• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_types.h"
25 #include "loop_analysis.h"
26 #include "ir_hierarchical_visitor.h"
27 
28 static bool is_loop_terminator(ir_if *ir);
29 
30 static bool all_expression_operands_are_loop_constant(ir_rvalue *,
31 						      hash_table *);
32 
33 static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
34 
35 
loop_state()36 loop_state::loop_state()
37 {
38    this->ht = hash_table_ctor(0, hash_table_pointer_hash,
39 			      hash_table_pointer_compare);
40    this->mem_ctx = ralloc_context(NULL);
41    this->loop_found = false;
42 }
43 
44 
~loop_state()45 loop_state::~loop_state()
46 {
47    hash_table_dtor(this->ht);
48    ralloc_free(this->mem_ctx);
49 }
50 
51 
52 loop_variable_state *
insert(ir_loop * ir)53 loop_state::insert(ir_loop *ir)
54 {
55    loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
56 
57    hash_table_insert(this->ht, ls, ir);
58    this->loop_found = true;
59 
60    return ls;
61 }
62 
63 
64 loop_variable_state *
get(const ir_loop * ir)65 loop_state::get(const ir_loop *ir)
66 {
67    return (loop_variable_state *) hash_table_find(this->ht, ir);
68 }
69 
70 
71 loop_variable *
get(const ir_variable * ir)72 loop_variable_state::get(const ir_variable *ir)
73 {
74    return (loop_variable *) hash_table_find(this->var_hash, ir);
75 }
76 
77 
78 loop_variable *
insert(ir_variable * var)79 loop_variable_state::insert(ir_variable *var)
80 {
81    void *mem_ctx = ralloc_parent(this);
82    loop_variable *lv = rzalloc(mem_ctx, loop_variable);
83 
84    lv->var = var;
85 
86    hash_table_insert(this->var_hash, lv, lv->var);
87    this->variables.push_tail(lv);
88 
89    return lv;
90 }
91 
92 
93 loop_terminator *
insert(ir_if * if_stmt)94 loop_variable_state::insert(ir_if *if_stmt)
95 {
96    void *mem_ctx = ralloc_parent(this);
97    loop_terminator *t = rzalloc(mem_ctx, loop_terminator);
98 
99    t->ir = if_stmt;
100    this->terminators.push_tail(t);
101 
102    return t;
103 }
104 
105 
106 class loop_analysis : public ir_hierarchical_visitor {
107 public:
108    loop_analysis();
109 
110    virtual ir_visitor_status visit(ir_loop_jump *);
111    virtual ir_visitor_status visit(ir_dereference_variable *);
112 
113    virtual ir_visitor_status visit_enter(ir_call *);
114 
115    virtual ir_visitor_status visit_enter(ir_loop *);
116    virtual ir_visitor_status visit_leave(ir_loop *);
117    virtual ir_visitor_status visit_enter(ir_assignment *);
118    virtual ir_visitor_status visit_leave(ir_assignment *);
119    virtual ir_visitor_status visit_enter(ir_if *);
120    virtual ir_visitor_status visit_leave(ir_if *);
121 
122    loop_state *loops;
123 
124    int if_statement_depth;
125 
126    ir_assignment *current_assignment;
127 
128    exec_list state;
129 };
130 
131 
loop_analysis()132 loop_analysis::loop_analysis()
133 {
134    this->loops = new loop_state;
135 
136    this->if_statement_depth = 0;
137    this->current_assignment = NULL;
138 }
139 
140 
141 ir_visitor_status
visit(ir_loop_jump * ir)142 loop_analysis::visit(ir_loop_jump *ir)
143 {
144    (void) ir;
145 
146    assert(!this->state.is_empty());
147 
148    loop_variable_state *const ls =
149       (loop_variable_state *) this->state.get_head();
150 
151    ls->num_loop_jumps++;
152 
153    return visit_continue;
154 }
155 
156 
157 ir_visitor_status
visit_enter(ir_call * ir)158 loop_analysis::visit_enter(ir_call *ir)
159 {
160    /* If we're not somewhere inside a loop, there's nothing to do. */
161    if (this->state.is_empty())
162       return visit_continue;
163 
164    loop_variable_state *const ls =
165       (loop_variable_state *) this->state.get_head();
166 
167    ls->contains_calls = true;
168    return visit_continue_with_parent;
169 }
170 
171 
172 ir_visitor_status
visit(ir_dereference_variable * ir)173 loop_analysis::visit(ir_dereference_variable *ir)
174 {
175    /* If we're not somewhere inside a loop, there's nothing to do.
176     */
177    if (this->state.is_empty())
178       return visit_continue;
179 
180    loop_variable_state *const ls =
181       (loop_variable_state *) this->state.get_head();
182 
183    ir_variable *var = ir->variable_referenced();
184    loop_variable *lv = ls->get(var);
185 
186    if (lv == NULL) {
187       lv = ls->insert(var);
188       lv->read_before_write = !this->in_assignee;
189    }
190 
191    if (this->in_assignee) {
192       assert(this->current_assignment != NULL);
193 
194       lv->conditional_assignment = (this->if_statement_depth > 0)
195 	 || (this->current_assignment->condition != NULL);
196 
197       if (lv->first_assignment == NULL) {
198 	 assert(lv->num_assignments == 0);
199 
200 	 lv->first_assignment = this->current_assignment;
201       }
202 
203       lv->num_assignments++;
204    } else if (lv->first_assignment == this->current_assignment) {
205       /* This catches the case where the variable is used in the RHS of an
206        * assignment where it is also in the LHS.
207        */
208       lv->read_before_write = true;
209    }
210 
211    return visit_continue;
212 }
213 
214 ir_visitor_status
visit_enter(ir_loop * ir)215 loop_analysis::visit_enter(ir_loop *ir)
216 {
217    loop_variable_state *ls = this->loops->insert(ir);
218    this->state.push_head(ls);
219 
220    return visit_continue;
221 }
222 
223 ir_visitor_status
visit_leave(ir_loop * ir)224 loop_analysis::visit_leave(ir_loop *ir)
225 {
226    loop_variable_state *const ls =
227       (loop_variable_state *) this->state.pop_head();
228 
229    /* Function calls may contain side effects.  These could alter any of our
230     * variables in ways that cannot be known, and may even terminate shader
231     * execution (say, calling discard in the fragment shader).  So we can't
232     * rely on any of our analysis about assignments to variables.
233     *
234     * We could perform some conservative analysis (prove there's no statically
235     * possible assignment, etc.) but it isn't worth it for now; function
236     * inlining will allow us to unroll loops anyway.
237     */
238    if (ls->contains_calls)
239       return visit_continue;
240 
241    foreach_list(node, &ir->body_instructions) {
242       /* Skip over declarations at the start of a loop.
243        */
244       if (((ir_instruction *) node)->as_variable())
245 	 continue;
246 
247       ir_if *if_stmt = ((ir_instruction *) node)->as_if();
248 
249       if ((if_stmt != NULL) && is_loop_terminator(if_stmt))
250 	 ls->insert(if_stmt);
251       else
252 	 break;
253    }
254 
255 
256    foreach_list_safe(node, &ls->variables) {
257       loop_variable *lv = (loop_variable *) node;
258 
259       /* Move variables that are already marked as being loop constant to
260        * a separate list.  These trivially don't need to be tested.
261        */
262       if (lv->is_loop_constant()) {
263 	 lv->remove();
264 	 ls->constants.push_tail(lv);
265       }
266    }
267 
268    /* Each variable assigned in the loop that isn't already marked as being loop
269     * constant might still be loop constant.  The requirements at this point
270     * are:
271     *
272     *    - Variable is written before it is read.
273     *
274     *    - Only one assignment to the variable.
275     *
276     *    - All operands on the RHS of the assignment are also loop constants.
277     *
278     * The last requirement is the reason for the progress loop.  A variable
279     * marked as a loop constant on one pass may allow other variables to be
280     * marked as loop constant on following passes.
281     */
282    bool progress;
283    do {
284       progress = false;
285 
286       foreach_list_safe(node, &ls->variables) {
287 	 loop_variable *lv = (loop_variable *) node;
288 
289 	 if (lv->conditional_assignment || (lv->num_assignments > 1))
290 	    continue;
291 
292 	 /* Process the RHS of the assignment.  If all of the variables
293 	  * accessed there are loop constants, then add this
294 	  */
295 	 ir_rvalue *const rhs = lv->first_assignment->rhs;
296 	 if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
297 	    lv->rhs_clean = true;
298 
299 	    if (lv->is_loop_constant()) {
300 	       progress = true;
301 
302 	       lv->remove();
303 	       ls->constants.push_tail(lv);
304 	    }
305 	 }
306       }
307    } while (progress);
308 
309    /* The remaining variables that are not loop invariant might be loop
310     * induction variables.
311     */
312    foreach_list_safe(node, &ls->variables) {
313       loop_variable *lv = (loop_variable *) node;
314 
315       /* If there is more than one assignment to a variable, it cannot be a
316        * loop induction variable.  This isn't strictly true, but this is a
317        * very simple induction variable detector, and it can't handle more
318        * complex cases.
319        */
320       if (lv->num_assignments > 1)
321 	 continue;
322 
323       /* All of the variables with zero assignments in the loop are loop
324        * invariant, and they should have already been filtered out.
325        */
326       assert(lv->num_assignments == 1);
327       assert(lv->first_assignment != NULL);
328 
329       /* The assignmnet to the variable in the loop must be unconditional.
330        */
331       if (lv->conditional_assignment)
332 	 continue;
333 
334       /* Basic loop induction variables have a single assignment in the loop
335        * that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
336        * loop invariant.
337        */
338       ir_rvalue *const inc =
339 	 get_basic_induction_increment(lv->first_assignment, ls->var_hash);
340       if (inc != NULL) {
341 	 lv->iv_scale = NULL;
342 	 lv->biv = lv->var;
343 	 lv->increment = inc;
344 
345 	 lv->remove();
346 	 ls->induction_variables.push_tail(lv);
347       }
348    }
349 
350    return visit_continue;
351 }
352 
353 ir_visitor_status
visit_enter(ir_if * ir)354 loop_analysis::visit_enter(ir_if *ir)
355 {
356    (void) ir;
357 
358    if (!this->state.is_empty())
359       this->if_statement_depth++;
360 
361    return visit_continue;
362 }
363 
364 ir_visitor_status
visit_leave(ir_if * ir)365 loop_analysis::visit_leave(ir_if *ir)
366 {
367    (void) ir;
368 
369    if (!this->state.is_empty())
370       this->if_statement_depth--;
371 
372    return visit_continue;
373 }
374 
375 ir_visitor_status
visit_enter(ir_assignment * ir)376 loop_analysis::visit_enter(ir_assignment *ir)
377 {
378    /* If we're not somewhere inside a loop, there's nothing to do.
379     */
380    if (this->state.is_empty())
381       return visit_continue_with_parent;
382 
383    this->current_assignment = ir;
384 
385    return visit_continue;
386 }
387 
388 ir_visitor_status
visit_leave(ir_assignment * ir)389 loop_analysis::visit_leave(ir_assignment *ir)
390 {
391    /* Since the visit_enter exits with visit_continue_with_parent for this
392     * case, the loop state stack should never be empty here.
393     */
394    assert(!this->state.is_empty());
395 
396    assert(this->current_assignment == ir);
397    this->current_assignment = NULL;
398 
399    return visit_continue;
400 }
401 
402 
403 class examine_rhs : public ir_hierarchical_visitor {
404 public:
examine_rhs(hash_table * loop_variables)405    examine_rhs(hash_table *loop_variables)
406    {
407       this->only_uses_loop_constants = true;
408       this->loop_variables = loop_variables;
409    }
410 
visit(ir_dereference_variable * ir)411    virtual ir_visitor_status visit(ir_dereference_variable *ir)
412    {
413       loop_variable *lv =
414 	 (loop_variable *) hash_table_find(this->loop_variables, ir->var);
415 
416       assert(lv != NULL);
417 
418       if (lv->is_loop_constant()) {
419 	 return visit_continue;
420       } else {
421 	 this->only_uses_loop_constants = false;
422 	 return visit_stop;
423       }
424    }
425 
426    hash_table *loop_variables;
427    bool only_uses_loop_constants;
428 };
429 
430 
431 bool
all_expression_operands_are_loop_constant(ir_rvalue * ir,hash_table * variables)432 all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
433 {
434    examine_rhs v(variables);
435 
436    ir->accept(&v);
437 
438    return v.only_uses_loop_constants;
439 }
440 
441 
442 ir_rvalue *
get_basic_induction_increment(ir_assignment * ir,hash_table * var_hash)443 get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
444 {
445    /* The RHS must be a binary expression.
446     */
447    ir_expression *const rhs = ir->rhs->as_expression();
448    if ((rhs == NULL)
449        || ((rhs->operation != ir_binop_add)
450 	   && (rhs->operation != ir_binop_sub)))
451       return NULL;
452 
453    /* One of the of operands of the expression must be the variable assigned.
454     * If the operation is subtraction, the variable in question must be the
455     * "left" operand.
456     */
457    ir_variable *const var = ir->lhs->variable_referenced();
458 
459    ir_variable *const op0 = rhs->operands[0]->variable_referenced();
460    ir_variable *const op1 = rhs->operands[1]->variable_referenced();
461 
462    if (((op0 != var) && (op1 != var))
463        || ((op1 == var) && (rhs->operation == ir_binop_sub)))
464       return NULL;
465 
466    ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
467 
468    if (inc->as_constant() == NULL) {
469       ir_variable *const inc_var = inc->variable_referenced();
470       if (inc_var != NULL) {
471 	 loop_variable *lv =
472 	    (loop_variable *) hash_table_find(var_hash, inc_var);
473 
474 	 if (!lv->is_loop_constant())
475 	    inc = NULL;
476       } else
477 	 inc = NULL;
478    }
479 
480    if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
481       void *mem_ctx = ralloc_parent(ir);
482 
483       inc = new(mem_ctx) ir_expression(ir_unop_neg,
484 				       inc->type,
485 				       inc->clone(mem_ctx, NULL),
486 				       NULL);
487    }
488 
489    return inc;
490 }
491 
492 
493 /**
494  * Detect whether an if-statement is a loop terminating condition
495  *
496  * Detects if-statements of the form
497  *
498  *  (if (expression bool ...) (break))
499  */
500 bool
is_loop_terminator(ir_if * ir)501 is_loop_terminator(ir_if *ir)
502 {
503    if (!ir->else_instructions.is_empty())
504       return false;
505 
506    ir_instruction *const inst =
507       (ir_instruction *) ir->then_instructions.get_head();
508    assert(inst != NULL);
509 
510    if (inst->ir_type != ir_type_loop_jump)
511       return false;
512 
513    ir_loop_jump *const jump = (ir_loop_jump *) inst;
514    if (jump->mode != ir_loop_jump::jump_break)
515       return false;
516 
517    return true;
518 }
519 
520 
521 loop_state *
analyze_loop_variables(exec_list * instructions)522 analyze_loop_variables(exec_list *instructions)
523 {
524    loop_analysis v;
525 
526    v.run(instructions);
527    return v.loops;
528 }
529