {
1178 // Must be constant size.
1179 if (!isa<ConstantInt>(getArraySize())) return false;
1180
1181 // Must be in the entry block.
1182 const BasicBlock *Parent = getParent();
1183 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1184 }
1185
1186 //===----------------------------------------------------------------------===//
1187 // LoadInst Implementation
1188 //===----------------------------------------------------------------------===//
1189
AssertOK()1190 void LoadInst::AssertOK() {
1191 assert(getOperand(0)->getType()->isPointerTy() &&
1192 "Ptr must have pointer type.");
1193 assert(!(isAtomic() && getAlignment() == 0) &&
1194 "Alignment required for atomic load");
1195 }
1196
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)1197 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1198 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1199
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)1200 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1201 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1202
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)1203 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1204 Instruction *InsertBef)
1205 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1206
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)1207 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1208 BasicBlock *InsertAE)
1209 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1210
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)1211 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1212 unsigned Align, Instruction *InsertBef)
1213 : LoadInst(Ty, Ptr, Name, isVolatile, Align, NotAtomic, CrossThread,
1214 InsertBef) {}
1215
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)1216 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1217 unsigned Align, BasicBlock *InsertAE)
1218 : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) {
1219 }
1220
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBef)1221 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1222 unsigned Align, AtomicOrdering Order,
1223 SynchronizationScope SynchScope, Instruction *InsertBef)
1224 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1225 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1226 setVolatile(isVolatile);
1227 setAlignment(Align);
1228 setAtomic(Order, SynchScope);
1229 AssertOK();
1230 setName(Name);
1231 }
1232
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAE)1233 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1234 unsigned Align, AtomicOrdering Order,
1235 SynchronizationScope SynchScope,
1236 BasicBlock *InsertAE)
1237 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1238 Load, Ptr, InsertAE) {
1239 setVolatile(isVolatile);
1240 setAlignment(Align);
1241 setAtomic(Order, SynchScope);
1242 AssertOK();
1243 setName(Name);
1244 }
1245
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)1246 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1247 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1248 Load, Ptr, InsertBef) {
1249 setVolatile(false);
1250 setAlignment(0);
1251 setAtomic(NotAtomic);
1252 AssertOK();
1253 if (Name && Name[0]) setName(Name);
1254 }
1255
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1256 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1257 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1258 Load, Ptr, InsertAE) {
1259 setVolatile(false);
1260 setAlignment(0);
1261 setAtomic(NotAtomic);
1262 AssertOK();
1263 if (Name && Name[0]) setName(Name);
1264 }
1265
LoadInst(Type * Ty,Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1266 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1267 Instruction *InsertBef)
1268 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1269 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1270 setVolatile(isVolatile);
1271 setAlignment(0);
1272 setAtomic(NotAtomic);
1273 AssertOK();
1274 if (Name && Name[0]) setName(Name);
1275 }
1276
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1277 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1278 BasicBlock *InsertAE)
1279 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1280 Load, Ptr, InsertAE) {
1281 setVolatile(isVolatile);
1282 setAlignment(0);
1283 setAtomic(NotAtomic);
1284 AssertOK();
1285 if (Name && Name[0]) setName(Name);
1286 }
1287
setAlignment(unsigned Align)1288 void LoadInst::setAlignment(unsigned Align) {
1289 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1290 assert(Align <= MaximumAlignment &&
1291 "Alignment is greater than MaximumAlignment!");
1292 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1293 ((Log2_32(Align)+1)<<1));
1294 assert(getAlignment() == Align && "Alignment representation error!");
1295 }
1296
1297 //===----------------------------------------------------------------------===//
1298 // StoreInst Implementation
1299 //===----------------------------------------------------------------------===//
1300
AssertOK()1301 void StoreInst::AssertOK() {
1302 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1303 assert(getOperand(1)->getType()->isPointerTy() &&
1304 "Ptr must have pointer type!");
1305 assert(getOperand(0)->getType() ==
1306 cast<PointerType>(getOperand(1)->getType())->getElementType()
1307 && "Ptr must be a pointer to Val type!");
1308 assert(!(isAtomic() && getAlignment() == 0) &&
1309 "Alignment required for atomic store");
1310 }
1311
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1312 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1313 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1314
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1315 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1316 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1317
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1318 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1319 Instruction *InsertBefore)
1320 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1321
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1322 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1323 BasicBlock *InsertAtEnd)
1324 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1325
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1326 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1327 Instruction *InsertBefore)
1328 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1329 InsertBefore) {}
1330
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1331 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1332 BasicBlock *InsertAtEnd)
1333 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1334 InsertAtEnd) {}
1335
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,Instruction * InsertBefore)1336 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1337 unsigned Align, AtomicOrdering Order,
1338 SynchronizationScope SynchScope,
1339 Instruction *InsertBefore)
1340 : Instruction(Type::getVoidTy(val->getContext()), Store,
1341 OperandTraits<StoreInst>::op_begin(this),
1342 OperandTraits<StoreInst>::operands(this),
1343 InsertBefore) {
1344 Op<0>() = val;
1345 Op<1>() = addr;
1346 setVolatile(isVolatile);
1347 setAlignment(Align);
1348 setAtomic(Order, SynchScope);
1349 AssertOK();
1350 }
1351
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,AtomicOrdering Order,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1352 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1353 unsigned Align, AtomicOrdering Order,
1354 SynchronizationScope SynchScope,
1355 BasicBlock *InsertAtEnd)
1356 : Instruction(Type::getVoidTy(val->getContext()), Store,
1357 OperandTraits<StoreInst>::op_begin(this),
1358 OperandTraits<StoreInst>::operands(this),
1359 InsertAtEnd) {
1360 Op<0>() = val;
1361 Op<1>() = addr;
1362 setVolatile(isVolatile);
1363 setAlignment(Align);
1364 setAtomic(Order, SynchScope);
1365 AssertOK();
1366 }
1367
setAlignment(unsigned Align)1368 void StoreInst::setAlignment(unsigned Align) {
1369 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1370 assert(Align <= MaximumAlignment &&
1371 "Alignment is greater than MaximumAlignment!");
1372 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1373 ((Log2_32(Align)+1) << 1));
1374 assert(getAlignment() == Align && "Alignment representation error!");
1375 }
1376
1377 //===----------------------------------------------------------------------===//
1378 // AtomicCmpXchgInst Implementation
1379 //===----------------------------------------------------------------------===//
1380
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)1381 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1382 AtomicOrdering SuccessOrdering,
1383 AtomicOrdering FailureOrdering,
1384 SynchronizationScope SynchScope) {
1385 Op<0>() = Ptr;
1386 Op<1>() = Cmp;
1387 Op<2>() = NewVal;
1388 setSuccessOrdering(SuccessOrdering);
1389 setFailureOrdering(FailureOrdering);
1390 setSynchScope(SynchScope);
1391
1392 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1393 "All operands must be non-null!");
1394 assert(getOperand(0)->getType()->isPointerTy() &&
1395 "Ptr must have pointer type!");
1396 assert(getOperand(1)->getType() ==
1397 cast<PointerType>(getOperand(0)->getType())->getElementType()
1398 && "Ptr must be a pointer to Cmp type!");
1399 assert(getOperand(2)->getType() ==
1400 cast<PointerType>(getOperand(0)->getType())->getElementType()
1401 && "Ptr must be a pointer to NewVal type!");
1402 assert(SuccessOrdering != NotAtomic &&
1403 "AtomicCmpXchg instructions must be atomic!");
1404 assert(FailureOrdering != NotAtomic &&
1405 "AtomicCmpXchg instructions must be atomic!");
1406 assert(SuccessOrdering >= FailureOrdering &&
1407 "AtomicCmpXchg success ordering must be at least as strong as fail");
1408 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1409 "AtomicCmpXchg failure ordering cannot include release semantics");
1410 }
1411
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,Instruction * InsertBefore)1412 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1413 AtomicOrdering SuccessOrdering,
1414 AtomicOrdering FailureOrdering,
1415 SynchronizationScope SynchScope,
1416 Instruction *InsertBefore)
1417 : Instruction(
1418 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1419 nullptr),
1420 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1421 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1422 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1423 }
1424
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1425 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1426 AtomicOrdering SuccessOrdering,
1427 AtomicOrdering FailureOrdering,
1428 SynchronizationScope SynchScope,
1429 BasicBlock *InsertAtEnd)
1430 : Instruction(
1431 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1432 nullptr),
1433 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1434 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1435 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1436 }
1437
1438 //===----------------------------------------------------------------------===//
1439 // AtomicRMWInst Implementation
1440 //===----------------------------------------------------------------------===//
1441
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope)1442 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1443 AtomicOrdering Ordering,
1444 SynchronizationScope SynchScope) {
1445 Op<0>() = Ptr;
1446 Op<1>() = Val;
1447 setOperation(Operation);
1448 setOrdering(Ordering);
1449 setSynchScope(SynchScope);
1450
1451 assert(getOperand(0) && getOperand(1) &&
1452 "All operands must be non-null!");
1453 assert(getOperand(0)->getType()->isPointerTy() &&
1454 "Ptr must have pointer type!");
1455 assert(getOperand(1)->getType() ==
1456 cast<PointerType>(getOperand(0)->getType())->getElementType()
1457 && "Ptr must be a pointer to Val type!");
1458 assert(Ordering != NotAtomic &&
1459 "AtomicRMW instructions must be atomic!");
1460 }
1461
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1462 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1463 AtomicOrdering Ordering,
1464 SynchronizationScope SynchScope,
1465 Instruction *InsertBefore)
1466 : Instruction(Val->getType(), AtomicRMW,
1467 OperandTraits<AtomicRMWInst>::op_begin(this),
1468 OperandTraits<AtomicRMWInst>::operands(this),
1469 InsertBefore) {
1470 Init(Operation, Ptr, Val, Ordering, SynchScope);
1471 }
1472
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1473 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1474 AtomicOrdering Ordering,
1475 SynchronizationScope SynchScope,
1476 BasicBlock *InsertAtEnd)
1477 : Instruction(Val->getType(), AtomicRMW,
1478 OperandTraits<AtomicRMWInst>::op_begin(this),
1479 OperandTraits<AtomicRMWInst>::operands(this),
1480 InsertAtEnd) {
1481 Init(Operation, Ptr, Val, Ordering, SynchScope);
1482 }
1483
1484 //===----------------------------------------------------------------------===//
1485 // FenceInst Implementation
1486 //===----------------------------------------------------------------------===//
1487
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,Instruction * InsertBefore)1488 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1489 SynchronizationScope SynchScope,
1490 Instruction *InsertBefore)
1491 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1492 setOrdering(Ordering);
1493 setSynchScope(SynchScope);
1494 }
1495
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SynchronizationScope SynchScope,BasicBlock * InsertAtEnd)1496 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1497 SynchronizationScope SynchScope,
1498 BasicBlock *InsertAtEnd)
1499 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1500 setOrdering(Ordering);
1501 setSynchScope(SynchScope);
1502 }
1503
1504 //===----------------------------------------------------------------------===//
1505 // GetElementPtrInst Implementation
1506 //===----------------------------------------------------------------------===//
1507
anchor()1508 void GetElementPtrInst::anchor() {}
1509
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1510 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1511 const Twine &Name) {
1512 assert(getNumOperands() == 1 + IdxList.size() &&
1513 "NumOperands not initialized?");
1514 Op<0>() = Ptr;
1515 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1516 setName(Name);
1517 }
1518
GetElementPtrInst(const GetElementPtrInst & GEPI)1519 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1520 : Instruction(GEPI.getType(), GetElementPtr,
1521 OperandTraits<GetElementPtrInst>::op_end(this) -
1522 GEPI.getNumOperands(),
1523 GEPI.getNumOperands()),
1524 SourceElementType(GEPI.SourceElementType),
1525 ResultElementType(GEPI.ResultElementType) {
1526 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1527 SubclassOptionalData = GEPI.SubclassOptionalData;
1528 }
1529
1530 /// getIndexedType - Returns the type of the element that would be accessed with
1531 /// a gep instruction with the specified parameters.
1532 ///
1533 /// The Idxs pointer should point to a continuous piece of memory containing the
1534 /// indices, either as Value* or uint64_t.
1535 ///
1536 /// A null type is returned if the indices are invalid for the specified
1537 /// pointer type.
1538 ///
1539 template <typename IndexTy>
getIndexedTypeInternal(Type * Agg,ArrayRef<IndexTy> IdxList)1540 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1541 // Handle the special case of the empty set index set, which is always valid.
1542 if (IdxList.empty())
1543 return Agg;
1544
1545 // If there is at least one index, the top level type must be sized, otherwise
1546 // it cannot be 'stepped over'.
1547 if (!Agg->isSized())
1548 return nullptr;
1549
1550 unsigned CurIdx = 1;
1551 for (; CurIdx != IdxList.size(); ++CurIdx) {
1552 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1553 if (!CT || CT->isPointerTy()) return nullptr;
1554 IndexTy Index = IdxList[CurIdx];
1555 if (!CT->indexValid(Index)) return nullptr;
1556 Agg = CT->getTypeAtIndex(Index);
1557 }
1558 return CurIdx == IdxList.size() ? Agg : nullptr;
1559 }
1560
getIndexedType(Type * Ty,ArrayRef<Value * > IdxList)1561 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1562 return getIndexedTypeInternal(Ty, IdxList);
1563 }
1564
getIndexedType(Type * Ty,ArrayRef<Constant * > IdxList)1565 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1566 ArrayRef<Constant *> IdxList) {
1567 return getIndexedTypeInternal(Ty, IdxList);
1568 }
1569
getIndexedType(Type * Ty,ArrayRef<uint64_t> IdxList)1570 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1571 return getIndexedTypeInternal(Ty, IdxList);
1572 }
1573
1574 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1575 /// zeros. If so, the result pointer and the first operand have the same
1576 /// value, just potentially different types.
hasAllZeroIndices() const1577 bool GetElementPtrInst::hasAllZeroIndices() const {
1578 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1579 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1580 if (!CI->isZero()) return false;
1581 } else {
1582 return false;
1583 }
1584 }
1585 return true;
1586 }
1587
1588 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1589 /// constant integers. If so, the result pointer and the first operand have
1590 /// a constant offset between them.
hasAllConstantIndices() const1591 bool GetElementPtrInst::hasAllConstantIndices() const {
1592 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1593 if (!isa<ConstantInt>(getOperand(i)))
1594 return false;
1595 }
1596 return true;
1597 }
1598
setIsInBounds(bool B)1599 void GetElementPtrInst::setIsInBounds(bool B) {
1600 cast<GEPOperator>(this)->setIsInBounds(B);
1601 }
1602
isInBounds() const1603 bool GetElementPtrInst::isInBounds() const {
1604 return cast<GEPOperator>(this)->isInBounds();
1605 }
1606
accumulateConstantOffset(const DataLayout & DL,APInt & Offset) const1607 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1608 APInt &Offset) const {
1609 // Delegate to the generic GEPOperator implementation.
1610 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1611 }
1612
1613 //===----------------------------------------------------------------------===//
1614 // ExtractElementInst Implementation
1615 //===----------------------------------------------------------------------===//
1616
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1617 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1618 const Twine &Name,
1619 Instruction *InsertBef)
1620 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1621 ExtractElement,
1622 OperandTraits<ExtractElementInst>::op_begin(this),
1623 2, InsertBef) {
1624 assert(isValidOperands(Val, Index) &&
1625 "Invalid extractelement instruction operands!");
1626 Op<0>() = Val;
1627 Op<1>() = Index;
1628 setName(Name);
1629 }
1630
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1631 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1632 const Twine &Name,
1633 BasicBlock *InsertAE)
1634 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1635 ExtractElement,
1636 OperandTraits<ExtractElementInst>::op_begin(this),
1637 2, InsertAE) {
1638 assert(isValidOperands(Val, Index) &&
1639 "Invalid extractelement instruction operands!");
1640
1641 Op<0>() = Val;
1642 Op<1>() = Index;
1643 setName(Name);
1644 }
1645
1646
isValidOperands(const Value * Val,const Value * Index)1647 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1648 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1649 return false;
1650 return true;
1651 }
1652
1653
1654 //===----------------------------------------------------------------------===//
1655 // InsertElementInst Implementation
1656 //===----------------------------------------------------------------------===//
1657
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1658 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1659 const Twine &Name,
1660 Instruction *InsertBef)
1661 : Instruction(Vec->getType(), InsertElement,
1662 OperandTraits<InsertElementInst>::op_begin(this),
1663 3, InsertBef) {
1664 assert(isValidOperands(Vec, Elt, Index) &&
1665 "Invalid insertelement instruction operands!");
1666 Op<0>() = Vec;
1667 Op<1>() = Elt;
1668 Op<2>() = Index;
1669 setName(Name);
1670 }
1671
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1672 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1673 const Twine &Name,
1674 BasicBlock *InsertAE)
1675 : Instruction(Vec->getType(), InsertElement,
1676 OperandTraits<InsertElementInst>::op_begin(this),
1677 3, InsertAE) {
1678 assert(isValidOperands(Vec, Elt, Index) &&
1679 "Invalid insertelement instruction operands!");
1680
1681 Op<0>() = Vec;
1682 Op<1>() = Elt;
1683 Op<2>() = Index;
1684 setName(Name);
1685 }
1686
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1687 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1688 const Value *Index) {
1689 if (!Vec->getType()->isVectorTy())
1690 return false; // First operand of insertelement must be vector type.
1691
1692 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1693 return false;// Second operand of insertelement must be vector element type.
1694
1695 if (!Index->getType()->isIntegerTy())
1696 return false; // Third operand of insertelement must be i32.
1697 return true;
1698 }
1699
1700
1701 //===----------------------------------------------------------------------===//
1702 // ShuffleVectorInst Implementation
1703 //===----------------------------------------------------------------------===//
1704
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1705 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1706 const Twine &Name,
1707 Instruction *InsertBefore)
1708 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1709 cast<VectorType>(Mask->getType())->getNumElements()),
1710 ShuffleVector,
1711 OperandTraits<ShuffleVectorInst>::op_begin(this),
1712 OperandTraits<ShuffleVectorInst>::operands(this),
1713 InsertBefore) {
1714 assert(isValidOperands(V1, V2, Mask) &&
1715 "Invalid shuffle vector instruction operands!");
1716 Op<0>() = V1;
1717 Op<1>() = V2;
1718 Op<2>() = Mask;
1719 setName(Name);
1720 }
1721
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1722 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1723 const Twine &Name,
1724 BasicBlock *InsertAtEnd)
1725 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1726 cast<VectorType>(Mask->getType())->getNumElements()),
1727 ShuffleVector,
1728 OperandTraits<ShuffleVectorInst>::op_begin(this),
1729 OperandTraits<ShuffleVectorInst>::operands(this),
1730 InsertAtEnd) {
1731 assert(isValidOperands(V1, V2, Mask) &&
1732 "Invalid shuffle vector instruction operands!");
1733
1734 Op<0>() = V1;
1735 Op<1>() = V2;
1736 Op<2>() = Mask;
1737 setName(Name);
1738 }
1739
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1740 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1741 const Value *Mask) {
1742 // V1 and V2 must be vectors of the same type.
1743 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1744 return false;
1745
1746 // Mask must be vector of i32.
1747 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1748 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1749 return false;
1750
1751 // Check to see if Mask is valid.
1752 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1753 return true;
1754
1755 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1756 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1757 for (Value *Op : MV->operands()) {
1758 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1759 if (CI->uge(V1Size*2))
1760 return false;
1761 } else if (!isa<UndefValue>(Op)) {
1762 return false;
1763 }
1764 }
1765 return true;
1766 }
1767
1768 if (const ConstantDataSequential *CDS =
1769 dyn_cast<ConstantDataSequential>(Mask)) {
1770 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1771 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1772 if (CDS->getElementAsInteger(i) >= V1Size*2)
1773 return false;
1774 return true;
1775 }
1776
1777 // The bitcode reader can create a place holder for a forward reference
1778 // used as the shuffle mask. When this occurs, the shuffle mask will
1779 // fall into this case and fail. To avoid this error, do this bit of
1780 // ugliness to allow such a mask pass.
1781 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1782 if (CE->getOpcode() == Instruction::UserOp1)
1783 return true;
1784
1785 return false;
1786 }
1787
1788 /// getMaskValue - Return the index from the shuffle mask for the specified
1789 /// output result. This is either -1 if the element is undef or a number less
1790 /// than 2*numelements.
getMaskValue(Constant * Mask,unsigned i)1791 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1792 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1793 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1794 return CDS->getElementAsInteger(i);
1795 Constant *C = Mask->getAggregateElement(i);
1796 if (isa<UndefValue>(C))
1797 return -1;
1798 return cast<ConstantInt>(C)->getZExtValue();
1799 }
1800
1801 /// getShuffleMask - Return the full mask for this instruction, where each
1802 /// element is the element number and undef's are returned as -1.
getShuffleMask(Constant * Mask,SmallVectorImpl<int> & Result)1803 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1804 SmallVectorImpl<int> &Result) {
1805 unsigned NumElts = Mask->getType()->getVectorNumElements();
1806
1807 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1808 for (unsigned i = 0; i != NumElts; ++i)
1809 Result.push_back(CDS->getElementAsInteger(i));
1810 return;
1811 }
1812 for (unsigned i = 0; i != NumElts; ++i) {
1813 Constant *C = Mask->getAggregateElement(i);
1814 Result.push_back(isa<UndefValue>(C) ? -1 :
1815 cast<ConstantInt>(C)->getZExtValue());
1816 }
1817 }
1818
1819
1820 //===----------------------------------------------------------------------===//
1821 // InsertValueInst Class
1822 //===----------------------------------------------------------------------===//
1823
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)1824 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1825 const Twine &Name) {
1826 assert(getNumOperands() == 2 && "NumOperands not initialized?");
1827
1828 // There's no fundamental reason why we require at least one index
1829 // (other than weirdness with &*IdxBegin being invalid; see
1830 // getelementptr's init routine for example). But there's no
1831 // present need to support it.
1832 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1833
1834 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1835 Val->getType() && "Inserted value must match indexed type!");
1836 Op<0>() = Agg;
1837 Op<1>() = Val;
1838
1839 Indices.append(Idxs.begin(), Idxs.end());
1840 setName(Name);
1841 }
1842
InsertValueInst(const InsertValueInst & IVI)1843 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1844 : Instruction(IVI.getType(), InsertValue,
1845 OperandTraits<InsertValueInst>::op_begin(this), 2),
1846 Indices(IVI.Indices) {
1847 Op<0>() = IVI.getOperand(0);
1848 Op<1>() = IVI.getOperand(1);
1849 SubclassOptionalData = IVI.SubclassOptionalData;
1850 }
1851
1852 //===----------------------------------------------------------------------===//
1853 // ExtractValueInst Class
1854 //===----------------------------------------------------------------------===//
1855
init(ArrayRef<unsigned> Idxs,const Twine & Name)1856 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1857 assert(getNumOperands() == 1 && "NumOperands not initialized?");
1858
1859 // There's no fundamental reason why we require at least one index.
1860 // But there's no present need to support it.
1861 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1862
1863 Indices.append(Idxs.begin(), Idxs.end());
1864 setName(Name);
1865 }
1866
ExtractValueInst(const ExtractValueInst & EVI)1867 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1868 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1869 Indices(EVI.Indices) {
1870 SubclassOptionalData = EVI.SubclassOptionalData;
1871 }
1872
1873 // getIndexedType - Returns the type of the element that would be extracted
1874 // with an extractvalue instruction with the specified parameters.
1875 //
1876 // A null type is returned if the indices are invalid for the specified
1877 // pointer type.
1878 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)1879 Type *ExtractValueInst::getIndexedType(Type *Agg,
1880 ArrayRef<unsigned> Idxs) {
1881 for (unsigned Index : Idxs) {
1882 // We can't use CompositeType::indexValid(Index) here.
1883 // indexValid() always returns true for arrays because getelementptr allows
1884 // out-of-bounds indices. Since we don't allow those for extractvalue and
1885 // insertvalue we need to check array indexing manually.
1886 // Since the only other types we can index into are struct types it's just
1887 // as easy to check those manually as well.
1888 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1889 if (Index >= AT->getNumElements())
1890 return nullptr;
1891 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1892 if (Index >= ST->getNumElements())
1893 return nullptr;
1894 } else {
1895 // Not a valid type to index into.
1896 return nullptr;
1897 }
1898
1899 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1900 }
1901 return const_cast<Type*>(Agg);
1902 }
1903
1904 //===----------------------------------------------------------------------===//
1905 // BinaryOperator Class
1906 //===----------------------------------------------------------------------===//
1907
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)1908 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1909 Type *Ty, const Twine &Name,
1910 Instruction *InsertBefore)
1911 : Instruction(Ty, iType,
1912 OperandTraits<BinaryOperator>::op_begin(this),
1913 OperandTraits<BinaryOperator>::operands(this),
1914 InsertBefore) {
1915 Op<0>() = S1;
1916 Op<1>() = S2;
1917 init(iType);
1918 setName(Name);
1919 }
1920
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1921 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1922 Type *Ty, const Twine &Name,
1923 BasicBlock *InsertAtEnd)
1924 : Instruction(Ty, iType,
1925 OperandTraits<BinaryOperator>::op_begin(this),
1926 OperandTraits<BinaryOperator>::operands(this),
1927 InsertAtEnd) {
1928 Op<0>() = S1;
1929 Op<1>() = S2;
1930 init(iType);
1931 setName(Name);
1932 }
1933
1934
init(BinaryOps iType)1935 void BinaryOperator::init(BinaryOps iType) {
1936 Value *LHS = getOperand(0), *RHS = getOperand(1);
1937 (void)LHS; (void)RHS; // Silence warnings.
1938 assert(LHS->getType() == RHS->getType() &&
1939 "Binary operator operand types must match!");
1940 #ifndef NDEBUG
1941 switch (iType) {
1942 case Add: case Sub:
1943 case Mul:
1944 assert(getType() == LHS->getType() &&
1945 "Arithmetic operation should return same type as operands!");
1946 assert(getType()->isIntOrIntVectorTy() &&
1947 "Tried to create an integer operation on a non-integer type!");
1948 break;
1949 case FAdd: case FSub:
1950 case FMul:
1951 assert(getType() == LHS->getType() &&
1952 "Arithmetic operation should return same type as operands!");
1953 assert(getType()->isFPOrFPVectorTy() &&
1954 "Tried to create a floating-point operation on a "
1955 "non-floating-point type!");
1956 break;
1957 case UDiv:
1958 case SDiv:
1959 assert(getType() == LHS->getType() &&
1960 "Arithmetic operation should return same type as operands!");
1961 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1962 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1963 "Incorrect operand type (not integer) for S/UDIV");
1964 break;
1965 case FDiv:
1966 assert(getType() == LHS->getType() &&
1967 "Arithmetic operation should return same type as operands!");
1968 assert(getType()->isFPOrFPVectorTy() &&
1969 "Incorrect operand type (not floating point) for FDIV");
1970 break;
1971 case URem:
1972 case SRem:
1973 assert(getType() == LHS->getType() &&
1974 "Arithmetic operation should return same type as operands!");
1975 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1976 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1977 "Incorrect operand type (not integer) for S/UREM");
1978 break;
1979 case FRem:
1980 assert(getType() == LHS->getType() &&
1981 "Arithmetic operation should return same type as operands!");
1982 assert(getType()->isFPOrFPVectorTy() &&
1983 "Incorrect operand type (not floating point) for FREM");
1984 break;
1985 case Shl:
1986 case LShr:
1987 case AShr:
1988 assert(getType() == LHS->getType() &&
1989 "Shift operation should return same type as operands!");
1990 assert((getType()->isIntegerTy() ||
1991 (getType()->isVectorTy() &&
1992 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1993 "Tried to create a shift operation on a non-integral type!");
1994 break;
1995 case And: case Or:
1996 case Xor:
1997 assert(getType() == LHS->getType() &&
1998 "Logical operation should return same type as operands!");
1999 assert((getType()->isIntegerTy() ||
2000 (getType()->isVectorTy() &&
2001 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
2002 "Tried to create a logical operation on a non-integral type!");
2003 break;
2004 default:
2005 break;
2006 }
2007 #endif
2008 }
2009
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2010 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2011 const Twine &Name,
2012 Instruction *InsertBefore) {
2013 assert(S1->getType() == S2->getType() &&
2014 "Cannot create binary operator with two operands of differing type!");
2015 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2016 }
2017
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2018 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2019 const Twine &Name,
2020 BasicBlock *InsertAtEnd) {
2021 BinaryOperator *Res = Create(Op, S1, S2, Name);
2022 InsertAtEnd->getInstList().push_back(Res);
2023 return Res;
2024 }
2025
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2026 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2027 Instruction *InsertBefore) {
2028 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2029 return new BinaryOperator(Instruction::Sub,
2030 zero, Op,
2031 Op->getType(), Name, InsertBefore);
2032 }
2033
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2034 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2035 BasicBlock *InsertAtEnd) {
2036 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2037 return new BinaryOperator(Instruction::Sub,
2038 zero, Op,
2039 Op->getType(), Name, InsertAtEnd);
2040 }
2041
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2042 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2043 Instruction *InsertBefore) {
2044 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2045 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2046 }
2047
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2048 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2049 BasicBlock *InsertAtEnd) {
2050 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2051 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2052 }
2053
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2054 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2055 Instruction *InsertBefore) {
2056 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2057 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2058 }
2059
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2060 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2061 BasicBlock *InsertAtEnd) {
2062 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2063 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2064 }
2065
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2066 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2067 Instruction *InsertBefore) {
2068 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2069 return new BinaryOperator(Instruction::FSub, zero, Op,
2070 Op->getType(), Name, InsertBefore);
2071 }
2072
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2073 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2074 BasicBlock *InsertAtEnd) {
2075 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2076 return new BinaryOperator(Instruction::FSub, zero, Op,
2077 Op->getType(), Name, InsertAtEnd);
2078 }
2079
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)2080 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2081 Instruction *InsertBefore) {
2082 Constant *C = Constant::getAllOnesValue(Op->getType());
2083 return new BinaryOperator(Instruction::Xor, Op, C,
2084 Op->getType(), Name, InsertBefore);
2085 }
2086
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2087 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2088 BasicBlock *InsertAtEnd) {
2089 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2090 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2091 Op->getType(), Name, InsertAtEnd);
2092 }
2093
2094
2095 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)2096 static inline bool isConstantAllOnes(const Value *V) {
2097 if (const Constant *C = dyn_cast<Constant>(V))
2098 return C->isAllOnesValue();
2099 return false;
2100 }
2101
isNeg(const Value * V)2102 bool BinaryOperator::isNeg(const Value *V) {
2103 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2104 if (Bop->getOpcode() == Instruction::Sub)
2105 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
2106 return C->isNegativeZeroValue();
2107 return false;
2108 }
2109
isFNeg(const Value * V,bool IgnoreZeroSign)2110 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2111 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2112 if (Bop->getOpcode() == Instruction::FSub)
2113 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
2114 if (!IgnoreZeroSign)
2115 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2116 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2117 }
2118 return false;
2119 }
2120
isNot(const Value * V)2121 bool BinaryOperator::isNot(const Value *V) {
2122 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2123 return (Bop->getOpcode() == Instruction::Xor &&
2124 (isConstantAllOnes(Bop->getOperand(1)) ||
2125 isConstantAllOnes(Bop->getOperand(0))));
2126 return false;
2127 }
2128
getNegArgument(Value * BinOp)2129 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2130 return cast<BinaryOperator>(BinOp)->getOperand(1);
2131 }
2132
getNegArgument(const Value * BinOp)2133 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2134 return getNegArgument(const_cast<Value*>(BinOp));
2135 }
2136
getFNegArgument(Value * BinOp)2137 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2138 return cast<BinaryOperator>(BinOp)->getOperand(1);
2139 }
2140
getFNegArgument(const Value * BinOp)2141 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2142 return getFNegArgument(const_cast<Value*>(BinOp));
2143 }
2144
getNotArgument(Value * BinOp)2145 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2146 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2147 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2148 Value *Op0 = BO->getOperand(0);
2149 Value *Op1 = BO->getOperand(1);
2150 if (isConstantAllOnes(Op0)) return Op1;
2151
2152 assert(isConstantAllOnes(Op1));
2153 return Op0;
2154 }
2155
getNotArgument(const Value * BinOp)2156 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2157 return getNotArgument(const_cast<Value*>(BinOp));
2158 }
2159
2160
2161 // swapOperands - Exchange the two operands to this instruction. This
2162 // instruction is safe to use on any binary instruction and does not
2163 // modify the semantics of the instruction. If the instruction is
2164 // order dependent (SetLT f.e.) the opcode is changed.
2165 //
swapOperands()2166 bool BinaryOperator::swapOperands() {
2167 if (!isCommutative())
2168 return true; // Can't commute operands
2169 Op<0>().swap(Op<1>());
2170 return false;
2171 }
2172
setHasNoUnsignedWrap(bool b)2173 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2174 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2175 }
2176
setHasNoSignedWrap(bool b)2177 void BinaryOperator::setHasNoSignedWrap(bool b) {
2178 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2179 }
2180
setIsExact(bool b)2181 void BinaryOperator::setIsExact(bool b) {
2182 cast<PossiblyExactOperator>(this)->setIsExact(b);
2183 }
2184
hasNoUnsignedWrap() const2185 bool BinaryOperator::hasNoUnsignedWrap() const {
2186 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2187 }
2188
hasNoSignedWrap() const2189 bool BinaryOperator::hasNoSignedWrap() const {
2190 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2191 }
2192
isExact() const2193 bool BinaryOperator::isExact() const {
2194 return cast<PossiblyExactOperator>(this)->isExact();
2195 }
2196
copyIRFlags(const Value * V)2197 void BinaryOperator::copyIRFlags(const Value *V) {
2198 // Copy the wrapping flags.
2199 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2200 setHasNoSignedWrap(OB->hasNoSignedWrap());
2201 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
2202 }
2203
2204 // Copy the exact flag.
2205 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2206 setIsExact(PE->isExact());
2207
2208 // Copy the fast-math flags.
2209 if (auto *FP = dyn_cast<FPMathOperator>(V))
2210 copyFastMathFlags(FP->getFastMathFlags());
2211 }
2212
andIRFlags(const Value * V)2213 void BinaryOperator::andIRFlags(const Value *V) {
2214 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2215 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
2216 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
2217 }
2218
2219 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2220 setIsExact(isExact() & PE->isExact());
2221
2222 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
2223 FastMathFlags FM = getFastMathFlags();
2224 FM &= FP->getFastMathFlags();
2225 copyFastMathFlags(FM);
2226 }
2227 }
2228
2229
2230 //===----------------------------------------------------------------------===//
2231 // FPMathOperator Class
2232 //===----------------------------------------------------------------------===//
2233
2234 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2235 /// An accuracy of 0.0 means that the operation should be performed with the
2236 /// default precision.
getFPAccuracy() const2237 float FPMathOperator::getFPAccuracy() const {
2238 const MDNode *MD =
2239 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2240 if (!MD)
2241 return 0.0;
2242 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2243 return Accuracy->getValueAPF().convertToFloat();
2244 }
2245
2246
2247 //===----------------------------------------------------------------------===//
2248 // CastInst Class
2249 //===----------------------------------------------------------------------===//
2250
anchor()2251 void CastInst::anchor() {}
2252
2253 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2254 bool CastInst::isIntegerCast() const {
2255 switch (getOpcode()) {
2256 default: return false;
2257 case Instruction::ZExt:
2258 case Instruction::SExt:
2259 case Instruction::Trunc:
2260 return true;
2261 case Instruction::BitCast:
2262 return getOperand(0)->getType()->isIntegerTy() &&
2263 getType()->isIntegerTy();
2264 }
2265 }
2266
isLosslessCast() const2267 bool CastInst::isLosslessCast() const {
2268 // Only BitCast can be lossless, exit fast if we're not BitCast
2269 if (getOpcode() != Instruction::BitCast)
2270 return false;
2271
2272 // Identity cast is always lossless
2273 Type* SrcTy = getOperand(0)->getType();
2274 Type* DstTy = getType();
2275 if (SrcTy == DstTy)
2276 return true;
2277
2278 // Pointer to pointer is always lossless.
2279 if (SrcTy->isPointerTy())
2280 return DstTy->isPointerTy();
2281 return false; // Other types have no identity values
2282 }
2283
2284 /// This function determines if the CastInst does not require any bits to be
2285 /// changed in order to effect the cast. Essentially, it identifies cases where
2286 /// no code gen is necessary for the cast, hence the name no-op cast. For
2287 /// example, the following are all no-op casts:
2288 /// # bitcast i32* %x to i8*
2289 /// # bitcast <2 x i32> %x to <4 x i16>
2290 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2291 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,Type * IntPtrTy)2292 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2293 Type *SrcTy,
2294 Type *DestTy,
2295 Type *IntPtrTy) {
2296 switch (Opcode) {
2297 default: llvm_unreachable("Invalid CastOp");
2298 case Instruction::Trunc:
2299 case Instruction::ZExt:
2300 case Instruction::SExt:
2301 case Instruction::FPTrunc:
2302 case Instruction::FPExt:
2303 case Instruction::UIToFP:
2304 case Instruction::SIToFP:
2305 case Instruction::FPToUI:
2306 case Instruction::FPToSI:
2307 case Instruction::AddrSpaceCast:
2308 // TODO: Target informations may give a more accurate answer here.
2309 return false;
2310 case Instruction::BitCast:
2311 return true; // BitCast never modifies bits.
2312 case Instruction::PtrToInt:
2313 return IntPtrTy->getScalarSizeInBits() ==
2314 DestTy->getScalarSizeInBits();
2315 case Instruction::IntToPtr:
2316 return IntPtrTy->getScalarSizeInBits() ==
2317 SrcTy->getScalarSizeInBits();
2318 }
2319 }
2320
2321 /// @brief Determine if a cast is a no-op.
isNoopCast(Type * IntPtrTy) const2322 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2323 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2324 }
2325
isNoopCast(const DataLayout & DL) const2326 bool CastInst::isNoopCast(const DataLayout &DL) const {
2327 Type *PtrOpTy = nullptr;
2328 if (getOpcode() == Instruction::PtrToInt)
2329 PtrOpTy = getOperand(0)->getType();
2330 else if (getOpcode() == Instruction::IntToPtr)
2331 PtrOpTy = getType();
2332
2333 Type *IntPtrTy =
2334 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2335
2336 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2337 }
2338
2339 /// This function determines if a pair of casts can be eliminated and what
2340 /// opcode should be used in the elimination. This assumes that there are two
2341 /// instructions like this:
2342 /// * %F = firstOpcode SrcTy %x to MidTy
2343 /// * %S = secondOpcode MidTy %F to DstTy
2344 /// The function returns a resultOpcode so these two casts can be replaced with:
2345 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2346 /// If no such cast is permitted, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * SrcIntPtrTy,Type * MidIntPtrTy,Type * DstIntPtrTy)2347 unsigned CastInst::isEliminableCastPair(
2348 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2349 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2350 Type *DstIntPtrTy) {
2351 // Define the 144 possibilities for these two cast instructions. The values
2352 // in this matrix determine what to do in a given situation and select the
2353 // case in the switch below. The rows correspond to firstOp, the columns
2354 // correspond to secondOp. In looking at the table below, keep in mind
2355 // the following cast properties:
2356 //
2357 // Size Compare Source Destination
2358 // Operator Src ? Size Type Sign Type Sign
2359 // -------- ------------ ------------------- ---------------------
2360 // TRUNC > Integer Any Integral Any
2361 // ZEXT < Integral Unsigned Integer Any
2362 // SEXT < Integral Signed Integer Any
2363 // FPTOUI n/a FloatPt n/a Integral Unsigned
2364 // FPTOSI n/a FloatPt n/a Integral Signed
2365 // UITOFP n/a Integral Unsigned FloatPt n/a
2366 // SITOFP n/a Integral Signed FloatPt n/a
2367 // FPTRUNC > FloatPt n/a FloatPt n/a
2368 // FPEXT < FloatPt n/a FloatPt n/a
2369 // PTRTOINT n/a Pointer n/a Integral Unsigned
2370 // INTTOPTR n/a Integral Unsigned Pointer n/a
2371 // BITCAST = FirstClass n/a FirstClass n/a
2372 // ADDRSPCST n/a Pointer n/a Pointer n/a
2373 //
2374 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2375 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2376 // into "fptoui double to i64", but this loses information about the range
2377 // of the produced value (we no longer know the top-part is all zeros).
2378 // Further this conversion is often much more expensive for typical hardware,
2379 // and causes issues when building libgcc. We disallow fptosi+sext for the
2380 // same reason.
2381 const unsigned numCastOps =
2382 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2383 static const uint8_t CastResults[numCastOps][numCastOps] = {
2384 // T F F U S F F P I B A -+
2385 // R Z S P P I I T P 2 N T S |
2386 // U E E 2 2 2 2 R E I T C C +- secondOp
2387 // N X X U S F F N X N 2 V V |
2388 // C T T I I P P C T T P T T -+
2389 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2390 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2391 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2392 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2393 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2394 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2395 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2396 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2397 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2398 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2399 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2400 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2401 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2402 };
2403
2404 // TODO: This logic could be encoded into the table above and handled in the
2405 // switch below.
2406 // If either of the casts are a bitcast from scalar to vector, disallow the
2407 // merging. However, any pair of bitcasts are allowed.
2408 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2409 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2410 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2411
2412 // Check if any of the casts convert scalars <-> vectors.
2413 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2414 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2415 if (!AreBothBitcasts)
2416 return 0;
2417
2418 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2419 [secondOp-Instruction::CastOpsBegin];
2420 switch (ElimCase) {
2421 case 0:
2422 // Categorically disallowed.
2423 return 0;
2424 case 1:
2425 // Allowed, use first cast's opcode.
2426 return firstOp;
2427 case 2:
2428 // Allowed, use second cast's opcode.
2429 return secondOp;
2430 case 3:
2431 // No-op cast in second op implies firstOp as long as the DestTy
2432 // is integer and we are not converting between a vector and a
2433 // non-vector type.
2434 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2435 return firstOp;
2436 return 0;
2437 case 4:
2438 // No-op cast in second op implies firstOp as long as the DestTy
2439 // is floating point.
2440 if (DstTy->isFloatingPointTy())
2441 return firstOp;
2442 return 0;
2443 case 5:
2444 // No-op cast in first op implies secondOp as long as the SrcTy
2445 // is an integer.
2446 if (SrcTy->isIntegerTy())
2447 return secondOp;
2448 return 0;
2449 case 6:
2450 // No-op cast in first op implies secondOp as long as the SrcTy
2451 // is a floating point.
2452 if (SrcTy->isFloatingPointTy())
2453 return secondOp;
2454 return 0;
2455 case 7: {
2456 // Cannot simplify if address spaces are different!
2457 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2458 return 0;
2459
2460 unsigned MidSize = MidTy->getScalarSizeInBits();
2461 // We can still fold this without knowing the actual sizes as long we
2462 // know that the intermediate pointer is the largest possible
2463 // pointer size.
2464 // FIXME: Is this always true?
2465 if (MidSize == 64)
2466 return Instruction::BitCast;
2467
2468 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2469 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2470 return 0;
2471 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2472 if (MidSize >= PtrSize)
2473 return Instruction::BitCast;
2474 return 0;
2475 }
2476 case 8: {
2477 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2478 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2479 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2480 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2481 unsigned DstSize = DstTy->getScalarSizeInBits();
2482 if (SrcSize == DstSize)
2483 return Instruction::BitCast;
2484 else if (SrcSize < DstSize)
2485 return firstOp;
2486 return secondOp;
2487 }
2488 case 9:
2489 // zext, sext -> zext, because sext can't sign extend after zext
2490 return Instruction::ZExt;
2491 case 10:
2492 // fpext followed by ftrunc is allowed if the bit size returned to is
2493 // the same as the original, in which case its just a bitcast
2494 if (SrcTy == DstTy)
2495 return Instruction::BitCast;
2496 return 0; // If the types are not the same we can't eliminate it.
2497 case 11: {
2498 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2499 if (!MidIntPtrTy)
2500 return 0;
2501 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2502 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2503 unsigned DstSize = DstTy->getScalarSizeInBits();
2504 if (SrcSize <= PtrSize && SrcSize == DstSize)
2505 return Instruction::BitCast;
2506 return 0;
2507 }
2508 case 12: {
2509 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2510 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2511 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2512 return Instruction::AddrSpaceCast;
2513 return Instruction::BitCast;
2514 }
2515 case 13:
2516 // FIXME: this state can be merged with (1), but the following assert
2517 // is useful to check the correcteness of the sequence due to semantic
2518 // change of bitcast.
2519 assert(
2520 SrcTy->isPtrOrPtrVectorTy() &&
2521 MidTy->isPtrOrPtrVectorTy() &&
2522 DstTy->isPtrOrPtrVectorTy() &&
2523 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2524 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2525 "Illegal addrspacecast, bitcast sequence!");
2526 // Allowed, use first cast's opcode
2527 return firstOp;
2528 case 14:
2529 // bitcast, addrspacecast -> addrspacecast if the element type of
2530 // bitcast's source is the same as that of addrspacecast's destination.
2531 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2532 return Instruction::AddrSpaceCast;
2533 return 0;
2534
2535 case 15:
2536 // FIXME: this state can be merged with (1), but the following assert
2537 // is useful to check the correcteness of the sequence due to semantic
2538 // change of bitcast.
2539 assert(
2540 SrcTy->isIntOrIntVectorTy() &&
2541 MidTy->isPtrOrPtrVectorTy() &&
2542 DstTy->isPtrOrPtrVectorTy() &&
2543 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2544 "Illegal inttoptr, bitcast sequence!");
2545 // Allowed, use first cast's opcode
2546 return firstOp;
2547 case 16:
2548 // FIXME: this state can be merged with (2), but the following assert
2549 // is useful to check the correcteness of the sequence due to semantic
2550 // change of bitcast.
2551 assert(
2552 SrcTy->isPtrOrPtrVectorTy() &&
2553 MidTy->isPtrOrPtrVectorTy() &&
2554 DstTy->isIntOrIntVectorTy() &&
2555 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2556 "Illegal bitcast, ptrtoint sequence!");
2557 // Allowed, use second cast's opcode
2558 return secondOp;
2559 case 17:
2560 // (sitofp (zext x)) -> (uitofp x)
2561 return Instruction::UIToFP;
2562 case 99:
2563 // Cast combination can't happen (error in input). This is for all cases
2564 // where the MidTy is not the same for the two cast instructions.
2565 llvm_unreachable("Invalid Cast Combination");
2566 default:
2567 llvm_unreachable("Error in CastResults table!!!");
2568 }
2569 }
2570
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2571 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2572 const Twine &Name, Instruction *InsertBefore) {
2573 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2574 // Construct and return the appropriate CastInst subclass
2575 switch (op) {
2576 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2577 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2578 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2579 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2580 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2581 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2582 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2583 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2584 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2585 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2586 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2587 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2588 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2589 default: llvm_unreachable("Invalid opcode provided");
2590 }
2591 }
2592
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2593 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2594 const Twine &Name, BasicBlock *InsertAtEnd) {
2595 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2596 // Construct and return the appropriate CastInst subclass
2597 switch (op) {
2598 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2599 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2600 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2601 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2602 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2603 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2604 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2605 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2606 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2607 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2608 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2609 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2610 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2611 default: llvm_unreachable("Invalid opcode provided");
2612 }
2613 }
2614
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2615 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2616 const Twine &Name,
2617 Instruction *InsertBefore) {
2618 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2619 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2620 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2621 }
2622
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2623 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2624 const Twine &Name,
2625 BasicBlock *InsertAtEnd) {
2626 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2627 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2628 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2629 }
2630
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2631 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2632 const Twine &Name,
2633 Instruction *InsertBefore) {
2634 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2635 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2636 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2637 }
2638
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2639 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2640 const Twine &Name,
2641 BasicBlock *InsertAtEnd) {
2642 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2643 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2644 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2645 }
2646
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2647 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2648 const Twine &Name,
2649 Instruction *InsertBefore) {
2650 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2651 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2652 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2653 }
2654
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2655 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2656 const Twine &Name,
2657 BasicBlock *InsertAtEnd) {
2658 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2659 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2660 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2661 }
2662
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2663 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2664 const Twine &Name,
2665 BasicBlock *InsertAtEnd) {
2666 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2667 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2668 "Invalid cast");
2669 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2670 assert((!Ty->isVectorTy() ||
2671 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2672 "Invalid cast");
2673
2674 if (Ty->isIntOrIntVectorTy())
2675 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2676
2677 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2678 }
2679
2680 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2681 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2682 const Twine &Name,
2683 Instruction *InsertBefore) {
2684 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2685 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2686 "Invalid cast");
2687 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2688 assert((!Ty->isVectorTy() ||
2689 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2690 "Invalid cast");
2691
2692 if (Ty->isIntOrIntVectorTy())
2693 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2694
2695 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2696 }
2697
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2698 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2699 Value *S, Type *Ty,
2700 const Twine &Name,
2701 BasicBlock *InsertAtEnd) {
2702 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2703 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2704
2705 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2706 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2707
2708 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2709 }
2710
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2711 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2712 Value *S, Type *Ty,
2713 const Twine &Name,
2714 Instruction *InsertBefore) {
2715 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2716 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2717
2718 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2719 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2720
2721 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2722 }
2723
CreateBitOrPointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2724 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2725 const Twine &Name,
2726 Instruction *InsertBefore) {
2727 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2728 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2729 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2730 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2731
2732 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2733 }
2734
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2735 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2736 bool isSigned, const Twine &Name,
2737 Instruction *InsertBefore) {
2738 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2739 "Invalid integer cast");
2740 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2741 unsigned DstBits = Ty->getScalarSizeInBits();
2742 Instruction::CastOps opcode =
2743 (SrcBits == DstBits ? Instruction::BitCast :
2744 (SrcBits > DstBits ? Instruction::Trunc :
2745 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2746 return Create(opcode, C, Ty, Name, InsertBefore);
2747 }
2748
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2749 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2750 bool isSigned, const Twine &Name,
2751 BasicBlock *InsertAtEnd) {
2752 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2753 "Invalid cast");
2754 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2755 unsigned DstBits = Ty->getScalarSizeInBits();
2756 Instruction::CastOps opcode =
2757 (SrcBits == DstBits ? Instruction::BitCast :
2758 (SrcBits > DstBits ? Instruction::Trunc :
2759 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2760 return Create(opcode, C, Ty, Name, InsertAtEnd);
2761 }
2762
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2763 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2764 const Twine &Name,
2765 Instruction *InsertBefore) {
2766 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2767 "Invalid cast");
2768 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2769 unsigned DstBits = Ty->getScalarSizeInBits();
2770 Instruction::CastOps opcode =
2771 (SrcBits == DstBits ? Instruction::BitCast :
2772 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2773 return Create(opcode, C, Ty, Name, InsertBefore);
2774 }
2775
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2776 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2777 const Twine &Name,
2778 BasicBlock *InsertAtEnd) {
2779 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2780 "Invalid cast");
2781 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2782 unsigned DstBits = Ty->getScalarSizeInBits();
2783 Instruction::CastOps opcode =
2784 (SrcBits == DstBits ? Instruction::BitCast :
2785 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2786 return Create(opcode, C, Ty, Name, InsertAtEnd);
2787 }
2788
2789 // Check whether it is valid to call getCastOpcode for these types.
2790 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2791 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2792 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2793 return false;
2794
2795 if (SrcTy == DestTy)
2796 return true;
2797
2798 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2799 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2800 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2801 // An element by element cast. Valid if casting the elements is valid.
2802 SrcTy = SrcVecTy->getElementType();
2803 DestTy = DestVecTy->getElementType();
2804 }
2805
2806 // Get the bit sizes, we'll need these
2807 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2808 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2809
2810 // Run through the possibilities ...
2811 if (DestTy->isIntegerTy()) { // Casting to integral
2812 if (SrcTy->isIntegerTy()) // Casting from integral
2813 return true;
2814 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2815 return true;
2816 if (SrcTy->isVectorTy()) // Casting from vector
2817 return DestBits == SrcBits;
2818 // Casting from something else
2819 return SrcTy->isPointerTy();
2820 }
2821 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2822 if (SrcTy->isIntegerTy()) // Casting from integral
2823 return true;
2824 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2825 return true;
2826 if (SrcTy->isVectorTy()) // Casting from vector
2827 return DestBits == SrcBits;
2828 // Casting from something else
2829 return false;
2830 }
2831 if (DestTy->isVectorTy()) // Casting to vector
2832 return DestBits == SrcBits;
2833 if (DestTy->isPointerTy()) { // Casting to pointer
2834 if (SrcTy->isPointerTy()) // Casting from pointer
2835 return true;
2836 return SrcTy->isIntegerTy(); // Casting from integral
2837 }
2838 if (DestTy->isX86_MMXTy()) {
2839 if (SrcTy->isVectorTy())
2840 return DestBits == SrcBits; // 64-bit vector to MMX
2841 return false;
2842 } // Casting to something else
2843 return false;
2844 }
2845
isBitCastable(Type * SrcTy,Type * DestTy)2846 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2847 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2848 return false;
2849
2850 if (SrcTy == DestTy)
2851 return true;
2852
2853 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2854 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2855 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2856 // An element by element cast. Valid if casting the elements is valid.
2857 SrcTy = SrcVecTy->getElementType();
2858 DestTy = DestVecTy->getElementType();
2859 }
2860 }
2861 }
2862
2863 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2864 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2865 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2866 }
2867 }
2868
2869 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2870 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2871
2872 // Could still have vectors of pointers if the number of elements doesn't
2873 // match
2874 if (SrcBits == 0 || DestBits == 0)
2875 return false;
2876
2877 if (SrcBits != DestBits)
2878 return false;
2879
2880 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2881 return false;
2882
2883 return true;
2884 }
2885
isBitOrNoopPointerCastable(Type * SrcTy,Type * DestTy,const DataLayout & DL)2886 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2887 const DataLayout &DL) {
2888 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2889 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2890 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2891 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2892 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2893 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2894
2895 return isBitCastable(SrcTy, DestTy);
2896 }
2897
2898 // Provide a way to get a "cast" where the cast opcode is inferred from the
2899 // types and size of the operand. This, basically, is a parallel of the
2900 // logic in the castIsValid function below. This axiom should hold:
2901 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2902 // should not assert in castIsValid. In other words, this produces a "correct"
2903 // casting opcode for the arguments passed to it.
2904 // This routine must be kept in sync with isCastable.
2905 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)2906 CastInst::getCastOpcode(
2907 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2908 Type *SrcTy = Src->getType();
2909
2910 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2911 "Only first class types are castable!");
2912
2913 if (SrcTy == DestTy)
2914 return BitCast;
2915
2916 // FIXME: Check address space sizes here
2917 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2918 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2919 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2920 // An element by element cast. Find the appropriate opcode based on the
2921 // element types.
2922 SrcTy = SrcVecTy->getElementType();
2923 DestTy = DestVecTy->getElementType();
2924 }
2925
2926 // Get the bit sizes, we'll need these
2927 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2928 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2929
2930 // Run through the possibilities ...
2931 if (DestTy->isIntegerTy()) { // Casting to integral
2932 if (SrcTy->isIntegerTy()) { // Casting from integral
2933 if (DestBits < SrcBits)
2934 return Trunc; // int -> smaller int
2935 else if (DestBits > SrcBits) { // its an extension
2936 if (SrcIsSigned)
2937 return SExt; // signed -> SEXT
2938 else
2939 return ZExt; // unsigned -> ZEXT
2940 } else {
2941 return BitCast; // Same size, No-op cast
2942 }
2943 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2944 if (DestIsSigned)
2945 return FPToSI; // FP -> sint
2946 else
2947 return FPToUI; // FP -> uint
2948 } else if (SrcTy->isVectorTy()) {
2949 assert(DestBits == SrcBits &&
2950 "Casting vector to integer of different width");
2951 return BitCast; // Same size, no-op cast
2952 } else {
2953 assert(SrcTy->isPointerTy() &&
2954 "Casting from a value that is not first-class type");
2955 return PtrToInt; // ptr -> int
2956 }
2957 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2958 if (SrcTy->isIntegerTy()) { // Casting from integral
2959 if (SrcIsSigned)
2960 return SIToFP; // sint -> FP
2961 else
2962 return UIToFP; // uint -> FP
2963 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2964 if (DestBits < SrcBits) {
2965 return FPTrunc; // FP -> smaller FP
2966 } else if (DestBits > SrcBits) {
2967 return FPExt; // FP -> larger FP
2968 } else {
2969 return BitCast; // same size, no-op cast
2970 }
2971 } else if (SrcTy->isVectorTy()) {
2972 assert(DestBits == SrcBits &&
2973 "Casting vector to floating point of different width");
2974 return BitCast; // same size, no-op cast
2975 }
2976 llvm_unreachable("Casting pointer or non-first class to float");
2977 } else if (DestTy->isVectorTy()) {
2978 assert(DestBits == SrcBits &&
2979 "Illegal cast to vector (wrong type or size)");
2980 return BitCast;
2981 } else if (DestTy->isPointerTy()) {
2982 if (SrcTy->isPointerTy()) {
2983 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2984 return AddrSpaceCast;
2985 return BitCast; // ptr -> ptr
2986 } else if (SrcTy->isIntegerTy()) {
2987 return IntToPtr; // int -> ptr
2988 }
2989 llvm_unreachable("Casting pointer to other than pointer or int");
2990 } else if (DestTy->isX86_MMXTy()) {
2991 if (SrcTy->isVectorTy()) {
2992 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2993 return BitCast; // 64-bit vector to MMX
2994 }
2995 llvm_unreachable("Illegal cast to X86_MMX");
2996 }
2997 llvm_unreachable("Casting to type that is not first-class");
2998 }
2999
3000 //===----------------------------------------------------------------------===//
3001 // CastInst SubClass Constructors
3002 //===----------------------------------------------------------------------===//
3003
3004 /// Check that the construction parameters for a CastInst are correct. This
3005 /// could be broken out into the separate constructors but it is useful to have
3006 /// it in one place and to eliminate the redundant code for getting the sizes
3007 /// of the types involved.
3008 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)3009 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3010
3011 // Check for type sanity on the arguments
3012 Type *SrcTy = S->getType();
3013
3014 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3015 SrcTy->isAggregateType() || DstTy->isAggregateType())
3016 return false;
3017
3018 // Get the size of the types in bits, we'll need this later
3019 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3020 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3021
3022 // If these are vector types, get the lengths of the vectors (using zero for
3023 // scalar types means that checking that vector lengths match also checks that
3024 // scalars are not being converted to vectors or vectors to scalars).
3025 unsigned SrcLength = SrcTy->isVectorTy() ?
3026 cast<VectorType>(SrcTy)->getNumElements() : 0;
3027 unsigned DstLength = DstTy->isVectorTy() ?
3028 cast<VectorType>(DstTy)->getNumElements() : 0;
3029
3030 // Switch on the opcode provided
3031 switch (op) {
3032 default: return false; // This is an input error
3033 case Instruction::Trunc:
3034 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3035 SrcLength == DstLength && SrcBitSize > DstBitSize;
3036 case Instruction::ZExt:
3037 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3038 SrcLength == DstLength && SrcBitSize < DstBitSize;
3039 case Instruction::SExt:
3040 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3041 SrcLength == DstLength && SrcBitSize < DstBitSize;
3042 case Instruction::FPTrunc:
3043 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3044 SrcLength == DstLength && SrcBitSize > DstBitSize;
3045 case Instruction::FPExt:
3046 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3047 SrcLength == DstLength && SrcBitSize < DstBitSize;
3048 case Instruction::UIToFP:
3049 case Instruction::SIToFP:
3050 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3051 SrcLength == DstLength;
3052 case Instruction::FPToUI:
3053 case Instruction::FPToSI:
3054 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3055 SrcLength == DstLength;
3056 case Instruction::PtrToInt:
3057 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3058 return false;
3059 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3060 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3061 return false;
3062 return SrcTy->getScalarType()->isPointerTy() &&
3063 DstTy->getScalarType()->isIntegerTy();
3064 case Instruction::IntToPtr:
3065 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3066 return false;
3067 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3068 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3069 return false;
3070 return SrcTy->getScalarType()->isIntegerTy() &&
3071 DstTy->getScalarType()->isPointerTy();
3072 case Instruction::BitCast: {
3073 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3074 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3075
3076 // BitCast implies a no-op cast of type only. No bits change.
3077 // However, you can't cast pointers to anything but pointers.
3078 if (!SrcPtrTy != !DstPtrTy)
3079 return false;
3080
3081 // For non-pointer cases, the cast is okay if the source and destination bit
3082 // widths are identical.
3083 if (!SrcPtrTy)
3084 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3085
3086 // If both are pointers then the address spaces must match.
3087 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3088 return false;
3089
3090 // A vector of pointers must have the same number of elements.
3091 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3092 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3093 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3094
3095 return false;
3096 }
3097
3098 return true;
3099 }
3100 case Instruction::AddrSpaceCast: {
3101 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3102 if (!SrcPtrTy)
3103 return false;
3104
3105 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3106 if (!DstPtrTy)
3107 return false;
3108
3109 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3110 return false;
3111
3112 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3113 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3114 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3115
3116 return false;
3117 }
3118
3119 return true;
3120 }
3121 }
3122 }
3123
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3124 TruncInst::TruncInst(
3125 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3126 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3127 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3128 }
3129
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3130 TruncInst::TruncInst(
3131 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3132 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3133 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3134 }
3135
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3136 ZExtInst::ZExtInst(
3137 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3138 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3139 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3140 }
3141
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3142 ZExtInst::ZExtInst(
3143 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3144 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3145 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3146 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3147 SExtInst::SExtInst(
3148 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3149 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3150 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3151 }
3152
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3153 SExtInst::SExtInst(
3154 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3155 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3156 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3157 }
3158
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3159 FPTruncInst::FPTruncInst(
3160 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3161 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3162 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3163 }
3164
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3165 FPTruncInst::FPTruncInst(
3166 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3167 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3168 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3169 }
3170
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3171 FPExtInst::FPExtInst(
3172 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3173 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3174 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3175 }
3176
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3177 FPExtInst::FPExtInst(
3178 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3179 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3180 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3181 }
3182
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3183 UIToFPInst::UIToFPInst(
3184 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3185 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3186 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3187 }
3188
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3189 UIToFPInst::UIToFPInst(
3190 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3191 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3192 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3193 }
3194
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3195 SIToFPInst::SIToFPInst(
3196 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3197 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3198 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3199 }
3200
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3201 SIToFPInst::SIToFPInst(
3202 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3203 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3204 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3205 }
3206
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3207 FPToUIInst::FPToUIInst(
3208 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3209 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3210 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3211 }
3212
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3213 FPToUIInst::FPToUIInst(
3214 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3215 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3216 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3217 }
3218
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3219 FPToSIInst::FPToSIInst(
3220 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3221 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3222 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3223 }
3224
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3225 FPToSIInst::FPToSIInst(
3226 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3227 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3228 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3229 }
3230
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3231 PtrToIntInst::PtrToIntInst(
3232 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3233 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3234 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3235 }
3236
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3237 PtrToIntInst::PtrToIntInst(
3238 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3239 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3240 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3241 }
3242
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3243 IntToPtrInst::IntToPtrInst(
3244 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3245 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3246 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3247 }
3248
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3249 IntToPtrInst::IntToPtrInst(
3250 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3251 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3252 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3253 }
3254
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3255 BitCastInst::BitCastInst(
3256 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3257 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3258 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3259 }
3260
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3261 BitCastInst::BitCastInst(
3262 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3263 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3264 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3265 }
3266
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3267 AddrSpaceCastInst::AddrSpaceCastInst(
3268 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3269 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3270 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3271 }
3272
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3273 AddrSpaceCastInst::AddrSpaceCastInst(
3274 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3275 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3276 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3277 }
3278
3279 //===----------------------------------------------------------------------===//
3280 // CmpInst Classes
3281 //===----------------------------------------------------------------------===//
3282
anchor()3283 void CmpInst::anchor() {}
3284
CmpInst(Type * ty,OtherOps op,Predicate predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)3285 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3286 Value *RHS, const Twine &Name, Instruction *InsertBefore)
3287 : Instruction(ty, op,
3288 OperandTraits<CmpInst>::op_begin(this),
3289 OperandTraits<CmpInst>::operands(this),
3290 InsertBefore) {
3291 Op<0>() = LHS;
3292 Op<1>() = RHS;
3293 setPredicate((Predicate)predicate);
3294 setName(Name);
3295 }
3296
CmpInst(Type * ty,OtherOps op,Predicate predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)3297 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3298 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3299 : Instruction(ty, op,
3300 OperandTraits<CmpInst>::op_begin(this),
3301 OperandTraits<CmpInst>::operands(this),
3302 InsertAtEnd) {
3303 Op<0>() = LHS;
3304 Op<1>() = RHS;
3305 setPredicate((Predicate)predicate);
3306 setName(Name);
3307 }
3308
3309 CmpInst *
Create(OtherOps Op,Predicate predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)3310 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3311 const Twine &Name, Instruction *InsertBefore) {
3312 if (Op == Instruction::ICmp) {
3313 if (InsertBefore)
3314 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3315 S1, S2, Name);
3316 else
3317 return new ICmpInst(CmpInst::Predicate(predicate),
3318 S1, S2, Name);
3319 }
3320
3321 if (InsertBefore)
3322 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3323 S1, S2, Name);
3324 else
3325 return new FCmpInst(CmpInst::Predicate(predicate),
3326 S1, S2, Name);
3327 }
3328
3329 CmpInst *
Create(OtherOps Op,Predicate predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)3330 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3331 const Twine &Name, BasicBlock *InsertAtEnd) {
3332 if (Op == Instruction::ICmp) {
3333 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3334 S1, S2, Name);
3335 }
3336 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3337 S1, S2, Name);
3338 }
3339
swapOperands()3340 void CmpInst::swapOperands() {
3341 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3342 IC->swapOperands();
3343 else
3344 cast<FCmpInst>(this)->swapOperands();
3345 }
3346
isCommutative() const3347 bool CmpInst::isCommutative() const {
3348 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3349 return IC->isCommutative();
3350 return cast<FCmpInst>(this)->isCommutative();
3351 }
3352
isEquality() const3353 bool CmpInst::isEquality() const {
3354 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3355 return IC->isEquality();
3356 return cast<FCmpInst>(this)->isEquality();
3357 }
3358
3359
getInversePredicate(Predicate pred)3360 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3361 switch (pred) {
3362 default: llvm_unreachable("Unknown cmp predicate!");
3363 case ICMP_EQ: return ICMP_NE;
3364 case ICMP_NE: return ICMP_EQ;
3365 case ICMP_UGT: return ICMP_ULE;
3366 case ICMP_ULT: return ICMP_UGE;
3367 case ICMP_UGE: return ICMP_ULT;
3368 case ICMP_ULE: return ICMP_UGT;
3369 case ICMP_SGT: return ICMP_SLE;
3370 case ICMP_SLT: return ICMP_SGE;
3371 case ICMP_SGE: return ICMP_SLT;
3372 case ICMP_SLE: return ICMP_SGT;
3373
3374 case FCMP_OEQ: return FCMP_UNE;
3375 case FCMP_ONE: return FCMP_UEQ;
3376 case FCMP_OGT: return FCMP_ULE;
3377 case FCMP_OLT: return FCMP_UGE;
3378 case FCMP_OGE: return FCMP_ULT;
3379 case FCMP_OLE: return FCMP_UGT;
3380 case FCMP_UEQ: return FCMP_ONE;
3381 case FCMP_UNE: return FCMP_OEQ;
3382 case FCMP_UGT: return FCMP_OLE;
3383 case FCMP_ULT: return FCMP_OGE;
3384 case FCMP_UGE: return FCMP_OLT;
3385 case FCMP_ULE: return FCMP_OGT;
3386 case FCMP_ORD: return FCMP_UNO;
3387 case FCMP_UNO: return FCMP_ORD;
3388 case FCMP_TRUE: return FCMP_FALSE;
3389 case FCMP_FALSE: return FCMP_TRUE;
3390 }
3391 }
3392
anchor()3393 void ICmpInst::anchor() {}
3394
getSignedPredicate(Predicate pred)3395 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3396 switch (pred) {
3397 default: llvm_unreachable("Unknown icmp predicate!");
3398 case ICMP_EQ: case ICMP_NE:
3399 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3400 return pred;
3401 case ICMP_UGT: return ICMP_SGT;
3402 case ICMP_ULT: return ICMP_SLT;
3403 case ICMP_UGE: return ICMP_SGE;
3404 case ICMP_ULE: return ICMP_SLE;
3405 }
3406 }
3407
getUnsignedPredicate(Predicate pred)3408 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3409 switch (pred) {
3410 default: llvm_unreachable("Unknown icmp predicate!");
3411 case ICMP_EQ: case ICMP_NE:
3412 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3413 return pred;
3414 case ICMP_SGT: return ICMP_UGT;
3415 case ICMP_SLT: return ICMP_ULT;
3416 case ICMP_SGE: return ICMP_UGE;
3417 case ICMP_SLE: return ICMP_ULE;
3418 }
3419 }
3420
3421 /// Initialize a set of values that all satisfy the condition with C.
3422 ///
3423 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)3424 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3425 APInt Lower(C);
3426 APInt Upper(C);
3427 uint32_t BitWidth = C.getBitWidth();
3428 switch (pred) {
3429 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3430 case ICmpInst::ICMP_EQ: ++Upper; break;
3431 case ICmpInst::ICMP_NE: ++Lower; break;
3432 case ICmpInst::ICMP_ULT:
3433 Lower = APInt::getMinValue(BitWidth);
3434 // Check for an empty-set condition.
3435 if (Lower == Upper)
3436 return ConstantRange(BitWidth, /*isFullSet=*/false);
3437 break;
3438 case ICmpInst::ICMP_SLT:
3439 Lower = APInt::getSignedMinValue(BitWidth);
3440 // Check for an empty-set condition.
3441 if (Lower == Upper)
3442 return ConstantRange(BitWidth, /*isFullSet=*/false);
3443 break;
3444 case ICmpInst::ICMP_UGT:
3445 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3446 // Check for an empty-set condition.
3447 if (Lower == Upper)
3448 return ConstantRange(BitWidth, /*isFullSet=*/false);
3449 break;
3450 case ICmpInst::ICMP_SGT:
3451 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3452 // Check for an empty-set condition.
3453 if (Lower == Upper)
3454 return ConstantRange(BitWidth, /*isFullSet=*/false);
3455 break;
3456 case ICmpInst::ICMP_ULE:
3457 Lower = APInt::getMinValue(BitWidth); ++Upper;
3458 // Check for a full-set condition.
3459 if (Lower == Upper)
3460 return ConstantRange(BitWidth, /*isFullSet=*/true);
3461 break;
3462 case ICmpInst::ICMP_SLE:
3463 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3464 // Check for a full-set condition.
3465 if (Lower == Upper)
3466 return ConstantRange(BitWidth, /*isFullSet=*/true);
3467 break;
3468 case ICmpInst::ICMP_UGE:
3469 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3470 // Check for a full-set condition.
3471 if (Lower == Upper)
3472 return ConstantRange(BitWidth, /*isFullSet=*/true);
3473 break;
3474 case ICmpInst::ICMP_SGE:
3475 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3476 // Check for a full-set condition.
3477 if (Lower == Upper)
3478 return ConstantRange(BitWidth, /*isFullSet=*/true);
3479 break;
3480 }
3481 return ConstantRange(Lower, Upper);
3482 }
3483
getSwappedPredicate(Predicate pred)3484 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3485 switch (pred) {
3486 default: llvm_unreachable("Unknown cmp predicate!");
3487 case ICMP_EQ: case ICMP_NE:
3488 return pred;
3489 case ICMP_SGT: return ICMP_SLT;
3490 case ICMP_SLT: return ICMP_SGT;
3491 case ICMP_SGE: return ICMP_SLE;
3492 case ICMP_SLE: return ICMP_SGE;
3493 case ICMP_UGT: return ICMP_ULT;
3494 case ICMP_ULT: return ICMP_UGT;
3495 case ICMP_UGE: return ICMP_ULE;
3496 case ICMP_ULE: return ICMP_UGE;
3497
3498 case FCMP_FALSE: case FCMP_TRUE:
3499 case FCMP_OEQ: case FCMP_ONE:
3500 case FCMP_UEQ: case FCMP_UNE:
3501 case FCMP_ORD: case FCMP_UNO:
3502 return pred;
3503 case FCMP_OGT: return FCMP_OLT;
3504 case FCMP_OLT: return FCMP_OGT;
3505 case FCMP_OGE: return FCMP_OLE;
3506 case FCMP_OLE: return FCMP_OGE;
3507 case FCMP_UGT: return FCMP_ULT;
3508 case FCMP_ULT: return FCMP_UGT;
3509 case FCMP_UGE: return FCMP_ULE;
3510 case FCMP_ULE: return FCMP_UGE;
3511 }
3512 }
3513
getSignedPredicate(Predicate pred)3514 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3515 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3516
3517 switch (pred) {
3518 default:
3519 llvm_unreachable("Unknown predicate!");
3520 case CmpInst::ICMP_ULT:
3521 return CmpInst::ICMP_SLT;
3522 case CmpInst::ICMP_ULE:
3523 return CmpInst::ICMP_SLE;
3524 case CmpInst::ICMP_UGT:
3525 return CmpInst::ICMP_SGT;
3526 case CmpInst::ICMP_UGE:
3527 return CmpInst::ICMP_SGE;
3528 }
3529 }
3530
isUnsigned(Predicate predicate)3531 bool CmpInst::isUnsigned(Predicate predicate) {
3532 switch (predicate) {
3533 default: return false;
3534 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3535 case ICmpInst::ICMP_UGE: return true;
3536 }
3537 }
3538
isSigned(Predicate predicate)3539 bool CmpInst::isSigned(Predicate predicate) {
3540 switch (predicate) {
3541 default: return false;
3542 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3543 case ICmpInst::ICMP_SGE: return true;
3544 }
3545 }
3546
isOrdered(Predicate predicate)3547 bool CmpInst::isOrdered(Predicate predicate) {
3548 switch (predicate) {
3549 default: return false;
3550 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3551 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3552 case FCmpInst::FCMP_ORD: return true;
3553 }
3554 }
3555
isUnordered(Predicate predicate)3556 bool CmpInst::isUnordered(Predicate predicate) {
3557 switch (predicate) {
3558 default: return false;
3559 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3560 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3561 case FCmpInst::FCMP_UNO: return true;
3562 }
3563 }
3564
isTrueWhenEqual(Predicate predicate)3565 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3566 switch(predicate) {
3567 default: return false;
3568 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3569 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3570 }
3571 }
3572
isFalseWhenEqual(Predicate predicate)3573 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3574 switch(predicate) {
3575 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3576 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3577 default: return false;
3578 }
3579 }
3580
3581
3582 //===----------------------------------------------------------------------===//
3583 // SwitchInst Implementation
3584 //===----------------------------------------------------------------------===//
3585
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3586 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3587 assert(Value && Default && NumReserved);
3588 ReservedSpace = NumReserved;
3589 setNumHungOffUseOperands(2);
3590 allocHungoffUses(ReservedSpace);
3591
3592 Op<0>() = Value;
3593 Op<1>() = Default;
3594 }
3595
3596 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3597 /// switch on and a default destination. The number of additional cases can
3598 /// be specified here to make memory allocation more efficient. This
3599 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3600 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3601 Instruction *InsertBefore)
3602 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3603 nullptr, 0, InsertBefore) {
3604 init(Value, Default, 2+NumCases*2);
3605 }
3606
3607 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3608 /// switch on and a default destination. The number of additional cases can
3609 /// be specified here to make memory allocation more efficient. This
3610 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3611 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3612 BasicBlock *InsertAtEnd)
3613 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3614 nullptr, 0, InsertAtEnd) {
3615 init(Value, Default, 2+NumCases*2);
3616 }
3617
SwitchInst(const SwitchInst & SI)3618 SwitchInst::SwitchInst(const SwitchInst &SI)
3619 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3620 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3621 setNumHungOffUseOperands(SI.getNumOperands());
3622 Use *OL = getOperandList();
3623 const Use *InOL = SI.getOperandList();
3624 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3625 OL[i] = InOL[i];
3626 OL[i+1] = InOL[i+1];
3627 }
3628 SubclassOptionalData = SI.SubclassOptionalData;
3629 }
3630
3631
3632 /// addCase - Add an entry to the switch instruction...
3633 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3634 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3635 unsigned NewCaseIdx = getNumCases();
3636 unsigned OpNo = getNumOperands();
3637 if (OpNo+2 > ReservedSpace)
3638 growOperands(); // Get more space!
3639 // Initialize some new operands.
3640 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3641 setNumHungOffUseOperands(OpNo+2);
3642 CaseIt Case(this, NewCaseIdx);
3643 Case.setValue(OnVal);
3644 Case.setSuccessor(Dest);
3645 }
3646
3647 /// removeCase - This method removes the specified case and its successor
3648 /// from the switch instruction.
removeCase(CaseIt i)3649 void SwitchInst::removeCase(CaseIt i) {
3650 unsigned idx = i.getCaseIndex();
3651
3652 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3653
3654 unsigned NumOps = getNumOperands();
3655 Use *OL = getOperandList();
3656
3657 // Overwrite this case with the end of the list.
3658 if (2 + (idx + 1) * 2 != NumOps) {
3659 OL[2 + idx * 2] = OL[NumOps - 2];
3660 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3661 }
3662
3663 // Nuke the last value.
3664 OL[NumOps-2].set(nullptr);
3665 OL[NumOps-2+1].set(nullptr);
3666 setNumHungOffUseOperands(NumOps-2);
3667 }
3668
3669 /// growOperands - grow operands - This grows the operand list in response
3670 /// to a push_back style of operation. This grows the number of ops by 3 times.
3671 ///
growOperands()3672 void SwitchInst::growOperands() {
3673 unsigned e = getNumOperands();
3674 unsigned NumOps = e*3;
3675
3676 ReservedSpace = NumOps;
3677 growHungoffUses(ReservedSpace);
3678 }
3679
3680
getSuccessorV(unsigned idx) const3681 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3682 return getSuccessor(idx);
3683 }
getNumSuccessorsV() const3684 unsigned SwitchInst::getNumSuccessorsV() const {
3685 return getNumSuccessors();
3686 }
setSuccessorV(unsigned idx,BasicBlock * B)3687 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3688 setSuccessor(idx, B);
3689 }
3690
3691 //===----------------------------------------------------------------------===//
3692 // IndirectBrInst Implementation
3693 //===----------------------------------------------------------------------===//
3694
init(Value * Address,unsigned NumDests)3695 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3696 assert(Address && Address->getType()->isPointerTy() &&
3697 "Address of indirectbr must be a pointer");
3698 ReservedSpace = 1+NumDests;
3699 setNumHungOffUseOperands(1);
3700 allocHungoffUses(ReservedSpace);
3701
3702 Op<0>() = Address;
3703 }
3704
3705
3706 /// growOperands - grow operands - This grows the operand list in response
3707 /// to a push_back style of operation. This grows the number of ops by 2 times.
3708 ///
growOperands()3709 void IndirectBrInst::growOperands() {
3710 unsigned e = getNumOperands();
3711 unsigned NumOps = e*2;
3712
3713 ReservedSpace = NumOps;
3714 growHungoffUses(ReservedSpace);
3715 }
3716
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3717 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3718 Instruction *InsertBefore)
3719 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3720 nullptr, 0, InsertBefore) {
3721 init(Address, NumCases);
3722 }
3723
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3724 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3725 BasicBlock *InsertAtEnd)
3726 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3727 nullptr, 0, InsertAtEnd) {
3728 init(Address, NumCases);
3729 }
3730
IndirectBrInst(const IndirectBrInst & IBI)3731 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3732 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3733 nullptr, IBI.getNumOperands()) {
3734 allocHungoffUses(IBI.getNumOperands());
3735 Use *OL = getOperandList();
3736 const Use *InOL = IBI.getOperandList();
3737 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3738 OL[i] = InOL[i];
3739 SubclassOptionalData = IBI.SubclassOptionalData;
3740 }
3741
3742 /// addDestination - Add a destination.
3743 ///
addDestination(BasicBlock * DestBB)3744 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3745 unsigned OpNo = getNumOperands();
3746 if (OpNo+1 > ReservedSpace)
3747 growOperands(); // Get more space!
3748 // Initialize some new operands.
3749 assert(OpNo < ReservedSpace && "Growing didn't work!");
3750 setNumHungOffUseOperands(OpNo+1);
3751 getOperandList()[OpNo] = DestBB;
3752 }
3753
3754 /// removeDestination - This method removes the specified successor from the
3755 /// indirectbr instruction.
removeDestination(unsigned idx)3756 void IndirectBrInst::removeDestination(unsigned idx) {
3757 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3758
3759 unsigned NumOps = getNumOperands();
3760 Use *OL = getOperandList();
3761
3762 // Replace this value with the last one.
3763 OL[idx+1] = OL[NumOps-1];
3764
3765 // Nuke the last value.
3766 OL[NumOps-1].set(nullptr);
3767 setNumHungOffUseOperands(NumOps-1);
3768 }
3769
getSuccessorV(unsigned idx) const3770 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3771 return getSuccessor(idx);
3772 }
getNumSuccessorsV() const3773 unsigned IndirectBrInst::getNumSuccessorsV() const {
3774 return getNumSuccessors();
3775 }
setSuccessorV(unsigned idx,BasicBlock * B)3776 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3777 setSuccessor(idx, B);
3778 }
3779
3780 //===----------------------------------------------------------------------===//
3781 // cloneImpl() implementations
3782 //===----------------------------------------------------------------------===//
3783
3784 // Define these methods here so vtables don't get emitted into every translation
3785 // unit that uses these classes.
3786
cloneImpl() const3787 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3788 return new (getNumOperands()) GetElementPtrInst(*this);
3789 }
3790
cloneImpl() const3791 BinaryOperator *BinaryOperator::cloneImpl() const {
3792 return Create(getOpcode(), Op<0>(), Op<1>());
3793 }
3794
cloneImpl() const3795 FCmpInst *FCmpInst::cloneImpl() const {
3796 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3797 }
3798
cloneImpl() const3799 ICmpInst *ICmpInst::cloneImpl() const {
3800 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3801 }
3802
cloneImpl() const3803 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3804 return new ExtractValueInst(*this);
3805 }
3806
cloneImpl() const3807 InsertValueInst *InsertValueInst::cloneImpl() const {
3808 return new InsertValueInst(*this);
3809 }
3810
cloneImpl() const3811 AllocaInst *AllocaInst::cloneImpl() const {
3812 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3813 (Value *)getOperand(0), getAlignment());
3814 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3815 return Result;
3816 }
3817
cloneImpl() const3818 LoadInst *LoadInst::cloneImpl() const {
3819 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3820 getAlignment(), getOrdering(), getSynchScope());
3821 }
3822
cloneImpl() const3823 StoreInst *StoreInst::cloneImpl() const {
3824 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3825 getAlignment(), getOrdering(), getSynchScope());
3826
3827 }
3828
cloneImpl() const3829 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3830 AtomicCmpXchgInst *Result =
3831 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3832 getSuccessOrdering(), getFailureOrdering(),
3833 getSynchScope());
3834 Result->setVolatile(isVolatile());
3835 Result->setWeak(isWeak());
3836 return Result;
3837 }
3838
cloneImpl() const3839 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3840 AtomicRMWInst *Result =
3841 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3842 getOrdering(), getSynchScope());
3843 Result->setVolatile(isVolatile());
3844 return Result;
3845 }
3846
cloneImpl() const3847 FenceInst *FenceInst::cloneImpl() const {
3848 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3849 }
3850
cloneImpl() const3851 TruncInst *TruncInst::cloneImpl() const {
3852 return new TruncInst(getOperand(0), getType());
3853 }
3854
cloneImpl() const3855 ZExtInst *ZExtInst::cloneImpl() const {
3856 return new ZExtInst(getOperand(0), getType());
3857 }
3858
cloneImpl() const3859 SExtInst *SExtInst::cloneImpl() const {
3860 return new SExtInst(getOperand(0), getType());
3861 }
3862
cloneImpl() const3863 FPTruncInst *FPTruncInst::cloneImpl() const {
3864 return new FPTruncInst(getOperand(0), getType());
3865 }
3866
cloneImpl() const3867 FPExtInst *FPExtInst::cloneImpl() const {
3868 return new FPExtInst(getOperand(0), getType());
3869 }
3870
cloneImpl() const3871 UIToFPInst *UIToFPInst::cloneImpl() const {
3872 return new UIToFPInst(getOperand(0), getType());
3873 }
3874
cloneImpl() const3875 SIToFPInst *SIToFPInst::cloneImpl() const {
3876 return new SIToFPInst(getOperand(0), getType());
3877 }
3878
cloneImpl() const3879 FPToUIInst *FPToUIInst::cloneImpl() const {
3880 return new FPToUIInst(getOperand(0), getType());
3881 }
3882
cloneImpl() const3883 FPToSIInst *FPToSIInst::cloneImpl() const {
3884 return new FPToSIInst(getOperand(0), getType());
3885 }
3886
cloneImpl() const3887 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3888 return new PtrToIntInst(getOperand(0), getType());
3889 }
3890
cloneImpl() const3891 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3892 return new IntToPtrInst(getOperand(0), getType());
3893 }
3894
cloneImpl() const3895 BitCastInst *BitCastInst::cloneImpl() const {
3896 return new BitCastInst(getOperand(0), getType());
3897 }
3898
cloneImpl() const3899 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3900 return new AddrSpaceCastInst(getOperand(0), getType());
3901 }
3902
cloneImpl() const3903 CallInst *CallInst::cloneImpl() const {
3904 if (hasOperandBundles()) {
3905 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3906 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3907 }
3908 return new(getNumOperands()) CallInst(*this);
3909 }
3910
cloneImpl() const3911 SelectInst *SelectInst::cloneImpl() const {
3912 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3913 }
3914
cloneImpl() const3915 VAArgInst *VAArgInst::cloneImpl() const {
3916 return new VAArgInst(getOperand(0), getType());
3917 }
3918
cloneImpl() const3919 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3920 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3921 }
3922
cloneImpl() const3923 InsertElementInst *InsertElementInst::cloneImpl() const {
3924 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3925 }
3926
cloneImpl() const3927 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3928 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3929 }
3930
cloneImpl() const3931 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3932
cloneImpl() const3933 LandingPadInst *LandingPadInst::cloneImpl() const {
3934 return new LandingPadInst(*this);
3935 }
3936
cloneImpl() const3937 ReturnInst *ReturnInst::cloneImpl() const {
3938 return new(getNumOperands()) ReturnInst(*this);
3939 }
3940
cloneImpl() const3941 BranchInst *BranchInst::cloneImpl() const {
3942 return new(getNumOperands()) BranchInst(*this);
3943 }
3944
cloneImpl() const3945 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3946
cloneImpl() const3947 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3948 return new IndirectBrInst(*this);
3949 }
3950
cloneImpl() const3951 InvokeInst *InvokeInst::cloneImpl() const {
3952 if (hasOperandBundles()) {
3953 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3954 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3955 }
3956 return new(getNumOperands()) InvokeInst(*this);
3957 }
3958
cloneImpl() const3959 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3960
cloneImpl() const3961 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3962 return new (getNumOperands()) CleanupReturnInst(*this);
3963 }
3964
cloneImpl() const3965 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3966 return new (getNumOperands()) CatchReturnInst(*this);
3967 }
3968
cloneImpl() const3969 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3970 return new CatchSwitchInst(*this);
3971 }
3972
cloneImpl() const3973 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3974 return new (getNumOperands()) FuncletPadInst(*this);
3975 }
3976
cloneImpl() const3977 UnreachableInst *UnreachableInst::cloneImpl() const {
3978 LLVMContext &Context = getContext();
3979 return new UnreachableInst(Context);
3980 }
3981