1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <linux/futex.h>
27 #include <sys/stat.h>
28 #include <sys/syscall.h>
29 #include <cutils/properties.h>
30 #include <media/AudioParameter.h>
31 #include <media/AudioResamplerPublic.h>
32 #include <utils/Log.h>
33 #include <utils/Trace.h>
34
35 #include <private/media/AudioTrackShared.h>
36 #include <hardware/audio.h>
37 #include <audio_effects/effect_ns.h>
38 #include <audio_effects/effect_aec.h>
39 #include <audio_utils/conversion.h>
40 #include <audio_utils/primitives.h>
41 #include <audio_utils/format.h>
42 #include <audio_utils/minifloat.h>
43
44 // NBAIO implementations
45 #include <media/nbaio/AudioStreamInSource.h>
46 #include <media/nbaio/AudioStreamOutSink.h>
47 #include <media/nbaio/MonoPipe.h>
48 #include <media/nbaio/MonoPipeReader.h>
49 #include <media/nbaio/Pipe.h>
50 #include <media/nbaio/PipeReader.h>
51 #include <media/nbaio/SourceAudioBufferProvider.h>
52 #include <mediautils/BatteryNotifier.h>
53
54 #include <powermanager/PowerManager.h>
55
56 #include "AudioFlinger.h"
57 #include "AudioMixer.h"
58 #include "BufferProviders.h"
59 #include "FastMixer.h"
60 #include "FastCapture.h"
61 #include "ServiceUtilities.h"
62 #include "mediautils/SchedulingPolicyService.h"
63
64 #ifdef ADD_BATTERY_DATA
65 #include <media/IMediaPlayerService.h>
66 #include <media/IMediaDeathNotifier.h>
67 #endif
68
69 #ifdef DEBUG_CPU_USAGE
70 #include <cpustats/CentralTendencyStatistics.h>
71 #include <cpustats/ThreadCpuUsage.h>
72 #endif
73
74 #include "AutoPark.h"
75
76 // ----------------------------------------------------------------------------
77
78 // Note: the following macro is used for extremely verbose logging message. In
79 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
81 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
82 // turned on. Do not uncomment the #def below unless you really know what you
83 // are doing and want to see all of the extremely verbose messages.
84 //#define VERY_VERY_VERBOSE_LOGGING
85 #ifdef VERY_VERY_VERBOSE_LOGGING
86 #define ALOGVV ALOGV
87 #else
88 #define ALOGVV(a...) do { } while(0)
89 #endif
90
91 // TODO: Move these macro/inlines to a header file.
92 #define max(a, b) ((a) > (b) ? (a) : (b))
93 template <typename T>
min(const T & a,const T & b)94 static inline T min(const T& a, const T& b)
95 {
96 return a < b ? a : b;
97 }
98
99 #ifndef ARRAY_SIZE
100 #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101 #endif
102
103 namespace android {
104
105 // retry counts for buffer fill timeout
106 // 50 * ~20msecs = 1 second
107 static const int8_t kMaxTrackRetries = 50;
108 static const int8_t kMaxTrackStartupRetries = 50;
109 // allow less retry attempts on direct output thread.
110 // direct outputs can be a scarce resource in audio hardware and should
111 // be released as quickly as possible.
112 static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116 // don't warn about blocked writes or record buffer overflows more often than this
117 static const nsecs_t kWarningThrottleNs = seconds(5);
118
119 // RecordThread loop sleep time upon application overrun or audio HAL read error
120 static const int kRecordThreadSleepUs = 5000;
121
122 // maximum time to wait in sendConfigEvent_l() for a status to be received
123 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
126 static const uint32_t kMinThreadSleepTimeUs = 5000;
127 // maximum divider applied to the active sleep time in the mixer thread loop
128 static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130 // minimum normal sink buffer size, expressed in milliseconds rather than frames
131 // FIXME This should be based on experimentally observed scheduling jitter
132 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133 // maximum normal sink buffer size
134 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137 // FIXME This should be based on experimentally observed scheduling jitter
138 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140 // Offloaded output thread standby delay: allows track transition without going to standby
141 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143 // Direct output thread minimum sleep time in idle or active(underrun) state
144 static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147 // Whether to use fast mixer
148 static const enum {
149 FastMixer_Never, // never initialize or use: for debugging only
150 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
151 // normal mixer multiplier is 1
152 FastMixer_Static, // initialize if needed, then use all the time if initialized,
153 // multiplier is calculated based on min & max normal mixer buffer size
154 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
155 // multiplier is calculated based on min & max normal mixer buffer size
156 // FIXME for FastMixer_Dynamic:
157 // Supporting this option will require fixing HALs that can't handle large writes.
158 // For example, one HAL implementation returns an error from a large write,
159 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
160 // We could either fix the HAL implementations, or provide a wrapper that breaks
161 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162 } kUseFastMixer = FastMixer_Static;
163
164 // Whether to use fast capture
165 static const enum {
166 FastCapture_Never, // never initialize or use: for debugging only
167 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168 FastCapture_Static, // initialize if needed, then use all the time if initialized
169 } kUseFastCapture = FastCapture_Static;
170
171 // Priorities for requestPriority
172 static const int kPriorityAudioApp = 2;
173 static const int kPriorityFastMixer = 3;
174 static const int kPriorityFastCapture = 3;
175
176 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
178 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180 // This is the default value, if not specified by property.
181 static const int kFastTrackMultiplier = 2;
182
183 // The minimum and maximum allowed values
184 static const int kFastTrackMultiplierMin = 1;
185 static const int kFastTrackMultiplierMax = 2;
186
187 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188 static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190 // See Thread::readOnlyHeap().
191 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
194 static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196 // ----------------------------------------------------------------------------
197
198 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
sFastTrackMultiplierInit()200 static void sFastTrackMultiplierInit()
201 {
202 char value[PROPERTY_VALUE_MAX];
203 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204 char *endptr;
205 unsigned long ul = strtoul(value, &endptr, 0);
206 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207 sFastTrackMultiplier = (int) ul;
208 }
209 }
210 }
211
212 // ----------------------------------------------------------------------------
213
214 #ifdef ADD_BATTERY_DATA
215 // To collect the amplifier usage
addBatteryData(uint32_t params)216 static void addBatteryData(uint32_t params) {
217 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218 if (service == NULL) {
219 // it already logged
220 return;
221 }
222
223 service->addBatteryData(params);
224 }
225 #endif
226
227 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228 struct {
229 // call when you acquire a partial wakelock
acquireandroid::__anon7d4e85f80308230 void acquire(const sp<IBinder> &wakeLockToken) {
231 pthread_mutex_lock(&mLock);
232 if (wakeLockToken.get() == nullptr) {
233 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234 } else {
235 if (mCount == 0) {
236 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237 }
238 ++mCount;
239 }
240 pthread_mutex_unlock(&mLock);
241 }
242
243 // call when you release a partial wakelock.
releaseandroid::__anon7d4e85f80308244 void release(const sp<IBinder> &wakeLockToken) {
245 if (wakeLockToken.get() == nullptr) {
246 return;
247 }
248 pthread_mutex_lock(&mLock);
249 if (--mCount < 0) {
250 ALOGE("negative wakelock count");
251 mCount = 0;
252 }
253 pthread_mutex_unlock(&mLock);
254 }
255
256 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anon7d4e85f80308257 int64_t getBoottimeOffset() {
258 pthread_mutex_lock(&mLock);
259 int64_t boottimeOffset = mBoottimeOffset;
260 pthread_mutex_unlock(&mLock);
261 return boottimeOffset;
262 }
263
264 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265 // and the selected timebase.
266 // Currently only TIMEBASE_BOOTTIME is allowed.
267 //
268 // This only needs to be called upon acquiring the first partial wakelock
269 // after all other partial wakelocks are released.
270 //
271 // We do an empirical measurement of the offset rather than parsing
272 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anon7d4e85f80308273 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274 int clockbase;
275 switch (timebase) {
276 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277 clockbase = SYSTEM_TIME_BOOTTIME;
278 break;
279 default:
280 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281 break;
282 }
283 // try three times to get the clock offset, choose the one
284 // with the minimum gap in measurements.
285 const int tries = 3;
286 nsecs_t bestGap, measured;
287 for (int i = 0; i < tries; ++i) {
288 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289 const nsecs_t tbase = systemTime(clockbase);
290 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291 const nsecs_t gap = tmono2 - tmono;
292 if (i == 0 || gap < bestGap) {
293 bestGap = gap;
294 measured = tbase - ((tmono + tmono2) >> 1);
295 }
296 }
297
298 // to avoid micro-adjusting, we don't change the timebase
299 // unless it is significantly different.
300 //
301 // Assumption: It probably takes more than toleranceNs to
302 // suspend and resume the device.
303 static int64_t toleranceNs = 10000; // 10 us
304 if (llabs(*offset - measured) > toleranceNs) {
305 ALOGV("Adjusting timebase offset old: %lld new: %lld",
306 (long long)*offset, (long long)measured);
307 *offset = measured;
308 }
309 }
310
311 pthread_mutex_t mLock;
312 int32_t mCount;
313 int64_t mBoottimeOffset;
314 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316 // ----------------------------------------------------------------------------
317 // CPU Stats
318 // ----------------------------------------------------------------------------
319
320 class CpuStats {
321 public:
322 CpuStats();
323 void sample(const String8 &title);
324 #ifdef DEBUG_CPU_USAGE
325 private:
326 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
327 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331 int mCpuNum; // thread's current CPU number
332 int mCpukHz; // frequency of thread's current CPU in kHz
333 #endif
334 };
335
CpuStats()336 CpuStats::CpuStats()
337 #ifdef DEBUG_CPU_USAGE
338 : mCpuNum(-1), mCpukHz(-1)
339 #endif
340 {
341 }
342
sample(const String8 & title __unused)343 void CpuStats::sample(const String8 &title
344 #ifndef DEBUG_CPU_USAGE
345 __unused
346 #endif
347 ) {
348 #ifdef DEBUG_CPU_USAGE
349 // get current thread's delta CPU time in wall clock ns
350 double wcNs;
351 bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353 // record sample for wall clock statistics
354 if (valid) {
355 mWcStats.sample(wcNs);
356 }
357
358 // get the current CPU number
359 int cpuNum = sched_getcpu();
360
361 // get the current CPU frequency in kHz
362 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364 // check if either CPU number or frequency changed
365 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366 mCpuNum = cpuNum;
367 mCpukHz = cpukHz;
368 // ignore sample for purposes of cycles
369 valid = false;
370 }
371
372 // if no change in CPU number or frequency, then record sample for cycle statistics
373 if (valid && mCpukHz > 0) {
374 double cycles = wcNs * cpukHz * 0.000001;
375 mHzStats.sample(cycles);
376 }
377
378 unsigned n = mWcStats.n();
379 // mCpuUsage.elapsed() is expensive, so don't call it every loop
380 if ((n & 127) == 1) {
381 long long elapsed = mCpuUsage.elapsed();
382 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383 double perLoop = elapsed / (double) n;
384 double perLoop100 = perLoop * 0.01;
385 double perLoop1k = perLoop * 0.001;
386 double mean = mWcStats.mean();
387 double stddev = mWcStats.stddev();
388 double minimum = mWcStats.minimum();
389 double maximum = mWcStats.maximum();
390 double meanCycles = mHzStats.mean();
391 double stddevCycles = mHzStats.stddev();
392 double minCycles = mHzStats.minimum();
393 double maxCycles = mHzStats.maximum();
394 mCpuUsage.resetElapsed();
395 mWcStats.reset();
396 mHzStats.reset();
397 ALOGD("CPU usage for %s over past %.1f secs\n"
398 " (%u mixer loops at %.1f mean ms per loop):\n"
399 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402 title.string(),
403 elapsed * .000000001, n, perLoop * .000001,
404 mean * .001,
405 stddev * .001,
406 minimum * .001,
407 maximum * .001,
408 mean / perLoop100,
409 stddev / perLoop100,
410 minimum / perLoop100,
411 maximum / perLoop100,
412 meanCycles / perLoop1k,
413 stddevCycles / perLoop1k,
414 minCycles / perLoop1k,
415 maxCycles / perLoop1k);
416
417 }
418 }
419 #endif
420 };
421
422 // ----------------------------------------------------------------------------
423 // ThreadBase
424 // ----------------------------------------------------------------------------
425
426 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)427 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428 {
429 switch (type) {
430 case MIXER:
431 return "MIXER";
432 case DIRECT:
433 return "DIRECT";
434 case DUPLICATING:
435 return "DUPLICATING";
436 case RECORD:
437 return "RECORD";
438 case OFFLOAD:
439 return "OFFLOAD";
440 default:
441 return "unknown";
442 }
443 }
444
devicesToString(audio_devices_t devices)445 String8 devicesToString(audio_devices_t devices)
446 {
447 static const struct mapping {
448 audio_devices_t mDevices;
449 const char * mString;
450 } mappingsOut[] = {
451 {AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE"},
452 {AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER"},
453 {AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET"},
454 {AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE"},
455 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO"},
456 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
457 {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT"},
458 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"},
459 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460 {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER"},
461 {AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL"},
462 {AUDIO_DEVICE_OUT_HDMI, "HDMI"},
463 {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464 {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465 {AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY"},
466 {AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE"},
467 {AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX"},
468 {AUDIO_DEVICE_OUT_LINE, "LINE"},
469 {AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC"},
470 {AUDIO_DEVICE_OUT_SPDIF, "SPDIF"},
471 {AUDIO_DEVICE_OUT_FM, "FM"},
472 {AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE"},
473 {AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE"},
474 {AUDIO_DEVICE_OUT_IP, "IP"},
475 {AUDIO_DEVICE_OUT_BUS, "BUS"},
476 {AUDIO_DEVICE_NONE, "NONE"}, // must be last
477 }, mappingsIn[] = {
478 {AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION"},
479 {AUDIO_DEVICE_IN_AMBIENT, "AMBIENT"},
480 {AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC"},
481 {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482 {AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET"},
483 {AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL"},
484 {AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL"},
485 {AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX"},
486 {AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC"},
487 {AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX"},
488 {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489 {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490 {AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY"},
491 {AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE"},
492 {AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER"},
493 {AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER"},
494 {AUDIO_DEVICE_IN_LINE, "LINE"},
495 {AUDIO_DEVICE_IN_SPDIF, "SPDIF"},
496 {AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP"},
497 {AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK"},
498 {AUDIO_DEVICE_IN_IP, "IP"},
499 {AUDIO_DEVICE_IN_BUS, "BUS"},
500 {AUDIO_DEVICE_NONE, "NONE"}, // must be last
501 };
502 String8 result;
503 audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504 const mapping *entry;
505 if (devices & AUDIO_DEVICE_BIT_IN) {
506 devices &= ~AUDIO_DEVICE_BIT_IN;
507 entry = mappingsIn;
508 } else {
509 entry = mappingsOut;
510 }
511 for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512 allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513 if (devices & entry->mDevices) {
514 if (!result.isEmpty()) {
515 result.append("|");
516 }
517 result.append(entry->mString);
518 }
519 }
520 if (devices & ~allDevices) {
521 if (!result.isEmpty()) {
522 result.append("|");
523 }
524 result.appendFormat("0x%X", devices & ~allDevices);
525 }
526 if (result.isEmpty()) {
527 result.append(entry->mString);
528 }
529 return result;
530 }
531
inputFlagsToString(audio_input_flags_t flags)532 String8 inputFlagsToString(audio_input_flags_t flags)
533 {
534 static const struct mapping {
535 audio_input_flags_t mFlag;
536 const char * mString;
537 } mappings[] = {
538 {AUDIO_INPUT_FLAG_FAST, "FAST"},
539 {AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD"},
540 {AUDIO_INPUT_FLAG_RAW, "RAW"},
541 {AUDIO_INPUT_FLAG_SYNC, "SYNC"},
542 {AUDIO_INPUT_FLAG_NONE, "NONE"}, // must be last
543 };
544 String8 result;
545 audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546 const mapping *entry;
547 for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548 allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549 if (flags & entry->mFlag) {
550 if (!result.isEmpty()) {
551 result.append("|");
552 }
553 result.append(entry->mString);
554 }
555 }
556 if (flags & ~allFlags) {
557 if (!result.isEmpty()) {
558 result.append("|");
559 }
560 result.appendFormat("0x%X", flags & ~allFlags);
561 }
562 if (result.isEmpty()) {
563 result.append(entry->mString);
564 }
565 return result;
566 }
567
outputFlagsToString(audio_output_flags_t flags)568 String8 outputFlagsToString(audio_output_flags_t flags)
569 {
570 static const struct mapping {
571 audio_output_flags_t mFlag;
572 const char * mString;
573 } mappings[] = {
574 {AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT"},
575 {AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY"},
576 {AUDIO_OUTPUT_FLAG_FAST, "FAST"},
577 {AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER"},
578 {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579 {AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING"},
580 {AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC"},
581 {AUDIO_OUTPUT_FLAG_RAW, "RAW"},
582 {AUDIO_OUTPUT_FLAG_SYNC, "SYNC"},
583 {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584 {AUDIO_OUTPUT_FLAG_NONE, "NONE"}, // must be last
585 };
586 String8 result;
587 audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588 const mapping *entry;
589 for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590 allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591 if (flags & entry->mFlag) {
592 if (!result.isEmpty()) {
593 result.append("|");
594 }
595 result.append(entry->mString);
596 }
597 }
598 if (flags & ~allFlags) {
599 if (!result.isEmpty()) {
600 result.append("|");
601 }
602 result.appendFormat("0x%X", flags & ~allFlags);
603 }
604 if (result.isEmpty()) {
605 result.append(entry->mString);
606 }
607 return result;
608 }
609
sourceToString(audio_source_t source)610 const char *sourceToString(audio_source_t source)
611 {
612 switch (source) {
613 case AUDIO_SOURCE_DEFAULT: return "default";
614 case AUDIO_SOURCE_MIC: return "mic";
615 case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink";
616 case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink";
617 case AUDIO_SOURCE_VOICE_CALL: return "voice call";
618 case AUDIO_SOURCE_CAMCORDER: return "camcorder";
619 case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition";
620 case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication";
621 case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix";
622 case AUDIO_SOURCE_UNPROCESSED: return "unprocessed";
623 case AUDIO_SOURCE_FM_TUNER: return "FM tuner";
624 case AUDIO_SOURCE_HOTWORD: return "hotword";
625 default: return "unknown";
626 }
627 }
628
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type,bool systemReady)629 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630 audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631 : Thread(false /*canCallJava*/),
632 mType(type),
633 mAudioFlinger(audioFlinger),
634 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635 // are set by PlaybackThread::readOutputParameters_l() or
636 // RecordThread::readInputParameters_l()
637 //FIXME: mStandby should be true here. Is this some kind of hack?
638 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639 mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641 // mName will be set by concrete (non-virtual) subclass
642 mDeathRecipient(new PMDeathRecipient(this)),
643 mSystemReady(systemReady),
644 mNotifiedBatteryStart(false)
645 {
646 memset(&mPatch, 0, sizeof(struct audio_patch));
647 }
648
~ThreadBase()649 AudioFlinger::ThreadBase::~ThreadBase()
650 {
651 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652 mConfigEvents.clear();
653
654 // do not lock the mutex in destructor
655 releaseWakeLock_l();
656 if (mPowerManager != 0) {
657 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658 binder->unlinkToDeath(mDeathRecipient);
659 }
660 }
661
readyToRun()662 status_t AudioFlinger::ThreadBase::readyToRun()
663 {
664 status_t status = initCheck();
665 if (status == NO_ERROR) {
666 ALOGI("AudioFlinger's thread %p ready to run", this);
667 } else {
668 ALOGE("No working audio driver found.");
669 }
670 return status;
671 }
672
exit()673 void AudioFlinger::ThreadBase::exit()
674 {
675 ALOGV("ThreadBase::exit");
676 // do any cleanup required for exit to succeed
677 preExit();
678 {
679 // This lock prevents the following race in thread (uniprocessor for illustration):
680 // if (!exitPending()) {
681 // // context switch from here to exit()
682 // // exit() calls requestExit(), what exitPending() observes
683 // // exit() calls signal(), which is dropped since no waiters
684 // // context switch back from exit() to here
685 // mWaitWorkCV.wait(...);
686 // // now thread is hung
687 // }
688 AutoMutex lock(mLock);
689 requestExit();
690 mWaitWorkCV.broadcast();
691 }
692 // When Thread::requestExitAndWait is made virtual and this method is renamed to
693 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694 requestExitAndWait();
695 }
696
setParameters(const String8 & keyValuePairs)697 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698 {
699 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700 Mutex::Autolock _l(mLock);
701
702 return sendSetParameterConfigEvent_l(keyValuePairs);
703 }
704
705 // sendConfigEvent_l() must be called with ThreadBase::mLock held
706 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)707 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708 {
709 status_t status = NO_ERROR;
710
711 if (event->mRequiresSystemReady && !mSystemReady) {
712 event->mWaitStatus = false;
713 mPendingConfigEvents.add(event);
714 return status;
715 }
716 mConfigEvents.add(event);
717 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718 mWaitWorkCV.signal();
719 mLock.unlock();
720 {
721 Mutex::Autolock _l(event->mLock);
722 while (event->mWaitStatus) {
723 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724 event->mStatus = TIMED_OUT;
725 event->mWaitStatus = false;
726 }
727 }
728 status = event->mStatus;
729 }
730 mLock.lock();
731 return status;
732 }
733
sendIoConfigEvent(audio_io_config_event event,pid_t pid)734 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735 {
736 Mutex::Autolock _l(mLock);
737 sendIoConfigEvent_l(event, pid);
738 }
739
740 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid)741 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742 {
743 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744 sendConfigEvent_l(configEvent);
745 }
746
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio)747 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748 {
749 Mutex::Autolock _l(mLock);
750 sendPrioConfigEvent_l(pid, tid, prio);
751 }
752
753 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)754 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755 {
756 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757 sendConfigEvent_l(configEvent);
758 }
759
760 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)761 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762 {
763 sp<ConfigEvent> configEvent;
764 AudioParameter param(keyValuePair);
765 int value;
766 if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767 setMasterMono_l(value != 0);
768 if (param.size() == 1) {
769 return NO_ERROR; // should be a solo parameter - we don't pass down
770 }
771 param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772 configEvent = new SetParameterConfigEvent(param.toString());
773 } else {
774 configEvent = new SetParameterConfigEvent(keyValuePair);
775 }
776 return sendConfigEvent_l(configEvent);
777 }
778
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)779 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780 const struct audio_patch *patch,
781 audio_patch_handle_t *handle)
782 {
783 Mutex::Autolock _l(mLock);
784 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785 status_t status = sendConfigEvent_l(configEvent);
786 if (status == NO_ERROR) {
787 CreateAudioPatchConfigEventData *data =
788 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789 *handle = data->mHandle;
790 }
791 return status;
792 }
793
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)794 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795 const audio_patch_handle_t handle)
796 {
797 Mutex::Autolock _l(mLock);
798 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799 return sendConfigEvent_l(configEvent);
800 }
801
802
803 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()804 void AudioFlinger::ThreadBase::processConfigEvents_l()
805 {
806 bool configChanged = false;
807
808 while (!mConfigEvents.isEmpty()) {
809 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810 sp<ConfigEvent> event = mConfigEvents[0];
811 mConfigEvents.removeAt(0);
812 switch (event->mType) {
813 case CFG_EVENT_PRIO: {
814 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815 // FIXME Need to understand why this has to be done asynchronously
816 int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817 true /*asynchronous*/);
818 if (err != 0) {
819 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820 data->mPrio, data->mPid, data->mTid, err);
821 }
822 } break;
823 case CFG_EVENT_IO: {
824 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825 ioConfigChanged(data->mEvent, data->mPid);
826 } break;
827 case CFG_EVENT_SET_PARAMETER: {
828 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830 configChanged = true;
831 }
832 } break;
833 case CFG_EVENT_CREATE_AUDIO_PATCH: {
834 CreateAudioPatchConfigEventData *data =
835 (CreateAudioPatchConfigEventData *)event->mData.get();
836 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837 } break;
838 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839 ReleaseAudioPatchConfigEventData *data =
840 (ReleaseAudioPatchConfigEventData *)event->mData.get();
841 event->mStatus = releaseAudioPatch_l(data->mHandle);
842 } break;
843 default:
844 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845 break;
846 }
847 {
848 Mutex::Autolock _l(event->mLock);
849 if (event->mWaitStatus) {
850 event->mWaitStatus = false;
851 event->mCond.signal();
852 }
853 }
854 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855 }
856
857 if (configChanged) {
858 cacheParameters_l();
859 }
860 }
861
channelMaskToString(audio_channel_mask_t mask,bool output)862 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863 String8 s;
864 const audio_channel_representation_t representation =
865 audio_channel_mask_get_representation(mask);
866
867 switch (representation) {
868 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869 if (output) {
870 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
889 } else {
890 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
905 }
906 const int len = s.length();
907 if (len > 2) {
908 (void) s.lockBuffer(len); // needed?
909 s.unlockBuffer(len - 2); // remove trailing ", "
910 }
911 return s;
912 }
913 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915 return s;
916 default:
917 s.appendFormat("unknown mask, representation:%d bits:%#x",
918 representation, audio_channel_mask_get_bits(mask));
919 return s;
920 }
921 }
922
dumpBase(int fd,const Vector<String16> & args __unused)923 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924 {
925 const size_t SIZE = 256;
926 char buffer[SIZE];
927 String8 result;
928
929 bool locked = AudioFlinger::dumpTryLock(mLock);
930 if (!locked) {
931 dprintf(fd, "thread %p may be deadlocked\n", this);
932 }
933
934 dprintf(fd, " Thread name: %s\n", mThreadName);
935 dprintf(fd, " I/O handle: %d\n", mId);
936 dprintf(fd, " TID: %d\n", getTid());
937 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
938 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
939 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
940 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
942 dprintf(fd, " Channel count: %u\n", mChannelCount);
943 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
944 channelMaskToString(mChannelMask, mType != RECORD).string());
945 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
947 dprintf(fd, " Pending config events:");
948 size_t numConfig = mConfigEvents.size();
949 if (numConfig) {
950 for (size_t i = 0; i < numConfig; i++) {
951 mConfigEvents[i]->dump(buffer, SIZE);
952 dprintf(fd, "\n %s", buffer);
953 }
954 dprintf(fd, "\n");
955 } else {
956 dprintf(fd, " none\n");
957 }
958 dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959 dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962 if (locked) {
963 mLock.unlock();
964 }
965 }
966
dumpEffectChains(int fd,const Vector<String16> & args)967 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968 {
969 const size_t SIZE = 256;
970 char buffer[SIZE];
971 String8 result;
972
973 size_t numEffectChains = mEffectChains.size();
974 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
975 write(fd, buffer, strlen(buffer));
976
977 for (size_t i = 0; i < numEffectChains; ++i) {
978 sp<EffectChain> chain = mEffectChains[i];
979 if (chain != 0) {
980 chain->dump(fd, args);
981 }
982 }
983 }
984
acquireWakeLock(int uid)985 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986 {
987 Mutex::Autolock _l(mLock);
988 acquireWakeLock_l(uid);
989 }
990
getWakeLockTag()991 String16 AudioFlinger::ThreadBase::getWakeLockTag()
992 {
993 switch (mType) {
994 case MIXER:
995 return String16("AudioMix");
996 case DIRECT:
997 return String16("AudioDirectOut");
998 case DUPLICATING:
999 return String16("AudioDup");
1000 case RECORD:
1001 return String16("AudioIn");
1002 case OFFLOAD:
1003 return String16("AudioOffload");
1004 default:
1005 ALOG_ASSERT(false);
1006 return String16("AudioUnknown");
1007 }
1008 }
1009
acquireWakeLock_l(int uid)1010 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011 {
1012 getPowerManager_l();
1013 if (mPowerManager != 0) {
1014 sp<IBinder> binder = new BBinder();
1015 status_t status;
1016 if (uid >= 0) {
1017 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018 binder,
1019 getWakeLockTag(),
1020 String16("audioserver"),
1021 uid,
1022 true /* FIXME force oneway contrary to .aidl */);
1023 } else {
1024 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025 binder,
1026 getWakeLockTag(),
1027 String16("audioserver"),
1028 true /* FIXME force oneway contrary to .aidl */);
1029 }
1030 if (status == NO_ERROR) {
1031 mWakeLockToken = binder;
1032 }
1033 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034 }
1035
1036 if (!mNotifiedBatteryStart) {
1037 BatteryNotifier::getInstance().noteStartAudio();
1038 mNotifiedBatteryStart = true;
1039 }
1040 gBoottime.acquire(mWakeLockToken);
1041 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042 gBoottime.getBoottimeOffset();
1043 }
1044
releaseWakeLock()1045 void AudioFlinger::ThreadBase::releaseWakeLock()
1046 {
1047 Mutex::Autolock _l(mLock);
1048 releaseWakeLock_l();
1049 }
1050
releaseWakeLock_l()1051 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052 {
1053 gBoottime.release(mWakeLockToken);
1054 if (mWakeLockToken != 0) {
1055 ALOGV("releaseWakeLock_l() %s", mThreadName);
1056 if (mPowerManager != 0) {
1057 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058 true /* FIXME force oneway contrary to .aidl */);
1059 }
1060 mWakeLockToken.clear();
1061 }
1062
1063 if (mNotifiedBatteryStart) {
1064 BatteryNotifier::getInstance().noteStopAudio();
1065 mNotifiedBatteryStart = false;
1066 }
1067 }
1068
updateWakeLockUids(const SortedVector<int> & uids)1069 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070 Mutex::Autolock _l(mLock);
1071 updateWakeLockUids_l(uids);
1072 }
1073
getPowerManager_l()1074 void AudioFlinger::ThreadBase::getPowerManager_l() {
1075 if (mSystemReady && mPowerManager == 0) {
1076 // use checkService() to avoid blocking if power service is not up yet
1077 sp<IBinder> binder =
1078 defaultServiceManager()->checkService(String16("power"));
1079 if (binder == 0) {
1080 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081 } else {
1082 mPowerManager = interface_cast<IPowerManager>(binder);
1083 binder->linkToDeath(mDeathRecipient);
1084 }
1085 }
1086 }
1087
updateWakeLockUids_l(const SortedVector<int> & uids)1088 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089 getPowerManager_l();
1090 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091 if (mSystemReady) {
1092 ALOGE("no wake lock to update, but system ready!");
1093 } else {
1094 ALOGW("no wake lock to update, system not ready yet");
1095 }
1096 return;
1097 }
1098 if (mPowerManager != 0) {
1099 sp<IBinder> binder = new BBinder();
1100 status_t status;
1101 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102 true /* FIXME force oneway contrary to .aidl */);
1103 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104 }
1105 }
1106
clearPowerManager()1107 void AudioFlinger::ThreadBase::clearPowerManager()
1108 {
1109 Mutex::Autolock _l(mLock);
1110 releaseWakeLock_l();
1111 mPowerManager.clear();
1112 }
1113
binderDied(const wp<IBinder> & who __unused)1114 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115 {
1116 sp<ThreadBase> thread = mThread.promote();
1117 if (thread != 0) {
1118 thread->clearPowerManager();
1119 }
1120 ALOGW("power manager service died !!!");
1121 }
1122
setEffectSuspended(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1123 void AudioFlinger::ThreadBase::setEffectSuspended(
1124 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125 {
1126 Mutex::Autolock _l(mLock);
1127 setEffectSuspended_l(type, suspend, sessionId);
1128 }
1129
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1130 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132 {
1133 sp<EffectChain> chain = getEffectChain_l(sessionId);
1134 if (chain != 0) {
1135 if (type != NULL) {
1136 chain->setEffectSuspended_l(type, suspend);
1137 } else {
1138 chain->setEffectSuspendedAll_l(suspend);
1139 }
1140 }
1141
1142 updateSuspendedSessions_l(type, suspend, sessionId);
1143 }
1144
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1145 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146 {
1147 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148 if (index < 0) {
1149 return;
1150 }
1151
1152 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153 mSuspendedSessions.valueAt(index);
1154
1155 for (size_t i = 0; i < sessionEffects.size(); i++) {
1156 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1157 for (int j = 0; j < desc->mRefCount; j++) {
1158 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159 chain->setEffectSuspendedAll_l(true);
1160 } else {
1161 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162 desc->mType.timeLow);
1163 chain->setEffectSuspended_l(&desc->mType, true);
1164 }
1165 }
1166 }
1167 }
1168
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1169 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170 bool suspend,
1171 audio_session_t sessionId)
1172 {
1173 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177 if (suspend) {
1178 if (index >= 0) {
1179 sessionEffects = mSuspendedSessions.valueAt(index);
1180 } else {
1181 mSuspendedSessions.add(sessionId, sessionEffects);
1182 }
1183 } else {
1184 if (index < 0) {
1185 return;
1186 }
1187 sessionEffects = mSuspendedSessions.valueAt(index);
1188 }
1189
1190
1191 int key = EffectChain::kKeyForSuspendAll;
1192 if (type != NULL) {
1193 key = type->timeLow;
1194 }
1195 index = sessionEffects.indexOfKey(key);
1196
1197 sp<SuspendedSessionDesc> desc;
1198 if (suspend) {
1199 if (index >= 0) {
1200 desc = sessionEffects.valueAt(index);
1201 } else {
1202 desc = new SuspendedSessionDesc();
1203 if (type != NULL) {
1204 desc->mType = *type;
1205 }
1206 sessionEffects.add(key, desc);
1207 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208 }
1209 desc->mRefCount++;
1210 } else {
1211 if (index < 0) {
1212 return;
1213 }
1214 desc = sessionEffects.valueAt(index);
1215 if (--desc->mRefCount == 0) {
1216 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217 sessionEffects.removeItemsAt(index);
1218 if (sessionEffects.isEmpty()) {
1219 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220 sessionId);
1221 mSuspendedSessions.removeItem(sessionId);
1222 }
1223 }
1224 }
1225 if (!sessionEffects.isEmpty()) {
1226 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227 }
1228 }
1229
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1230 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231 bool enabled,
1232 audio_session_t sessionId)
1233 {
1234 Mutex::Autolock _l(mLock);
1235 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236 }
1237
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,audio_session_t sessionId)1238 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239 bool enabled,
1240 audio_session_t sessionId)
1241 {
1242 if (mType != RECORD) {
1243 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244 // another session. This gives the priority to well behaved effect control panels
1245 // and applications not using global effects.
1246 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247 // global effects
1248 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250 }
1251 }
1252
1253 sp<EffectChain> chain = getEffectChain_l(sessionId);
1254 if (chain != 0) {
1255 chain->checkSuspendOnEffectEnabled(effect, enabled);
1256 }
1257 }
1258
1259 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1260 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1261 const effect_descriptor_t *desc, audio_session_t sessionId)
1262 {
1263 // No global effect sessions on record threads
1264 if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1265 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1266 desc->name, mThreadName);
1267 return BAD_VALUE;
1268 }
1269 // only pre processing effects on record thread
1270 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1271 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1272 desc->name, mThreadName);
1273 return BAD_VALUE;
1274 }
1275 audio_input_flags_t flags = mInput->flags;
1276 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1277 if (flags & AUDIO_INPUT_FLAG_RAW) {
1278 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1279 desc->name, mThreadName);
1280 return BAD_VALUE;
1281 }
1282 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1283 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1284 desc->name, mThreadName);
1285 return BAD_VALUE;
1286 }
1287 }
1288 return NO_ERROR;
1289 }
1290
1291 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1292 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1293 const effect_descriptor_t *desc, audio_session_t sessionId)
1294 {
1295 // no preprocessing on playback threads
1296 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1297 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1298 " thread %s", desc->name, mThreadName);
1299 return BAD_VALUE;
1300 }
1301
1302 switch (mType) {
1303 case MIXER: {
1304 // Reject any effect on mixer multichannel sinks.
1305 // TODO: fix both format and multichannel issues with effects.
1306 if (mChannelCount != FCC_2) {
1307 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1308 " thread %s", desc->name, mChannelCount, mThreadName);
1309 return BAD_VALUE;
1310 }
1311 audio_output_flags_t flags = mOutput->flags;
1312 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1313 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1314 // global effects are applied only to non fast tracks if they are SW
1315 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1316 break;
1317 }
1318 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1319 // only post processing on output stage session
1320 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1321 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1322 " on output stage session", desc->name);
1323 return BAD_VALUE;
1324 }
1325 } else {
1326 // no restriction on effects applied on non fast tracks
1327 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1328 break;
1329 }
1330 }
1331 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1332 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1333 desc->name);
1334 return BAD_VALUE;
1335 }
1336 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1337 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1338 " in fast mode", desc->name);
1339 return BAD_VALUE;
1340 }
1341 }
1342 } break;
1343 case OFFLOAD:
1344 // nothing actionable on offload threads, if the effect:
1345 // - is offloadable: the effect can be created
1346 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1347 // will take care of invalidating the tracks of the thread
1348 break;
1349 case DIRECT:
1350 // Reject any effect on Direct output threads for now, since the format of
1351 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1352 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1353 desc->name, mThreadName);
1354 return BAD_VALUE;
1355 case DUPLICATING:
1356 // Reject any effect on mixer multichannel sinks.
1357 // TODO: fix both format and multichannel issues with effects.
1358 if (mChannelCount != FCC_2) {
1359 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1360 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1361 return BAD_VALUE;
1362 }
1363 if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1364 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1365 " thread %s", desc->name, mThreadName);
1366 return BAD_VALUE;
1367 }
1368 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1369 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1370 " DUPLICATING thread %s", desc->name, mThreadName);
1371 return BAD_VALUE;
1372 }
1373 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1374 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1375 " DUPLICATING thread %s", desc->name, mThreadName);
1376 return BAD_VALUE;
1377 }
1378 break;
1379 default:
1380 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1381 }
1382
1383 return NO_ERROR;
1384 }
1385
1386 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)1387 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1388 const sp<AudioFlinger::Client>& client,
1389 const sp<IEffectClient>& effectClient,
1390 int32_t priority,
1391 audio_session_t sessionId,
1392 effect_descriptor_t *desc,
1393 int *enabled,
1394 status_t *status)
1395 {
1396 sp<EffectModule> effect;
1397 sp<EffectHandle> handle;
1398 status_t lStatus;
1399 sp<EffectChain> chain;
1400 bool chainCreated = false;
1401 bool effectCreated = false;
1402 bool effectRegistered = false;
1403
1404 lStatus = initCheck();
1405 if (lStatus != NO_ERROR) {
1406 ALOGW("createEffect_l() Audio driver not initialized.");
1407 goto Exit;
1408 }
1409
1410 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1411
1412 { // scope for mLock
1413 Mutex::Autolock _l(mLock);
1414
1415 lStatus = checkEffectCompatibility_l(desc, sessionId);
1416 if (lStatus != NO_ERROR) {
1417 goto Exit;
1418 }
1419
1420 // check for existing effect chain with the requested audio session
1421 chain = getEffectChain_l(sessionId);
1422 if (chain == 0) {
1423 // create a new chain for this session
1424 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1425 chain = new EffectChain(this, sessionId);
1426 addEffectChain_l(chain);
1427 chain->setStrategy(getStrategyForSession_l(sessionId));
1428 chainCreated = true;
1429 } else {
1430 effect = chain->getEffectFromDesc_l(desc);
1431 }
1432
1433 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1434
1435 if (effect == 0) {
1436 audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1437 // Check CPU and memory usage
1438 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1439 if (lStatus != NO_ERROR) {
1440 goto Exit;
1441 }
1442 effectRegistered = true;
1443 // create a new effect module if none present in the chain
1444 effect = new EffectModule(this, chain, desc, id, sessionId);
1445 lStatus = effect->status();
1446 if (lStatus != NO_ERROR) {
1447 goto Exit;
1448 }
1449 effect->setOffloaded(mType == OFFLOAD, mId);
1450
1451 lStatus = chain->addEffect_l(effect);
1452 if (lStatus != NO_ERROR) {
1453 goto Exit;
1454 }
1455 effectCreated = true;
1456
1457 effect->setDevice(mOutDevice);
1458 effect->setDevice(mInDevice);
1459 effect->setMode(mAudioFlinger->getMode());
1460 effect->setAudioSource(mAudioSource);
1461 }
1462 // create effect handle and connect it to effect module
1463 handle = new EffectHandle(effect, client, effectClient, priority);
1464 lStatus = handle->initCheck();
1465 if (lStatus == OK) {
1466 lStatus = effect->addHandle(handle.get());
1467 }
1468 if (enabled != NULL) {
1469 *enabled = (int)effect->isEnabled();
1470 }
1471 }
1472
1473 Exit:
1474 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1475 Mutex::Autolock _l(mLock);
1476 if (effectCreated) {
1477 chain->removeEffect_l(effect);
1478 }
1479 if (effectRegistered) {
1480 AudioSystem::unregisterEffect(effect->id());
1481 }
1482 if (chainCreated) {
1483 removeEffectChain_l(chain);
1484 }
1485 handle.clear();
1486 }
1487
1488 *status = lStatus;
1489 return handle;
1490 }
1491
getEffect(audio_session_t sessionId,int effectId)1492 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1493 int effectId)
1494 {
1495 Mutex::Autolock _l(mLock);
1496 return getEffect_l(sessionId, effectId);
1497 }
1498
getEffect_l(audio_session_t sessionId,int effectId)1499 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1500 int effectId)
1501 {
1502 sp<EffectChain> chain = getEffectChain_l(sessionId);
1503 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1504 }
1505
1506 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1507 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1508 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1509 {
1510 // check for existing effect chain with the requested audio session
1511 audio_session_t sessionId = effect->sessionId();
1512 sp<EffectChain> chain = getEffectChain_l(sessionId);
1513 bool chainCreated = false;
1514
1515 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1516 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1517 this, effect->desc().name, effect->desc().flags);
1518
1519 if (chain == 0) {
1520 // create a new chain for this session
1521 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1522 chain = new EffectChain(this, sessionId);
1523 addEffectChain_l(chain);
1524 chain->setStrategy(getStrategyForSession_l(sessionId));
1525 chainCreated = true;
1526 }
1527 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1528
1529 if (chain->getEffectFromId_l(effect->id()) != 0) {
1530 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1531 this, effect->desc().name, chain.get());
1532 return BAD_VALUE;
1533 }
1534
1535 effect->setOffloaded(mType == OFFLOAD, mId);
1536
1537 status_t status = chain->addEffect_l(effect);
1538 if (status != NO_ERROR) {
1539 if (chainCreated) {
1540 removeEffectChain_l(chain);
1541 }
1542 return status;
1543 }
1544
1545 effect->setDevice(mOutDevice);
1546 effect->setDevice(mInDevice);
1547 effect->setMode(mAudioFlinger->getMode());
1548 effect->setAudioSource(mAudioSource);
1549 return NO_ERROR;
1550 }
1551
removeEffect_l(const sp<EffectModule> & effect)1552 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1553
1554 ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1555 effect_descriptor_t desc = effect->desc();
1556 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1557 detachAuxEffect_l(effect->id());
1558 }
1559
1560 sp<EffectChain> chain = effect->chain().promote();
1561 if (chain != 0) {
1562 // remove effect chain if removing last effect
1563 if (chain->removeEffect_l(effect) == 0) {
1564 removeEffectChain_l(chain);
1565 }
1566 } else {
1567 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1568 }
1569 }
1570
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1571 void AudioFlinger::ThreadBase::lockEffectChains_l(
1572 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1573 {
1574 effectChains = mEffectChains;
1575 for (size_t i = 0; i < mEffectChains.size(); i++) {
1576 mEffectChains[i]->lock();
1577 }
1578 }
1579
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1580 void AudioFlinger::ThreadBase::unlockEffectChains(
1581 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1582 {
1583 for (size_t i = 0; i < effectChains.size(); i++) {
1584 effectChains[i]->unlock();
1585 }
1586 }
1587
getEffectChain(audio_session_t sessionId)1588 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1589 {
1590 Mutex::Autolock _l(mLock);
1591 return getEffectChain_l(sessionId);
1592 }
1593
getEffectChain_l(audio_session_t sessionId) const1594 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1595 const
1596 {
1597 size_t size = mEffectChains.size();
1598 for (size_t i = 0; i < size; i++) {
1599 if (mEffectChains[i]->sessionId() == sessionId) {
1600 return mEffectChains[i];
1601 }
1602 }
1603 return 0;
1604 }
1605
setMode(audio_mode_t mode)1606 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1607 {
1608 Mutex::Autolock _l(mLock);
1609 size_t size = mEffectChains.size();
1610 for (size_t i = 0; i < size; i++) {
1611 mEffectChains[i]->setMode_l(mode);
1612 }
1613 }
1614
getAudioPortConfig(struct audio_port_config * config)1615 void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1616 {
1617 config->type = AUDIO_PORT_TYPE_MIX;
1618 config->ext.mix.handle = mId;
1619 config->sample_rate = mSampleRate;
1620 config->format = mFormat;
1621 config->channel_mask = mChannelMask;
1622 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1623 AUDIO_PORT_CONFIG_FORMAT;
1624 }
1625
systemReady()1626 void AudioFlinger::ThreadBase::systemReady()
1627 {
1628 Mutex::Autolock _l(mLock);
1629 if (mSystemReady) {
1630 return;
1631 }
1632 mSystemReady = true;
1633
1634 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1635 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1636 }
1637 mPendingConfigEvents.clear();
1638 }
1639
1640
1641 // ----------------------------------------------------------------------------
1642 // Playback
1643 // ----------------------------------------------------------------------------
1644
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type,bool systemReady)1645 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1646 AudioStreamOut* output,
1647 audio_io_handle_t id,
1648 audio_devices_t device,
1649 type_t type,
1650 bool systemReady)
1651 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1652 mNormalFrameCount(0), mSinkBuffer(NULL),
1653 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1654 mMixerBuffer(NULL),
1655 mMixerBufferSize(0),
1656 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1657 mMixerBufferValid(false),
1658 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1659 mEffectBuffer(NULL),
1660 mEffectBufferSize(0),
1661 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1662 mEffectBufferValid(false),
1663 mSuspended(0), mBytesWritten(0),
1664 mFramesWritten(0),
1665 mSuspendedFrames(0),
1666 mActiveTracksGeneration(0),
1667 // mStreamTypes[] initialized in constructor body
1668 mOutput(output),
1669 mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1670 mMixerStatus(MIXER_IDLE),
1671 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1672 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1673 mBytesRemaining(0),
1674 mCurrentWriteLength(0),
1675 mUseAsyncWrite(false),
1676 mWriteAckSequence(0),
1677 mDrainSequence(0),
1678 mSignalPending(false),
1679 mScreenState(AudioFlinger::mScreenState),
1680 // index 0 is reserved for normal mixer's submix
1681 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1682 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1683 {
1684 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1685 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1686
1687 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1688 // it would be safer to explicitly pass initial masterVolume/masterMute as
1689 // parameter.
1690 //
1691 // If the HAL we are using has support for master volume or master mute,
1692 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1693 // and the mute set to false).
1694 mMasterVolume = audioFlinger->masterVolume_l();
1695 mMasterMute = audioFlinger->masterMute_l();
1696 if (mOutput && mOutput->audioHwDev) {
1697 if (mOutput->audioHwDev->canSetMasterVolume()) {
1698 mMasterVolume = 1.0;
1699 }
1700
1701 if (mOutput->audioHwDev->canSetMasterMute()) {
1702 mMasterMute = false;
1703 }
1704 }
1705
1706 readOutputParameters_l();
1707
1708 // ++ operator does not compile
1709 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1710 stream = (audio_stream_type_t) (stream + 1)) {
1711 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1712 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1713 }
1714 }
1715
~PlaybackThread()1716 AudioFlinger::PlaybackThread::~PlaybackThread()
1717 {
1718 mAudioFlinger->unregisterWriter(mNBLogWriter);
1719 free(mSinkBuffer);
1720 free(mMixerBuffer);
1721 free(mEffectBuffer);
1722 }
1723
dump(int fd,const Vector<String16> & args)1724 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1725 {
1726 dumpInternals(fd, args);
1727 dumpTracks(fd, args);
1728 dumpEffectChains(fd, args);
1729 }
1730
dumpTracks(int fd,const Vector<String16> & args __unused)1731 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1732 {
1733 const size_t SIZE = 256;
1734 char buffer[SIZE];
1735 String8 result;
1736
1737 result.appendFormat(" Stream volumes in dB: ");
1738 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1739 const stream_type_t *st = &mStreamTypes[i];
1740 if (i > 0) {
1741 result.appendFormat(", ");
1742 }
1743 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1744 if (st->mute) {
1745 result.append("M");
1746 }
1747 }
1748 result.append("\n");
1749 write(fd, result.string(), result.length());
1750 result.clear();
1751
1752 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1753 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1754 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1755 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1756
1757 size_t numtracks = mTracks.size();
1758 size_t numactive = mActiveTracks.size();
1759 dprintf(fd, " %zu Tracks", numtracks);
1760 size_t numactiveseen = 0;
1761 if (numtracks) {
1762 dprintf(fd, " of which %zu are active\n", numactive);
1763 Track::appendDumpHeader(result);
1764 for (size_t i = 0; i < numtracks; ++i) {
1765 sp<Track> track = mTracks[i];
1766 if (track != 0) {
1767 bool active = mActiveTracks.indexOf(track) >= 0;
1768 if (active) {
1769 numactiveseen++;
1770 }
1771 track->dump(buffer, SIZE, active);
1772 result.append(buffer);
1773 }
1774 }
1775 } else {
1776 result.append("\n");
1777 }
1778 if (numactiveseen != numactive) {
1779 // some tracks in the active list were not in the tracks list
1780 snprintf(buffer, SIZE, " The following tracks are in the active list but"
1781 " not in the track list\n");
1782 result.append(buffer);
1783 Track::appendDumpHeader(result);
1784 for (size_t i = 0; i < numactive; ++i) {
1785 sp<Track> track = mActiveTracks[i].promote();
1786 if (track != 0 && mTracks.indexOf(track) < 0) {
1787 track->dump(buffer, SIZE, true);
1788 result.append(buffer);
1789 }
1790 }
1791 }
1792
1793 write(fd, result.string(), result.size());
1794 }
1795
dumpInternals(int fd,const Vector<String16> & args)1796 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1797 {
1798 dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1799
1800 dumpBase(fd, args);
1801
1802 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1803 dprintf(fd, " Last write occurred (msecs): %llu\n",
1804 (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1805 dprintf(fd, " Total writes: %d\n", mNumWrites);
1806 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1807 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1808 dprintf(fd, " Suspend count: %d\n", mSuspended);
1809 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1810 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1811 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1812 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1813 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1814 AudioStreamOut *output = mOutput;
1815 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1816 String8 flagsAsString = outputFlagsToString(flags);
1817 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1818 }
1819
1820 // Thread virtuals
1821
onFirstRef()1822 void AudioFlinger::PlaybackThread::onFirstRef()
1823 {
1824 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1825 }
1826
1827 // ThreadBase virtuals
preExit()1828 void AudioFlinger::PlaybackThread::preExit()
1829 {
1830 ALOGV(" preExit()");
1831 // FIXME this is using hard-coded strings but in the future, this functionality will be
1832 // converted to use audio HAL extensions required to support tunneling
1833 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1834 }
1835
1836 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t tid,int uid,status_t * status)1837 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1838 const sp<AudioFlinger::Client>& client,
1839 audio_stream_type_t streamType,
1840 uint32_t sampleRate,
1841 audio_format_t format,
1842 audio_channel_mask_t channelMask,
1843 size_t *pFrameCount,
1844 const sp<IMemory>& sharedBuffer,
1845 audio_session_t sessionId,
1846 audio_output_flags_t *flags,
1847 pid_t tid,
1848 int uid,
1849 status_t *status)
1850 {
1851 size_t frameCount = *pFrameCount;
1852 sp<Track> track;
1853 status_t lStatus;
1854 audio_output_flags_t outputFlags = mOutput->flags;
1855
1856 // special case for FAST flag considered OK if fast mixer is present
1857 if (hasFastMixer()) {
1858 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1859 }
1860
1861 // Check if requested flags are compatible with output stream flags
1862 if ((*flags & outputFlags) != *flags) {
1863 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1864 *flags, outputFlags);
1865 *flags = (audio_output_flags_t)(*flags & outputFlags);
1866 }
1867
1868 // client expresses a preference for FAST, but we get the final say
1869 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1870 if (
1871 // PCM data
1872 audio_is_linear_pcm(format) &&
1873 // TODO: extract as a data library function that checks that a computationally
1874 // expensive downmixer is not required: isFastOutputChannelConversion()
1875 (channelMask == mChannelMask ||
1876 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1877 (channelMask == AUDIO_CHANNEL_OUT_MONO
1878 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1879 // hardware sample rate
1880 (sampleRate == mSampleRate) &&
1881 // normal mixer has an associated fast mixer
1882 hasFastMixer() &&
1883 // there are sufficient fast track slots available
1884 (mFastTrackAvailMask != 0)
1885 // FIXME test that MixerThread for this fast track has a capable output HAL
1886 // FIXME add a permission test also?
1887 ) {
1888 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1889 if (sharedBuffer == 0) {
1890 // read the fast track multiplier property the first time it is needed
1891 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1892 if (ok != 0) {
1893 ALOGE("%s pthread_once failed: %d", __func__, ok);
1894 }
1895 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1896 }
1897
1898 // check compatibility with audio effects.
1899 { // scope for mLock
1900 Mutex::Autolock _l(mLock);
1901 // do not accept RAW flag if post processing are present. Note that post processing on
1902 // a fast mixer are necessarily hardware
1903 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
1904 if (chain != 0) {
1905 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1906 "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present");
1907 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1908 }
1909 // Do not accept FAST flag if software global effects are present
1910 chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
1911 if (chain != 0) {
1912 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1913 "AUDIO_OUTPUT_FLAG_RAW denied: global effect present");
1914 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1915 if (chain->hasSoftwareEffect()) {
1916 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present");
1917 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1918 }
1919 }
1920 // Do not accept FAST flag if the session has software effects
1921 chain = getEffectChain_l(sessionId);
1922 if (chain != 0) {
1923 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1924 "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session");
1925 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1926 if (chain->hasSoftwareEffect()) {
1927 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session");
1928 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1929 }
1930 }
1931 }
1932 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1933 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1934 frameCount, mFrameCount);
1935 } else {
1936 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1937 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1938 "sampleRate=%u mSampleRate=%u "
1939 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1940 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1941 audio_is_linear_pcm(format),
1942 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1943 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1944 }
1945 }
1946 // For normal PCM streaming tracks, update minimum frame count.
1947 // For compatibility with AudioTrack calculation, buffer depth is forced
1948 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1949 // This is probably too conservative, but legacy application code may depend on it.
1950 // If you change this calculation, also review the start threshold which is related.
1951 if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1952 && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1953 // this must match AudioTrack.cpp calculateMinFrameCount().
1954 // TODO: Move to a common library
1955 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1956 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1957 if (minBufCount < 2) {
1958 minBufCount = 2;
1959 }
1960 // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1961 // or the client should compute and pass in a larger buffer request.
1962 size_t minFrameCount =
1963 minBufCount * sourceFramesNeededWithTimestretch(
1964 sampleRate, mNormalFrameCount,
1965 mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1966 if (frameCount < minFrameCount) { // including frameCount == 0
1967 frameCount = minFrameCount;
1968 }
1969 }
1970 *pFrameCount = frameCount;
1971
1972 switch (mType) {
1973
1974 case DIRECT:
1975 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1976 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1977 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1978 "for output %p with format %#x",
1979 sampleRate, format, channelMask, mOutput, mFormat);
1980 lStatus = BAD_VALUE;
1981 goto Exit;
1982 }
1983 }
1984 break;
1985
1986 case OFFLOAD:
1987 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1988 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1989 "for output %p with format %#x",
1990 sampleRate, format, channelMask, mOutput, mFormat);
1991 lStatus = BAD_VALUE;
1992 goto Exit;
1993 }
1994 break;
1995
1996 default:
1997 if (!audio_is_linear_pcm(format)) {
1998 ALOGE("createTrack_l() Bad parameter: format %#x \""
1999 "for output %p with format %#x",
2000 format, mOutput, mFormat);
2001 lStatus = BAD_VALUE;
2002 goto Exit;
2003 }
2004 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2005 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2006 lStatus = BAD_VALUE;
2007 goto Exit;
2008 }
2009 break;
2010
2011 }
2012
2013 lStatus = initCheck();
2014 if (lStatus != NO_ERROR) {
2015 ALOGE("createTrack_l() audio driver not initialized");
2016 goto Exit;
2017 }
2018
2019 { // scope for mLock
2020 Mutex::Autolock _l(mLock);
2021
2022 // all tracks in same audio session must share the same routing strategy otherwise
2023 // conflicts will happen when tracks are moved from one output to another by audio policy
2024 // manager
2025 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2026 for (size_t i = 0; i < mTracks.size(); ++i) {
2027 sp<Track> t = mTracks[i];
2028 if (t != 0 && t->isExternalTrack()) {
2029 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2030 if (sessionId == t->sessionId() && strategy != actual) {
2031 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2032 strategy, actual);
2033 lStatus = BAD_VALUE;
2034 goto Exit;
2035 }
2036 }
2037 }
2038
2039 track = new Track(this, client, streamType, sampleRate, format,
2040 channelMask, frameCount, NULL, sharedBuffer,
2041 sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2042
2043 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2044 if (lStatus != NO_ERROR) {
2045 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2046 // track must be cleared from the caller as the caller has the AF lock
2047 goto Exit;
2048 }
2049 mTracks.add(track);
2050
2051 sp<EffectChain> chain = getEffectChain_l(sessionId);
2052 if (chain != 0) {
2053 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2054 track->setMainBuffer(chain->inBuffer());
2055 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2056 chain->incTrackCnt();
2057 }
2058
2059 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2060 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2061 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2062 // so ask activity manager to do this on our behalf
2063 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2064 }
2065 }
2066
2067 lStatus = NO_ERROR;
2068
2069 Exit:
2070 *status = lStatus;
2071 return track;
2072 }
2073
correctLatency_l(uint32_t latency) const2074 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2075 {
2076 return latency;
2077 }
2078
latency() const2079 uint32_t AudioFlinger::PlaybackThread::latency() const
2080 {
2081 Mutex::Autolock _l(mLock);
2082 return latency_l();
2083 }
latency_l() const2084 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2085 {
2086 if (initCheck() == NO_ERROR) {
2087 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
2088 } else {
2089 return 0;
2090 }
2091 }
2092
setMasterVolume(float value)2093 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2094 {
2095 Mutex::Autolock _l(mLock);
2096 // Don't apply master volume in SW if our HAL can do it for us.
2097 if (mOutput && mOutput->audioHwDev &&
2098 mOutput->audioHwDev->canSetMasterVolume()) {
2099 mMasterVolume = 1.0;
2100 } else {
2101 mMasterVolume = value;
2102 }
2103 }
2104
setMasterMute(bool muted)2105 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2106 {
2107 Mutex::Autolock _l(mLock);
2108 // Don't apply master mute in SW if our HAL can do it for us.
2109 if (mOutput && mOutput->audioHwDev &&
2110 mOutput->audioHwDev->canSetMasterMute()) {
2111 mMasterMute = false;
2112 } else {
2113 mMasterMute = muted;
2114 }
2115 }
2116
setStreamVolume(audio_stream_type_t stream,float value)2117 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2118 {
2119 Mutex::Autolock _l(mLock);
2120 mStreamTypes[stream].volume = value;
2121 broadcast_l();
2122 }
2123
setStreamMute(audio_stream_type_t stream,bool muted)2124 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2125 {
2126 Mutex::Autolock _l(mLock);
2127 mStreamTypes[stream].mute = muted;
2128 broadcast_l();
2129 }
2130
streamVolume(audio_stream_type_t stream) const2131 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2132 {
2133 Mutex::Autolock _l(mLock);
2134 return mStreamTypes[stream].volume;
2135 }
2136
2137 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2138 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2139 {
2140 status_t status = ALREADY_EXISTS;
2141
2142 if (mActiveTracks.indexOf(track) < 0) {
2143 // the track is newly added, make sure it fills up all its
2144 // buffers before playing. This is to ensure the client will
2145 // effectively get the latency it requested.
2146 if (track->isExternalTrack()) {
2147 TrackBase::track_state state = track->mState;
2148 mLock.unlock();
2149 status = AudioSystem::startOutput(mId, track->streamType(),
2150 track->sessionId());
2151 mLock.lock();
2152 // abort track was stopped/paused while we released the lock
2153 if (state != track->mState) {
2154 if (status == NO_ERROR) {
2155 mLock.unlock();
2156 AudioSystem::stopOutput(mId, track->streamType(),
2157 track->sessionId());
2158 mLock.lock();
2159 }
2160 return INVALID_OPERATION;
2161 }
2162 // abort if start is rejected by audio policy manager
2163 if (status != NO_ERROR) {
2164 return PERMISSION_DENIED;
2165 }
2166 #ifdef ADD_BATTERY_DATA
2167 // to track the speaker usage
2168 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2169 #endif
2170 }
2171
2172 // set retry count for buffer fill
2173 if (track->isOffloaded()) {
2174 if (track->isStopping_1()) {
2175 track->mRetryCount = kMaxTrackStopRetriesOffload;
2176 } else {
2177 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2178 }
2179 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2180 } else {
2181 track->mRetryCount = kMaxTrackStartupRetries;
2182 track->mFillingUpStatus =
2183 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2184 }
2185
2186 track->mResetDone = false;
2187 track->mPresentationCompleteFrames = 0;
2188 mActiveTracks.add(track);
2189 mWakeLockUids.add(track->uid());
2190 mActiveTracksGeneration++;
2191 mLatestActiveTrack = track;
2192 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2193 if (chain != 0) {
2194 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2195 track->sessionId());
2196 chain->incActiveTrackCnt();
2197 }
2198
2199 status = NO_ERROR;
2200 }
2201
2202 onAddNewTrack_l();
2203 return status;
2204 }
2205
destroyTrack_l(const sp<Track> & track)2206 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2207 {
2208 track->terminate();
2209 // active tracks are removed by threadLoop()
2210 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2211 track->mState = TrackBase::STOPPED;
2212 if (!trackActive) {
2213 removeTrack_l(track);
2214 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2215 track->mState = TrackBase::STOPPING_1;
2216 }
2217
2218 return trackActive;
2219 }
2220
removeTrack_l(const sp<Track> & track)2221 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2222 {
2223 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2224 mTracks.remove(track);
2225 deleteTrackName_l(track->name());
2226 // redundant as track is about to be destroyed, for dumpsys only
2227 track->mName = -1;
2228 if (track->isFastTrack()) {
2229 int index = track->mFastIndex;
2230 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2231 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2232 mFastTrackAvailMask |= 1 << index;
2233 // redundant as track is about to be destroyed, for dumpsys only
2234 track->mFastIndex = -1;
2235 }
2236 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2237 if (chain != 0) {
2238 chain->decTrackCnt();
2239 }
2240 }
2241
broadcast_l()2242 void AudioFlinger::PlaybackThread::broadcast_l()
2243 {
2244 // Thread could be blocked waiting for async
2245 // so signal it to handle state changes immediately
2246 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2247 // be lost so we also flag to prevent it blocking on mWaitWorkCV
2248 mSignalPending = true;
2249 mWaitWorkCV.broadcast();
2250 }
2251
getParameters(const String8 & keys)2252 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2253 {
2254 Mutex::Autolock _l(mLock);
2255 if (initCheck() != NO_ERROR) {
2256 return String8();
2257 }
2258
2259 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2260 const String8 out_s8(s);
2261 free(s);
2262 return out_s8;
2263 }
2264
ioConfigChanged(audio_io_config_event event,pid_t pid)2265 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2266 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2267 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2268
2269 desc->mIoHandle = mId;
2270
2271 switch (event) {
2272 case AUDIO_OUTPUT_OPENED:
2273 case AUDIO_OUTPUT_CONFIG_CHANGED:
2274 desc->mPatch = mPatch;
2275 desc->mChannelMask = mChannelMask;
2276 desc->mSamplingRate = mSampleRate;
2277 desc->mFormat = mFormat;
2278 desc->mFrameCount = mNormalFrameCount; // FIXME see
2279 // AudioFlinger::frameCount(audio_io_handle_t)
2280 desc->mFrameCountHAL = mFrameCount;
2281 desc->mLatency = latency_l();
2282 break;
2283
2284 case AUDIO_OUTPUT_CLOSED:
2285 default:
2286 break;
2287 }
2288 mAudioFlinger->ioConfigChanged(event, desc, pid);
2289 }
2290
writeCallback()2291 void AudioFlinger::PlaybackThread::writeCallback()
2292 {
2293 ALOG_ASSERT(mCallbackThread != 0);
2294 mCallbackThread->resetWriteBlocked();
2295 }
2296
drainCallback()2297 void AudioFlinger::PlaybackThread::drainCallback()
2298 {
2299 ALOG_ASSERT(mCallbackThread != 0);
2300 mCallbackThread->resetDraining();
2301 }
2302
errorCallback()2303 void AudioFlinger::PlaybackThread::errorCallback()
2304 {
2305 ALOG_ASSERT(mCallbackThread != 0);
2306 mCallbackThread->setAsyncError();
2307 }
2308
resetWriteBlocked(uint32_t sequence)2309 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2310 {
2311 Mutex::Autolock _l(mLock);
2312 // reject out of sequence requests
2313 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2314 mWriteAckSequence &= ~1;
2315 mWaitWorkCV.signal();
2316 }
2317 }
2318
resetDraining(uint32_t sequence)2319 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2320 {
2321 Mutex::Autolock _l(mLock);
2322 // reject out of sequence requests
2323 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2324 mDrainSequence &= ~1;
2325 mWaitWorkCV.signal();
2326 }
2327 }
2328
2329 // static
asyncCallback(stream_callback_event_t event,void * param __unused,void * cookie)2330 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2331 void *param __unused,
2332 void *cookie)
2333 {
2334 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2335 ALOGV("asyncCallback() event %d", event);
2336 switch (event) {
2337 case STREAM_CBK_EVENT_WRITE_READY:
2338 me->writeCallback();
2339 break;
2340 case STREAM_CBK_EVENT_DRAIN_READY:
2341 me->drainCallback();
2342 break;
2343 case STREAM_CBK_EVENT_ERROR:
2344 me->errorCallback();
2345 break;
2346 default:
2347 ALOGW("asyncCallback() unknown event %d", event);
2348 break;
2349 }
2350 return 0;
2351 }
2352
readOutputParameters_l()2353 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2354 {
2355 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2356 mSampleRate = mOutput->getSampleRate();
2357 mChannelMask = mOutput->getChannelMask();
2358 if (!audio_is_output_channel(mChannelMask)) {
2359 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2360 }
2361 if ((mType == MIXER || mType == DUPLICATING)
2362 && !isValidPcmSinkChannelMask(mChannelMask)) {
2363 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2364 mChannelMask);
2365 }
2366 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2367
2368 // Get actual HAL format.
2369 mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2370 // Get format from the shim, which will be different than the HAL format
2371 // if playing compressed audio over HDMI passthrough.
2372 mFormat = mOutput->getFormat();
2373 if (!audio_is_valid_format(mFormat)) {
2374 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2375 }
2376 if ((mType == MIXER || mType == DUPLICATING)
2377 && !isValidPcmSinkFormat(mFormat)) {
2378 LOG_FATAL("HAL format %#x not supported for mixed output",
2379 mFormat);
2380 }
2381 mFrameSize = mOutput->getFrameSize();
2382 mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2383 mFrameCount = mBufferSize / mFrameSize;
2384 if (mFrameCount & 15) {
2385 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2386 mFrameCount);
2387 }
2388
2389 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2390 (mOutput->stream->set_callback != NULL)) {
2391 if (mOutput->stream->set_callback(mOutput->stream,
2392 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2393 mUseAsyncWrite = true;
2394 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2395 }
2396 }
2397
2398 mHwSupportsPause = false;
2399 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2400 if (mOutput->stream->pause != NULL) {
2401 if (mOutput->stream->resume != NULL) {
2402 mHwSupportsPause = true;
2403 } else {
2404 ALOGW("direct output implements pause but not resume");
2405 }
2406 } else if (mOutput->stream->resume != NULL) {
2407 ALOGW("direct output implements resume but not pause");
2408 }
2409 }
2410 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2411 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2412 }
2413
2414 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2415 // For best precision, we use float instead of the associated output
2416 // device format (typically PCM 16 bit).
2417
2418 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2419 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2420 mBufferSize = mFrameSize * mFrameCount;
2421
2422 // TODO: We currently use the associated output device channel mask and sample rate.
2423 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2424 // (if a valid mask) to avoid premature downmix.
2425 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2426 // instead of the output device sample rate to avoid loss of high frequency information.
2427 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2428 }
2429
2430 // Calculate size of normal sink buffer relative to the HAL output buffer size
2431 double multiplier = 1.0;
2432 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2433 kUseFastMixer == FastMixer_Dynamic)) {
2434 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2435 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2436
2437 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2438 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2439 maxNormalFrameCount = maxNormalFrameCount & ~15;
2440 if (maxNormalFrameCount < minNormalFrameCount) {
2441 maxNormalFrameCount = minNormalFrameCount;
2442 }
2443 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2444 if (multiplier <= 1.0) {
2445 multiplier = 1.0;
2446 } else if (multiplier <= 2.0) {
2447 if (2 * mFrameCount <= maxNormalFrameCount) {
2448 multiplier = 2.0;
2449 } else {
2450 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2451 }
2452 } else {
2453 multiplier = floor(multiplier);
2454 }
2455 }
2456 mNormalFrameCount = multiplier * mFrameCount;
2457 // round up to nearest 16 frames to satisfy AudioMixer
2458 if (mType == MIXER || mType == DUPLICATING) {
2459 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2460 }
2461 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2462 mNormalFrameCount);
2463
2464 // Check if we want to throttle the processing to no more than 2x normal rate
2465 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2466 mThreadThrottleTimeMs = 0;
2467 mThreadThrottleEndMs = 0;
2468 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2469
2470 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2471 // Originally this was int16_t[] array, need to remove legacy implications.
2472 free(mSinkBuffer);
2473 mSinkBuffer = NULL;
2474 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2475 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2476 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2477 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2478
2479 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2480 // drives the output.
2481 free(mMixerBuffer);
2482 mMixerBuffer = NULL;
2483 if (mMixerBufferEnabled) {
2484 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2485 mMixerBufferSize = mNormalFrameCount * mChannelCount
2486 * audio_bytes_per_sample(mMixerBufferFormat);
2487 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2488 }
2489 free(mEffectBuffer);
2490 mEffectBuffer = NULL;
2491 if (mEffectBufferEnabled) {
2492 mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2493 mEffectBufferSize = mNormalFrameCount * mChannelCount
2494 * audio_bytes_per_sample(mEffectBufferFormat);
2495 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2496 }
2497
2498 // force reconfiguration of effect chains and engines to take new buffer size and audio
2499 // parameters into account
2500 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2501 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2502 // matter.
2503 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2504 Vector< sp<EffectChain> > effectChains = mEffectChains;
2505 for (size_t i = 0; i < effectChains.size(); i ++) {
2506 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2507 }
2508 }
2509
2510
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2511 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2512 {
2513 if (halFrames == NULL || dspFrames == NULL) {
2514 return BAD_VALUE;
2515 }
2516 Mutex::Autolock _l(mLock);
2517 if (initCheck() != NO_ERROR) {
2518 return INVALID_OPERATION;
2519 }
2520 int64_t framesWritten = mBytesWritten / mFrameSize;
2521 *halFrames = framesWritten;
2522
2523 if (isSuspended()) {
2524 // return an estimation of rendered frames when the output is suspended
2525 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2526 *dspFrames = (uint32_t)
2527 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2528 return NO_ERROR;
2529 } else {
2530 status_t status;
2531 uint32_t frames;
2532 status = mOutput->getRenderPosition(&frames);
2533 *dspFrames = (size_t)frames;
2534 return status;
2535 }
2536 }
2537
2538 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const2539 uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2540 {
2541 uint32_t result = 0;
2542 if (getEffectChain_l(sessionId) != 0) {
2543 result = EFFECT_SESSION;
2544 }
2545
2546 for (size_t i = 0; i < mTracks.size(); ++i) {
2547 sp<Track> track = mTracks[i];
2548 if (sessionId == track->sessionId() && !track->isInvalid()) {
2549 result |= TRACK_SESSION;
2550 if (track->isFastTrack()) {
2551 result |= FAST_SESSION;
2552 }
2553 break;
2554 }
2555 }
2556
2557 return result;
2558 }
2559
getStrategyForSession_l(audio_session_t sessionId)2560 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2561 {
2562 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2563 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2564 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2565 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2566 }
2567 for (size_t i = 0; i < mTracks.size(); i++) {
2568 sp<Track> track = mTracks[i];
2569 if (sessionId == track->sessionId() && !track->isInvalid()) {
2570 return AudioSystem::getStrategyForStream(track->streamType());
2571 }
2572 }
2573 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2574 }
2575
2576
getOutput() const2577 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2578 {
2579 Mutex::Autolock _l(mLock);
2580 return mOutput;
2581 }
2582
clearOutput()2583 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2584 {
2585 Mutex::Autolock _l(mLock);
2586 AudioStreamOut *output = mOutput;
2587 mOutput = NULL;
2588 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2589 // must push a NULL and wait for ack
2590 mOutputSink.clear();
2591 mPipeSink.clear();
2592 mNormalSink.clear();
2593 return output;
2594 }
2595
2596 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2597 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2598 {
2599 if (mOutput == NULL) {
2600 return NULL;
2601 }
2602 return &mOutput->stream->common;
2603 }
2604
activeSleepTimeUs() const2605 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2606 {
2607 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2608 }
2609
setSyncEvent(const sp<SyncEvent> & event)2610 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2611 {
2612 if (!isValidSyncEvent(event)) {
2613 return BAD_VALUE;
2614 }
2615
2616 Mutex::Autolock _l(mLock);
2617
2618 for (size_t i = 0; i < mTracks.size(); ++i) {
2619 sp<Track> track = mTracks[i];
2620 if (event->triggerSession() == track->sessionId()) {
2621 (void) track->setSyncEvent(event);
2622 return NO_ERROR;
2623 }
2624 }
2625
2626 return NAME_NOT_FOUND;
2627 }
2628
isValidSyncEvent(const sp<SyncEvent> & event) const2629 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2630 {
2631 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2632 }
2633
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2634 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2635 const Vector< sp<Track> >& tracksToRemove)
2636 {
2637 size_t count = tracksToRemove.size();
2638 if (count > 0) {
2639 for (size_t i = 0 ; i < count ; i++) {
2640 const sp<Track>& track = tracksToRemove.itemAt(i);
2641 if (track->isExternalTrack()) {
2642 AudioSystem::stopOutput(mId, track->streamType(),
2643 track->sessionId());
2644 #ifdef ADD_BATTERY_DATA
2645 // to track the speaker usage
2646 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2647 #endif
2648 if (track->isTerminated()) {
2649 AudioSystem::releaseOutput(mId, track->streamType(),
2650 track->sessionId());
2651 }
2652 }
2653 }
2654 }
2655 }
2656
checkSilentMode_l()2657 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2658 {
2659 if (!mMasterMute) {
2660 char value[PROPERTY_VALUE_MAX];
2661 if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2662 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2663 return;
2664 }
2665 if (property_get("ro.audio.silent", value, "0") > 0) {
2666 char *endptr;
2667 unsigned long ul = strtoul(value, &endptr, 0);
2668 if (*endptr == '\0' && ul != 0) {
2669 ALOGD("Silence is golden");
2670 // The setprop command will not allow a property to be changed after
2671 // the first time it is set, so we don't have to worry about un-muting.
2672 setMasterMute_l(true);
2673 }
2674 }
2675 }
2676 }
2677
2678 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2679 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2680 {
2681 mInWrite = true;
2682 ssize_t bytesWritten;
2683 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2684
2685 // If an NBAIO sink is present, use it to write the normal mixer's submix
2686 if (mNormalSink != 0) {
2687
2688 const size_t count = mBytesRemaining / mFrameSize;
2689
2690 ATRACE_BEGIN("write");
2691 // update the setpoint when AudioFlinger::mScreenState changes
2692 uint32_t screenState = AudioFlinger::mScreenState;
2693 if (screenState != mScreenState) {
2694 mScreenState = screenState;
2695 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2696 if (pipe != NULL) {
2697 pipe->setAvgFrames((mScreenState & 1) ?
2698 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2699 }
2700 }
2701 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2702 ATRACE_END();
2703 if (framesWritten > 0) {
2704 bytesWritten = framesWritten * mFrameSize;
2705 } else {
2706 bytesWritten = framesWritten;
2707 }
2708 // otherwise use the HAL / AudioStreamOut directly
2709 } else {
2710 // Direct output and offload threads
2711
2712 if (mUseAsyncWrite) {
2713 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2714 mWriteAckSequence += 2;
2715 mWriteAckSequence |= 1;
2716 ALOG_ASSERT(mCallbackThread != 0);
2717 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2718 }
2719 // FIXME We should have an implementation of timestamps for direct output threads.
2720 // They are used e.g for multichannel PCM playback over HDMI.
2721 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2722
2723 if (mUseAsyncWrite &&
2724 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2725 // do not wait for async callback in case of error of full write
2726 mWriteAckSequence &= ~1;
2727 ALOG_ASSERT(mCallbackThread != 0);
2728 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2729 }
2730 }
2731
2732 mNumWrites++;
2733 mInWrite = false;
2734 mStandby = false;
2735 return bytesWritten;
2736 }
2737
threadLoop_drain()2738 void AudioFlinger::PlaybackThread::threadLoop_drain()
2739 {
2740 if (mOutput->stream->drain) {
2741 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2742 if (mUseAsyncWrite) {
2743 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2744 mDrainSequence |= 1;
2745 ALOG_ASSERT(mCallbackThread != 0);
2746 mCallbackThread->setDraining(mDrainSequence);
2747 }
2748 mOutput->stream->drain(mOutput->stream,
2749 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2750 : AUDIO_DRAIN_ALL);
2751 }
2752 }
2753
threadLoop_exit()2754 void AudioFlinger::PlaybackThread::threadLoop_exit()
2755 {
2756 {
2757 Mutex::Autolock _l(mLock);
2758 for (size_t i = 0; i < mTracks.size(); i++) {
2759 sp<Track> track = mTracks[i];
2760 track->invalidate();
2761 }
2762 }
2763 }
2764
2765 /*
2766 The derived values that are cached:
2767 - mSinkBufferSize from frame count * frame size
2768 - mActiveSleepTimeUs from activeSleepTimeUs()
2769 - mIdleSleepTimeUs from idleSleepTimeUs()
2770 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2771 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2772 - maxPeriod from frame count and sample rate (MIXER only)
2773
2774 The parameters that affect these derived values are:
2775 - frame count
2776 - frame size
2777 - sample rate
2778 - device type: A2DP or not
2779 - device latency
2780 - format: PCM or not
2781 - active sleep time
2782 - idle sleep time
2783 */
2784
cacheParameters_l()2785 void AudioFlinger::PlaybackThread::cacheParameters_l()
2786 {
2787 mSinkBufferSize = mNormalFrameCount * mFrameSize;
2788 mActiveSleepTimeUs = activeSleepTimeUs();
2789 mIdleSleepTimeUs = idleSleepTimeUs();
2790
2791 // make sure standby delay is not too short when connected to an A2DP sink to avoid
2792 // truncating audio when going to standby.
2793 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2794 if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2795 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2796 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2797 }
2798 }
2799 }
2800
invalidateTracks_l(audio_stream_type_t streamType)2801 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2802 {
2803 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2804 this, streamType, mTracks.size());
2805 bool trackMatch = false;
2806 size_t size = mTracks.size();
2807 for (size_t i = 0; i < size; i++) {
2808 sp<Track> t = mTracks[i];
2809 if (t->streamType() == streamType && t->isExternalTrack()) {
2810 t->invalidate();
2811 trackMatch = true;
2812 }
2813 }
2814 return trackMatch;
2815 }
2816
invalidateTracks(audio_stream_type_t streamType)2817 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2818 {
2819 Mutex::Autolock _l(mLock);
2820 invalidateTracks_l(streamType);
2821 }
2822
addEffectChain_l(const sp<EffectChain> & chain)2823 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2824 {
2825 audio_session_t session = chain->sessionId();
2826 int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2827 ? mEffectBuffer : mSinkBuffer);
2828 bool ownsBuffer = false;
2829
2830 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2831 if (session > AUDIO_SESSION_OUTPUT_MIX) {
2832 // Only one effect chain can be present in direct output thread and it uses
2833 // the sink buffer as input
2834 if (mType != DIRECT) {
2835 size_t numSamples = mNormalFrameCount * mChannelCount;
2836 buffer = new int16_t[numSamples];
2837 memset(buffer, 0, numSamples * sizeof(int16_t));
2838 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2839 ownsBuffer = true;
2840 }
2841
2842 // Attach all tracks with same session ID to this chain.
2843 for (size_t i = 0; i < mTracks.size(); ++i) {
2844 sp<Track> track = mTracks[i];
2845 if (session == track->sessionId()) {
2846 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2847 buffer);
2848 track->setMainBuffer(buffer);
2849 chain->incTrackCnt();
2850 }
2851 }
2852
2853 // indicate all active tracks in the chain
2854 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2855 sp<Track> track = mActiveTracks[i].promote();
2856 if (track == 0) {
2857 continue;
2858 }
2859 if (session == track->sessionId()) {
2860 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2861 chain->incActiveTrackCnt();
2862 }
2863 }
2864 }
2865 chain->setThread(this);
2866 chain->setInBuffer(buffer, ownsBuffer);
2867 chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2868 ? mEffectBuffer : mSinkBuffer));
2869 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2870 // chains list in order to be processed last as it contains output stage effects.
2871 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2872 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2873 // after track specific effects and before output stage.
2874 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2875 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2876 // Effect chain for other sessions are inserted at beginning of effect
2877 // chains list to be processed before output mix effects. Relative order between other
2878 // sessions is not important.
2879 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2880 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2881 "audio_session_t constants misdefined");
2882 size_t size = mEffectChains.size();
2883 size_t i = 0;
2884 for (i = 0; i < size; i++) {
2885 if (mEffectChains[i]->sessionId() < session) {
2886 break;
2887 }
2888 }
2889 mEffectChains.insertAt(chain, i);
2890 checkSuspendOnAddEffectChain_l(chain);
2891
2892 return NO_ERROR;
2893 }
2894
removeEffectChain_l(const sp<EffectChain> & chain)2895 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2896 {
2897 audio_session_t session = chain->sessionId();
2898
2899 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2900
2901 for (size_t i = 0; i < mEffectChains.size(); i++) {
2902 if (chain == mEffectChains[i]) {
2903 mEffectChains.removeAt(i);
2904 // detach all active tracks from the chain
2905 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2906 sp<Track> track = mActiveTracks[i].promote();
2907 if (track == 0) {
2908 continue;
2909 }
2910 if (session == track->sessionId()) {
2911 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2912 chain.get(), session);
2913 chain->decActiveTrackCnt();
2914 }
2915 }
2916
2917 // detach all tracks with same session ID from this chain
2918 for (size_t i = 0; i < mTracks.size(); ++i) {
2919 sp<Track> track = mTracks[i];
2920 if (session == track->sessionId()) {
2921 track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2922 chain->decTrackCnt();
2923 }
2924 }
2925 break;
2926 }
2927 }
2928 return mEffectChains.size();
2929 }
2930
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2931 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2932 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2933 {
2934 Mutex::Autolock _l(mLock);
2935 return attachAuxEffect_l(track, EffectId);
2936 }
2937
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2938 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2939 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2940 {
2941 status_t status = NO_ERROR;
2942
2943 if (EffectId == 0) {
2944 track->setAuxBuffer(0, NULL);
2945 } else {
2946 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2947 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2948 if (effect != 0) {
2949 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2950 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2951 } else {
2952 status = INVALID_OPERATION;
2953 }
2954 } else {
2955 status = BAD_VALUE;
2956 }
2957 }
2958 return status;
2959 }
2960
detachAuxEffect_l(int effectId)2961 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2962 {
2963 for (size_t i = 0; i < mTracks.size(); ++i) {
2964 sp<Track> track = mTracks[i];
2965 if (track->auxEffectId() == effectId) {
2966 attachAuxEffect_l(track, 0);
2967 }
2968 }
2969 }
2970
threadLoop()2971 bool AudioFlinger::PlaybackThread::threadLoop()
2972 {
2973 Vector< sp<Track> > tracksToRemove;
2974
2975 mStandbyTimeNs = systemTime();
2976 nsecs_t lastWriteFinished = -1; // time last server write completed
2977 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2978
2979 // MIXER
2980 nsecs_t lastWarning = 0;
2981
2982 // DUPLICATING
2983 // FIXME could this be made local to while loop?
2984 writeFrames = 0;
2985
2986 int lastGeneration = 0;
2987
2988 cacheParameters_l();
2989 mSleepTimeUs = mIdleSleepTimeUs;
2990
2991 if (mType == MIXER) {
2992 sleepTimeShift = 0;
2993 }
2994
2995 CpuStats cpuStats;
2996 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2997
2998 acquireWakeLock();
2999
3000 // mNBLogWriter->log can only be called while thread mutex mLock is held.
3001 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3002 // and then that string will be logged at the next convenient opportunity.
3003 const char *logString = NULL;
3004
3005 checkSilentMode_l();
3006
3007 while (!exitPending())
3008 {
3009 cpuStats.sample(myName);
3010
3011 Vector< sp<EffectChain> > effectChains;
3012
3013 { // scope for mLock
3014
3015 Mutex::Autolock _l(mLock);
3016
3017 processConfigEvents_l();
3018
3019 if (logString != NULL) {
3020 mNBLogWriter->logTimestamp();
3021 mNBLogWriter->log(logString);
3022 logString = NULL;
3023 }
3024
3025 // Gather the framesReleased counters for all active tracks,
3026 // and associate with the sink frames written out. We need
3027 // this to convert the sink timestamp to the track timestamp.
3028 bool kernelLocationUpdate = false;
3029 if (mNormalSink != 0) {
3030 // Note: The DuplicatingThread may not have a mNormalSink.
3031 // We always fetch the timestamp here because often the downstream
3032 // sink will block while writing.
3033 ExtendedTimestamp timestamp; // use private copy to fetch
3034 (void) mNormalSink->getTimestamp(timestamp);
3035
3036 // We keep track of the last valid kernel position in case we are in underrun
3037 // and the normal mixer period is the same as the fast mixer period, or there
3038 // is some error from the HAL.
3039 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3040 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3041 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3042 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3043 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3044
3045 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3046 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3047 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3048 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3049 }
3050
3051 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3052 kernelLocationUpdate = true;
3053 } else {
3054 ALOGVV("getTimestamp error - no valid kernel position");
3055 }
3056
3057 // copy over kernel info
3058 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3059 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3060 + mSuspendedFrames; // add frames discarded when suspended
3061 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3062 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3063 }
3064 // mFramesWritten for non-offloaded tracks are contiguous
3065 // even after standby() is called. This is useful for the track frame
3066 // to sink frame mapping.
3067 bool serverLocationUpdate = false;
3068 if (mFramesWritten != lastFramesWritten) {
3069 serverLocationUpdate = true;
3070 lastFramesWritten = mFramesWritten;
3071 }
3072 // Only update timestamps if there is a meaningful change.
3073 // Either the kernel timestamp must be valid or we have written something.
3074 if (kernelLocationUpdate || serverLocationUpdate) {
3075 if (serverLocationUpdate) {
3076 // use the time before we called the HAL write - it is a bit more accurate
3077 // to when the server last read data than the current time here.
3078 //
3079 // If we haven't written anything, mLastWriteTime will be -1
3080 // and we use systemTime().
3081 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3082 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3083 ? systemTime() : mLastWriteTime;
3084 }
3085 const size_t size = mActiveTracks.size();
3086 for (size_t i = 0; i < size; ++i) {
3087 sp<Track> t = mActiveTracks[i].promote();
3088 if (t != 0 && !t->isFastTrack()) {
3089 t->updateTrackFrameInfo(
3090 t->mAudioTrackServerProxy->framesReleased(),
3091 mFramesWritten,
3092 mTimestamp);
3093 }
3094 }
3095 }
3096
3097 saveOutputTracks();
3098 if (mSignalPending) {
3099 // A signal was raised while we were unlocked
3100 mSignalPending = false;
3101 } else if (waitingAsyncCallback_l()) {
3102 if (exitPending()) {
3103 break;
3104 }
3105 bool released = false;
3106 if (!keepWakeLock()) {
3107 releaseWakeLock_l();
3108 released = true;
3109 }
3110 mWakeLockUids.clear();
3111 mActiveTracksGeneration++;
3112 ALOGV("wait async completion");
3113 mWaitWorkCV.wait(mLock);
3114 ALOGV("async completion/wake");
3115 if (released) {
3116 acquireWakeLock_l();
3117 }
3118 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3119 mSleepTimeUs = 0;
3120
3121 continue;
3122 }
3123 if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3124 isSuspended()) {
3125 // put audio hardware into standby after short delay
3126 if (shouldStandby_l()) {
3127
3128 threadLoop_standby();
3129
3130 mStandby = true;
3131 }
3132
3133 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3134 // we're about to wait, flush the binder command buffer
3135 IPCThreadState::self()->flushCommands();
3136
3137 clearOutputTracks();
3138
3139 if (exitPending()) {
3140 break;
3141 }
3142
3143 releaseWakeLock_l();
3144 mWakeLockUids.clear();
3145 mActiveTracksGeneration++;
3146 // wait until we have something to do...
3147 ALOGV("%s going to sleep", myName.string());
3148 mWaitWorkCV.wait(mLock);
3149 ALOGV("%s waking up", myName.string());
3150 acquireWakeLock_l();
3151
3152 mMixerStatus = MIXER_IDLE;
3153 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3154 mBytesWritten = 0;
3155 mBytesRemaining = 0;
3156 checkSilentMode_l();
3157
3158 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3159 mSleepTimeUs = mIdleSleepTimeUs;
3160 if (mType == MIXER) {
3161 sleepTimeShift = 0;
3162 }
3163
3164 continue;
3165 }
3166 }
3167 // mMixerStatusIgnoringFastTracks is also updated internally
3168 mMixerStatus = prepareTracks_l(&tracksToRemove);
3169
3170 // compare with previously applied list
3171 if (lastGeneration != mActiveTracksGeneration) {
3172 // update wakelock
3173 updateWakeLockUids_l(mWakeLockUids);
3174 lastGeneration = mActiveTracksGeneration;
3175 }
3176
3177 // prevent any changes in effect chain list and in each effect chain
3178 // during mixing and effect process as the audio buffers could be deleted
3179 // or modified if an effect is created or deleted
3180 lockEffectChains_l(effectChains);
3181 } // mLock scope ends
3182
3183 if (mBytesRemaining == 0) {
3184 mCurrentWriteLength = 0;
3185 if (mMixerStatus == MIXER_TRACKS_READY) {
3186 // threadLoop_mix() sets mCurrentWriteLength
3187 threadLoop_mix();
3188 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3189 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3190 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3191 // must be written to HAL
3192 threadLoop_sleepTime();
3193 if (mSleepTimeUs == 0) {
3194 mCurrentWriteLength = mSinkBufferSize;
3195 }
3196 }
3197 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3198 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3199 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3200 // or mSinkBuffer (if there are no effects).
3201 //
3202 // This is done pre-effects computation; if effects change to
3203 // support higher precision, this needs to move.
3204 //
3205 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3206 // TODO use mSleepTimeUs == 0 as an additional condition.
3207 if (mMixerBufferValid) {
3208 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3209 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3210
3211 // mono blend occurs for mixer threads only (not direct or offloaded)
3212 // and is handled here if we're going directly to the sink.
3213 if (requireMonoBlend() && !mEffectBufferValid) {
3214 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3215 true /*limit*/);
3216 }
3217
3218 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3219 mNormalFrameCount * mChannelCount);
3220 }
3221
3222 mBytesRemaining = mCurrentWriteLength;
3223 if (isSuspended()) {
3224 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3225 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3226 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3227 mBytesWritten += mBytesRemaining;
3228 mFramesWritten += framesRemaining;
3229 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3230 mBytesRemaining = 0;
3231 }
3232
3233 // only process effects if we're going to write
3234 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3235 for (size_t i = 0; i < effectChains.size(); i ++) {
3236 effectChains[i]->process_l();
3237 }
3238 }
3239 }
3240 // Process effect chains for offloaded thread even if no audio
3241 // was read from audio track: process only updates effect state
3242 // and thus does have to be synchronized with audio writes but may have
3243 // to be called while waiting for async write callback
3244 if (mType == OFFLOAD) {
3245 for (size_t i = 0; i < effectChains.size(); i ++) {
3246 effectChains[i]->process_l();
3247 }
3248 }
3249
3250 // Only if the Effects buffer is enabled and there is data in the
3251 // Effects buffer (buffer valid), we need to
3252 // copy into the sink buffer.
3253 // TODO use mSleepTimeUs == 0 as an additional condition.
3254 if (mEffectBufferValid) {
3255 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3256
3257 if (requireMonoBlend()) {
3258 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3259 true /*limit*/);
3260 }
3261
3262 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3263 mNormalFrameCount * mChannelCount);
3264 }
3265
3266 // enable changes in effect chain
3267 unlockEffectChains(effectChains);
3268
3269 if (!waitingAsyncCallback()) {
3270 // mSleepTimeUs == 0 means we must write to audio hardware
3271 if (mSleepTimeUs == 0) {
3272 ssize_t ret = 0;
3273 // We save lastWriteFinished here, as previousLastWriteFinished,
3274 // for throttling. On thread start, previousLastWriteFinished will be
3275 // set to -1, which properly results in no throttling after the first write.
3276 nsecs_t previousLastWriteFinished = lastWriteFinished;
3277 nsecs_t delta = 0;
3278 if (mBytesRemaining) {
3279 // FIXME rewrite to reduce number of system calls
3280 mLastWriteTime = systemTime(); // also used for dumpsys
3281 ret = threadLoop_write();
3282 lastWriteFinished = systemTime();
3283 delta = lastWriteFinished - mLastWriteTime;
3284 if (ret < 0) {
3285 mBytesRemaining = 0;
3286 } else {
3287 mBytesWritten += ret;
3288 mBytesRemaining -= ret;
3289 mFramesWritten += ret / mFrameSize;
3290 }
3291 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3292 (mMixerStatus == MIXER_DRAIN_ALL)) {
3293 threadLoop_drain();
3294 }
3295 if (mType == MIXER && !mStandby) {
3296 // write blocked detection
3297 if (delta > maxPeriod) {
3298 mNumDelayedWrites++;
3299 if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3300 ATRACE_NAME("underrun");
3301 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3302 (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3303 lastWarning = lastWriteFinished;
3304 }
3305 }
3306
3307 if (mThreadThrottle
3308 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3309 && ret > 0) { // we wrote something
3310 // Limit MixerThread data processing to no more than twice the
3311 // expected processing rate.
3312 //
3313 // This helps prevent underruns with NuPlayer and other applications
3314 // which may set up buffers that are close to the minimum size, or use
3315 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3316 //
3317 // The throttle smooths out sudden large data drains from the device,
3318 // e.g. when it comes out of standby, which often causes problems with
3319 // (1) mixer threads without a fast mixer (which has its own warm-up)
3320 // (2) minimum buffer sized tracks (even if the track is full,
3321 // the app won't fill fast enough to handle the sudden draw).
3322 //
3323 // Total time spent in last processing cycle equals time spent in
3324 // 1. threadLoop_write, as well as time spent in
3325 // 2. threadLoop_mix (significant for heavy mixing, especially
3326 // on low tier processors)
3327
3328 // it's OK if deltaMs is an overestimate.
3329 const int32_t deltaMs =
3330 (lastWriteFinished - previousLastWriteFinished) / 1000000;
3331 const int32_t throttleMs = mHalfBufferMs - deltaMs;
3332 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3333 usleep(throttleMs * 1000);
3334 // notify of throttle start on verbose log
3335 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3336 "mixer(%p) throttle begin:"
3337 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3338 this, ret, deltaMs, throttleMs);
3339 mThreadThrottleTimeMs += throttleMs;
3340 // Throttle must be attributed to the previous mixer loop's write time
3341 // to allow back-to-back throttling.
3342 lastWriteFinished += throttleMs * 1000000;
3343 } else {
3344 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3345 if (diff > 0) {
3346 // notify of throttle end on debug log
3347 // but prevent spamming for bluetooth
3348 ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3349 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3350 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3351 }
3352 }
3353 }
3354 }
3355
3356 } else {
3357 ATRACE_BEGIN("sleep");
3358 Mutex::Autolock _l(mLock);
3359 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3360 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3361 }
3362 ATRACE_END();
3363 }
3364 }
3365
3366 // Finally let go of removed track(s), without the lock held
3367 // since we can't guarantee the destructors won't acquire that
3368 // same lock. This will also mutate and push a new fast mixer state.
3369 threadLoop_removeTracks(tracksToRemove);
3370 tracksToRemove.clear();
3371
3372 // FIXME I don't understand the need for this here;
3373 // it was in the original code but maybe the
3374 // assignment in saveOutputTracks() makes this unnecessary?
3375 clearOutputTracks();
3376
3377 // Effect chains will be actually deleted here if they were removed from
3378 // mEffectChains list during mixing or effects processing
3379 effectChains.clear();
3380
3381 // FIXME Note that the above .clear() is no longer necessary since effectChains
3382 // is now local to this block, but will keep it for now (at least until merge done).
3383 }
3384
3385 threadLoop_exit();
3386
3387 if (!mStandby) {
3388 threadLoop_standby();
3389 mStandby = true;
3390 }
3391
3392 releaseWakeLock();
3393 mWakeLockUids.clear();
3394 mActiveTracksGeneration++;
3395
3396 ALOGV("Thread %p type %d exiting", this, mType);
3397 return false;
3398 }
3399
3400 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3401 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3402 {
3403 size_t count = tracksToRemove.size();
3404 if (count > 0) {
3405 for (size_t i=0 ; i<count ; i++) {
3406 const sp<Track>& track = tracksToRemove.itemAt(i);
3407 mActiveTracks.remove(track);
3408 mWakeLockUids.remove(track->uid());
3409 mActiveTracksGeneration++;
3410 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3411 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3412 if (chain != 0) {
3413 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3414 track->sessionId());
3415 chain->decActiveTrackCnt();
3416 }
3417 if (track->isTerminated()) {
3418 removeTrack_l(track);
3419 }
3420 }
3421 }
3422
3423 }
3424
getTimestamp_l(AudioTimestamp & timestamp)3425 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3426 {
3427 if (mNormalSink != 0) {
3428 ExtendedTimestamp ets;
3429 status_t status = mNormalSink->getTimestamp(ets);
3430 if (status == NO_ERROR) {
3431 status = ets.getBestTimestamp(×tamp);
3432 }
3433 return status;
3434 }
3435 if ((mType == OFFLOAD || mType == DIRECT)
3436 && mOutput != NULL && mOutput->stream->get_presentation_position) {
3437 uint64_t position64;
3438 int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime);
3439 if (ret == 0) {
3440 timestamp.mPosition = (uint32_t)position64;
3441 return NO_ERROR;
3442 }
3443 }
3444 return INVALID_OPERATION;
3445 }
3446
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3447 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3448 audio_patch_handle_t *handle)
3449 {
3450 status_t status;
3451 if (property_get_bool("af.patch_park", false /* default_value */)) {
3452 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3453 // or if HAL does not properly lock against access.
3454 AutoPark<FastMixer> park(mFastMixer);
3455 status = PlaybackThread::createAudioPatch_l(patch, handle);
3456 } else {
3457 status = PlaybackThread::createAudioPatch_l(patch, handle);
3458 }
3459 return status;
3460 }
3461
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)3462 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3463 audio_patch_handle_t *handle)
3464 {
3465 status_t status = NO_ERROR;
3466
3467 // store new device and send to effects
3468 audio_devices_t type = AUDIO_DEVICE_NONE;
3469 for (unsigned int i = 0; i < patch->num_sinks; i++) {
3470 type |= patch->sinks[i].ext.device.type;
3471 }
3472
3473 #ifdef ADD_BATTERY_DATA
3474 // when changing the audio output device, call addBatteryData to notify
3475 // the change
3476 if (mOutDevice != type) {
3477 uint32_t params = 0;
3478 // check whether speaker is on
3479 if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3480 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3481 }
3482
3483 audio_devices_t deviceWithoutSpeaker
3484 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3485 // check if any other device (except speaker) is on
3486 if (type & deviceWithoutSpeaker) {
3487 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3488 }
3489
3490 if (params != 0) {
3491 addBatteryData(params);
3492 }
3493 }
3494 #endif
3495
3496 for (size_t i = 0; i < mEffectChains.size(); i++) {
3497 mEffectChains[i]->setDevice_l(type);
3498 }
3499
3500 // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3501 // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3502 bool configChanged = mPrevOutDevice != type;
3503 mOutDevice = type;
3504 mPatch = *patch;
3505
3506 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3507 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3508 status = hwDevice->create_audio_patch(hwDevice,
3509 patch->num_sources,
3510 patch->sources,
3511 patch->num_sinks,
3512 patch->sinks,
3513 handle);
3514 } else {
3515 char *address;
3516 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3517 //FIXME: we only support address on first sink with HAL version < 3.0
3518 address = audio_device_address_to_parameter(
3519 patch->sinks[0].ext.device.type,
3520 patch->sinks[0].ext.device.address);
3521 } else {
3522 address = (char *)calloc(1, 1);
3523 }
3524 AudioParameter param = AudioParameter(String8(address));
3525 free(address);
3526 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3527 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3528 param.toString().string());
3529 *handle = AUDIO_PATCH_HANDLE_NONE;
3530 }
3531 if (configChanged) {
3532 mPrevOutDevice = type;
3533 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3534 }
3535 return status;
3536 }
3537
releaseAudioPatch_l(const audio_patch_handle_t handle)3538 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3539 {
3540 status_t status;
3541 if (property_get_bool("af.patch_park", false /* default_value */)) {
3542 // Park FastMixer to avoid potential DOS issues with writing to the HAL
3543 // or if HAL does not properly lock against access.
3544 AutoPark<FastMixer> park(mFastMixer);
3545 status = PlaybackThread::releaseAudioPatch_l(handle);
3546 } else {
3547 status = PlaybackThread::releaseAudioPatch_l(handle);
3548 }
3549 return status;
3550 }
3551
releaseAudioPatch_l(const audio_patch_handle_t handle)3552 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3553 {
3554 status_t status = NO_ERROR;
3555
3556 mOutDevice = AUDIO_DEVICE_NONE;
3557
3558 if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3559 audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3560 status = hwDevice->release_audio_patch(hwDevice, handle);
3561 } else {
3562 AudioParameter param;
3563 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3564 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3565 param.toString().string());
3566 }
3567 return status;
3568 }
3569
addPatchTrack(const sp<PatchTrack> & track)3570 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3571 {
3572 Mutex::Autolock _l(mLock);
3573 mTracks.add(track);
3574 }
3575
deletePatchTrack(const sp<PatchTrack> & track)3576 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3577 {
3578 Mutex::Autolock _l(mLock);
3579 destroyTrack_l(track);
3580 }
3581
getAudioPortConfig(struct audio_port_config * config)3582 void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3583 {
3584 ThreadBase::getAudioPortConfig(config);
3585 config->role = AUDIO_PORT_ROLE_SOURCE;
3586 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3587 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3588 }
3589
3590 // ----------------------------------------------------------------------------
3591
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady,type_t type)3592 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3593 audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3594 : PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3595 // mAudioMixer below
3596 // mFastMixer below
3597 mFastMixerFutex(0),
3598 mMasterMono(false)
3599 // mOutputSink below
3600 // mPipeSink below
3601 // mNormalSink below
3602 {
3603 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3604 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3605 "mFrameCount=%zu, mNormalFrameCount=%zu",
3606 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3607 mNormalFrameCount);
3608 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3609
3610 if (type == DUPLICATING) {
3611 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3612 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3613 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3614 return;
3615 }
3616 // create an NBAIO sink for the HAL output stream, and negotiate
3617 mOutputSink = new AudioStreamOutSink(output->stream);
3618 size_t numCounterOffers = 0;
3619 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3620 #if !LOG_NDEBUG
3621 ssize_t index =
3622 #else
3623 (void)
3624 #endif
3625 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3626 ALOG_ASSERT(index == 0);
3627
3628 // initialize fast mixer depending on configuration
3629 bool initFastMixer;
3630 switch (kUseFastMixer) {
3631 case FastMixer_Never:
3632 initFastMixer = false;
3633 break;
3634 case FastMixer_Always:
3635 initFastMixer = true;
3636 break;
3637 case FastMixer_Static:
3638 case FastMixer_Dynamic:
3639 initFastMixer = mFrameCount < mNormalFrameCount;
3640 break;
3641 }
3642 if (initFastMixer) {
3643 audio_format_t fastMixerFormat;
3644 if (mMixerBufferEnabled && mEffectBufferEnabled) {
3645 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3646 } else {
3647 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3648 }
3649 if (mFormat != fastMixerFormat) {
3650 // change our Sink format to accept our intermediate precision
3651 mFormat = fastMixerFormat;
3652 free(mSinkBuffer);
3653 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3654 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3655 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3656 }
3657
3658 // create a MonoPipe to connect our submix to FastMixer
3659 NBAIO_Format format = mOutputSink->format();
3660 #ifdef TEE_SINK
3661 NBAIO_Format origformat = format;
3662 #endif
3663 // adjust format to match that of the Fast Mixer
3664 ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3665 format.mFormat = fastMixerFormat;
3666 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3667
3668 // This pipe depth compensates for scheduling latency of the normal mixer thread.
3669 // When it wakes up after a maximum latency, it runs a few cycles quickly before
3670 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
3671 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3672 const NBAIO_Format offers[1] = {format};
3673 size_t numCounterOffers = 0;
3674 #if !LOG_NDEBUG || defined(TEE_SINK)
3675 ssize_t index =
3676 #else
3677 (void)
3678 #endif
3679 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3680 ALOG_ASSERT(index == 0);
3681 monoPipe->setAvgFrames((mScreenState & 1) ?
3682 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3683 mPipeSink = monoPipe;
3684
3685 #ifdef TEE_SINK
3686 if (mTeeSinkOutputEnabled) {
3687 // create a Pipe to archive a copy of FastMixer's output for dumpsys
3688 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3689 const NBAIO_Format offers2[1] = {origformat};
3690 numCounterOffers = 0;
3691 index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3692 ALOG_ASSERT(index == 0);
3693 mTeeSink = teeSink;
3694 PipeReader *teeSource = new PipeReader(*teeSink);
3695 numCounterOffers = 0;
3696 index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3697 ALOG_ASSERT(index == 0);
3698 mTeeSource = teeSource;
3699 }
3700 #endif
3701
3702 // create fast mixer and configure it initially with just one fast track for our submix
3703 mFastMixer = new FastMixer();
3704 FastMixerStateQueue *sq = mFastMixer->sq();
3705 #ifdef STATE_QUEUE_DUMP
3706 sq->setObserverDump(&mStateQueueObserverDump);
3707 sq->setMutatorDump(&mStateQueueMutatorDump);
3708 #endif
3709 FastMixerState *state = sq->begin();
3710 FastTrack *fastTrack = &state->mFastTracks[0];
3711 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3712 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3713 fastTrack->mVolumeProvider = NULL;
3714 fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3715 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3716 fastTrack->mGeneration++;
3717 state->mFastTracksGen++;
3718 state->mTrackMask = 1;
3719 // fast mixer will use the HAL output sink
3720 state->mOutputSink = mOutputSink.get();
3721 state->mOutputSinkGen++;
3722 state->mFrameCount = mFrameCount;
3723 state->mCommand = FastMixerState::COLD_IDLE;
3724 // already done in constructor initialization list
3725 //mFastMixerFutex = 0;
3726 state->mColdFutexAddr = &mFastMixerFutex;
3727 state->mColdGen++;
3728 state->mDumpState = &mFastMixerDumpState;
3729 #ifdef TEE_SINK
3730 state->mTeeSink = mTeeSink.get();
3731 #endif
3732 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3733 state->mNBLogWriter = mFastMixerNBLogWriter.get();
3734 sq->end();
3735 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3736
3737 // start the fast mixer
3738 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3739 pid_t tid = mFastMixer->getTid();
3740 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3741
3742 #ifdef AUDIO_WATCHDOG
3743 // create and start the watchdog
3744 mAudioWatchdog = new AudioWatchdog();
3745 mAudioWatchdog->setDump(&mAudioWatchdogDump);
3746 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3747 tid = mAudioWatchdog->getTid();
3748 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3749 #endif
3750
3751 }
3752
3753 switch (kUseFastMixer) {
3754 case FastMixer_Never:
3755 case FastMixer_Dynamic:
3756 mNormalSink = mOutputSink;
3757 break;
3758 case FastMixer_Always:
3759 mNormalSink = mPipeSink;
3760 break;
3761 case FastMixer_Static:
3762 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3763 break;
3764 }
3765 }
3766
~MixerThread()3767 AudioFlinger::MixerThread::~MixerThread()
3768 {
3769 if (mFastMixer != 0) {
3770 FastMixerStateQueue *sq = mFastMixer->sq();
3771 FastMixerState *state = sq->begin();
3772 if (state->mCommand == FastMixerState::COLD_IDLE) {
3773 int32_t old = android_atomic_inc(&mFastMixerFutex);
3774 if (old == -1) {
3775 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3776 }
3777 }
3778 state->mCommand = FastMixerState::EXIT;
3779 sq->end();
3780 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3781 mFastMixer->join();
3782 // Though the fast mixer thread has exited, it's state queue is still valid.
3783 // We'll use that extract the final state which contains one remaining fast track
3784 // corresponding to our sub-mix.
3785 state = sq->begin();
3786 ALOG_ASSERT(state->mTrackMask == 1);
3787 FastTrack *fastTrack = &state->mFastTracks[0];
3788 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3789 delete fastTrack->mBufferProvider;
3790 sq->end(false /*didModify*/);
3791 mFastMixer.clear();
3792 #ifdef AUDIO_WATCHDOG
3793 if (mAudioWatchdog != 0) {
3794 mAudioWatchdog->requestExit();
3795 mAudioWatchdog->requestExitAndWait();
3796 mAudioWatchdog.clear();
3797 }
3798 #endif
3799 }
3800 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3801 delete mAudioMixer;
3802 }
3803
3804
correctLatency_l(uint32_t latency) const3805 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3806 {
3807 if (mFastMixer != 0) {
3808 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3809 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3810 }
3811 return latency;
3812 }
3813
3814
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3815 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3816 {
3817 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3818 }
3819
threadLoop_write()3820 ssize_t AudioFlinger::MixerThread::threadLoop_write()
3821 {
3822 // FIXME we should only do one push per cycle; confirm this is true
3823 // Start the fast mixer if it's not already running
3824 if (mFastMixer != 0) {
3825 FastMixerStateQueue *sq = mFastMixer->sq();
3826 FastMixerState *state = sq->begin();
3827 if (state->mCommand != FastMixerState::MIX_WRITE &&
3828 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3829 if (state->mCommand == FastMixerState::COLD_IDLE) {
3830
3831 // FIXME workaround for first HAL write being CPU bound on some devices
3832 ATRACE_BEGIN("write");
3833 mOutput->write((char *)mSinkBuffer, 0);
3834 ATRACE_END();
3835
3836 int32_t old = android_atomic_inc(&mFastMixerFutex);
3837 if (old == -1) {
3838 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3839 }
3840 #ifdef AUDIO_WATCHDOG
3841 if (mAudioWatchdog != 0) {
3842 mAudioWatchdog->resume();
3843 }
3844 #endif
3845 }
3846 state->mCommand = FastMixerState::MIX_WRITE;
3847 #ifdef FAST_THREAD_STATISTICS
3848 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3849 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3850 #endif
3851 sq->end();
3852 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3853 if (kUseFastMixer == FastMixer_Dynamic) {
3854 mNormalSink = mPipeSink;
3855 }
3856 } else {
3857 sq->end(false /*didModify*/);
3858 }
3859 }
3860 return PlaybackThread::threadLoop_write();
3861 }
3862
threadLoop_standby()3863 void AudioFlinger::MixerThread::threadLoop_standby()
3864 {
3865 // Idle the fast mixer if it's currently running
3866 if (mFastMixer != 0) {
3867 FastMixerStateQueue *sq = mFastMixer->sq();
3868 FastMixerState *state = sq->begin();
3869 if (!(state->mCommand & FastMixerState::IDLE)) {
3870 state->mCommand = FastMixerState::COLD_IDLE;
3871 state->mColdFutexAddr = &mFastMixerFutex;
3872 state->mColdGen++;
3873 mFastMixerFutex = 0;
3874 sq->end();
3875 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3876 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3877 if (kUseFastMixer == FastMixer_Dynamic) {
3878 mNormalSink = mOutputSink;
3879 }
3880 #ifdef AUDIO_WATCHDOG
3881 if (mAudioWatchdog != 0) {
3882 mAudioWatchdog->pause();
3883 }
3884 #endif
3885 } else {
3886 sq->end(false /*didModify*/);
3887 }
3888 }
3889 PlaybackThread::threadLoop_standby();
3890 }
3891
waitingAsyncCallback_l()3892 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3893 {
3894 return false;
3895 }
3896
shouldStandby_l()3897 bool AudioFlinger::PlaybackThread::shouldStandby_l()
3898 {
3899 return !mStandby;
3900 }
3901
waitingAsyncCallback()3902 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3903 {
3904 Mutex::Autolock _l(mLock);
3905 return waitingAsyncCallback_l();
3906 }
3907
3908 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()3909 void AudioFlinger::PlaybackThread::threadLoop_standby()
3910 {
3911 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3912 mOutput->standby();
3913 if (mUseAsyncWrite != 0) {
3914 // discard any pending drain or write ack by incrementing sequence
3915 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3916 mDrainSequence = (mDrainSequence + 2) & ~1;
3917 ALOG_ASSERT(mCallbackThread != 0);
3918 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3919 mCallbackThread->setDraining(mDrainSequence);
3920 }
3921 mHwPaused = false;
3922 }
3923
onAddNewTrack_l()3924 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3925 {
3926 ALOGV("signal playback thread");
3927 broadcast_l();
3928 }
3929
onAsyncError()3930 void AudioFlinger::PlaybackThread::onAsyncError()
3931 {
3932 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3933 invalidateTracks((audio_stream_type_t)i);
3934 }
3935 }
3936
threadLoop_mix()3937 void AudioFlinger::MixerThread::threadLoop_mix()
3938 {
3939 // mix buffers...
3940 mAudioMixer->process();
3941 mCurrentWriteLength = mSinkBufferSize;
3942 // increase sleep time progressively when application underrun condition clears.
3943 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3944 // that a steady state of alternating ready/not ready conditions keeps the sleep time
3945 // such that we would underrun the audio HAL.
3946 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3947 sleepTimeShift--;
3948 }
3949 mSleepTimeUs = 0;
3950 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3951 //TODO: delay standby when effects have a tail
3952
3953 }
3954
threadLoop_sleepTime()3955 void AudioFlinger::MixerThread::threadLoop_sleepTime()
3956 {
3957 // If no tracks are ready, sleep once for the duration of an output
3958 // buffer size, then write 0s to the output
3959 if (mSleepTimeUs == 0) {
3960 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3961 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3962 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3963 mSleepTimeUs = kMinThreadSleepTimeUs;
3964 }
3965 // reduce sleep time in case of consecutive application underruns to avoid
3966 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3967 // duration we would end up writing less data than needed by the audio HAL if
3968 // the condition persists.
3969 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3970 sleepTimeShift++;
3971 }
3972 } else {
3973 mSleepTimeUs = mIdleSleepTimeUs;
3974 }
3975 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3976 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3977 // before effects processing or output.
3978 if (mMixerBufferValid) {
3979 memset(mMixerBuffer, 0, mMixerBufferSize);
3980 } else {
3981 memset(mSinkBuffer, 0, mSinkBufferSize);
3982 }
3983 mSleepTimeUs = 0;
3984 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3985 "anticipated start");
3986 }
3987 // TODO add standby time extension fct of effect tail
3988 }
3989
3990 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3991 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3992 Vector< sp<Track> > *tracksToRemove)
3993 {
3994
3995 mixer_state mixerStatus = MIXER_IDLE;
3996 // find out which tracks need to be processed
3997 size_t count = mActiveTracks.size();
3998 size_t mixedTracks = 0;
3999 size_t tracksWithEffect = 0;
4000 // counts only _active_ fast tracks
4001 size_t fastTracks = 0;
4002 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4003
4004 float masterVolume = mMasterVolume;
4005 bool masterMute = mMasterMute;
4006
4007 if (masterMute) {
4008 masterVolume = 0;
4009 }
4010 // Delegate master volume control to effect in output mix effect chain if needed
4011 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4012 if (chain != 0) {
4013 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4014 chain->setVolume_l(&v, &v);
4015 masterVolume = (float)((v + (1 << 23)) >> 24);
4016 chain.clear();
4017 }
4018
4019 // prepare a new state to push
4020 FastMixerStateQueue *sq = NULL;
4021 FastMixerState *state = NULL;
4022 bool didModify = false;
4023 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4024 if (mFastMixer != 0) {
4025 sq = mFastMixer->sq();
4026 state = sq->begin();
4027 }
4028
4029 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4030 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4031
4032 for (size_t i=0 ; i<count ; i++) {
4033 const sp<Track> t = mActiveTracks[i].promote();
4034 if (t == 0) {
4035 continue;
4036 }
4037
4038 // this const just means the local variable doesn't change
4039 Track* const track = t.get();
4040
4041 // process fast tracks
4042 if (track->isFastTrack()) {
4043
4044 // It's theoretically possible (though unlikely) for a fast track to be created
4045 // and then removed within the same normal mix cycle. This is not a problem, as
4046 // the track never becomes active so it's fast mixer slot is never touched.
4047 // The converse, of removing an (active) track and then creating a new track
4048 // at the identical fast mixer slot within the same normal mix cycle,
4049 // is impossible because the slot isn't marked available until the end of each cycle.
4050 int j = track->mFastIndex;
4051 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4052 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4053 FastTrack *fastTrack = &state->mFastTracks[j];
4054
4055 // Determine whether the track is currently in underrun condition,
4056 // and whether it had a recent underrun.
4057 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4058 FastTrackUnderruns underruns = ftDump->mUnderruns;
4059 uint32_t recentFull = (underruns.mBitFields.mFull -
4060 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4061 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4062 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4063 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4064 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4065 uint32_t recentUnderruns = recentPartial + recentEmpty;
4066 track->mObservedUnderruns = underruns;
4067 // don't count underruns that occur while stopping or pausing
4068 // or stopped which can occur when flush() is called while active
4069 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4070 recentUnderruns > 0) {
4071 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4072 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4073 } else {
4074 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4075 }
4076
4077 // This is similar to the state machine for normal tracks,
4078 // with a few modifications for fast tracks.
4079 bool isActive = true;
4080 switch (track->mState) {
4081 case TrackBase::STOPPING_1:
4082 // track stays active in STOPPING_1 state until first underrun
4083 if (recentUnderruns > 0 || track->isTerminated()) {
4084 track->mState = TrackBase::STOPPING_2;
4085 }
4086 break;
4087 case TrackBase::PAUSING:
4088 // ramp down is not yet implemented
4089 track->setPaused();
4090 break;
4091 case TrackBase::RESUMING:
4092 // ramp up is not yet implemented
4093 track->mState = TrackBase::ACTIVE;
4094 break;
4095 case TrackBase::ACTIVE:
4096 if (recentFull > 0 || recentPartial > 0) {
4097 // track has provided at least some frames recently: reset retry count
4098 track->mRetryCount = kMaxTrackRetries;
4099 }
4100 if (recentUnderruns == 0) {
4101 // no recent underruns: stay active
4102 break;
4103 }
4104 // there has recently been an underrun of some kind
4105 if (track->sharedBuffer() == 0) {
4106 // were any of the recent underruns "empty" (no frames available)?
4107 if (recentEmpty == 0) {
4108 // no, then ignore the partial underruns as they are allowed indefinitely
4109 break;
4110 }
4111 // there has recently been an "empty" underrun: decrement the retry counter
4112 if (--(track->mRetryCount) > 0) {
4113 break;
4114 }
4115 // indicate to client process that the track was disabled because of underrun;
4116 // it will then automatically call start() when data is available
4117 track->disable();
4118 // remove from active list, but state remains ACTIVE [confusing but true]
4119 isActive = false;
4120 break;
4121 }
4122 // fall through
4123 case TrackBase::STOPPING_2:
4124 case TrackBase::PAUSED:
4125 case TrackBase::STOPPED:
4126 case TrackBase::FLUSHED: // flush() while active
4127 // Check for presentation complete if track is inactive
4128 // We have consumed all the buffers of this track.
4129 // This would be incomplete if we auto-paused on underrun
4130 {
4131 size_t audioHALFrames =
4132 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4133 int64_t framesWritten = mBytesWritten / mFrameSize;
4134 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4135 // track stays in active list until presentation is complete
4136 break;
4137 }
4138 }
4139 if (track->isStopping_2()) {
4140 track->mState = TrackBase::STOPPED;
4141 }
4142 if (track->isStopped()) {
4143 // Can't reset directly, as fast mixer is still polling this track
4144 // track->reset();
4145 // So instead mark this track as needing to be reset after push with ack
4146 resetMask |= 1 << i;
4147 }
4148 isActive = false;
4149 break;
4150 case TrackBase::IDLE:
4151 default:
4152 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4153 }
4154
4155 if (isActive) {
4156 // was it previously inactive?
4157 if (!(state->mTrackMask & (1 << j))) {
4158 ExtendedAudioBufferProvider *eabp = track;
4159 VolumeProvider *vp = track;
4160 fastTrack->mBufferProvider = eabp;
4161 fastTrack->mVolumeProvider = vp;
4162 fastTrack->mChannelMask = track->mChannelMask;
4163 fastTrack->mFormat = track->mFormat;
4164 fastTrack->mGeneration++;
4165 state->mTrackMask |= 1 << j;
4166 didModify = true;
4167 // no acknowledgement required for newly active tracks
4168 }
4169 // cache the combined master volume and stream type volume for fast mixer; this
4170 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4171 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4172 ++fastTracks;
4173 } else {
4174 // was it previously active?
4175 if (state->mTrackMask & (1 << j)) {
4176 fastTrack->mBufferProvider = NULL;
4177 fastTrack->mGeneration++;
4178 state->mTrackMask &= ~(1 << j);
4179 didModify = true;
4180 // If any fast tracks were removed, we must wait for acknowledgement
4181 // because we're about to decrement the last sp<> on those tracks.
4182 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4183 } else {
4184 LOG_ALWAYS_FATAL("fast track %d should have been active; "
4185 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4186 j, track->mState, state->mTrackMask, recentUnderruns,
4187 track->sharedBuffer() != 0);
4188 }
4189 tracksToRemove->add(track);
4190 // Avoids a misleading display in dumpsys
4191 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4192 }
4193 continue;
4194 }
4195
4196 { // local variable scope to avoid goto warning
4197
4198 audio_track_cblk_t* cblk = track->cblk();
4199
4200 // The first time a track is added we wait
4201 // for all its buffers to be filled before processing it
4202 int name = track->name();
4203 // make sure that we have enough frames to mix one full buffer.
4204 // enforce this condition only once to enable draining the buffer in case the client
4205 // app does not call stop() and relies on underrun to stop:
4206 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4207 // during last round
4208 size_t desiredFrames;
4209 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4210 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4211
4212 desiredFrames = sourceFramesNeededWithTimestretch(
4213 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4214 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4215 // add frames already consumed but not yet released by the resampler
4216 // because mAudioTrackServerProxy->framesReady() will include these frames
4217 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4218
4219 uint32_t minFrames = 1;
4220 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4221 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4222 minFrames = desiredFrames;
4223 }
4224
4225 size_t framesReady = track->framesReady();
4226 if (ATRACE_ENABLED()) {
4227 // I wish we had formatted trace names
4228 char traceName[16];
4229 strcpy(traceName, "nRdy");
4230 int name = track->name();
4231 if (AudioMixer::TRACK0 <= name &&
4232 name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4233 name -= AudioMixer::TRACK0;
4234 traceName[4] = (name / 10) + '0';
4235 traceName[5] = (name % 10) + '0';
4236 } else {
4237 traceName[4] = '?';
4238 traceName[5] = '?';
4239 }
4240 traceName[6] = '\0';
4241 ATRACE_INT(traceName, framesReady);
4242 }
4243 if ((framesReady >= minFrames) && track->isReady() &&
4244 !track->isPaused() && !track->isTerminated())
4245 {
4246 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4247
4248 mixedTracks++;
4249
4250 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4251 // there is an effect chain connected to the track
4252 chain.clear();
4253 if (track->mainBuffer() != mSinkBuffer &&
4254 track->mainBuffer() != mMixerBuffer) {
4255 if (mEffectBufferEnabled) {
4256 mEffectBufferValid = true; // Later can set directly.
4257 }
4258 chain = getEffectChain_l(track->sessionId());
4259 // Delegate volume control to effect in track effect chain if needed
4260 if (chain != 0) {
4261 tracksWithEffect++;
4262 } else {
4263 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4264 "session %d",
4265 name, track->sessionId());
4266 }
4267 }
4268
4269
4270 int param = AudioMixer::VOLUME;
4271 if (track->mFillingUpStatus == Track::FS_FILLED) {
4272 // no ramp for the first volume setting
4273 track->mFillingUpStatus = Track::FS_ACTIVE;
4274 if (track->mState == TrackBase::RESUMING) {
4275 track->mState = TrackBase::ACTIVE;
4276 param = AudioMixer::RAMP_VOLUME;
4277 }
4278 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4279 // FIXME should not make a decision based on mServer
4280 } else if (cblk->mServer != 0) {
4281 // If the track is stopped before the first frame was mixed,
4282 // do not apply ramp
4283 param = AudioMixer::RAMP_VOLUME;
4284 }
4285
4286 // compute volume for this track
4287 uint32_t vl, vr; // in U8.24 integer format
4288 float vlf, vrf, vaf; // in [0.0, 1.0] float format
4289 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4290 vl = vr = 0;
4291 vlf = vrf = vaf = 0.;
4292 if (track->isPausing()) {
4293 track->setPaused();
4294 }
4295 } else {
4296
4297 // read original volumes with volume control
4298 float typeVolume = mStreamTypes[track->streamType()].volume;
4299 float v = masterVolume * typeVolume;
4300 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4301 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4302 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4303 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4304 // track volumes come from shared memory, so can't be trusted and must be clamped
4305 if (vlf > GAIN_FLOAT_UNITY) {
4306 ALOGV("Track left volume out of range: %.3g", vlf);
4307 vlf = GAIN_FLOAT_UNITY;
4308 }
4309 if (vrf > GAIN_FLOAT_UNITY) {
4310 ALOGV("Track right volume out of range: %.3g", vrf);
4311 vrf = GAIN_FLOAT_UNITY;
4312 }
4313 // now apply the master volume and stream type volume
4314 vlf *= v;
4315 vrf *= v;
4316 // assuming master volume and stream type volume each go up to 1.0,
4317 // then derive vl and vr as U8.24 versions for the effect chain
4318 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4319 vl = (uint32_t) (scaleto8_24 * vlf);
4320 vr = (uint32_t) (scaleto8_24 * vrf);
4321 // vl and vr are now in U8.24 format
4322 uint16_t sendLevel = proxy->getSendLevel_U4_12();
4323 // send level comes from shared memory and so may be corrupt
4324 if (sendLevel > MAX_GAIN_INT) {
4325 ALOGV("Track send level out of range: %04X", sendLevel);
4326 sendLevel = MAX_GAIN_INT;
4327 }
4328 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4329 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4330 }
4331
4332 // Delegate volume control to effect in track effect chain if needed
4333 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4334 // Do not ramp volume if volume is controlled by effect
4335 param = AudioMixer::VOLUME;
4336 // Update remaining floating point volume levels
4337 vlf = (float)vl / (1 << 24);
4338 vrf = (float)vr / (1 << 24);
4339 track->mHasVolumeController = true;
4340 } else {
4341 // force no volume ramp when volume controller was just disabled or removed
4342 // from effect chain to avoid volume spike
4343 if (track->mHasVolumeController) {
4344 param = AudioMixer::VOLUME;
4345 }
4346 track->mHasVolumeController = false;
4347 }
4348
4349 // XXX: these things DON'T need to be done each time
4350 mAudioMixer->setBufferProvider(name, track);
4351 mAudioMixer->enable(name);
4352
4353 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4354 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4355 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4356 mAudioMixer->setParameter(
4357 name,
4358 AudioMixer::TRACK,
4359 AudioMixer::FORMAT, (void *)track->format());
4360 mAudioMixer->setParameter(
4361 name,
4362 AudioMixer::TRACK,
4363 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4364 mAudioMixer->setParameter(
4365 name,
4366 AudioMixer::TRACK,
4367 AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4368 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4369 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4370 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4371 if (reqSampleRate == 0) {
4372 reqSampleRate = mSampleRate;
4373 } else if (reqSampleRate > maxSampleRate) {
4374 reqSampleRate = maxSampleRate;
4375 }
4376 mAudioMixer->setParameter(
4377 name,
4378 AudioMixer::RESAMPLE,
4379 AudioMixer::SAMPLE_RATE,
4380 (void *)(uintptr_t)reqSampleRate);
4381
4382 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4383 mAudioMixer->setParameter(
4384 name,
4385 AudioMixer::TIMESTRETCH,
4386 AudioMixer::PLAYBACK_RATE,
4387 &playbackRate);
4388
4389 /*
4390 * Select the appropriate output buffer for the track.
4391 *
4392 * Tracks with effects go into their own effects chain buffer
4393 * and from there into either mEffectBuffer or mSinkBuffer.
4394 *
4395 * Other tracks can use mMixerBuffer for higher precision
4396 * channel accumulation. If this buffer is enabled
4397 * (mMixerBufferEnabled true), then selected tracks will accumulate
4398 * into it.
4399 *
4400 */
4401 if (mMixerBufferEnabled
4402 && (track->mainBuffer() == mSinkBuffer
4403 || track->mainBuffer() == mMixerBuffer)) {
4404 mAudioMixer->setParameter(
4405 name,
4406 AudioMixer::TRACK,
4407 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4408 mAudioMixer->setParameter(
4409 name,
4410 AudioMixer::TRACK,
4411 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4412 // TODO: override track->mainBuffer()?
4413 mMixerBufferValid = true;
4414 } else {
4415 mAudioMixer->setParameter(
4416 name,
4417 AudioMixer::TRACK,
4418 AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4419 mAudioMixer->setParameter(
4420 name,
4421 AudioMixer::TRACK,
4422 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4423 }
4424 mAudioMixer->setParameter(
4425 name,
4426 AudioMixer::TRACK,
4427 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4428
4429 // reset retry count
4430 track->mRetryCount = kMaxTrackRetries;
4431
4432 // If one track is ready, set the mixer ready if:
4433 // - the mixer was not ready during previous round OR
4434 // - no other track is not ready
4435 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4436 mixerStatus != MIXER_TRACKS_ENABLED) {
4437 mixerStatus = MIXER_TRACKS_READY;
4438 }
4439 } else {
4440 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4441 ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)",
4442 track, framesReady, desiredFrames);
4443 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4444 } else {
4445 track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4446 }
4447
4448 // clear effect chain input buffer if an active track underruns to avoid sending
4449 // previous audio buffer again to effects
4450 chain = getEffectChain_l(track->sessionId());
4451 if (chain != 0) {
4452 chain->clearInputBuffer();
4453 }
4454
4455 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4456 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4457 track->isStopped() || track->isPaused()) {
4458 // We have consumed all the buffers of this track.
4459 // Remove it from the list of active tracks.
4460 // TODO: use actual buffer filling status instead of latency when available from
4461 // audio HAL
4462 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4463 int64_t framesWritten = mBytesWritten / mFrameSize;
4464 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4465 if (track->isStopped()) {
4466 track->reset();
4467 }
4468 tracksToRemove->add(track);
4469 }
4470 } else {
4471 // No buffers for this track. Give it a few chances to
4472 // fill a buffer, then remove it from active list.
4473 if (--(track->mRetryCount) <= 0) {
4474 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4475 tracksToRemove->add(track);
4476 // indicate to client process that the track was disabled because of underrun;
4477 // it will then automatically call start() when data is available
4478 track->disable();
4479 // If one track is not ready, mark the mixer also not ready if:
4480 // - the mixer was ready during previous round OR
4481 // - no other track is ready
4482 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4483 mixerStatus != MIXER_TRACKS_READY) {
4484 mixerStatus = MIXER_TRACKS_ENABLED;
4485 }
4486 }
4487 mAudioMixer->disable(name);
4488 }
4489
4490 } // local variable scope to avoid goto warning
4491
4492 }
4493
4494 // Push the new FastMixer state if necessary
4495 bool pauseAudioWatchdog = false;
4496 if (didModify) {
4497 state->mFastTracksGen++;
4498 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4499 if (kUseFastMixer == FastMixer_Dynamic &&
4500 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4501 state->mCommand = FastMixerState::COLD_IDLE;
4502 state->mColdFutexAddr = &mFastMixerFutex;
4503 state->mColdGen++;
4504 mFastMixerFutex = 0;
4505 if (kUseFastMixer == FastMixer_Dynamic) {
4506 mNormalSink = mOutputSink;
4507 }
4508 // If we go into cold idle, need to wait for acknowledgement
4509 // so that fast mixer stops doing I/O.
4510 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4511 pauseAudioWatchdog = true;
4512 }
4513 }
4514 if (sq != NULL) {
4515 sq->end(didModify);
4516 sq->push(block);
4517 }
4518 #ifdef AUDIO_WATCHDOG
4519 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4520 mAudioWatchdog->pause();
4521 }
4522 #endif
4523
4524 // Now perform the deferred reset on fast tracks that have stopped
4525 while (resetMask != 0) {
4526 size_t i = __builtin_ctz(resetMask);
4527 ALOG_ASSERT(i < count);
4528 resetMask &= ~(1 << i);
4529 sp<Track> t = mActiveTracks[i].promote();
4530 if (t == 0) {
4531 continue;
4532 }
4533 Track* track = t.get();
4534 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4535 track->reset();
4536 }
4537
4538 // remove all the tracks that need to be...
4539 removeTracks_l(*tracksToRemove);
4540
4541 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4542 mEffectBufferValid = true;
4543 }
4544
4545 if (mEffectBufferValid) {
4546 // as long as there are effects we should clear the effects buffer, to avoid
4547 // passing a non-clean buffer to the effect chain
4548 memset(mEffectBuffer, 0, mEffectBufferSize);
4549 }
4550 // sink or mix buffer must be cleared if all tracks are connected to an
4551 // effect chain as in this case the mixer will not write to the sink or mix buffer
4552 // and track effects will accumulate into it
4553 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4554 (mixedTracks == 0 && fastTracks > 0))) {
4555 // FIXME as a performance optimization, should remember previous zero status
4556 if (mMixerBufferValid) {
4557 memset(mMixerBuffer, 0, mMixerBufferSize);
4558 // TODO: In testing, mSinkBuffer below need not be cleared because
4559 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4560 // after mixing.
4561 //
4562 // To enforce this guarantee:
4563 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4564 // (mixedTracks == 0 && fastTracks > 0))
4565 // must imply MIXER_TRACKS_READY.
4566 // Later, we may clear buffers regardless, and skip much of this logic.
4567 }
4568 // FIXME as a performance optimization, should remember previous zero status
4569 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4570 }
4571
4572 // if any fast tracks, then status is ready
4573 mMixerStatusIgnoringFastTracks = mixerStatus;
4574 if (fastTracks > 0) {
4575 mixerStatus = MIXER_TRACKS_READY;
4576 }
4577 return mixerStatus;
4578 }
4579
4580 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId)4581 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4582 audio_format_t format, audio_session_t sessionId)
4583 {
4584 return mAudioMixer->getTrackName(channelMask, format, sessionId);
4585 }
4586
4587 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)4588 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4589 {
4590 ALOGV("remove track (%d) and delete from mixer", name);
4591 mAudioMixer->deleteTrackName(name);
4592 }
4593
4594 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)4595 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4596 status_t& status)
4597 {
4598 bool reconfig = false;
4599 bool a2dpDeviceChanged = false;
4600
4601 status = NO_ERROR;
4602
4603 AutoPark<FastMixer> park(mFastMixer);
4604
4605 AudioParameter param = AudioParameter(keyValuePair);
4606 int value;
4607 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4608 reconfig = true;
4609 }
4610 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4611 if (!isValidPcmSinkFormat((audio_format_t) value)) {
4612 status = BAD_VALUE;
4613 } else {
4614 // no need to save value, since it's constant
4615 reconfig = true;
4616 }
4617 }
4618 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4619 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4620 status = BAD_VALUE;
4621 } else {
4622 // no need to save value, since it's constant
4623 reconfig = true;
4624 }
4625 }
4626 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4627 // do not accept frame count changes if tracks are open as the track buffer
4628 // size depends on frame count and correct behavior would not be guaranteed
4629 // if frame count is changed after track creation
4630 if (!mTracks.isEmpty()) {
4631 status = INVALID_OPERATION;
4632 } else {
4633 reconfig = true;
4634 }
4635 }
4636 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4637 #ifdef ADD_BATTERY_DATA
4638 // when changing the audio output device, call addBatteryData to notify
4639 // the change
4640 if (mOutDevice != value) {
4641 uint32_t params = 0;
4642 // check whether speaker is on
4643 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4644 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4645 }
4646
4647 audio_devices_t deviceWithoutSpeaker
4648 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4649 // check if any other device (except speaker) is on
4650 if (value & deviceWithoutSpeaker) {
4651 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4652 }
4653
4654 if (params != 0) {
4655 addBatteryData(params);
4656 }
4657 }
4658 #endif
4659
4660 // forward device change to effects that have requested to be
4661 // aware of attached audio device.
4662 if (value != AUDIO_DEVICE_NONE) {
4663 a2dpDeviceChanged =
4664 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4665 mOutDevice = value;
4666 for (size_t i = 0; i < mEffectChains.size(); i++) {
4667 mEffectChains[i]->setDevice_l(mOutDevice);
4668 }
4669 }
4670 }
4671
4672 if (status == NO_ERROR) {
4673 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4674 keyValuePair.string());
4675 if (!mStandby && status == INVALID_OPERATION) {
4676 mOutput->standby();
4677 mStandby = true;
4678 mBytesWritten = 0;
4679 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4680 keyValuePair.string());
4681 }
4682 if (status == NO_ERROR && reconfig) {
4683 readOutputParameters_l();
4684 delete mAudioMixer;
4685 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4686 for (size_t i = 0; i < mTracks.size() ; i++) {
4687 int name = getTrackName_l(mTracks[i]->mChannelMask,
4688 mTracks[i]->mFormat, mTracks[i]->mSessionId);
4689 if (name < 0) {
4690 break;
4691 }
4692 mTracks[i]->mName = name;
4693 }
4694 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4695 }
4696 }
4697
4698 return reconfig || a2dpDeviceChanged;
4699 }
4700
4701
dumpInternals(int fd,const Vector<String16> & args)4702 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4703 {
4704 PlaybackThread::dumpInternals(fd, args);
4705 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4706 dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4707 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
4708
4709 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4710 // while we are dumping it. It may be inconsistent, but it won't mutate!
4711 // This is a large object so we place it on the heap.
4712 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4713 const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4714 copy->dump(fd);
4715 delete copy;
4716
4717 #ifdef STATE_QUEUE_DUMP
4718 // Similar for state queue
4719 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4720 observerCopy.dump(fd);
4721 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4722 mutatorCopy.dump(fd);
4723 #endif
4724
4725 #ifdef TEE_SINK
4726 // Write the tee output to a .wav file
4727 dumpTee(fd, mTeeSource, mId);
4728 #endif
4729
4730 #ifdef AUDIO_WATCHDOG
4731 if (mAudioWatchdog != 0) {
4732 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4733 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4734 wdCopy.dump(fd);
4735 }
4736 #endif
4737 }
4738
idleSleepTimeUs() const4739 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4740 {
4741 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4742 }
4743
suspendSleepTimeUs() const4744 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4745 {
4746 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4747 }
4748
cacheParameters_l()4749 void AudioFlinger::MixerThread::cacheParameters_l()
4750 {
4751 PlaybackThread::cacheParameters_l();
4752
4753 // FIXME: Relaxed timing because of a certain device that can't meet latency
4754 // Should be reduced to 2x after the vendor fixes the driver issue
4755 // increase threshold again due to low power audio mode. The way this warning
4756 // threshold is calculated and its usefulness should be reconsidered anyway.
4757 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4758 }
4759
4760 // ----------------------------------------------------------------------------
4761
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,bool systemReady)4762 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4763 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4764 : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4765 // mLeftVolFloat, mRightVolFloat
4766 {
4767 }
4768
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type,bool systemReady)4769 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4770 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4771 ThreadBase::type_t type, bool systemReady)
4772 : PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4773 // mLeftVolFloat, mRightVolFloat
4774 {
4775 }
4776
~DirectOutputThread()4777 AudioFlinger::DirectOutputThread::~DirectOutputThread()
4778 {
4779 }
4780
processVolume_l(Track * track,bool lastTrack)4781 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4782 {
4783 float left, right;
4784
4785 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4786 left = right = 0;
4787 } else {
4788 float typeVolume = mStreamTypes[track->streamType()].volume;
4789 float v = mMasterVolume * typeVolume;
4790 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4791 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4792 left = float_from_gain(gain_minifloat_unpack_left(vlr));
4793 if (left > GAIN_FLOAT_UNITY) {
4794 left = GAIN_FLOAT_UNITY;
4795 }
4796 left *= v;
4797 right = float_from_gain(gain_minifloat_unpack_right(vlr));
4798 if (right > GAIN_FLOAT_UNITY) {
4799 right = GAIN_FLOAT_UNITY;
4800 }
4801 right *= v;
4802 }
4803
4804 if (lastTrack) {
4805 if (left != mLeftVolFloat || right != mRightVolFloat) {
4806 mLeftVolFloat = left;
4807 mRightVolFloat = right;
4808
4809 // Convert volumes from float to 8.24
4810 uint32_t vl = (uint32_t)(left * (1 << 24));
4811 uint32_t vr = (uint32_t)(right * (1 << 24));
4812
4813 // Delegate volume control to effect in track effect chain if needed
4814 // only one effect chain can be present on DirectOutputThread, so if
4815 // there is one, the track is connected to it
4816 if (!mEffectChains.isEmpty()) {
4817 mEffectChains[0]->setVolume_l(&vl, &vr);
4818 left = (float)vl / (1 << 24);
4819 right = (float)vr / (1 << 24);
4820 }
4821 if (mOutput->stream->set_volume) {
4822 mOutput->stream->set_volume(mOutput->stream, left, right);
4823 }
4824 }
4825 }
4826 }
4827
onAddNewTrack_l()4828 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4829 {
4830 sp<Track> previousTrack = mPreviousTrack.promote();
4831 sp<Track> latestTrack = mLatestActiveTrack.promote();
4832
4833 if (previousTrack != 0 && latestTrack != 0) {
4834 if (mType == DIRECT) {
4835 if (previousTrack.get() != latestTrack.get()) {
4836 mFlushPending = true;
4837 }
4838 } else /* mType == OFFLOAD */ {
4839 if (previousTrack->sessionId() != latestTrack->sessionId()) {
4840 mFlushPending = true;
4841 }
4842 }
4843 }
4844 PlaybackThread::onAddNewTrack_l();
4845 }
4846
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4847 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4848 Vector< sp<Track> > *tracksToRemove
4849 )
4850 {
4851 size_t count = mActiveTracks.size();
4852 mixer_state mixerStatus = MIXER_IDLE;
4853 bool doHwPause = false;
4854 bool doHwResume = false;
4855
4856 // find out which tracks need to be processed
4857 for (size_t i = 0; i < count; i++) {
4858 sp<Track> t = mActiveTracks[i].promote();
4859 // The track died recently
4860 if (t == 0) {
4861 continue;
4862 }
4863
4864 if (t->isInvalid()) {
4865 ALOGW("An invalidated track shouldn't be in active list");
4866 tracksToRemove->add(t);
4867 continue;
4868 }
4869
4870 Track* const track = t.get();
4871 #ifdef VERY_VERY_VERBOSE_LOGGING
4872 audio_track_cblk_t* cblk = track->cblk();
4873 #endif
4874 // Only consider last track started for volume and mixer state control.
4875 // In theory an older track could underrun and restart after the new one starts
4876 // but as we only care about the transition phase between two tracks on a
4877 // direct output, it is not a problem to ignore the underrun case.
4878 sp<Track> l = mLatestActiveTrack.promote();
4879 bool last = l.get() == track;
4880
4881 if (track->isPausing()) {
4882 track->setPaused();
4883 if (mHwSupportsPause && last && !mHwPaused) {
4884 doHwPause = true;
4885 mHwPaused = true;
4886 }
4887 tracksToRemove->add(track);
4888 } else if (track->isFlushPending()) {
4889 track->flushAck();
4890 if (last) {
4891 mFlushPending = true;
4892 }
4893 } else if (track->isResumePending()) {
4894 track->resumeAck();
4895 if (last) {
4896 mLeftVolFloat = mRightVolFloat = -1.0;
4897 if (mHwPaused) {
4898 doHwResume = true;
4899 mHwPaused = false;
4900 }
4901 }
4902 }
4903
4904 // The first time a track is added we wait
4905 // for all its buffers to be filled before processing it.
4906 // Allow draining the buffer in case the client
4907 // app does not call stop() and relies on underrun to stop:
4908 // hence the test on (track->mRetryCount > 1).
4909 // If retryCount<=1 then track is about to underrun and be removed.
4910 // Do not use a high threshold for compressed audio.
4911 uint32_t minFrames;
4912 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4913 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4914 minFrames = mNormalFrameCount;
4915 } else {
4916 minFrames = 1;
4917 }
4918
4919 if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4920 !track->isStopping_2() && !track->isStopped())
4921 {
4922 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4923
4924 if (track->mFillingUpStatus == Track::FS_FILLED) {
4925 track->mFillingUpStatus = Track::FS_ACTIVE;
4926 if (last) {
4927 // make sure processVolume_l() will apply new volume even if 0
4928 mLeftVolFloat = mRightVolFloat = -1.0;
4929 }
4930 if (!mHwSupportsPause) {
4931 track->resumeAck();
4932 }
4933 }
4934
4935 // compute volume for this track
4936 processVolume_l(track, last);
4937 if (last) {
4938 sp<Track> previousTrack = mPreviousTrack.promote();
4939 if (previousTrack != 0) {
4940 if (track != previousTrack.get()) {
4941 // Flush any data still being written from last track
4942 mBytesRemaining = 0;
4943 // Invalidate previous track to force a seek when resuming.
4944 previousTrack->invalidate();
4945 }
4946 }
4947 mPreviousTrack = track;
4948
4949 // reset retry count
4950 track->mRetryCount = kMaxTrackRetriesDirect;
4951 mActiveTrack = t;
4952 mixerStatus = MIXER_TRACKS_READY;
4953 if (mHwPaused) {
4954 doHwResume = true;
4955 mHwPaused = false;
4956 }
4957 }
4958 } else {
4959 // clear effect chain input buffer if the last active track started underruns
4960 // to avoid sending previous audio buffer again to effects
4961 if (!mEffectChains.isEmpty() && last) {
4962 mEffectChains[0]->clearInputBuffer();
4963 }
4964 if (track->isStopping_1()) {
4965 track->mState = TrackBase::STOPPING_2;
4966 if (last && mHwPaused) {
4967 doHwResume = true;
4968 mHwPaused = false;
4969 }
4970 }
4971 if ((track->sharedBuffer() != 0) || track->isStopped() ||
4972 track->isStopping_2() || track->isPaused()) {
4973 // We have consumed all the buffers of this track.
4974 // Remove it from the list of active tracks.
4975 size_t audioHALFrames;
4976 if (audio_has_proportional_frames(mFormat)) {
4977 audioHALFrames = (latency_l() * mSampleRate) / 1000;
4978 } else {
4979 audioHALFrames = 0;
4980 }
4981
4982 int64_t framesWritten = mBytesWritten / mFrameSize;
4983 if (mStandby || !last ||
4984 track->presentationComplete(framesWritten, audioHALFrames)) {
4985 if (track->isStopping_2()) {
4986 track->mState = TrackBase::STOPPED;
4987 }
4988 if (track->isStopped()) {
4989 track->reset();
4990 }
4991 tracksToRemove->add(track);
4992 }
4993 } else {
4994 // No buffers for this track. Give it a few chances to
4995 // fill a buffer, then remove it from active list.
4996 // Only consider last track started for mixer state control
4997 if (--(track->mRetryCount) <= 0) {
4998 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4999 tracksToRemove->add(track);
5000 // indicate to client process that the track was disabled because of underrun;
5001 // it will then automatically call start() when data is available
5002 track->disable();
5003 } else if (last) {
5004 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5005 "minFrames = %u, mFormat = %#x",
5006 track->framesReady(), minFrames, mFormat);
5007 mixerStatus = MIXER_TRACKS_ENABLED;
5008 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5009 doHwPause = true;
5010 mHwPaused = true;
5011 }
5012 }
5013 }
5014 }
5015 }
5016
5017 // if an active track did not command a flush, check for pending flush on stopped tracks
5018 if (!mFlushPending) {
5019 for (size_t i = 0; i < mTracks.size(); i++) {
5020 if (mTracks[i]->isFlushPending()) {
5021 mTracks[i]->flushAck();
5022 mFlushPending = true;
5023 }
5024 }
5025 }
5026
5027 // make sure the pause/flush/resume sequence is executed in the right order.
5028 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5029 // before flush and then resume HW. This can happen in case of pause/flush/resume
5030 // if resume is received before pause is executed.
5031 if (mHwSupportsPause && !mStandby &&
5032 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5033 mOutput->stream->pause(mOutput->stream);
5034 }
5035 if (mFlushPending) {
5036 flushHw_l();
5037 }
5038 if (mHwSupportsPause && !mStandby && doHwResume) {
5039 mOutput->stream->resume(mOutput->stream);
5040 }
5041 // remove all the tracks that need to be...
5042 removeTracks_l(*tracksToRemove);
5043
5044 return mixerStatus;
5045 }
5046
threadLoop_mix()5047 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5048 {
5049 size_t frameCount = mFrameCount;
5050 int8_t *curBuf = (int8_t *)mSinkBuffer;
5051 // output audio to hardware
5052 while (frameCount) {
5053 AudioBufferProvider::Buffer buffer;
5054 buffer.frameCount = frameCount;
5055 status_t status = mActiveTrack->getNextBuffer(&buffer);
5056 if (status != NO_ERROR || buffer.raw == NULL) {
5057 // no need to pad with 0 for compressed audio
5058 if (audio_has_proportional_frames(mFormat)) {
5059 memset(curBuf, 0, frameCount * mFrameSize);
5060 }
5061 break;
5062 }
5063 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5064 frameCount -= buffer.frameCount;
5065 curBuf += buffer.frameCount * mFrameSize;
5066 mActiveTrack->releaseBuffer(&buffer);
5067 }
5068 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5069 mSleepTimeUs = 0;
5070 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5071 mActiveTrack.clear();
5072 }
5073
threadLoop_sleepTime()5074 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5075 {
5076 // do not write to HAL when paused
5077 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5078 mSleepTimeUs = mIdleSleepTimeUs;
5079 return;
5080 }
5081 if (mSleepTimeUs == 0) {
5082 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5083 mSleepTimeUs = mActiveSleepTimeUs;
5084 } else {
5085 mSleepTimeUs = mIdleSleepTimeUs;
5086 }
5087 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5088 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5089 mSleepTimeUs = 0;
5090 }
5091 }
5092
threadLoop_exit()5093 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5094 {
5095 {
5096 Mutex::Autolock _l(mLock);
5097 for (size_t i = 0; i < mTracks.size(); i++) {
5098 if (mTracks[i]->isFlushPending()) {
5099 mTracks[i]->flushAck();
5100 mFlushPending = true;
5101 }
5102 }
5103 if (mFlushPending) {
5104 flushHw_l();
5105 }
5106 }
5107 PlaybackThread::threadLoop_exit();
5108 }
5109
5110 // must be called with thread mutex locked
shouldStandby_l()5111 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5112 {
5113 bool trackPaused = false;
5114 bool trackStopped = false;
5115
5116 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5117 return !mStandby;
5118 }
5119
5120 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5121 // after a timeout and we will enter standby then.
5122 if (mTracks.size() > 0) {
5123 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5124 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5125 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5126 }
5127
5128 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5129 }
5130
5131 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask __unused,audio_format_t format __unused,audio_session_t sessionId __unused)5132 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5133 audio_format_t format __unused, audio_session_t sessionId __unused)
5134 {
5135 return 0;
5136 }
5137
5138 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name __unused)5139 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5140 {
5141 }
5142
5143 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5144 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5145 status_t& status)
5146 {
5147 bool reconfig = false;
5148 bool a2dpDeviceChanged = false;
5149
5150 status = NO_ERROR;
5151
5152 AudioParameter param = AudioParameter(keyValuePair);
5153 int value;
5154 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5155 // forward device change to effects that have requested to be
5156 // aware of attached audio device.
5157 if (value != AUDIO_DEVICE_NONE) {
5158 a2dpDeviceChanged =
5159 (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5160 mOutDevice = value;
5161 for (size_t i = 0; i < mEffectChains.size(); i++) {
5162 mEffectChains[i]->setDevice_l(mOutDevice);
5163 }
5164 }
5165 }
5166 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5167 // do not accept frame count changes if tracks are open as the track buffer
5168 // size depends on frame count and correct behavior would not be garantied
5169 // if frame count is changed after track creation
5170 if (!mTracks.isEmpty()) {
5171 status = INVALID_OPERATION;
5172 } else {
5173 reconfig = true;
5174 }
5175 }
5176 if (status == NO_ERROR) {
5177 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5178 keyValuePair.string());
5179 if (!mStandby && status == INVALID_OPERATION) {
5180 mOutput->standby();
5181 mStandby = true;
5182 mBytesWritten = 0;
5183 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5184 keyValuePair.string());
5185 }
5186 if (status == NO_ERROR && reconfig) {
5187 readOutputParameters_l();
5188 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5189 }
5190 }
5191
5192 return reconfig || a2dpDeviceChanged;
5193 }
5194
activeSleepTimeUs() const5195 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5196 {
5197 uint32_t time;
5198 if (audio_has_proportional_frames(mFormat)) {
5199 time = PlaybackThread::activeSleepTimeUs();
5200 } else {
5201 time = kDirectMinSleepTimeUs;
5202 }
5203 return time;
5204 }
5205
idleSleepTimeUs() const5206 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5207 {
5208 uint32_t time;
5209 if (audio_has_proportional_frames(mFormat)) {
5210 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5211 } else {
5212 time = kDirectMinSleepTimeUs;
5213 }
5214 return time;
5215 }
5216
suspendSleepTimeUs() const5217 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5218 {
5219 uint32_t time;
5220 if (audio_has_proportional_frames(mFormat)) {
5221 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5222 } else {
5223 time = kDirectMinSleepTimeUs;
5224 }
5225 return time;
5226 }
5227
cacheParameters_l()5228 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5229 {
5230 PlaybackThread::cacheParameters_l();
5231
5232 // use shorter standby delay as on normal output to release
5233 // hardware resources as soon as possible
5234 // no delay on outputs with HW A/V sync
5235 if (usesHwAvSync()) {
5236 mStandbyDelayNs = 0;
5237 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5238 mStandbyDelayNs = kOffloadStandbyDelayNs;
5239 } else {
5240 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5241 }
5242 }
5243
flushHw_l()5244 void AudioFlinger::DirectOutputThread::flushHw_l()
5245 {
5246 mOutput->flush();
5247 mHwPaused = false;
5248 mFlushPending = false;
5249 }
5250
5251 // ----------------------------------------------------------------------------
5252
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)5253 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5254 const wp<AudioFlinger::PlaybackThread>& playbackThread)
5255 : Thread(false /*canCallJava*/),
5256 mPlaybackThread(playbackThread),
5257 mWriteAckSequence(0),
5258 mDrainSequence(0),
5259 mAsyncError(false)
5260 {
5261 }
5262
~AsyncCallbackThread()5263 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5264 {
5265 }
5266
onFirstRef()5267 void AudioFlinger::AsyncCallbackThread::onFirstRef()
5268 {
5269 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5270 }
5271
threadLoop()5272 bool AudioFlinger::AsyncCallbackThread::threadLoop()
5273 {
5274 while (!exitPending()) {
5275 uint32_t writeAckSequence;
5276 uint32_t drainSequence;
5277 bool asyncError;
5278
5279 {
5280 Mutex::Autolock _l(mLock);
5281 while (!((mWriteAckSequence & 1) ||
5282 (mDrainSequence & 1) ||
5283 mAsyncError ||
5284 exitPending())) {
5285 mWaitWorkCV.wait(mLock);
5286 }
5287
5288 if (exitPending()) {
5289 break;
5290 }
5291 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5292 mWriteAckSequence, mDrainSequence);
5293 writeAckSequence = mWriteAckSequence;
5294 mWriteAckSequence &= ~1;
5295 drainSequence = mDrainSequence;
5296 mDrainSequence &= ~1;
5297 asyncError = mAsyncError;
5298 mAsyncError = false;
5299 }
5300 {
5301 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5302 if (playbackThread != 0) {
5303 if (writeAckSequence & 1) {
5304 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5305 }
5306 if (drainSequence & 1) {
5307 playbackThread->resetDraining(drainSequence >> 1);
5308 }
5309 if (asyncError) {
5310 playbackThread->onAsyncError();
5311 }
5312 }
5313 }
5314 }
5315 return false;
5316 }
5317
exit()5318 void AudioFlinger::AsyncCallbackThread::exit()
5319 {
5320 ALOGV("AsyncCallbackThread::exit");
5321 Mutex::Autolock _l(mLock);
5322 requestExit();
5323 mWaitWorkCV.broadcast();
5324 }
5325
setWriteBlocked(uint32_t sequence)5326 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5327 {
5328 Mutex::Autolock _l(mLock);
5329 // bit 0 is cleared
5330 mWriteAckSequence = sequence << 1;
5331 }
5332
resetWriteBlocked()5333 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5334 {
5335 Mutex::Autolock _l(mLock);
5336 // ignore unexpected callbacks
5337 if (mWriteAckSequence & 2) {
5338 mWriteAckSequence |= 1;
5339 mWaitWorkCV.signal();
5340 }
5341 }
5342
setDraining(uint32_t sequence)5343 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5344 {
5345 Mutex::Autolock _l(mLock);
5346 // bit 0 is cleared
5347 mDrainSequence = sequence << 1;
5348 }
5349
resetDraining()5350 void AudioFlinger::AsyncCallbackThread::resetDraining()
5351 {
5352 Mutex::Autolock _l(mLock);
5353 // ignore unexpected callbacks
5354 if (mDrainSequence & 2) {
5355 mDrainSequence |= 1;
5356 mWaitWorkCV.signal();
5357 }
5358 }
5359
setAsyncError()5360 void AudioFlinger::AsyncCallbackThread::setAsyncError()
5361 {
5362 Mutex::Autolock _l(mLock);
5363 mAsyncError = true;
5364 mWaitWorkCV.signal();
5365 }
5366
5367
5368 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,bool systemReady)5369 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5370 AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5371 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5372 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5373 mOffloadUnderrunPosition(~0LL)
5374 {
5375 //FIXME: mStandby should be set to true by ThreadBase constructor
5376 mStandby = true;
5377 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5378 }
5379
threadLoop_exit()5380 void AudioFlinger::OffloadThread::threadLoop_exit()
5381 {
5382 if (mFlushPending || mHwPaused) {
5383 // If a flush is pending or track was paused, just discard buffered data
5384 flushHw_l();
5385 } else {
5386 mMixerStatus = MIXER_DRAIN_ALL;
5387 threadLoop_drain();
5388 }
5389 if (mUseAsyncWrite) {
5390 ALOG_ASSERT(mCallbackThread != 0);
5391 mCallbackThread->exit();
5392 }
5393 PlaybackThread::threadLoop_exit();
5394 }
5395
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5396 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5397 Vector< sp<Track> > *tracksToRemove
5398 )
5399 {
5400 size_t count = mActiveTracks.size();
5401
5402 mixer_state mixerStatus = MIXER_IDLE;
5403 bool doHwPause = false;
5404 bool doHwResume = false;
5405
5406 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5407
5408 // find out which tracks need to be processed
5409 for (size_t i = 0; i < count; i++) {
5410 sp<Track> t = mActiveTracks[i].promote();
5411 // The track died recently
5412 if (t == 0) {
5413 continue;
5414 }
5415 Track* const track = t.get();
5416 #ifdef VERY_VERY_VERBOSE_LOGGING
5417 audio_track_cblk_t* cblk = track->cblk();
5418 #endif
5419 // Only consider last track started for volume and mixer state control.
5420 // In theory an older track could underrun and restart after the new one starts
5421 // but as we only care about the transition phase between two tracks on a
5422 // direct output, it is not a problem to ignore the underrun case.
5423 sp<Track> l = mLatestActiveTrack.promote();
5424 bool last = l.get() == track;
5425
5426 if (track->isInvalid()) {
5427 ALOGW("An invalidated track shouldn't be in active list");
5428 tracksToRemove->add(track);
5429 continue;
5430 }
5431
5432 if (track->mState == TrackBase::IDLE) {
5433 ALOGW("An idle track shouldn't be in active list");
5434 continue;
5435 }
5436
5437 if (track->isPausing()) {
5438 track->setPaused();
5439 if (last) {
5440 if (mHwSupportsPause && !mHwPaused) {
5441 doHwPause = true;
5442 mHwPaused = true;
5443 }
5444 // If we were part way through writing the mixbuffer to
5445 // the HAL we must save this until we resume
5446 // BUG - this will be wrong if a different track is made active,
5447 // in that case we want to discard the pending data in the
5448 // mixbuffer and tell the client to present it again when the
5449 // track is resumed
5450 mPausedWriteLength = mCurrentWriteLength;
5451 mPausedBytesRemaining = mBytesRemaining;
5452 mBytesRemaining = 0; // stop writing
5453 }
5454 tracksToRemove->add(track);
5455 } else if (track->isFlushPending()) {
5456 if (track->isStopping_1()) {
5457 track->mRetryCount = kMaxTrackStopRetriesOffload;
5458 } else {
5459 track->mRetryCount = kMaxTrackRetriesOffload;
5460 }
5461 track->flushAck();
5462 if (last) {
5463 mFlushPending = true;
5464 }
5465 } else if (track->isResumePending()){
5466 track->resumeAck();
5467 if (last) {
5468 if (mPausedBytesRemaining) {
5469 // Need to continue write that was interrupted
5470 mCurrentWriteLength = mPausedWriteLength;
5471 mBytesRemaining = mPausedBytesRemaining;
5472 mPausedBytesRemaining = 0;
5473 }
5474 if (mHwPaused) {
5475 doHwResume = true;
5476 mHwPaused = false;
5477 // threadLoop_mix() will handle the case that we need to
5478 // resume an interrupted write
5479 }
5480 // enable write to audio HAL
5481 mSleepTimeUs = 0;
5482
5483 mLeftVolFloat = mRightVolFloat = -1.0;
5484
5485 // Do not handle new data in this iteration even if track->framesReady()
5486 mixerStatus = MIXER_TRACKS_ENABLED;
5487 }
5488 } else if (track->framesReady() && track->isReady() &&
5489 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5490 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5491 if (track->mFillingUpStatus == Track::FS_FILLED) {
5492 track->mFillingUpStatus = Track::FS_ACTIVE;
5493 if (last) {
5494 // make sure processVolume_l() will apply new volume even if 0
5495 mLeftVolFloat = mRightVolFloat = -1.0;
5496 }
5497 }
5498
5499 if (last) {
5500 sp<Track> previousTrack = mPreviousTrack.promote();
5501 if (previousTrack != 0) {
5502 if (track != previousTrack.get()) {
5503 // Flush any data still being written from last track
5504 mBytesRemaining = 0;
5505 if (mPausedBytesRemaining) {
5506 // Last track was paused so we also need to flush saved
5507 // mixbuffer state and invalidate track so that it will
5508 // re-submit that unwritten data when it is next resumed
5509 mPausedBytesRemaining = 0;
5510 // Invalidate is a bit drastic - would be more efficient
5511 // to have a flag to tell client that some of the
5512 // previously written data was lost
5513 previousTrack->invalidate();
5514 }
5515 // flush data already sent to the DSP if changing audio session as audio
5516 // comes from a different source. Also invalidate previous track to force a
5517 // seek when resuming.
5518 if (previousTrack->sessionId() != track->sessionId()) {
5519 previousTrack->invalidate();
5520 }
5521 }
5522 }
5523 mPreviousTrack = track;
5524 // reset retry count
5525 if (track->isStopping_1()) {
5526 track->mRetryCount = kMaxTrackStopRetriesOffload;
5527 } else {
5528 track->mRetryCount = kMaxTrackRetriesOffload;
5529 }
5530 mActiveTrack = t;
5531 mixerStatus = MIXER_TRACKS_READY;
5532 }
5533 } else {
5534 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5535 if (track->isStopping_1()) {
5536 if (--(track->mRetryCount) <= 0) {
5537 // Hardware buffer can hold a large amount of audio so we must
5538 // wait for all current track's data to drain before we say
5539 // that the track is stopped.
5540 if (mBytesRemaining == 0) {
5541 // Only start draining when all data in mixbuffer
5542 // has been written
5543 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5544 track->mState = TrackBase::STOPPING_2; // so presentation completes after
5545 // drain do not drain if no data was ever sent to HAL (mStandby == true)
5546 if (last && !mStandby) {
5547 // do not modify drain sequence if we are already draining. This happens
5548 // when resuming from pause after drain.
5549 if ((mDrainSequence & 1) == 0) {
5550 mSleepTimeUs = 0;
5551 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5552 mixerStatus = MIXER_DRAIN_TRACK;
5553 mDrainSequence += 2;
5554 }
5555 if (mHwPaused) {
5556 // It is possible to move from PAUSED to STOPPING_1 without
5557 // a resume so we must ensure hardware is running
5558 doHwResume = true;
5559 mHwPaused = false;
5560 }
5561 }
5562 }
5563 } else if (last) {
5564 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5565 mixerStatus = MIXER_TRACKS_ENABLED;
5566 }
5567 } else if (track->isStopping_2()) {
5568 // Drain has completed or we are in standby, signal presentation complete
5569 if (!(mDrainSequence & 1) || !last || mStandby) {
5570 track->mState = TrackBase::STOPPED;
5571 size_t audioHALFrames =
5572 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5573 int64_t framesWritten =
5574 mBytesWritten / mOutput->getFrameSize();
5575 track->presentationComplete(framesWritten, audioHALFrames);
5576 track->reset();
5577 tracksToRemove->add(track);
5578 }
5579 } else {
5580 // No buffers for this track. Give it a few chances to
5581 // fill a buffer, then remove it from active list.
5582 if (--(track->mRetryCount) <= 0) {
5583 bool running = false;
5584 if (mOutput->stream->get_presentation_position != nullptr) {
5585 uint64_t position = 0;
5586 struct timespec unused;
5587 // The running check restarts the retry counter at least once.
5588 int ret = mOutput->stream->get_presentation_position(
5589 mOutput->stream, &position, &unused);
5590 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5591 running = true;
5592 mOffloadUnderrunPosition = position;
5593 }
5594 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5595 (long long)position, (long long)mOffloadUnderrunPosition);
5596 }
5597 if (running) { // still running, give us more time.
5598 track->mRetryCount = kMaxTrackRetriesOffload;
5599 } else {
5600 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5601 track->name());
5602 tracksToRemove->add(track);
5603 // indicate to client process that the track was disabled because of underrun;
5604 // it will then automatically call start() when data is available
5605 track->disable();
5606 }
5607 } else if (last){
5608 mixerStatus = MIXER_TRACKS_ENABLED;
5609 }
5610 }
5611 }
5612 // compute volume for this track
5613 processVolume_l(track, last);
5614 }
5615
5616 // make sure the pause/flush/resume sequence is executed in the right order.
5617 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5618 // before flush and then resume HW. This can happen in case of pause/flush/resume
5619 // if resume is received before pause is executed.
5620 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5621 mOutput->stream->pause(mOutput->stream);
5622 }
5623 if (mFlushPending) {
5624 flushHw_l();
5625 }
5626 if (!mStandby && doHwResume) {
5627 mOutput->stream->resume(mOutput->stream);
5628 }
5629
5630 // remove all the tracks that need to be...
5631 removeTracks_l(*tracksToRemove);
5632
5633 return mixerStatus;
5634 }
5635
5636 // must be called with thread mutex locked
waitingAsyncCallback_l()5637 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5638 {
5639 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5640 mWriteAckSequence, mDrainSequence);
5641 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5642 return true;
5643 }
5644 return false;
5645 }
5646
waitingAsyncCallback()5647 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5648 {
5649 Mutex::Autolock _l(mLock);
5650 return waitingAsyncCallback_l();
5651 }
5652
flushHw_l()5653 void AudioFlinger::OffloadThread::flushHw_l()
5654 {
5655 DirectOutputThread::flushHw_l();
5656 // Flush anything still waiting in the mixbuffer
5657 mCurrentWriteLength = 0;
5658 mBytesRemaining = 0;
5659 mPausedWriteLength = 0;
5660 mPausedBytesRemaining = 0;
5661 // reset bytes written count to reflect that DSP buffers are empty after flush.
5662 mBytesWritten = 0;
5663 mOffloadUnderrunPosition = ~0LL;
5664
5665 if (mUseAsyncWrite) {
5666 // discard any pending drain or write ack by incrementing sequence
5667 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5668 mDrainSequence = (mDrainSequence + 2) & ~1;
5669 ALOG_ASSERT(mCallbackThread != 0);
5670 mCallbackThread->setWriteBlocked(mWriteAckSequence);
5671 mCallbackThread->setDraining(mDrainSequence);
5672 }
5673 }
5674
invalidateTracks(audio_stream_type_t streamType)5675 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5676 {
5677 Mutex::Autolock _l(mLock);
5678 if (PlaybackThread::invalidateTracks_l(streamType)) {
5679 mFlushPending = true;
5680 }
5681 }
5682
5683 // ----------------------------------------------------------------------------
5684
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)5685 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5686 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5687 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5688 systemReady, DUPLICATING),
5689 mWaitTimeMs(UINT_MAX)
5690 {
5691 addOutputTrack(mainThread);
5692 }
5693
~DuplicatingThread()5694 AudioFlinger::DuplicatingThread::~DuplicatingThread()
5695 {
5696 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5697 mOutputTracks[i]->destroy();
5698 }
5699 }
5700
threadLoop_mix()5701 void AudioFlinger::DuplicatingThread::threadLoop_mix()
5702 {
5703 // mix buffers...
5704 if (outputsReady(outputTracks)) {
5705 mAudioMixer->process();
5706 } else {
5707 if (mMixerBufferValid) {
5708 memset(mMixerBuffer, 0, mMixerBufferSize);
5709 } else {
5710 memset(mSinkBuffer, 0, mSinkBufferSize);
5711 }
5712 }
5713 mSleepTimeUs = 0;
5714 writeFrames = mNormalFrameCount;
5715 mCurrentWriteLength = mSinkBufferSize;
5716 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5717 }
5718
threadLoop_sleepTime()5719 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5720 {
5721 if (mSleepTimeUs == 0) {
5722 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5723 mSleepTimeUs = mActiveSleepTimeUs;
5724 } else {
5725 mSleepTimeUs = mIdleSleepTimeUs;
5726 }
5727 } else if (mBytesWritten != 0) {
5728 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5729 writeFrames = mNormalFrameCount;
5730 memset(mSinkBuffer, 0, mSinkBufferSize);
5731 } else {
5732 // flush remaining overflow buffers in output tracks
5733 writeFrames = 0;
5734 }
5735 mSleepTimeUs = 0;
5736 }
5737 }
5738
threadLoop_write()5739 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5740 {
5741 for (size_t i = 0; i < outputTracks.size(); i++) {
5742 outputTracks[i]->write(mSinkBuffer, writeFrames);
5743 }
5744 mStandby = false;
5745 return (ssize_t)mSinkBufferSize;
5746 }
5747
threadLoop_standby()5748 void AudioFlinger::DuplicatingThread::threadLoop_standby()
5749 {
5750 // DuplicatingThread implements standby by stopping all tracks
5751 for (size_t i = 0; i < outputTracks.size(); i++) {
5752 outputTracks[i]->stop();
5753 }
5754 }
5755
saveOutputTracks()5756 void AudioFlinger::DuplicatingThread::saveOutputTracks()
5757 {
5758 outputTracks = mOutputTracks;
5759 }
5760
clearOutputTracks()5761 void AudioFlinger::DuplicatingThread::clearOutputTracks()
5762 {
5763 outputTracks.clear();
5764 }
5765
addOutputTrack(MixerThread * thread)5766 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5767 {
5768 Mutex::Autolock _l(mLock);
5769 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5770 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5771 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5772 const size_t frameCount =
5773 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5774 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5775 // from different OutputTracks and their associated MixerThreads (e.g. one may
5776 // nearly empty and the other may be dropping data).
5777
5778 sp<OutputTrack> outputTrack = new OutputTrack(thread,
5779 this,
5780 mSampleRate,
5781 mFormat,
5782 mChannelMask,
5783 frameCount,
5784 IPCThreadState::self()->getCallingUid());
5785 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5786 if (status != NO_ERROR) {
5787 ALOGE("addOutputTrack() initCheck failed %d", status);
5788 return;
5789 }
5790 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5791 mOutputTracks.add(outputTrack);
5792 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5793 updateWaitTime_l();
5794 }
5795
removeOutputTrack(MixerThread * thread)5796 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5797 {
5798 Mutex::Autolock _l(mLock);
5799 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5800 if (mOutputTracks[i]->thread() == thread) {
5801 mOutputTracks[i]->destroy();
5802 mOutputTracks.removeAt(i);
5803 updateWaitTime_l();
5804 if (thread->getOutput() == mOutput) {
5805 mOutput = NULL;
5806 }
5807 return;
5808 }
5809 }
5810 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5811 }
5812
5813 // caller must hold mLock
updateWaitTime_l()5814 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5815 {
5816 mWaitTimeMs = UINT_MAX;
5817 for (size_t i = 0; i < mOutputTracks.size(); i++) {
5818 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5819 if (strong != 0) {
5820 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5821 if (waitTimeMs < mWaitTimeMs) {
5822 mWaitTimeMs = waitTimeMs;
5823 }
5824 }
5825 }
5826 }
5827
5828
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)5829 bool AudioFlinger::DuplicatingThread::outputsReady(
5830 const SortedVector< sp<OutputTrack> > &outputTracks)
5831 {
5832 for (size_t i = 0; i < outputTracks.size(); i++) {
5833 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5834 if (thread == 0) {
5835 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5836 outputTracks[i].get());
5837 return false;
5838 }
5839 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5840 // see note at standby() declaration
5841 if (playbackThread->standby() && !playbackThread->isSuspended()) {
5842 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5843 thread.get());
5844 return false;
5845 }
5846 }
5847 return true;
5848 }
5849
activeSleepTimeUs() const5850 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5851 {
5852 return (mWaitTimeMs * 1000) / 2;
5853 }
5854
cacheParameters_l()5855 void AudioFlinger::DuplicatingThread::cacheParameters_l()
5856 {
5857 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5858 updateWaitTime_l();
5859
5860 MixerThread::cacheParameters_l();
5861 }
5862
5863 // ----------------------------------------------------------------------------
5864 // Record
5865 // ----------------------------------------------------------------------------
5866
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,bool systemReady,const sp<NBAIO_Sink> & teeSink)5867 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5868 AudioStreamIn *input,
5869 audio_io_handle_t id,
5870 audio_devices_t outDevice,
5871 audio_devices_t inDevice,
5872 bool systemReady
5873 #ifdef TEE_SINK
5874 , const sp<NBAIO_Sink>& teeSink
5875 #endif
5876 ) :
5877 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5878 mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5879 // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5880 mRsmpInRear(0)
5881 #ifdef TEE_SINK
5882 , mTeeSink(teeSink)
5883 #endif
5884 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5885 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5886 // mFastCapture below
5887 , mFastCaptureFutex(0)
5888 // mInputSource
5889 // mPipeSink
5890 // mPipeSource
5891 , mPipeFramesP2(0)
5892 // mPipeMemory
5893 // mFastCaptureNBLogWriter
5894 , mFastTrackAvail(false)
5895 {
5896 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5897 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5898
5899 readInputParameters_l();
5900
5901 // create an NBAIO source for the HAL input stream, and negotiate
5902 mInputSource = new AudioStreamInSource(input->stream);
5903 size_t numCounterOffers = 0;
5904 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5905 #if !LOG_NDEBUG
5906 ssize_t index =
5907 #else
5908 (void)
5909 #endif
5910 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5911 ALOG_ASSERT(index == 0);
5912
5913 // initialize fast capture depending on configuration
5914 bool initFastCapture;
5915 switch (kUseFastCapture) {
5916 case FastCapture_Never:
5917 initFastCapture = false;
5918 break;
5919 case FastCapture_Always:
5920 initFastCapture = true;
5921 break;
5922 case FastCapture_Static:
5923 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5924 break;
5925 // case FastCapture_Dynamic:
5926 }
5927
5928 if (initFastCapture) {
5929 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5930 NBAIO_Format format = mInputSource->format();
5931 size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each
5932 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5933 void *pipeBuffer;
5934 const sp<MemoryDealer> roHeap(readOnlyHeap());
5935 sp<IMemory> pipeMemory;
5936 if ((roHeap == 0) ||
5937 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5938 (pipeBuffer = pipeMemory->pointer()) == NULL) {
5939 ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5940 goto failed;
5941 }
5942 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5943 memset(pipeBuffer, 0, pipeSize);
5944 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5945 const NBAIO_Format offers[1] = {format};
5946 size_t numCounterOffers = 0;
5947 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5948 ALOG_ASSERT(index == 0);
5949 mPipeSink = pipe;
5950 PipeReader *pipeReader = new PipeReader(*pipe);
5951 numCounterOffers = 0;
5952 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5953 ALOG_ASSERT(index == 0);
5954 mPipeSource = pipeReader;
5955 mPipeFramesP2 = pipeFramesP2;
5956 mPipeMemory = pipeMemory;
5957
5958 // create fast capture
5959 mFastCapture = new FastCapture();
5960 FastCaptureStateQueue *sq = mFastCapture->sq();
5961 #ifdef STATE_QUEUE_DUMP
5962 // FIXME
5963 #endif
5964 FastCaptureState *state = sq->begin();
5965 state->mCblk = NULL;
5966 state->mInputSource = mInputSource.get();
5967 state->mInputSourceGen++;
5968 state->mPipeSink = pipe;
5969 state->mPipeSinkGen++;
5970 state->mFrameCount = mFrameCount;
5971 state->mCommand = FastCaptureState::COLD_IDLE;
5972 // already done in constructor initialization list
5973 //mFastCaptureFutex = 0;
5974 state->mColdFutexAddr = &mFastCaptureFutex;
5975 state->mColdGen++;
5976 state->mDumpState = &mFastCaptureDumpState;
5977 #ifdef TEE_SINK
5978 // FIXME
5979 #endif
5980 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5981 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5982 sq->end();
5983 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5984
5985 // start the fast capture
5986 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5987 pid_t tid = mFastCapture->getTid();
5988 sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5989 #ifdef AUDIO_WATCHDOG
5990 // FIXME
5991 #endif
5992
5993 mFastTrackAvail = true;
5994 }
5995 failed: ;
5996
5997 // FIXME mNormalSource
5998 }
5999
~RecordThread()6000 AudioFlinger::RecordThread::~RecordThread()
6001 {
6002 if (mFastCapture != 0) {
6003 FastCaptureStateQueue *sq = mFastCapture->sq();
6004 FastCaptureState *state = sq->begin();
6005 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6006 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6007 if (old == -1) {
6008 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6009 }
6010 }
6011 state->mCommand = FastCaptureState::EXIT;
6012 sq->end();
6013 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6014 mFastCapture->join();
6015 mFastCapture.clear();
6016 }
6017 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6018 mAudioFlinger->unregisterWriter(mNBLogWriter);
6019 free(mRsmpInBuffer);
6020 }
6021
onFirstRef()6022 void AudioFlinger::RecordThread::onFirstRef()
6023 {
6024 run(mThreadName, PRIORITY_URGENT_AUDIO);
6025 }
6026
threadLoop()6027 bool AudioFlinger::RecordThread::threadLoop()
6028 {
6029 nsecs_t lastWarning = 0;
6030
6031 inputStandBy();
6032
6033 reacquire_wakelock:
6034 sp<RecordTrack> activeTrack;
6035 int activeTracksGen;
6036 {
6037 Mutex::Autolock _l(mLock);
6038 size_t size = mActiveTracks.size();
6039 activeTracksGen = mActiveTracksGen;
6040 if (size > 0) {
6041 // FIXME an arbitrary choice
6042 activeTrack = mActiveTracks[0];
6043 acquireWakeLock_l(activeTrack->uid());
6044 if (size > 1) {
6045 SortedVector<int> tmp;
6046 for (size_t i = 0; i < size; i++) {
6047 tmp.add(mActiveTracks[i]->uid());
6048 }
6049 updateWakeLockUids_l(tmp);
6050 }
6051 } else {
6052 acquireWakeLock_l(-1);
6053 }
6054 }
6055
6056 // used to request a deferred sleep, to be executed later while mutex is unlocked
6057 uint32_t sleepUs = 0;
6058
6059 // loop while there is work to do
6060 for (;;) {
6061 Vector< sp<EffectChain> > effectChains;
6062
6063 // activeTracks accumulates a copy of a subset of mActiveTracks
6064 Vector< sp<RecordTrack> > activeTracks;
6065
6066 // reference to the (first and only) active fast track
6067 sp<RecordTrack> fastTrack;
6068
6069 // reference to a fast track which is about to be removed
6070 sp<RecordTrack> fastTrackToRemove;
6071
6072 { // scope for mLock
6073 Mutex::Autolock _l(mLock);
6074
6075 processConfigEvents_l();
6076
6077 // check exitPending here because checkForNewParameters_l() and
6078 // checkForNewParameters_l() can temporarily release mLock
6079 if (exitPending()) {
6080 break;
6081 }
6082
6083 // sleep with mutex unlocked
6084 if (sleepUs > 0) {
6085 ATRACE_BEGIN("sleepC");
6086 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6087 ATRACE_END();
6088 sleepUs = 0;
6089 continue;
6090 }
6091
6092 // if no active track(s), then standby and release wakelock
6093 size_t size = mActiveTracks.size();
6094 if (size == 0) {
6095 standbyIfNotAlreadyInStandby();
6096 // exitPending() can't become true here
6097 releaseWakeLock_l();
6098 ALOGV("RecordThread: loop stopping");
6099 // go to sleep
6100 mWaitWorkCV.wait(mLock);
6101 ALOGV("RecordThread: loop starting");
6102 goto reacquire_wakelock;
6103 }
6104
6105 if (mActiveTracksGen != activeTracksGen) {
6106 activeTracksGen = mActiveTracksGen;
6107 SortedVector<int> tmp;
6108 for (size_t i = 0; i < size; i++) {
6109 tmp.add(mActiveTracks[i]->uid());
6110 }
6111 updateWakeLockUids_l(tmp);
6112 }
6113
6114 bool doBroadcast = false;
6115 bool allStopped = true;
6116 for (size_t i = 0; i < size; ) {
6117
6118 activeTrack = mActiveTracks[i];
6119 if (activeTrack->isTerminated()) {
6120 if (activeTrack->isFastTrack()) {
6121 ALOG_ASSERT(fastTrackToRemove == 0);
6122 fastTrackToRemove = activeTrack;
6123 }
6124 removeTrack_l(activeTrack);
6125 mActiveTracks.remove(activeTrack);
6126 mActiveTracksGen++;
6127 size--;
6128 continue;
6129 }
6130
6131 TrackBase::track_state activeTrackState = activeTrack->mState;
6132 switch (activeTrackState) {
6133
6134 case TrackBase::PAUSING:
6135 mActiveTracks.remove(activeTrack);
6136 mActiveTracksGen++;
6137 doBroadcast = true;
6138 size--;
6139 continue;
6140
6141 case TrackBase::STARTING_1:
6142 sleepUs = 10000;
6143 i++;
6144 allStopped = false;
6145 continue;
6146
6147 case TrackBase::STARTING_2:
6148 doBroadcast = true;
6149 mStandby = false;
6150 activeTrack->mState = TrackBase::ACTIVE;
6151 allStopped = false;
6152 break;
6153
6154 case TrackBase::ACTIVE:
6155 allStopped = false;
6156 break;
6157
6158 case TrackBase::IDLE:
6159 i++;
6160 continue;
6161
6162 default:
6163 LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6164 }
6165
6166 activeTracks.add(activeTrack);
6167 i++;
6168
6169 if (activeTrack->isFastTrack()) {
6170 ALOG_ASSERT(!mFastTrackAvail);
6171 ALOG_ASSERT(fastTrack == 0);
6172 fastTrack = activeTrack;
6173 }
6174 }
6175
6176 if (allStopped) {
6177 standbyIfNotAlreadyInStandby();
6178 }
6179 if (doBroadcast) {
6180 mStartStopCond.broadcast();
6181 }
6182
6183 // sleep if there are no active tracks to process
6184 if (activeTracks.size() == 0) {
6185 if (sleepUs == 0) {
6186 sleepUs = kRecordThreadSleepUs;
6187 }
6188 continue;
6189 }
6190 sleepUs = 0;
6191
6192 lockEffectChains_l(effectChains);
6193 }
6194
6195 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6196
6197 size_t size = effectChains.size();
6198 for (size_t i = 0; i < size; i++) {
6199 // thread mutex is not locked, but effect chain is locked
6200 effectChains[i]->process_l();
6201 }
6202
6203 // Push a new fast capture state if fast capture is not already running, or cblk change
6204 if (mFastCapture != 0) {
6205 FastCaptureStateQueue *sq = mFastCapture->sq();
6206 FastCaptureState *state = sq->begin();
6207 bool didModify = false;
6208 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6209 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6210 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6211 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6212 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6213 if (old == -1) {
6214 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6215 }
6216 }
6217 state->mCommand = FastCaptureState::READ_WRITE;
6218 #if 0 // FIXME
6219 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6220 FastThreadDumpState::kSamplingNforLowRamDevice :
6221 FastThreadDumpState::kSamplingN);
6222 #endif
6223 didModify = true;
6224 }
6225 audio_track_cblk_t *cblkOld = state->mCblk;
6226 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6227 if (cblkNew != cblkOld) {
6228 state->mCblk = cblkNew;
6229 // block until acked if removing a fast track
6230 if (cblkOld != NULL) {
6231 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6232 }
6233 didModify = true;
6234 }
6235 sq->end(didModify);
6236 if (didModify) {
6237 sq->push(block);
6238 #if 0
6239 if (kUseFastCapture == FastCapture_Dynamic) {
6240 mNormalSource = mPipeSource;
6241 }
6242 #endif
6243 }
6244 }
6245
6246 // now run the fast track destructor with thread mutex unlocked
6247 fastTrackToRemove.clear();
6248
6249 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6250 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6251 // slow, then this RecordThread will overrun by not calling HAL read often enough.
6252 // If destination is non-contiguous, first read past the nominal end of buffer, then
6253 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
6254
6255 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6256 ssize_t framesRead;
6257
6258 // If an NBAIO source is present, use it to read the normal capture's data
6259 if (mPipeSource != 0) {
6260 size_t framesToRead = mBufferSize / mFrameSize;
6261 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6262 framesToRead);
6263 if (framesRead == 0) {
6264 // since pipe is non-blocking, simulate blocking input
6265 sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6266 }
6267 // otherwise use the HAL / AudioStreamIn directly
6268 } else {
6269 ATRACE_BEGIN("read");
6270 ssize_t bytesRead = mInput->stream->read(mInput->stream,
6271 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6272 ATRACE_END();
6273 if (bytesRead < 0) {
6274 framesRead = bytesRead;
6275 } else {
6276 framesRead = bytesRead / mFrameSize;
6277 }
6278 }
6279
6280 // Update server timestamp with server stats
6281 // systemTime() is optional if the hardware supports timestamps.
6282 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6283 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6284
6285 // Update server timestamp with kernel stats
6286 if (mInput->stream->get_capture_position != nullptr
6287 && mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6288 int64_t position, time;
6289 int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6290 if (ret == NO_ERROR) {
6291 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6292 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6293 // Note: In general record buffers should tend to be empty in
6294 // a properly running pipeline.
6295 //
6296 // Also, it is not advantageous to call get_presentation_position during the read
6297 // as the read obtains a lock, preventing the timestamp call from executing.
6298 }
6299 }
6300 // Use this to track timestamp information
6301 // ALOGD("%s", mTimestamp.toString().c_str());
6302
6303 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6304 ALOGE("read failed: framesRead=%zd", framesRead);
6305 // Force input into standby so that it tries to recover at next read attempt
6306 inputStandBy();
6307 sleepUs = kRecordThreadSleepUs;
6308 }
6309 if (framesRead <= 0) {
6310 goto unlock;
6311 }
6312 ALOG_ASSERT(framesRead > 0);
6313
6314 if (mTeeSink != 0) {
6315 (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6316 }
6317 // If destination is non-contiguous, we now correct for reading past end of buffer.
6318 {
6319 size_t part1 = mRsmpInFramesP2 - rear;
6320 if ((size_t) framesRead > part1) {
6321 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6322 (framesRead - part1) * mFrameSize);
6323 }
6324 }
6325 rear = mRsmpInRear += framesRead;
6326
6327 size = activeTracks.size();
6328 // loop over each active track
6329 for (size_t i = 0; i < size; i++) {
6330 activeTrack = activeTracks[i];
6331
6332 // skip fast tracks, as those are handled directly by FastCapture
6333 if (activeTrack->isFastTrack()) {
6334 continue;
6335 }
6336
6337 // TODO: This code probably should be moved to RecordTrack.
6338 // TODO: Update the activeTrack buffer converter in case of reconfigure.
6339
6340 enum {
6341 OVERRUN_UNKNOWN,
6342 OVERRUN_TRUE,
6343 OVERRUN_FALSE
6344 } overrun = OVERRUN_UNKNOWN;
6345
6346 // loop over getNextBuffer to handle circular sink
6347 for (;;) {
6348
6349 activeTrack->mSink.frameCount = ~0;
6350 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6351 size_t framesOut = activeTrack->mSink.frameCount;
6352 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6353
6354 // check available frames and handle overrun conditions
6355 // if the record track isn't draining fast enough.
6356 bool hasOverrun;
6357 size_t framesIn;
6358 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6359 if (hasOverrun) {
6360 overrun = OVERRUN_TRUE;
6361 }
6362 if (framesOut == 0 || framesIn == 0) {
6363 break;
6364 }
6365
6366 // Don't allow framesOut to be larger than what is possible with resampling
6367 // from framesIn.
6368 // This isn't strictly necessary but helps limit buffer resizing in
6369 // RecordBufferConverter. TODO: remove when no longer needed.
6370 framesOut = min(framesOut,
6371 destinationFramesPossible(
6372 framesIn, mSampleRate, activeTrack->mSampleRate));
6373 // process frames from the RecordThread buffer provider to the RecordTrack buffer
6374 framesOut = activeTrack->mRecordBufferConverter->convert(
6375 activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6376
6377 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6378 overrun = OVERRUN_FALSE;
6379 }
6380
6381 if (activeTrack->mFramesToDrop == 0) {
6382 if (framesOut > 0) {
6383 activeTrack->mSink.frameCount = framesOut;
6384 activeTrack->releaseBuffer(&activeTrack->mSink);
6385 }
6386 } else {
6387 // FIXME could do a partial drop of framesOut
6388 if (activeTrack->mFramesToDrop > 0) {
6389 activeTrack->mFramesToDrop -= framesOut;
6390 if (activeTrack->mFramesToDrop <= 0) {
6391 activeTrack->clearSyncStartEvent();
6392 }
6393 } else {
6394 activeTrack->mFramesToDrop += framesOut;
6395 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6396 activeTrack->mSyncStartEvent->isCancelled()) {
6397 ALOGW("Synced record %s, session %d, trigger session %d",
6398 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6399 activeTrack->sessionId(),
6400 (activeTrack->mSyncStartEvent != 0) ?
6401 activeTrack->mSyncStartEvent->triggerSession() :
6402 AUDIO_SESSION_NONE);
6403 activeTrack->clearSyncStartEvent();
6404 }
6405 }
6406 }
6407
6408 if (framesOut == 0) {
6409 break;
6410 }
6411 }
6412
6413 switch (overrun) {
6414 case OVERRUN_TRUE:
6415 // client isn't retrieving buffers fast enough
6416 if (!activeTrack->setOverflow()) {
6417 nsecs_t now = systemTime();
6418 // FIXME should lastWarning per track?
6419 if ((now - lastWarning) > kWarningThrottleNs) {
6420 ALOGW("RecordThread: buffer overflow");
6421 lastWarning = now;
6422 }
6423 }
6424 break;
6425 case OVERRUN_FALSE:
6426 activeTrack->clearOverflow();
6427 break;
6428 case OVERRUN_UNKNOWN:
6429 break;
6430 }
6431
6432 // update frame information and push timestamp out
6433 activeTrack->updateTrackFrameInfo(
6434 activeTrack->mServerProxy->framesReleased(),
6435 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6436 mSampleRate, mTimestamp);
6437 }
6438
6439 unlock:
6440 // enable changes in effect chain
6441 unlockEffectChains(effectChains);
6442 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6443 }
6444
6445 standbyIfNotAlreadyInStandby();
6446
6447 {
6448 Mutex::Autolock _l(mLock);
6449 for (size_t i = 0; i < mTracks.size(); i++) {
6450 sp<RecordTrack> track = mTracks[i];
6451 track->invalidate();
6452 }
6453 mActiveTracks.clear();
6454 mActiveTracksGen++;
6455 mStartStopCond.broadcast();
6456 }
6457
6458 releaseWakeLock();
6459
6460 ALOGV("RecordThread %p exiting", this);
6461 return false;
6462 }
6463
standbyIfNotAlreadyInStandby()6464 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6465 {
6466 if (!mStandby) {
6467 inputStandBy();
6468 mStandby = true;
6469 }
6470 }
6471
inputStandBy()6472 void AudioFlinger::RecordThread::inputStandBy()
6473 {
6474 // Idle the fast capture if it's currently running
6475 if (mFastCapture != 0) {
6476 FastCaptureStateQueue *sq = mFastCapture->sq();
6477 FastCaptureState *state = sq->begin();
6478 if (!(state->mCommand & FastCaptureState::IDLE)) {
6479 state->mCommand = FastCaptureState::COLD_IDLE;
6480 state->mColdFutexAddr = &mFastCaptureFutex;
6481 state->mColdGen++;
6482 mFastCaptureFutex = 0;
6483 sq->end();
6484 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6485 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6486 #if 0
6487 if (kUseFastCapture == FastCapture_Dynamic) {
6488 // FIXME
6489 }
6490 #endif
6491 #ifdef AUDIO_WATCHDOG
6492 // FIXME
6493 #endif
6494 } else {
6495 sq->end(false /*didModify*/);
6496 }
6497 }
6498 mInput->stream->common.standby(&mInput->stream->common);
6499 }
6500
6501 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * notificationFrames,int uid,audio_input_flags_t * flags,pid_t tid,status_t * status)6502 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6503 const sp<AudioFlinger::Client>& client,
6504 uint32_t sampleRate,
6505 audio_format_t format,
6506 audio_channel_mask_t channelMask,
6507 size_t *pFrameCount,
6508 audio_session_t sessionId,
6509 size_t *notificationFrames,
6510 int uid,
6511 audio_input_flags_t *flags,
6512 pid_t tid,
6513 status_t *status)
6514 {
6515 size_t frameCount = *pFrameCount;
6516 sp<RecordTrack> track;
6517 status_t lStatus;
6518 audio_input_flags_t inputFlags = mInput->flags;
6519
6520 // special case for FAST flag considered OK if fast capture is present
6521 if (hasFastCapture()) {
6522 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6523 }
6524
6525 // Check if requested flags are compatible with output stream flags
6526 if ((*flags & inputFlags) != *flags) {
6527 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6528 " input flags (%08x)",
6529 *flags, inputFlags);
6530 *flags = (audio_input_flags_t)(*flags & inputFlags);
6531 }
6532
6533 // client expresses a preference for FAST, but we get the final say
6534 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6535 if (
6536 // we formerly checked for a callback handler (non-0 tid),
6537 // but that is no longer required for TRANSFER_OBTAIN mode
6538 //
6539 // frame count is not specified, or is exactly the pipe depth
6540 ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6541 // PCM data
6542 audio_is_linear_pcm(format) &&
6543 // hardware format
6544 (format == mFormat) &&
6545 // hardware channel mask
6546 (channelMask == mChannelMask) &&
6547 // hardware sample rate
6548 (sampleRate == mSampleRate) &&
6549 // record thread has an associated fast capture
6550 hasFastCapture() &&
6551 // there are sufficient fast track slots available
6552 mFastTrackAvail
6553 ) {
6554 // check compatibility with audio effects.
6555 Mutex::Autolock _l(mLock);
6556 // Do not accept FAST flag if the session has software effects
6557 sp<EffectChain> chain = getEffectChain_l(sessionId);
6558 if (chain != 0) {
6559 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_RAW) != 0,
6560 "AUDIO_INPUT_FLAG_RAW denied: effect present on session");
6561 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
6562 if (chain->hasSoftwareEffect()) {
6563 ALOGV("AUDIO_INPUT_FLAG_FAST denied: software effect present on session");
6564 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6565 }
6566 }
6567 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6568 "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6569 frameCount, mFrameCount);
6570 } else {
6571 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6572 "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6573 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6574 frameCount, mFrameCount, mPipeFramesP2,
6575 format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6576 hasFastCapture(), tid, mFastTrackAvail);
6577 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6578 }
6579 }
6580
6581 // compute track buffer size in frames, and suggest the notification frame count
6582 if (*flags & AUDIO_INPUT_FLAG_FAST) {
6583 // fast track: frame count is exactly the pipe depth
6584 frameCount = mPipeFramesP2;
6585 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6586 *notificationFrames = mFrameCount;
6587 } else {
6588 // not fast track: max notification period is resampled equivalent of one HAL buffer time
6589 // or 20 ms if there is a fast capture
6590 // TODO This could be a roundupRatio inline, and const
6591 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6592 * sampleRate + mSampleRate - 1) / mSampleRate;
6593 // minimum number of notification periods is at least kMinNotifications,
6594 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6595 static const size_t kMinNotifications = 3;
6596 static const uint32_t kMinMs = 30;
6597 // TODO This could be a roundupRatio inline
6598 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6599 // TODO This could be a roundupRatio inline
6600 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6601 maxNotificationFrames;
6602 const size_t minFrameCount = maxNotificationFrames *
6603 max(kMinNotifications, minNotificationsByMs);
6604 frameCount = max(frameCount, minFrameCount);
6605 if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6606 *notificationFrames = maxNotificationFrames;
6607 }
6608 }
6609 *pFrameCount = frameCount;
6610
6611 lStatus = initCheck();
6612 if (lStatus != NO_ERROR) {
6613 ALOGE("createRecordTrack_l() audio driver not initialized");
6614 goto Exit;
6615 }
6616
6617 { // scope for mLock
6618 Mutex::Autolock _l(mLock);
6619
6620 track = new RecordTrack(this, client, sampleRate,
6621 format, channelMask, frameCount, NULL, sessionId, uid,
6622 *flags, TrackBase::TYPE_DEFAULT);
6623
6624 lStatus = track->initCheck();
6625 if (lStatus != NO_ERROR) {
6626 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6627 // track must be cleared from the caller as the caller has the AF lock
6628 goto Exit;
6629 }
6630 mTracks.add(track);
6631
6632 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6633 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6634 mAudioFlinger->btNrecIsOff();
6635 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6636 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6637
6638 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6639 pid_t callingPid = IPCThreadState::self()->getCallingPid();
6640 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6641 // so ask activity manager to do this on our behalf
6642 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6643 }
6644 }
6645
6646 lStatus = NO_ERROR;
6647
6648 Exit:
6649 *status = lStatus;
6650 return track;
6651 }
6652
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)6653 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6654 AudioSystem::sync_event_t event,
6655 audio_session_t triggerSession)
6656 {
6657 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6658 sp<ThreadBase> strongMe = this;
6659 status_t status = NO_ERROR;
6660
6661 if (event == AudioSystem::SYNC_EVENT_NONE) {
6662 recordTrack->clearSyncStartEvent();
6663 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6664 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6665 triggerSession,
6666 recordTrack->sessionId(),
6667 syncStartEventCallback,
6668 recordTrack);
6669 // Sync event can be cancelled by the trigger session if the track is not in a
6670 // compatible state in which case we start record immediately
6671 if (recordTrack->mSyncStartEvent->isCancelled()) {
6672 recordTrack->clearSyncStartEvent();
6673 } else {
6674 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6675 recordTrack->mFramesToDrop = -
6676 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6677 }
6678 }
6679
6680 {
6681 // This section is a rendezvous between binder thread executing start() and RecordThread
6682 AutoMutex lock(mLock);
6683 if (mActiveTracks.indexOf(recordTrack) >= 0) {
6684 if (recordTrack->mState == TrackBase::PAUSING) {
6685 ALOGV("active record track PAUSING -> ACTIVE");
6686 recordTrack->mState = TrackBase::ACTIVE;
6687 } else {
6688 ALOGV("active record track state %d", recordTrack->mState);
6689 }
6690 return status;
6691 }
6692
6693 // TODO consider other ways of handling this, such as changing the state to :STARTING and
6694 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6695 // or using a separate command thread
6696 recordTrack->mState = TrackBase::STARTING_1;
6697 mActiveTracks.add(recordTrack);
6698 mActiveTracksGen++;
6699 status_t status = NO_ERROR;
6700 if (recordTrack->isExternalTrack()) {
6701 mLock.unlock();
6702 status = AudioSystem::startInput(mId, recordTrack->sessionId());
6703 mLock.lock();
6704 // FIXME should verify that recordTrack is still in mActiveTracks
6705 if (status != NO_ERROR) {
6706 mActiveTracks.remove(recordTrack);
6707 mActiveTracksGen++;
6708 recordTrack->clearSyncStartEvent();
6709 ALOGV("RecordThread::start error %d", status);
6710 return status;
6711 }
6712 }
6713 // Catch up with current buffer indices if thread is already running.
6714 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
6715 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6716 // see previously buffered data before it called start(), but with greater risk of overrun.
6717
6718 recordTrack->mResamplerBufferProvider->reset();
6719 // clear any converter state as new data will be discontinuous
6720 recordTrack->mRecordBufferConverter->reset();
6721 recordTrack->mState = TrackBase::STARTING_2;
6722 // signal thread to start
6723 mWaitWorkCV.broadcast();
6724 if (mActiveTracks.indexOf(recordTrack) < 0) {
6725 ALOGV("Record failed to start");
6726 status = BAD_VALUE;
6727 goto startError;
6728 }
6729 return status;
6730 }
6731
6732 startError:
6733 if (recordTrack->isExternalTrack()) {
6734 AudioSystem::stopInput(mId, recordTrack->sessionId());
6735 }
6736 recordTrack->clearSyncStartEvent();
6737 // FIXME I wonder why we do not reset the state here?
6738 return status;
6739 }
6740
syncStartEventCallback(const wp<SyncEvent> & event)6741 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6742 {
6743 sp<SyncEvent> strongEvent = event.promote();
6744
6745 if (strongEvent != 0) {
6746 sp<RefBase> ptr = strongEvent->cookie().promote();
6747 if (ptr != 0) {
6748 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6749 recordTrack->handleSyncStartEvent(strongEvent);
6750 }
6751 }
6752 }
6753
stop(RecordThread::RecordTrack * recordTrack)6754 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6755 ALOGV("RecordThread::stop");
6756 AutoMutex _l(mLock);
6757 if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6758 return false;
6759 }
6760 // note that threadLoop may still be processing the track at this point [without lock]
6761 recordTrack->mState = TrackBase::PAUSING;
6762 // signal thread to stop
6763 mWaitWorkCV.broadcast();
6764 // do not wait for mStartStopCond if exiting
6765 if (exitPending()) {
6766 return true;
6767 }
6768 // FIXME incorrect usage of wait: no explicit predicate or loop
6769 mStartStopCond.wait(mLock);
6770 // if we have been restarted, recordTrack is in mActiveTracks here
6771 if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6772 ALOGV("Record stopped OK");
6773 return true;
6774 }
6775 return false;
6776 }
6777
isValidSyncEvent(const sp<SyncEvent> & event __unused) const6778 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6779 {
6780 return false;
6781 }
6782
setSyncEvent(const sp<SyncEvent> & event __unused)6783 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6784 {
6785 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
6786 if (!isValidSyncEvent(event)) {
6787 return BAD_VALUE;
6788 }
6789
6790 audio_session_t eventSession = event->triggerSession();
6791 status_t ret = NAME_NOT_FOUND;
6792
6793 Mutex::Autolock _l(mLock);
6794
6795 for (size_t i = 0; i < mTracks.size(); i++) {
6796 sp<RecordTrack> track = mTracks[i];
6797 if (eventSession == track->sessionId()) {
6798 (void) track->setSyncEvent(event);
6799 ret = NO_ERROR;
6800 }
6801 }
6802 return ret;
6803 #else
6804 return BAD_VALUE;
6805 #endif
6806 }
6807
6808 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)6809 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6810 {
6811 track->terminate();
6812 track->mState = TrackBase::STOPPED;
6813 // active tracks are removed by threadLoop()
6814 if (mActiveTracks.indexOf(track) < 0) {
6815 removeTrack_l(track);
6816 }
6817 }
6818
removeTrack_l(const sp<RecordTrack> & track)6819 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6820 {
6821 mTracks.remove(track);
6822 // need anything related to effects here?
6823 if (track->isFastTrack()) {
6824 ALOG_ASSERT(!mFastTrackAvail);
6825 mFastTrackAvail = true;
6826 }
6827 }
6828
dump(int fd,const Vector<String16> & args)6829 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6830 {
6831 dumpInternals(fd, args);
6832 dumpTracks(fd, args);
6833 dumpEffectChains(fd, args);
6834 }
6835
dumpInternals(int fd,const Vector<String16> & args)6836 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6837 {
6838 dprintf(fd, "\nInput thread %p:\n", this);
6839
6840 dumpBase(fd, args);
6841
6842 if (mActiveTracks.size() == 0) {
6843 dprintf(fd, " No active record clients\n");
6844 }
6845 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6846 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6847
6848 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6849 // while we are dumping it. It may be inconsistent, but it won't mutate!
6850 // This is a large object so we place it on the heap.
6851 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6852 const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6853 copy->dump(fd);
6854 delete copy;
6855 }
6856
dumpTracks(int fd,const Vector<String16> & args __unused)6857 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6858 {
6859 const size_t SIZE = 256;
6860 char buffer[SIZE];
6861 String8 result;
6862
6863 size_t numtracks = mTracks.size();
6864 size_t numactive = mActiveTracks.size();
6865 size_t numactiveseen = 0;
6866 dprintf(fd, " %zu Tracks", numtracks);
6867 if (numtracks) {
6868 dprintf(fd, " of which %zu are active\n", numactive);
6869 RecordTrack::appendDumpHeader(result);
6870 for (size_t i = 0; i < numtracks ; ++i) {
6871 sp<RecordTrack> track = mTracks[i];
6872 if (track != 0) {
6873 bool active = mActiveTracks.indexOf(track) >= 0;
6874 if (active) {
6875 numactiveseen++;
6876 }
6877 track->dump(buffer, SIZE, active);
6878 result.append(buffer);
6879 }
6880 }
6881 } else {
6882 dprintf(fd, "\n");
6883 }
6884
6885 if (numactiveseen != numactive) {
6886 snprintf(buffer, SIZE, " The following tracks are in the active list but"
6887 " not in the track list\n");
6888 result.append(buffer);
6889 RecordTrack::appendDumpHeader(result);
6890 for (size_t i = 0; i < numactive; ++i) {
6891 sp<RecordTrack> track = mActiveTracks[i];
6892 if (mTracks.indexOf(track) < 0) {
6893 track->dump(buffer, SIZE, true);
6894 result.append(buffer);
6895 }
6896 }
6897
6898 }
6899 write(fd, result.string(), result.size());
6900 }
6901
6902
reset()6903 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6904 {
6905 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6906 RecordThread *recordThread = (RecordThread *) threadBase.get();
6907 mRsmpInFront = recordThread->mRsmpInRear;
6908 mRsmpInUnrel = 0;
6909 }
6910
sync(size_t * framesAvailable,bool * hasOverrun)6911 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6912 size_t *framesAvailable, bool *hasOverrun)
6913 {
6914 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6915 RecordThread *recordThread = (RecordThread *) threadBase.get();
6916 const int32_t rear = recordThread->mRsmpInRear;
6917 const int32_t front = mRsmpInFront;
6918 const ssize_t filled = rear - front;
6919
6920 size_t framesIn;
6921 bool overrun = false;
6922 if (filled < 0) {
6923 // should not happen, but treat like a massive overrun and re-sync
6924 framesIn = 0;
6925 mRsmpInFront = rear;
6926 overrun = true;
6927 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6928 framesIn = (size_t) filled;
6929 } else {
6930 // client is not keeping up with server, but give it latest data
6931 framesIn = recordThread->mRsmpInFrames;
6932 mRsmpInFront = /* front = */ rear - framesIn;
6933 overrun = true;
6934 }
6935 if (framesAvailable != NULL) {
6936 *framesAvailable = framesIn;
6937 }
6938 if (hasOverrun != NULL) {
6939 *hasOverrun = overrun;
6940 }
6941 }
6942
6943 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)6944 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6945 AudioBufferProvider::Buffer* buffer)
6946 {
6947 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6948 if (threadBase == 0) {
6949 buffer->frameCount = 0;
6950 buffer->raw = NULL;
6951 return NOT_ENOUGH_DATA;
6952 }
6953 RecordThread *recordThread = (RecordThread *) threadBase.get();
6954 int32_t rear = recordThread->mRsmpInRear;
6955 int32_t front = mRsmpInFront;
6956 ssize_t filled = rear - front;
6957 // FIXME should not be P2 (don't want to increase latency)
6958 // FIXME if client not keeping up, discard
6959 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6960 // 'filled' may be non-contiguous, so return only the first contiguous chunk
6961 front &= recordThread->mRsmpInFramesP2 - 1;
6962 size_t part1 = recordThread->mRsmpInFramesP2 - front;
6963 if (part1 > (size_t) filled) {
6964 part1 = filled;
6965 }
6966 size_t ask = buffer->frameCount;
6967 ALOG_ASSERT(ask > 0);
6968 if (part1 > ask) {
6969 part1 = ask;
6970 }
6971 if (part1 == 0) {
6972 // out of data is fine since the resampler will return a short-count.
6973 buffer->raw = NULL;
6974 buffer->frameCount = 0;
6975 mRsmpInUnrel = 0;
6976 return NOT_ENOUGH_DATA;
6977 }
6978
6979 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6980 buffer->frameCount = part1;
6981 mRsmpInUnrel = part1;
6982 return NO_ERROR;
6983 }
6984
6985 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)6986 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6987 AudioBufferProvider::Buffer* buffer)
6988 {
6989 size_t stepCount = buffer->frameCount;
6990 if (stepCount == 0) {
6991 return;
6992 }
6993 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6994 mRsmpInUnrel -= stepCount;
6995 mRsmpInFront += stepCount;
6996 buffer->raw = NULL;
6997 buffer->frameCount = 0;
6998 }
6999
RecordBufferConverter(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)7000 AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
7001 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7002 uint32_t srcSampleRate,
7003 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7004 uint32_t dstSampleRate) :
7005 mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
7006 // mSrcFormat
7007 // mSrcSampleRate
7008 // mDstChannelMask
7009 // mDstFormat
7010 // mDstSampleRate
7011 // mSrcChannelCount
7012 // mDstChannelCount
7013 // mDstFrameSize
7014 mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
7015 mResampler(NULL),
7016 mIsLegacyDownmix(false),
7017 mIsLegacyUpmix(false),
7018 mRequiresFloat(false),
7019 mInputConverterProvider(NULL)
7020 {
7021 (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
7022 dstChannelMask, dstFormat, dstSampleRate);
7023 }
7024
~RecordBufferConverter()7025 AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
7026 free(mBuf);
7027 delete mResampler;
7028 delete mInputConverterProvider;
7029 }
7030
convert(void * dst,AudioBufferProvider * provider,size_t frames)7031 size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
7032 AudioBufferProvider *provider, size_t frames)
7033 {
7034 if (mInputConverterProvider != NULL) {
7035 mInputConverterProvider->setBufferProvider(provider);
7036 provider = mInputConverterProvider;
7037 }
7038
7039 if (mResampler == NULL) {
7040 ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7041 mSrcSampleRate, mSrcFormat, mDstFormat);
7042
7043 AudioBufferProvider::Buffer buffer;
7044 for (size_t i = frames; i > 0; ) {
7045 buffer.frameCount = i;
7046 status_t status = provider->getNextBuffer(&buffer);
7047 if (status != OK || buffer.frameCount == 0) {
7048 frames -= i; // cannot fill request.
7049 break;
7050 }
7051 // format convert to destination buffer
7052 convertNoResampler(dst, buffer.raw, buffer.frameCount);
7053
7054 dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
7055 i -= buffer.frameCount;
7056 provider->releaseBuffer(&buffer);
7057 }
7058 } else {
7059 ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7060 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
7061
7062 // reallocate buffer if needed
7063 if (mBufFrameSize != 0 && mBufFrames < frames) {
7064 free(mBuf);
7065 mBufFrames = frames;
7066 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7067 }
7068 // resampler accumulates, but we only have one source track
7069 memset(mBuf, 0, frames * mBufFrameSize);
7070 frames = mResampler->resample((int32_t*)mBuf, frames, provider);
7071 // format convert to destination buffer
7072 convertResampler(dst, mBuf, frames);
7073 }
7074 return frames;
7075 }
7076
updateParameters(audio_channel_mask_t srcChannelMask,audio_format_t srcFormat,uint32_t srcSampleRate,audio_channel_mask_t dstChannelMask,audio_format_t dstFormat,uint32_t dstSampleRate)7077 status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
7078 audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7079 uint32_t srcSampleRate,
7080 audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7081 uint32_t dstSampleRate)
7082 {
7083 // quick evaluation if there is any change.
7084 if (mSrcFormat == srcFormat
7085 && mSrcChannelMask == srcChannelMask
7086 && mSrcSampleRate == srcSampleRate
7087 && mDstFormat == dstFormat
7088 && mDstChannelMask == dstChannelMask
7089 && mDstSampleRate == dstSampleRate) {
7090 return NO_ERROR;
7091 }
7092
7093 ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7094 " srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u",
7095 srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7096 const bool valid =
7097 audio_is_input_channel(srcChannelMask)
7098 && audio_is_input_channel(dstChannelMask)
7099 && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7100 && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7101 && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7102 ; // no upsampling checks for now
7103 if (!valid) {
7104 return BAD_VALUE;
7105 }
7106
7107 mSrcFormat = srcFormat;
7108 mSrcChannelMask = srcChannelMask;
7109 mSrcSampleRate = srcSampleRate;
7110 mDstFormat = dstFormat;
7111 mDstChannelMask = dstChannelMask;
7112 mDstSampleRate = dstSampleRate;
7113
7114 // compute derived parameters
7115 mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7116 mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7117 mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7118
7119 // do we need to resample?
7120 delete mResampler;
7121 mResampler = NULL;
7122 if (mSrcSampleRate != mDstSampleRate) {
7123 mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7124 mSrcChannelCount, mDstSampleRate);
7125 mResampler->setSampleRate(mSrcSampleRate);
7126 mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7127 }
7128
7129 // are we running legacy channel conversion modes?
7130 mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7131 || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7132 && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7133 mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7134 && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7135 || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7136
7137 // do we need to process in float?
7138 mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7139
7140 // do we need a staging buffer to convert for destination (we can still optimize this)?
7141 // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7142 if (mResampler != NULL) {
7143 mBufFrameSize = max(mSrcChannelCount, FCC_2)
7144 * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7145 } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7146 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7147 } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7148 mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7149 } else {
7150 mBufFrameSize = 0;
7151 }
7152 mBufFrames = 0; // force the buffer to be resized.
7153
7154 // do we need an input converter buffer provider to give us float?
7155 delete mInputConverterProvider;
7156 mInputConverterProvider = NULL;
7157 if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7158 mInputConverterProvider = new ReformatBufferProvider(
7159 audio_channel_count_from_in_mask(mSrcChannelMask),
7160 mSrcFormat,
7161 AUDIO_FORMAT_PCM_FLOAT,
7162 256 /* provider buffer frame count */);
7163 }
7164
7165 // do we need a remixer to do channel mask conversion
7166 if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7167 (void) memcpy_by_index_array_initialization_from_channel_mask(
7168 mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7169 }
7170 return NO_ERROR;
7171 }
7172
convertNoResampler(void * dst,const void * src,size_t frames)7173 void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7174 void *dst, const void *src, size_t frames)
7175 {
7176 // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7177 if (mBufFrameSize != 0 && mBufFrames < frames) {
7178 free(mBuf);
7179 mBufFrames = frames;
7180 (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7181 }
7182 // do we need to do legacy upmix and downmix?
7183 if (mIsLegacyUpmix || mIsLegacyDownmix) {
7184 void *dstBuf = mBuf != NULL ? mBuf : dst;
7185 if (mIsLegacyUpmix) {
7186 upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7187 (const float *)src, frames);
7188 } else /*mIsLegacyDownmix */ {
7189 downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7190 (const float *)src, frames);
7191 }
7192 if (mBuf != NULL) {
7193 memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7194 frames * mDstChannelCount);
7195 }
7196 return;
7197 }
7198 // do we need to do channel mask conversion?
7199 if (mSrcChannelMask != mDstChannelMask) {
7200 void *dstBuf = mBuf != NULL ? mBuf : dst;
7201 memcpy_by_index_array(dstBuf, mDstChannelCount,
7202 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7203 if (dstBuf == dst) {
7204 return; // format is the same
7205 }
7206 }
7207 // convert to destination buffer
7208 const void *convertBuf = mBuf != NULL ? mBuf : src;
7209 memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7210 frames * mDstChannelCount);
7211 }
7212
convertResampler(void * dst,void * src,size_t frames)7213 void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7214 void *dst, /*not-a-const*/ void *src, size_t frames)
7215 {
7216 // src buffer format is ALWAYS float when entering this routine
7217 if (mIsLegacyUpmix) {
7218 ; // mono to stereo already handled by resampler
7219 } else if (mIsLegacyDownmix
7220 || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7221 // the resampler outputs stereo for mono input channel (a feature?)
7222 // must convert to mono
7223 downmix_to_mono_float_from_stereo_float((float *)src,
7224 (const float *)src, frames);
7225 } else if (mSrcChannelMask != mDstChannelMask) {
7226 // convert to mono channel again for channel mask conversion (could be skipped
7227 // with further optimization).
7228 if (mSrcChannelCount == 1) {
7229 downmix_to_mono_float_from_stereo_float((float *)src,
7230 (const float *)src, frames);
7231 }
7232 // convert to destination format (in place, OK as float is larger than other types)
7233 if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7234 memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7235 frames * mSrcChannelCount);
7236 }
7237 // channel convert and save to dst
7238 memcpy_by_index_array(dst, mDstChannelCount,
7239 src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7240 return;
7241 }
7242 // convert to destination format and save to dst
7243 memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7244 frames * mDstChannelCount);
7245 }
7246
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)7247 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7248 status_t& status)
7249 {
7250 bool reconfig = false;
7251
7252 status = NO_ERROR;
7253
7254 audio_format_t reqFormat = mFormat;
7255 uint32_t samplingRate = mSampleRate;
7256 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7257 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7258
7259 AudioParameter param = AudioParameter(keyValuePair);
7260 int value;
7261
7262 // scope for AutoPark extends to end of method
7263 AutoPark<FastCapture> park(mFastCapture);
7264
7265 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7266 // channel count change can be requested. Do we mandate the first client defines the
7267 // HAL sampling rate and channel count or do we allow changes on the fly?
7268 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7269 samplingRate = value;
7270 reconfig = true;
7271 }
7272 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7273 if (!audio_is_linear_pcm((audio_format_t) value)) {
7274 status = BAD_VALUE;
7275 } else {
7276 reqFormat = (audio_format_t) value;
7277 reconfig = true;
7278 }
7279 }
7280 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7281 audio_channel_mask_t mask = (audio_channel_mask_t) value;
7282 if (!audio_is_input_channel(mask) ||
7283 audio_channel_count_from_in_mask(mask) > FCC_8) {
7284 status = BAD_VALUE;
7285 } else {
7286 channelMask = mask;
7287 reconfig = true;
7288 }
7289 }
7290 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7291 // do not accept frame count changes if tracks are open as the track buffer
7292 // size depends on frame count and correct behavior would not be guaranteed
7293 // if frame count is changed after track creation
7294 if (mActiveTracks.size() > 0) {
7295 status = INVALID_OPERATION;
7296 } else {
7297 reconfig = true;
7298 }
7299 }
7300 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7301 // forward device change to effects that have requested to be
7302 // aware of attached audio device.
7303 for (size_t i = 0; i < mEffectChains.size(); i++) {
7304 mEffectChains[i]->setDevice_l(value);
7305 }
7306
7307 // store input device and output device but do not forward output device to audio HAL.
7308 // Note that status is ignored by the caller for output device
7309 // (see AudioFlinger::setParameters()
7310 if (audio_is_output_devices(value)) {
7311 mOutDevice = value;
7312 status = BAD_VALUE;
7313 } else {
7314 mInDevice = value;
7315 if (value != AUDIO_DEVICE_NONE) {
7316 mPrevInDevice = value;
7317 }
7318 // disable AEC and NS if the device is a BT SCO headset supporting those
7319 // pre processings
7320 if (mTracks.size() > 0) {
7321 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7322 mAudioFlinger->btNrecIsOff();
7323 for (size_t i = 0; i < mTracks.size(); i++) {
7324 sp<RecordTrack> track = mTracks[i];
7325 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7326 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7327 }
7328 }
7329 }
7330 }
7331 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7332 mAudioSource != (audio_source_t)value) {
7333 // forward device change to effects that have requested to be
7334 // aware of attached audio device.
7335 for (size_t i = 0; i < mEffectChains.size(); i++) {
7336 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7337 }
7338 mAudioSource = (audio_source_t)value;
7339 }
7340
7341 if (status == NO_ERROR) {
7342 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7343 keyValuePair.string());
7344 if (status == INVALID_OPERATION) {
7345 inputStandBy();
7346 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7347 keyValuePair.string());
7348 }
7349 if (reconfig) {
7350 if (status == BAD_VALUE &&
7351 audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7352 audio_is_linear_pcm(reqFormat) &&
7353 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7354 <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7355 audio_channel_count_from_in_mask(
7356 mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7357 status = NO_ERROR;
7358 }
7359 if (status == NO_ERROR) {
7360 readInputParameters_l();
7361 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7362 }
7363 }
7364 }
7365
7366 return reconfig;
7367 }
7368
getParameters(const String8 & keys)7369 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7370 {
7371 Mutex::Autolock _l(mLock);
7372 if (initCheck() != NO_ERROR) {
7373 return String8();
7374 }
7375
7376 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7377 const String8 out_s8(s);
7378 free(s);
7379 return out_s8;
7380 }
7381
ioConfigChanged(audio_io_config_event event,pid_t pid)7382 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7383 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7384
7385 desc->mIoHandle = mId;
7386
7387 switch (event) {
7388 case AUDIO_INPUT_OPENED:
7389 case AUDIO_INPUT_CONFIG_CHANGED:
7390 desc->mPatch = mPatch;
7391 desc->mChannelMask = mChannelMask;
7392 desc->mSamplingRate = mSampleRate;
7393 desc->mFormat = mFormat;
7394 desc->mFrameCount = mFrameCount;
7395 desc->mFrameCountHAL = mFrameCount;
7396 desc->mLatency = 0;
7397 break;
7398
7399 case AUDIO_INPUT_CLOSED:
7400 default:
7401 break;
7402 }
7403 mAudioFlinger->ioConfigChanged(event, desc, pid);
7404 }
7405
readInputParameters_l()7406 void AudioFlinger::RecordThread::readInputParameters_l()
7407 {
7408 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7409 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7410 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7411 if (mChannelCount > FCC_8) {
7412 ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7413 }
7414 mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7415 mFormat = mHALFormat;
7416 if (!audio_is_linear_pcm(mFormat)) {
7417 ALOGE("HAL format %#x is not linear pcm", mFormat);
7418 }
7419 mFrameSize = audio_stream_in_frame_size(mInput->stream);
7420 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7421 mFrameCount = mBufferSize / mFrameSize;
7422 // This is the formula for calculating the temporary buffer size.
7423 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7424 // 1 full output buffer, regardless of the alignment of the available input.
7425 // The value is somewhat arbitrary, and could probably be even larger.
7426 // A larger value should allow more old data to be read after a track calls start(),
7427 // without increasing latency.
7428 //
7429 // Note this is independent of the maximum downsampling ratio permitted for capture.
7430 mRsmpInFrames = mFrameCount * 7;
7431 mRsmpInFramesP2 = roundup(mRsmpInFrames);
7432 free(mRsmpInBuffer);
7433 mRsmpInBuffer = NULL;
7434
7435 // TODO optimize audio capture buffer sizes ...
7436 // Here we calculate the size of the sliding buffer used as a source
7437 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7438 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
7439 // be better to have it derived from the pipe depth in the long term.
7440 // The current value is higher than necessary. However it should not add to latency.
7441
7442 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7443 size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7444 (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7445 memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7446
7447 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7448 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7449 }
7450
getInputFramesLost()7451 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7452 {
7453 Mutex::Autolock _l(mLock);
7454 if (initCheck() != NO_ERROR) {
7455 return 0;
7456 }
7457
7458 return mInput->stream->get_input_frames_lost(mInput->stream);
7459 }
7460
7461 // hasAudioSession_l() must be called with ThreadBase::mLock held
hasAudioSession_l(audio_session_t sessionId) const7462 uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7463 {
7464 uint32_t result = 0;
7465 if (getEffectChain_l(sessionId) != 0) {
7466 result = EFFECT_SESSION;
7467 }
7468
7469 for (size_t i = 0; i < mTracks.size(); ++i) {
7470 if (sessionId == mTracks[i]->sessionId()) {
7471 result |= TRACK_SESSION;
7472 if (mTracks[i]->isFastTrack()) {
7473 result |= FAST_SESSION;
7474 }
7475 break;
7476 }
7477 }
7478
7479 return result;
7480 }
7481
sessionIds() const7482 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7483 {
7484 KeyedVector<audio_session_t, bool> ids;
7485 Mutex::Autolock _l(mLock);
7486 for (size_t j = 0; j < mTracks.size(); ++j) {
7487 sp<RecordThread::RecordTrack> track = mTracks[j];
7488 audio_session_t sessionId = track->sessionId();
7489 if (ids.indexOfKey(sessionId) < 0) {
7490 ids.add(sessionId, true);
7491 }
7492 }
7493 return ids;
7494 }
7495
clearInput()7496 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7497 {
7498 Mutex::Autolock _l(mLock);
7499 AudioStreamIn *input = mInput;
7500 mInput = NULL;
7501 return input;
7502 }
7503
7504 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const7505 audio_stream_t* AudioFlinger::RecordThread::stream() const
7506 {
7507 if (mInput == NULL) {
7508 return NULL;
7509 }
7510 return &mInput->stream->common;
7511 }
7512
addEffectChain_l(const sp<EffectChain> & chain)7513 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7514 {
7515 // only one chain per input thread
7516 if (mEffectChains.size() != 0) {
7517 ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7518 return INVALID_OPERATION;
7519 }
7520 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7521 chain->setThread(this);
7522 chain->setInBuffer(NULL);
7523 chain->setOutBuffer(NULL);
7524
7525 checkSuspendOnAddEffectChain_l(chain);
7526
7527 // make sure enabled pre processing effects state is communicated to the HAL as we
7528 // just moved them to a new input stream.
7529 chain->syncHalEffectsState();
7530
7531 mEffectChains.add(chain);
7532
7533 return NO_ERROR;
7534 }
7535
removeEffectChain_l(const sp<EffectChain> & chain)7536 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7537 {
7538 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7539 ALOGW_IF(mEffectChains.size() != 1,
7540 "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7541 chain.get(), mEffectChains.size(), this);
7542 if (mEffectChains.size() == 1) {
7543 mEffectChains.removeAt(0);
7544 }
7545 return 0;
7546 }
7547
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)7548 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7549 audio_patch_handle_t *handle)
7550 {
7551 status_t status = NO_ERROR;
7552
7553 // store new device and send to effects
7554 mInDevice = patch->sources[0].ext.device.type;
7555 mPatch = *patch;
7556 for (size_t i = 0; i < mEffectChains.size(); i++) {
7557 mEffectChains[i]->setDevice_l(mInDevice);
7558 }
7559
7560 // disable AEC and NS if the device is a BT SCO headset supporting those
7561 // pre processings
7562 if (mTracks.size() > 0) {
7563 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7564 mAudioFlinger->btNrecIsOff();
7565 for (size_t i = 0; i < mTracks.size(); i++) {
7566 sp<RecordTrack> track = mTracks[i];
7567 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7568 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7569 }
7570 }
7571
7572 // store new source and send to effects
7573 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7574 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7575 for (size_t i = 0; i < mEffectChains.size(); i++) {
7576 mEffectChains[i]->setAudioSource_l(mAudioSource);
7577 }
7578 }
7579
7580 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7581 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7582 status = hwDevice->create_audio_patch(hwDevice,
7583 patch->num_sources,
7584 patch->sources,
7585 patch->num_sinks,
7586 patch->sinks,
7587 handle);
7588 } else {
7589 char *address;
7590 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7591 address = audio_device_address_to_parameter(
7592 patch->sources[0].ext.device.type,
7593 patch->sources[0].ext.device.address);
7594 } else {
7595 address = (char *)calloc(1, 1);
7596 }
7597 AudioParameter param = AudioParameter(String8(address));
7598 free(address);
7599 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7600 (int)patch->sources[0].ext.device.type);
7601 param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7602 (int)patch->sinks[0].ext.mix.usecase.source);
7603 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7604 param.toString().string());
7605 *handle = AUDIO_PATCH_HANDLE_NONE;
7606 }
7607
7608 if (mInDevice != mPrevInDevice) {
7609 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7610 mPrevInDevice = mInDevice;
7611 }
7612
7613 return status;
7614 }
7615
releaseAudioPatch_l(const audio_patch_handle_t handle)7616 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7617 {
7618 status_t status = NO_ERROR;
7619
7620 mInDevice = AUDIO_DEVICE_NONE;
7621
7622 if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7623 audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7624 status = hwDevice->release_audio_patch(hwDevice, handle);
7625 } else {
7626 AudioParameter param;
7627 param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7628 status = mInput->stream->common.set_parameters(&mInput->stream->common,
7629 param.toString().string());
7630 }
7631 return status;
7632 }
7633
addPatchRecord(const sp<PatchRecord> & record)7634 void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7635 {
7636 Mutex::Autolock _l(mLock);
7637 mTracks.add(record);
7638 }
7639
deletePatchRecord(const sp<PatchRecord> & record)7640 void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7641 {
7642 Mutex::Autolock _l(mLock);
7643 destroyTrack_l(record);
7644 }
7645
getAudioPortConfig(struct audio_port_config * config)7646 void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7647 {
7648 ThreadBase::getAudioPortConfig(config);
7649 config->role = AUDIO_PORT_ROLE_SINK;
7650 config->ext.mix.hw_module = mInput->audioHwDev->handle();
7651 config->ext.mix.usecase.source = mAudioSource;
7652 }
7653
7654 } // namespace android
7655