1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main file (entry points) for the TSan run-time.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27 #include "ubsan/ubsan_init.h"
28
29 #ifdef __SSE3__
30 // <emmintrin.h> transitively includes <stdlib.h>,
31 // and it's prohibited to include std headers into tsan runtime.
32 // So we do this dirty trick.
33 #define _MM_MALLOC_H_INCLUDED
34 #define __MM_MALLOC_H
35 #include <emmintrin.h>
36 typedef __m128i m128;
37 #endif
38
39 volatile int __tsan_resumed = 0;
40
__tsan_resume()41 extern "C" void __tsan_resume() {
42 __tsan_resumed = 1;
43 }
44
45 namespace __tsan {
46
47 #if !defined(SANITIZER_GO) && !SANITIZER_MAC
48 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
49 #endif
50 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
51 Context *ctx;
52
53 // Can be overriden by a front-end.
54 #ifdef TSAN_EXTERNAL_HOOKS
55 bool OnFinalize(bool failed);
56 void OnInitialize();
57 #else
58 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnFinalize(bool failed)59 bool OnFinalize(bool failed) {
60 return failed;
61 }
62 SANITIZER_WEAK_CXX_DEFAULT_IMPL
OnInitialize()63 void OnInitialize() {}
64 #endif
65
66 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
67
CreateThreadContext(u32 tid)68 static ThreadContextBase *CreateThreadContext(u32 tid) {
69 // Map thread trace when context is created.
70 char name[50];
71 internal_snprintf(name, sizeof(name), "trace %u", tid);
72 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
73 const uptr hdr = GetThreadTraceHeader(tid);
74 internal_snprintf(name, sizeof(name), "trace header %u", tid);
75 MapThreadTrace(hdr, sizeof(Trace), name);
76 new((void*)hdr) Trace();
77 // We are going to use only a small part of the trace with the default
78 // value of history_size. However, the constructor writes to the whole trace.
79 // Unmap the unused part.
80 uptr hdr_end = hdr + sizeof(Trace);
81 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
82 hdr_end = RoundUp(hdr_end, GetPageSizeCached());
83 if (hdr_end < hdr + sizeof(Trace))
84 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
85 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
86 return new(mem) ThreadContext(tid);
87 }
88
89 #ifndef SANITIZER_GO
90 static const u32 kThreadQuarantineSize = 16;
91 #else
92 static const u32 kThreadQuarantineSize = 64;
93 #endif
94
Context()95 Context::Context()
96 : initialized()
97 , report_mtx(MutexTypeReport, StatMtxReport)
98 , nreported()
99 , nmissed_expected()
100 , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
101 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
102 , racy_mtx(MutexTypeRacy, StatMtxRacy)
103 , racy_stacks(MBlockRacyStacks)
104 , racy_addresses(MBlockRacyAddresses)
105 , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
106 , fired_suppressions(8) {
107 }
108
109 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,unsigned reuse_count,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)110 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
111 unsigned reuse_count,
112 uptr stk_addr, uptr stk_size,
113 uptr tls_addr, uptr tls_size)
114 : fast_state(tid, epoch)
115 // Do not touch these, rely on zero initialization,
116 // they may be accessed before the ctor.
117 // , ignore_reads_and_writes()
118 // , ignore_interceptors()
119 , clock(tid, reuse_count)
120 #ifndef SANITIZER_GO
121 , jmp_bufs(MBlockJmpBuf)
122 #endif
123 , tid(tid)
124 , unique_id(unique_id)
125 , stk_addr(stk_addr)
126 , stk_size(stk_size)
127 , tls_addr(tls_addr)
128 , tls_size(tls_size)
129 #ifndef SANITIZER_GO
130 , last_sleep_clock(tid)
131 #endif
132 {
133 }
134
135 #ifndef SANITIZER_GO
MemoryProfiler(Context * ctx,fd_t fd,int i)136 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
137 uptr n_threads;
138 uptr n_running_threads;
139 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
140 InternalScopedBuffer<char> buf(4096);
141 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
142 WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
143 }
144
BackgroundThread(void * arg)145 static void BackgroundThread(void *arg) {
146 // This is a non-initialized non-user thread, nothing to see here.
147 // We don't use ScopedIgnoreInterceptors, because we want ignores to be
148 // enabled even when the thread function exits (e.g. during pthread thread
149 // shutdown code).
150 cur_thread()->ignore_interceptors++;
151 const u64 kMs2Ns = 1000 * 1000;
152
153 fd_t mprof_fd = kInvalidFd;
154 if (flags()->profile_memory && flags()->profile_memory[0]) {
155 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
156 mprof_fd = 1;
157 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
158 mprof_fd = 2;
159 } else {
160 InternalScopedString filename(kMaxPathLength);
161 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
162 fd_t fd = OpenFile(filename.data(), WrOnly);
163 if (fd == kInvalidFd) {
164 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
165 &filename[0]);
166 } else {
167 mprof_fd = fd;
168 }
169 }
170 }
171
172 u64 last_flush = NanoTime();
173 uptr last_rss = 0;
174 for (int i = 0;
175 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
176 i++) {
177 SleepForMillis(100);
178 u64 now = NanoTime();
179
180 // Flush memory if requested.
181 if (flags()->flush_memory_ms > 0) {
182 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
183 VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
184 FlushShadowMemory();
185 last_flush = NanoTime();
186 }
187 }
188 // GetRSS can be expensive on huge programs, so don't do it every 100ms.
189 if (flags()->memory_limit_mb > 0) {
190 uptr rss = GetRSS();
191 uptr limit = uptr(flags()->memory_limit_mb) << 20;
192 VPrintf(1, "ThreadSanitizer: memory flush check"
193 " RSS=%llu LAST=%llu LIMIT=%llu\n",
194 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
195 if (2 * rss > limit + last_rss) {
196 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
197 FlushShadowMemory();
198 rss = GetRSS();
199 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
200 }
201 last_rss = rss;
202 }
203
204 // Write memory profile if requested.
205 if (mprof_fd != kInvalidFd)
206 MemoryProfiler(ctx, mprof_fd, i);
207
208 // Flush symbolizer cache if requested.
209 if (flags()->flush_symbolizer_ms > 0) {
210 u64 last = atomic_load(&ctx->last_symbolize_time_ns,
211 memory_order_relaxed);
212 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
213 Lock l(&ctx->report_mtx);
214 SpinMutexLock l2(&CommonSanitizerReportMutex);
215 SymbolizeFlush();
216 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
217 }
218 }
219 }
220 }
221
StartBackgroundThread()222 static void StartBackgroundThread() {
223 ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
224 }
225
226 #ifndef __mips__
StopBackgroundThread()227 static void StopBackgroundThread() {
228 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
229 internal_join_thread(ctx->background_thread);
230 ctx->background_thread = 0;
231 }
232 #endif
233 #endif
234
DontNeedShadowFor(uptr addr,uptr size)235 void DontNeedShadowFor(uptr addr, uptr size) {
236 uptr shadow_beg = MemToShadow(addr);
237 uptr shadow_end = MemToShadow(addr + size);
238 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
239 }
240
MapShadow(uptr addr,uptr size)241 void MapShadow(uptr addr, uptr size) {
242 // Global data is not 64K aligned, but there are no adjacent mappings,
243 // so we can get away with unaligned mapping.
244 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
245 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier, "shadow");
246
247 // Meta shadow is 2:1, so tread carefully.
248 static bool data_mapped = false;
249 static uptr mapped_meta_end = 0;
250 uptr meta_begin = (uptr)MemToMeta(addr);
251 uptr meta_end = (uptr)MemToMeta(addr + size);
252 meta_begin = RoundDownTo(meta_begin, 64 << 10);
253 meta_end = RoundUpTo(meta_end, 64 << 10);
254 if (!data_mapped) {
255 // First call maps data+bss.
256 data_mapped = true;
257 MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
258 } else {
259 // Mapping continous heap.
260 // Windows wants 64K alignment.
261 meta_begin = RoundDownTo(meta_begin, 64 << 10);
262 meta_end = RoundUpTo(meta_end, 64 << 10);
263 if (meta_end <= mapped_meta_end)
264 return;
265 if (meta_begin < mapped_meta_end)
266 meta_begin = mapped_meta_end;
267 MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow");
268 mapped_meta_end = meta_end;
269 }
270 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
271 addr, addr+size, meta_begin, meta_end);
272 }
273
MapThreadTrace(uptr addr,uptr size,const char * name)274 void MapThreadTrace(uptr addr, uptr size, const char *name) {
275 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
276 CHECK_GE(addr, TraceMemBeg());
277 CHECK_LE(addr + size, TraceMemEnd());
278 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
279 uptr addr1 = (uptr)MmapFixedNoReserve(addr, size, name);
280 if (addr1 != addr) {
281 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
282 addr, size, addr1);
283 Die();
284 }
285 }
286
CheckShadowMapping()287 static void CheckShadowMapping() {
288 uptr beg, end;
289 for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
290 VPrintf(3, "checking shadow region %p-%p\n", beg, end);
291 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
292 for (int x = -1; x <= 1; x++) {
293 const uptr p = p0 + x;
294 if (p < beg || p >= end)
295 continue;
296 const uptr s = MemToShadow(p);
297 const uptr m = (uptr)MemToMeta(p);
298 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m);
299 CHECK(IsAppMem(p));
300 CHECK(IsShadowMem(s));
301 CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
302 CHECK(IsMetaMem(m));
303 }
304 }
305 }
306 }
307
Initialize(ThreadState * thr)308 void Initialize(ThreadState *thr) {
309 // Thread safe because done before all threads exist.
310 static bool is_initialized = false;
311 if (is_initialized)
312 return;
313 is_initialized = true;
314 // We are not ready to handle interceptors yet.
315 ScopedIgnoreInterceptors ignore;
316 SanitizerToolName = "ThreadSanitizer";
317 // Install tool-specific callbacks in sanitizer_common.
318 SetCheckFailedCallback(TsanCheckFailed);
319
320 ctx = new(ctx_placeholder) Context;
321 const char *options = GetEnv(kTsanOptionsEnv);
322 CacheBinaryName();
323 InitializeFlags(&ctx->flags, options);
324 InitializePlatformEarly();
325 #ifndef SANITIZER_GO
326 // Re-exec ourselves if we need to set additional env or command line args.
327 MaybeReexec();
328
329 InitializeAllocator();
330 ReplaceSystemMalloc();
331 #endif
332 InitializeInterceptors();
333 CheckShadowMapping();
334 InitializePlatform();
335 InitializeMutex();
336 InitializeDynamicAnnotations();
337 #ifndef SANITIZER_GO
338 InitializeShadowMemory();
339 #endif
340 // Setup correct file descriptor for error reports.
341 __sanitizer_set_report_path(common_flags()->log_path);
342 InitializeSuppressions();
343 #ifndef SANITIZER_GO
344 InitializeLibIgnore();
345 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
346 // On MIPS, TSan initialization is run before
347 // __pthread_initialize_minimal_internal() is finished, so we can not spawn
348 // new threads.
349 #ifndef __mips__
350 StartBackgroundThread();
351 SetSandboxingCallback(StopBackgroundThread);
352 #endif
353 #endif
354 if (common_flags()->detect_deadlocks)
355 ctx->dd = DDetector::Create(flags());
356
357 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
358 (int)internal_getpid());
359
360 // Initialize thread 0.
361 int tid = ThreadCreate(thr, 0, 0, true);
362 CHECK_EQ(tid, 0);
363 ThreadStart(thr, tid, internal_getpid());
364 #if TSAN_CONTAINS_UBSAN
365 __ubsan::InitAsPlugin();
366 #endif
367 ctx->initialized = true;
368
369 if (flags()->stop_on_start) {
370 Printf("ThreadSanitizer is suspended at startup (pid %d)."
371 " Call __tsan_resume().\n",
372 (int)internal_getpid());
373 while (__tsan_resumed == 0) {}
374 }
375
376 OnInitialize();
377 }
378
Finalize(ThreadState * thr)379 int Finalize(ThreadState *thr) {
380 bool failed = false;
381
382 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
383 SleepForMillis(flags()->atexit_sleep_ms);
384
385 // Wait for pending reports.
386 ctx->report_mtx.Lock();
387 CommonSanitizerReportMutex.Lock();
388 CommonSanitizerReportMutex.Unlock();
389 ctx->report_mtx.Unlock();
390
391 #ifndef SANITIZER_GO
392 if (Verbosity()) AllocatorPrintStats();
393 #endif
394
395 ThreadFinalize(thr);
396
397 if (ctx->nreported) {
398 failed = true;
399 #ifndef SANITIZER_GO
400 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
401 #else
402 Printf("Found %d data race(s)\n", ctx->nreported);
403 #endif
404 }
405
406 if (ctx->nmissed_expected) {
407 failed = true;
408 Printf("ThreadSanitizer: missed %d expected races\n",
409 ctx->nmissed_expected);
410 }
411
412 if (common_flags()->print_suppressions)
413 PrintMatchedSuppressions();
414 #ifndef SANITIZER_GO
415 if (flags()->print_benign)
416 PrintMatchedBenignRaces();
417 #endif
418
419 failed = OnFinalize(failed);
420
421 #if TSAN_COLLECT_STATS
422 StatAggregate(ctx->stat, thr->stat);
423 StatOutput(ctx->stat);
424 #endif
425
426 return failed ? common_flags()->exitcode : 0;
427 }
428
429 #ifndef SANITIZER_GO
ForkBefore(ThreadState * thr,uptr pc)430 void ForkBefore(ThreadState *thr, uptr pc) {
431 ctx->thread_registry->Lock();
432 ctx->report_mtx.Lock();
433 }
434
ForkParentAfter(ThreadState * thr,uptr pc)435 void ForkParentAfter(ThreadState *thr, uptr pc) {
436 ctx->report_mtx.Unlock();
437 ctx->thread_registry->Unlock();
438 }
439
ForkChildAfter(ThreadState * thr,uptr pc)440 void ForkChildAfter(ThreadState *thr, uptr pc) {
441 ctx->report_mtx.Unlock();
442 ctx->thread_registry->Unlock();
443
444 uptr nthread = 0;
445 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
446 VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
447 " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
448 if (nthread == 1) {
449 StartBackgroundThread();
450 } else {
451 // We've just forked a multi-threaded process. We cannot reasonably function
452 // after that (some mutexes may be locked before fork). So just enable
453 // ignores for everything in the hope that we will exec soon.
454 ctx->after_multithreaded_fork = true;
455 thr->ignore_interceptors++;
456 ThreadIgnoreBegin(thr, pc);
457 ThreadIgnoreSyncBegin(thr, pc);
458 }
459 }
460 #endif
461
462 #ifdef SANITIZER_GO
463 NOINLINE
GrowShadowStack(ThreadState * thr)464 void GrowShadowStack(ThreadState *thr) {
465 const int sz = thr->shadow_stack_end - thr->shadow_stack;
466 const int newsz = 2 * sz;
467 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
468 newsz * sizeof(uptr));
469 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
470 internal_free(thr->shadow_stack);
471 thr->shadow_stack = newstack;
472 thr->shadow_stack_pos = newstack + sz;
473 thr->shadow_stack_end = newstack + newsz;
474 }
475 #endif
476
CurrentStackId(ThreadState * thr,uptr pc)477 u32 CurrentStackId(ThreadState *thr, uptr pc) {
478 if (!thr->is_inited) // May happen during bootstrap.
479 return 0;
480 if (pc != 0) {
481 #ifndef SANITIZER_GO
482 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
483 #else
484 if (thr->shadow_stack_pos == thr->shadow_stack_end)
485 GrowShadowStack(thr);
486 #endif
487 thr->shadow_stack_pos[0] = pc;
488 thr->shadow_stack_pos++;
489 }
490 u32 id = StackDepotPut(
491 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
492 if (pc != 0)
493 thr->shadow_stack_pos--;
494 return id;
495 }
496
TraceSwitch(ThreadState * thr)497 void TraceSwitch(ThreadState *thr) {
498 thr->nomalloc++;
499 Trace *thr_trace = ThreadTrace(thr->tid);
500 Lock l(&thr_trace->mtx);
501 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
502 TraceHeader *hdr = &thr_trace->headers[trace];
503 hdr->epoch0 = thr->fast_state.epoch();
504 ObtainCurrentStack(thr, 0, &hdr->stack0);
505 hdr->mset0 = thr->mset;
506 thr->nomalloc--;
507 }
508
ThreadTrace(int tid)509 Trace *ThreadTrace(int tid) {
510 return (Trace*)GetThreadTraceHeader(tid);
511 }
512
TraceTopPC(ThreadState * thr)513 uptr TraceTopPC(ThreadState *thr) {
514 Event *events = (Event*)GetThreadTrace(thr->tid);
515 uptr pc = events[thr->fast_state.GetTracePos()];
516 return pc;
517 }
518
TraceSize()519 uptr TraceSize() {
520 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
521 }
522
TraceParts()523 uptr TraceParts() {
524 return TraceSize() / kTracePartSize;
525 }
526
527 #ifndef SANITIZER_GO
__tsan_trace_switch()528 extern "C" void __tsan_trace_switch() {
529 TraceSwitch(cur_thread());
530 }
531
__tsan_report_race()532 extern "C" void __tsan_report_race() {
533 ReportRace(cur_thread());
534 }
535 #endif
536
537 ALWAYS_INLINE
LoadShadow(u64 * p)538 Shadow LoadShadow(u64 *p) {
539 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
540 return Shadow(raw);
541 }
542
543 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)544 void StoreShadow(u64 *sp, u64 s) {
545 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
546 }
547
548 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)549 void StoreIfNotYetStored(u64 *sp, u64 *s) {
550 StoreShadow(sp, *s);
551 *s = 0;
552 }
553
554 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)555 void HandleRace(ThreadState *thr, u64 *shadow_mem,
556 Shadow cur, Shadow old) {
557 thr->racy_state[0] = cur.raw();
558 thr->racy_state[1] = old.raw();
559 thr->racy_shadow_addr = shadow_mem;
560 #ifndef SANITIZER_GO
561 HACKY_CALL(__tsan_report_race);
562 #else
563 ReportRace(thr);
564 #endif
565 }
566
HappensBefore(Shadow old,ThreadState * thr)567 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
568 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
569 }
570
571 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)572 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
573 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
574 u64 *shadow_mem, Shadow cur) {
575 StatInc(thr, StatMop);
576 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
577 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
578
579 // This potentially can live in an MMX/SSE scratch register.
580 // The required intrinsics are:
581 // __m128i _mm_move_epi64(__m128i*);
582 // _mm_storel_epi64(u64*, __m128i);
583 u64 store_word = cur.raw();
584
585 // scan all the shadow values and dispatch to 4 categories:
586 // same, replace, candidate and race (see comments below).
587 // we consider only 3 cases regarding access sizes:
588 // equal, intersect and not intersect. initially I considered
589 // larger and smaller as well, it allowed to replace some
590 // 'candidates' with 'same' or 'replace', but I think
591 // it's just not worth it (performance- and complexity-wise).
592
593 Shadow old(0);
594
595 // It release mode we manually unroll the loop,
596 // because empirically gcc generates better code this way.
597 // However, we can't afford unrolling in debug mode, because the function
598 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
599 // threads, which is not enough for the unrolled loop.
600 #if SANITIZER_DEBUG
601 for (int idx = 0; idx < 4; idx++) {
602 #include "tsan_update_shadow_word_inl.h"
603 }
604 #else
605 int idx = 0;
606 #include "tsan_update_shadow_word_inl.h"
607 idx = 1;
608 #include "tsan_update_shadow_word_inl.h"
609 idx = 2;
610 #include "tsan_update_shadow_word_inl.h"
611 idx = 3;
612 #include "tsan_update_shadow_word_inl.h"
613 #endif
614
615 // we did not find any races and had already stored
616 // the current access info, so we are done
617 if (LIKELY(store_word == 0))
618 return;
619 // choose a random candidate slot and replace it
620 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
621 StatInc(thr, StatShadowReplace);
622 return;
623 RACE:
624 HandleRace(thr, shadow_mem, cur, old);
625 return;
626 }
627
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)628 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
629 int size, bool kAccessIsWrite, bool kIsAtomic) {
630 while (size) {
631 int size1 = 1;
632 int kAccessSizeLog = kSizeLog1;
633 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
634 size1 = 8;
635 kAccessSizeLog = kSizeLog8;
636 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
637 size1 = 4;
638 kAccessSizeLog = kSizeLog4;
639 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
640 size1 = 2;
641 kAccessSizeLog = kSizeLog2;
642 }
643 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
644 addr += size1;
645 size -= size1;
646 }
647 }
648
649 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)650 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
651 Shadow cur(a);
652 for (uptr i = 0; i < kShadowCnt; i++) {
653 Shadow old(LoadShadow(&s[i]));
654 if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
655 old.TidWithIgnore() == cur.TidWithIgnore() &&
656 old.epoch() > sync_epoch &&
657 old.IsAtomic() == cur.IsAtomic() &&
658 old.IsRead() <= cur.IsRead())
659 return true;
660 }
661 return false;
662 }
663
664 #if defined(__SSE3__)
665 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
666 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
667 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
668 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)669 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
670 // This is an optimized version of ContainsSameAccessSlow.
671 // load current access into access[0:63]
672 const m128 access = _mm_cvtsi64_si128(a);
673 // duplicate high part of access in addr0:
674 // addr0[0:31] = access[32:63]
675 // addr0[32:63] = access[32:63]
676 // addr0[64:95] = access[32:63]
677 // addr0[96:127] = access[32:63]
678 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
679 // load 4 shadow slots
680 const m128 shadow0 = _mm_load_si128((__m128i*)s);
681 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1);
682 // load high parts of 4 shadow slots into addr_vect:
683 // addr_vect[0:31] = shadow0[32:63]
684 // addr_vect[32:63] = shadow0[96:127]
685 // addr_vect[64:95] = shadow1[32:63]
686 // addr_vect[96:127] = shadow1[96:127]
687 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
688 if (!is_write) {
689 // set IsRead bit in addr_vect
690 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
691 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
692 addr_vect = _mm_or_si128(addr_vect, rw_mask);
693 }
694 // addr0 == addr_vect?
695 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
696 // epoch1[0:63] = sync_epoch
697 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
698 // epoch[0:31] = sync_epoch[0:31]
699 // epoch[32:63] = sync_epoch[0:31]
700 // epoch[64:95] = sync_epoch[0:31]
701 // epoch[96:127] = sync_epoch[0:31]
702 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
703 // load low parts of shadow cell epochs into epoch_vect:
704 // epoch_vect[0:31] = shadow0[0:31]
705 // epoch_vect[32:63] = shadow0[64:95]
706 // epoch_vect[64:95] = shadow1[0:31]
707 // epoch_vect[96:127] = shadow1[64:95]
708 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
709 // epoch_vect >= sync_epoch?
710 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
711 // addr_res & epoch_res
712 const m128 res = _mm_and_si128(addr_res, epoch_res);
713 // mask[0] = res[7]
714 // mask[1] = res[15]
715 // ...
716 // mask[15] = res[127]
717 const int mask = _mm_movemask_epi8(res);
718 return mask != 0;
719 }
720 #endif
721
722 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)723 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
724 #if defined(__SSE3__)
725 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
726 // NOTE: this check can fail if the shadow is concurrently mutated
727 // by other threads. But it still can be useful if you modify
728 // ContainsSameAccessFast and want to ensure that it's not completely broken.
729 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
730 return res;
731 #else
732 return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
733 #endif
734 }
735
736 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)737 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
738 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
739 u64 *shadow_mem = (u64*)MemToShadow(addr);
740 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
741 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
742 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
743 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
744 (uptr)shadow_mem[0], (uptr)shadow_mem[1],
745 (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
746 #if SANITIZER_DEBUG
747 if (!IsAppMem(addr)) {
748 Printf("Access to non app mem %zx\n", addr);
749 DCHECK(IsAppMem(addr));
750 }
751 if (!IsShadowMem((uptr)shadow_mem)) {
752 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
753 DCHECK(IsShadowMem((uptr)shadow_mem));
754 }
755 #endif
756
757 if (kCppMode && *shadow_mem == kShadowRodata) {
758 // Access to .rodata section, no races here.
759 // Measurements show that it can be 10-20% of all memory accesses.
760 StatInc(thr, StatMop);
761 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
762 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
763 StatInc(thr, StatMopRodata);
764 return;
765 }
766
767 FastState fast_state = thr->fast_state;
768 if (fast_state.GetIgnoreBit()) {
769 StatInc(thr, StatMop);
770 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
771 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
772 StatInc(thr, StatMopIgnored);
773 return;
774 }
775
776 Shadow cur(fast_state);
777 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
778 cur.SetWrite(kAccessIsWrite);
779 cur.SetAtomic(kIsAtomic);
780
781 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
782 thr->fast_synch_epoch, kAccessIsWrite))) {
783 StatInc(thr, StatMop);
784 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
785 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
786 StatInc(thr, StatMopSame);
787 return;
788 }
789
790 if (kCollectHistory) {
791 fast_state.IncrementEpoch();
792 thr->fast_state = fast_state;
793 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
794 cur.IncrementEpoch();
795 }
796
797 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
798 shadow_mem, cur);
799 }
800
801 // Called by MemoryAccessRange in tsan_rtl_thread.cc
802 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)803 void MemoryAccessImpl(ThreadState *thr, uptr addr,
804 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
805 u64 *shadow_mem, Shadow cur) {
806 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
807 thr->fast_synch_epoch, kAccessIsWrite))) {
808 StatInc(thr, StatMop);
809 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
810 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
811 StatInc(thr, StatMopSame);
812 return;
813 }
814
815 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
816 shadow_mem, cur);
817 }
818
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)819 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
820 u64 val) {
821 (void)thr;
822 (void)pc;
823 if (size == 0)
824 return;
825 // FIXME: fix me.
826 uptr offset = addr % kShadowCell;
827 if (offset) {
828 offset = kShadowCell - offset;
829 if (size <= offset)
830 return;
831 addr += offset;
832 size -= offset;
833 }
834 DCHECK_EQ(addr % 8, 0);
835 // If a user passes some insane arguments (memset(0)),
836 // let it just crash as usual.
837 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
838 return;
839 // Don't want to touch lots of shadow memory.
840 // If a program maps 10MB stack, there is no need reset the whole range.
841 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
842 // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
843 // so we do it only for C/C++.
844 if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
845 u64 *p = (u64*)MemToShadow(addr);
846 CHECK(IsShadowMem((uptr)p));
847 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
848 // FIXME: may overwrite a part outside the region
849 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
850 p[i++] = val;
851 for (uptr j = 1; j < kShadowCnt; j++)
852 p[i++] = 0;
853 }
854 } else {
855 // The region is big, reset only beginning and end.
856 const uptr kPageSize = GetPageSizeCached();
857 u64 *begin = (u64*)MemToShadow(addr);
858 u64 *end = begin + size / kShadowCell * kShadowCnt;
859 u64 *p = begin;
860 // Set at least first kPageSize/2 to page boundary.
861 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
862 *p++ = val;
863 for (uptr j = 1; j < kShadowCnt; j++)
864 *p++ = 0;
865 }
866 // Reset middle part.
867 u64 *p1 = p;
868 p = RoundDown(end, kPageSize);
869 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
870 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
871 // Set the ending.
872 while (p < end) {
873 *p++ = val;
874 for (uptr j = 1; j < kShadowCnt; j++)
875 *p++ = 0;
876 }
877 }
878 }
879
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)880 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
881 MemoryRangeSet(thr, pc, addr, size, 0);
882 }
883
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)884 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
885 // Processing more than 1k (4k of shadow) is expensive,
886 // can cause excessive memory consumption (user does not necessary touch
887 // the whole range) and most likely unnecessary.
888 if (size > 1024)
889 size = 1024;
890 CHECK_EQ(thr->is_freeing, false);
891 thr->is_freeing = true;
892 MemoryAccessRange(thr, pc, addr, size, true);
893 thr->is_freeing = false;
894 if (kCollectHistory) {
895 thr->fast_state.IncrementEpoch();
896 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
897 }
898 Shadow s(thr->fast_state);
899 s.ClearIgnoreBit();
900 s.MarkAsFreed();
901 s.SetWrite(true);
902 s.SetAddr0AndSizeLog(0, 3);
903 MemoryRangeSet(thr, pc, addr, size, s.raw());
904 }
905
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)906 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
907 if (kCollectHistory) {
908 thr->fast_state.IncrementEpoch();
909 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
910 }
911 Shadow s(thr->fast_state);
912 s.ClearIgnoreBit();
913 s.SetWrite(true);
914 s.SetAddr0AndSizeLog(0, 3);
915 MemoryRangeSet(thr, pc, addr, size, s.raw());
916 }
917
918 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)919 void FuncEntry(ThreadState *thr, uptr pc) {
920 StatInc(thr, StatFuncEnter);
921 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
922 if (kCollectHistory) {
923 thr->fast_state.IncrementEpoch();
924 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
925 }
926
927 // Shadow stack maintenance can be replaced with
928 // stack unwinding during trace switch (which presumably must be faster).
929 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
930 #ifndef SANITIZER_GO
931 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
932 #else
933 if (thr->shadow_stack_pos == thr->shadow_stack_end)
934 GrowShadowStack(thr);
935 #endif
936 thr->shadow_stack_pos[0] = pc;
937 thr->shadow_stack_pos++;
938 }
939
940 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)941 void FuncExit(ThreadState *thr) {
942 StatInc(thr, StatFuncExit);
943 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
944 if (kCollectHistory) {
945 thr->fast_state.IncrementEpoch();
946 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
947 }
948
949 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
950 #ifndef SANITIZER_GO
951 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
952 #endif
953 thr->shadow_stack_pos--;
954 }
955
ThreadIgnoreBegin(ThreadState * thr,uptr pc)956 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
957 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
958 thr->ignore_reads_and_writes++;
959 CHECK_GT(thr->ignore_reads_and_writes, 0);
960 thr->fast_state.SetIgnoreBit();
961 #ifndef SANITIZER_GO
962 if (!ctx->after_multithreaded_fork)
963 thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
964 #endif
965 }
966
ThreadIgnoreEnd(ThreadState * thr,uptr pc)967 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
968 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
969 thr->ignore_reads_and_writes--;
970 CHECK_GE(thr->ignore_reads_and_writes, 0);
971 if (thr->ignore_reads_and_writes == 0) {
972 thr->fast_state.ClearIgnoreBit();
973 #ifndef SANITIZER_GO
974 thr->mop_ignore_set.Reset();
975 #endif
976 }
977 }
978
ThreadIgnoreSyncBegin(ThreadState * thr,uptr pc)979 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
980 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
981 thr->ignore_sync++;
982 CHECK_GT(thr->ignore_sync, 0);
983 #ifndef SANITIZER_GO
984 if (!ctx->after_multithreaded_fork)
985 thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
986 #endif
987 }
988
ThreadIgnoreSyncEnd(ThreadState * thr,uptr pc)989 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
990 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
991 thr->ignore_sync--;
992 CHECK_GE(thr->ignore_sync, 0);
993 #ifndef SANITIZER_GO
994 if (thr->ignore_sync == 0)
995 thr->sync_ignore_set.Reset();
996 #endif
997 }
998
operator ==(const MD5Hash & other) const999 bool MD5Hash::operator==(const MD5Hash &other) const {
1000 return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1001 }
1002
1003 #if SANITIZER_DEBUG
build_consistency_debug()1004 void build_consistency_debug() {}
1005 #else
build_consistency_release()1006 void build_consistency_release() {}
1007 #endif
1008
1009 #if TSAN_COLLECT_STATS
build_consistency_stats()1010 void build_consistency_stats() {}
1011 #else
build_consistency_nostats()1012 void build_consistency_nostats() {}
1013 #endif
1014
1015 } // namespace __tsan
1016
1017 #ifndef SANITIZER_GO
1018 // Must be included in this file to make sure everything is inlined.
1019 #include "tsan_interface_inl.h"
1020 #endif
1021