• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  * Version:  7.5
4  *
5  * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21  * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file imports.h
28  * Standard C library function wrappers.
29  *
30  * This file provides wrappers for all the standard C library functions
31  * like malloc(), free(), printf(), getenv(), etc.
32  */
33 
34 
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37 
38 
39 #include "compiler.h"
40 #include "glheader.h"
41 #include "errors.h"
42 
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46 
47 
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51 
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES)      malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES)      calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR)          free(PTR)
62 
63 /*@}*/
64 
65 
66 /*
67  * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68  * as offsets into buffer stores.  Since the vertex array pointer and
69  * buffer store pointer are both pointers and we need to add them, we use
70  * this macro.
71  * Both pointers/offsets are expressed in bytes.
72  */
73 #define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
74 
75 
76 /**
77  * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
78  * as a int (thereby using integer registers instead of FP registers) is
79  * a performance win.  Typically, this can be done with ordinary casts.
80  * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81  * these casts generate warnings.
82  * The following union typedef is used to solve that.
83  */
84 typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
85 
86 
87 
88 /**********************************************************************
89  * Math macros
90  */
91 
92 #define MAX_GLUSHORT	0xffff
93 #define MAX_GLUINT	0xffffffff
94 
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97 
98 
99 /***
100  *** SQRTF: single-precision square root
101  ***/
102 #define SQRTF(X)  (float) sqrt((float) (X))
103 
104 
105 /***
106  *** INV_SQRTF: single-precision inverse square root
107  ***/
108 #define INV_SQRTF(X) (1.0F / SQRTF(X))
109 
110 
111 /**
112  * \name Work-arounds for platforms that lack C99 math functions
113  */
114 /*@{*/
115 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
116    && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
117    && (!defined(_MSC_VER) || (_MSC_VER < 1400))
118 #define acosf(f) ((float) acos(f))
119 #define asinf(f) ((float) asin(f))
120 #define atan2f(x,y) ((float) atan2(x,y))
121 #define atanf(f) ((float) atan(f))
122 #define ceilf(f) ((float) ceil(f))
123 #define cosf(f) ((float) cos(f))
124 #define coshf(f) ((float) cosh(f))
125 #define expf(f) ((float) exp(f))
126 #define exp2f(f) ((float) exp2(f))
127 #define floorf(f) ((float) floor(f))
128 #define logf(f) ((float) log(f))
129 
130 #ifdef ANDROID
131 #define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
132 #else
133 #define log2f(f) ((float) log2(f))
134 #endif
135 
136 #define powf(x,y) ((float) pow(x,y))
137 #define sinf(f) ((float) sin(f))
138 #define sinhf(f) ((float) sinh(f))
139 #define sqrtf(f) ((float) sqrt(f))
140 #define tanf(f) ((float) tan(f))
141 #define tanhf(f) ((float) tanh(f))
142 #define acoshf(f) ((float) acosh(f))
143 #define asinhf(f) ((float) asinh(f))
144 #define atanhf(f) ((float) atanh(f))
145 #endif
146 
147 #if defined(_MSC_VER)
truncf(float x)148 static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
exp2f(float x)149 static inline float exp2f(float x) { return powf(2.0f, x); }
log2f(float x)150 static inline float log2f(float x) { return logf(x) * 1.442695041f; }
asinhf(float x)151 static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
acoshf(float x)152 static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
atanhf(float x)153 static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
isblank(int ch)154 static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
155 #define strtoll(p, e, b) _strtoi64(p, e, b)
156 #endif
157 /*@}*/
158 
159 /***
160  *** LOG2: Log base 2 of float
161  ***/
162 #ifdef USE_IEEE
163 #if 0
164 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
165  * Based on code from http://www.stereopsis.com/log2.html
166  */
167 static inline GLfloat LOG2(GLfloat x)
168 {
169    const GLfloat y = x * x * x * x;
170    const GLuint ix = *((GLuint *) &y);
171    const GLuint exp = (ix >> 23) & 0xFF;
172    const GLint log2 = ((GLint) exp) - 127;
173    return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
174 }
175 #endif
176 /* Pretty fast, and accurate.
177  * Based on code from http://www.flipcode.com/totd/
178  */
LOG2(GLfloat val)179 static inline GLfloat LOG2(GLfloat val)
180 {
181    fi_type num;
182    GLint log_2;
183    num.f = val;
184    log_2 = ((num.i >> 23) & 255) - 128;
185    num.i &= ~(255 << 23);
186    num.i += 127 << 23;
187    num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
188    return num.f + log_2;
189 }
190 #else
191 /*
192  * NOTE: log_base_2(x) = log(x) / log(2)
193  * NOTE: 1.442695 = 1/log(2).
194  */
195 #define LOG2(x)  ((GLfloat) (log(x) * 1.442695F))
196 #endif
197 
198 
199 /***
200  *** IS_INF_OR_NAN: test if float is infinite or NaN
201  ***/
202 #ifdef USE_IEEE
IS_INF_OR_NAN(float x)203 static inline int IS_INF_OR_NAN( float x )
204 {
205    fi_type tmp;
206    tmp.f = x;
207    return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
208 }
209 #elif defined(isfinite)
210 #define IS_INF_OR_NAN(x)        (!isfinite(x))
211 #elif defined(finite)
212 #define IS_INF_OR_NAN(x)        (!finite(x))
213 #elif defined(__VMS)
214 #define IS_INF_OR_NAN(x)        (!finite(x))
215 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
216 #define IS_INF_OR_NAN(x)        (!isfinite(x))
217 #else
218 #define IS_INF_OR_NAN(x)        (!finite(x))
219 #endif
220 
221 
222 /***
223  *** IS_NEGATIVE: test if float is negative
224  ***/
225 #if defined(USE_IEEE)
GET_FLOAT_BITS(float x)226 static inline int GET_FLOAT_BITS( float x )
227 {
228    fi_type fi;
229    fi.f = x;
230    return fi.i;
231 }
232 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
233 #else
234 #define IS_NEGATIVE(x) (x < 0.0F)
235 #endif
236 
237 
238 /***
239  *** DIFFERENT_SIGNS: test if two floats have opposite signs
240  ***/
241 #if defined(USE_IEEE)
242 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
243 #else
244 /* Could just use (x*y<0) except for the flatshading requirements.
245  * Maybe there's a better way?
246  */
247 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
248 #endif
249 
250 
251 /***
252  *** CEILF: ceiling of float
253  *** FLOORF: floor of float
254  *** FABSF: absolute value of float
255  *** LOGF: the natural logarithm (base e) of the value
256  *** EXPF: raise e to the value
257  *** LDEXPF: multiply value by an integral power of two
258  *** FREXPF: extract mantissa and exponent from value
259  ***/
260 #if defined(__gnu_linux__)
261 /* C99 functions */
262 #define CEILF(x)   ceilf(x)
263 #define FLOORF(x)  floorf(x)
264 #define FABSF(x)   fabsf(x)
265 #define LOGF(x)    logf(x)
266 #define EXPF(x)    expf(x)
267 #define LDEXPF(x,y)  ldexpf(x,y)
268 #define FREXPF(x,y)  frexpf(x,y)
269 #else
270 #define CEILF(x)   ((GLfloat) ceil(x))
271 #define FLOORF(x)  ((GLfloat) floor(x))
272 #define FABSF(x)   ((GLfloat) fabs(x))
273 #define LOGF(x)    ((GLfloat) log(x))
274 #define EXPF(x)    ((GLfloat) exp(x))
275 #define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
276 #define FREXPF(x,y)  ((GLfloat) frexp(x,y))
277 #endif
278 
279 
280 /**
281  * Convert float to int by rounding to nearest integer, away from zero.
282  */
IROUND(float f)283 static inline int IROUND(float f)
284 {
285    return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
286 }
287 
288 
289 /**
290  * Convert float to int64 by rounding to nearest integer.
291  */
IROUND64(float f)292 static inline GLint64 IROUND64(float f)
293 {
294    return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
295 }
296 
297 
298 /**
299  * Convert positive float to int by rounding to nearest integer.
300  */
IROUND_POS(float f)301 static inline int IROUND_POS(float f)
302 {
303    assert(f >= 0.0F);
304    return (int) (f + 0.5F);
305 }
306 
307 
308 /**
309  * Convert float to int using a fast method.  The rounding mode may vary.
310  * XXX We could use an x86-64/SSE2 version here.
311  */
312 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
F_TO_I(float f)313 static inline int F_TO_I(float f)
314 {
315    int r;
316    __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
317    return r;
318 }
319 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
F_TO_I(float f)320 static inline int F_TO_I(float f)
321 {
322    int r;
323    _asm {
324 	 fld f
325 	 fistp r
326 	}
327    return r;
328 }
329 #elif defined(__WATCOMC__) && defined(__386__)
330 long F_TO_I(float f);
331 #pragma aux iround =                    \
332 	"push   eax"                        \
333 	"fistp  dword ptr [esp]"            \
334 	"pop    eax"                        \
335 	parm [8087]                         \
336 	value [eax]                         \
337 	modify exact [eax];
338 #else
339 #define F_TO_I(f)  IROUND(f)
340 #endif
341 
342 
343 /***
344  *** IFLOOR: return (as an integer) floor of float
345  ***/
346 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
347 /*
348  * IEEE floor for computers that round to nearest or even.
349  * 'f' must be between -4194304 and 4194303.
350  * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
351  * but uses some IEEE specific tricks for better speed.
352  * Contributed by Josh Vanderhoof
353  */
ifloor(float f)354 static inline int ifloor(float f)
355 {
356    int ai, bi;
357    double af, bf;
358    af = (3 << 22) + 0.5 + (double)f;
359    bf = (3 << 22) + 0.5 - (double)f;
360    /* GCC generates an extra fstp/fld without this. */
361    __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
362    __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
363    return (ai - bi) >> 1;
364 }
365 #define IFLOOR(x)  ifloor(x)
366 #elif defined(USE_IEEE)
ifloor(float f)367 static inline int ifloor(float f)
368 {
369    int ai, bi;
370    double af, bf;
371    fi_type u;
372 
373    af = (3 << 22) + 0.5 + (double)f;
374    bf = (3 << 22) + 0.5 - (double)f;
375    u.f = (float) af;  ai = u.i;
376    u.f = (float) bf;  bi = u.i;
377    return (ai - bi) >> 1;
378 }
379 #define IFLOOR(x)  ifloor(x)
380 #else
ifloor(float f)381 static inline int ifloor(float f)
382 {
383    int i = IROUND(f);
384    return (i > f) ? i - 1 : i;
385 }
386 #define IFLOOR(x)  ifloor(x)
387 #endif
388 
389 
390 /***
391  *** ICEIL: return (as an integer) ceiling of float
392  ***/
393 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
394 /*
395  * IEEE ceil for computers that round to nearest or even.
396  * 'f' must be between -4194304 and 4194303.
397  * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
398  * but uses some IEEE specific tricks for better speed.
399  * Contributed by Josh Vanderhoof
400  */
iceil(float f)401 static inline int iceil(float f)
402 {
403    int ai, bi;
404    double af, bf;
405    af = (3 << 22) + 0.5 + (double)f;
406    bf = (3 << 22) + 0.5 - (double)f;
407    /* GCC generates an extra fstp/fld without this. */
408    __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
409    __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
410    return (ai - bi + 1) >> 1;
411 }
412 #define ICEIL(x)  iceil(x)
413 #elif defined(USE_IEEE)
iceil(float f)414 static inline int iceil(float f)
415 {
416    int ai, bi;
417    double af, bf;
418    fi_type u;
419    af = (3 << 22) + 0.5 + (double)f;
420    bf = (3 << 22) + 0.5 - (double)f;
421    u.f = (float) af; ai = u.i;
422    u.f = (float) bf; bi = u.i;
423    return (ai - bi + 1) >> 1;
424 }
425 #define ICEIL(x)  iceil(x)
426 #else
iceil(float f)427 static inline int iceil(float f)
428 {
429    int i = IROUND(f);
430    return (i < f) ? i + 1 : i;
431 }
432 #define ICEIL(x)  iceil(x)
433 #endif
434 
435 
436 /**
437  * Is x a power of two?
438  */
439 static inline int
_mesa_is_pow_two(int x)440 _mesa_is_pow_two(int x)
441 {
442    return !(x & (x - 1));
443 }
444 
445 /**
446  * Round given integer to next higer power of two
447  * If X is zero result is undefined.
448  *
449  * Source for the fallback implementation is
450  * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
451  * http://graphics.stanford.edu/~seander/bithacks.html
452  *
453  * When using builtin function have to do some work
454  * for case when passed values 1 to prevent hiting
455  * undefined result from __builtin_clz. Undefined
456  * results would be different depending on optimization
457  * level used for build.
458  */
459 static inline int32_t
_mesa_next_pow_two_32(uint32_t x)460 _mesa_next_pow_two_32(uint32_t x)
461 {
462 #if defined(__GNUC__) && \
463 	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
464 	uint32_t y = (x != 1);
465 	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
466 #else
467 	x--;
468 	x |= x >> 1;
469 	x |= x >> 2;
470 	x |= x >> 4;
471 	x |= x >> 8;
472 	x |= x >> 16;
473 	x++;
474 	return x;
475 #endif
476 }
477 
478 static inline int64_t
_mesa_next_pow_two_64(uint64_t x)479 _mesa_next_pow_two_64(uint64_t x)
480 {
481 #if defined(__GNUC__) && \
482 	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
483 	uint64_t y = (x != 1);
484 	if (sizeof(x) == sizeof(long))
485 		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
486 	else
487 		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
488 #else
489 	x--;
490 	x |= x >> 1;
491 	x |= x >> 2;
492 	x |= x >> 4;
493 	x |= x >> 8;
494 	x |= x >> 16;
495 	x |= x >> 32;
496 	x++;
497 	return x;
498 #endif
499 }
500 
501 
502 /*
503  * Returns the floor form of binary logarithm for a 32-bit integer.
504  */
505 static inline GLuint
_mesa_logbase2(GLuint n)506 _mesa_logbase2(GLuint n)
507 {
508 #if defined(__GNUC__) && \
509    ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
510    return (31 - __builtin_clz(n | 1));
511 #else
512    GLuint pos = 0;
513    if (n >= 1<<16) { n >>= 16; pos += 16; }
514    if (n >= 1<< 8) { n >>=  8; pos +=  8; }
515    if (n >= 1<< 4) { n >>=  4; pos +=  4; }
516    if (n >= 1<< 2) { n >>=  2; pos +=  2; }
517    if (n >= 1<< 1) {           pos +=  1; }
518    return pos;
519 #endif
520 }
521 
522 
523 /**
524  * Return 1 if this is a little endian machine, 0 if big endian.
525  */
526 static inline GLboolean
_mesa_little_endian(void)527 _mesa_little_endian(void)
528 {
529    const GLuint ui = 1; /* intentionally not static */
530    return *((const GLubyte *) &ui);
531 }
532 
533 
534 
535 /**********************************************************************
536  * Functions
537  */
538 
539 extern void *
540 _mesa_align_malloc( size_t bytes, unsigned long alignment );
541 
542 extern void *
543 _mesa_align_calloc( size_t bytes, unsigned long alignment );
544 
545 extern void
546 _mesa_align_free( void *ptr );
547 
548 extern void *
549 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
550                     unsigned long alignment);
551 
552 extern void *
553 _mesa_exec_malloc( GLuint size );
554 
555 extern void
556 _mesa_exec_free( void *addr );
557 
558 extern void *
559 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
560 
561 
562 #ifndef FFS_DEFINED
563 #define FFS_DEFINED 1
564 #ifdef __GNUC__
565 
566 #if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__)
567 #define ffs __builtin_ffs
568 #define ffsll __builtin_ffsll
569 #endif
570 
571 #else
572 
573 extern int ffs(int i);
574 extern int ffsll(long long int i);
575 
576 #endif /*__ GNUC__ */
577 #endif /* FFS_DEFINED */
578 
579 
580 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
581 #define _mesa_bitcount(i) __builtin_popcount(i)
582 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
583 #else
584 extern unsigned int
585 _mesa_bitcount(unsigned int n);
586 extern unsigned int
587 _mesa_bitcount_64(uint64_t n);
588 #endif
589 
590 /**
591  * Find the last (most significant) bit set in a word.
592  *
593  * Essentially ffs() in the reverse direction.
594  */
595 static inline unsigned int
_mesa_fls(unsigned int n)596 _mesa_fls(unsigned int n)
597 {
598 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304)
599    return n == 0 ? 0 : 32 - __builtin_clz(n);
600 #else
601    unsigned int v = 1;
602 
603    if (n == 0)
604       return 0;
605 
606    while (n >>= 1)
607        v++;
608 
609    return v;
610 #endif
611 }
612 
613 extern GLhalfARB
614 _mesa_float_to_half(float f);
615 
616 extern float
617 _mesa_half_to_float(GLhalfARB h);
618 
619 
620 extern void *
621 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
622                int (*compar)(const void *, const void *) );
623 
624 extern char *
625 _mesa_getenv( const char *var );
626 
627 extern char *
628 _mesa_strdup( const char *s );
629 
630 extern float
631 _mesa_strtof( const char *s, char **end );
632 
633 extern unsigned int
634 _mesa_str_checksum(const char *str);
635 
636 extern int
637 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
638 
639 extern int
640 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
641 
642 
643 #if defined(_MSC_VER) && !defined(snprintf)
644 #define snprintf _snprintf
645 #endif
646 
647 
648 #ifdef __cplusplus
649 }
650 #endif
651 
652 
653 #endif /* IMPORTS_H */
654