• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer, a race detector.
11 //
12 // The tool is under development, for the details about previous versions see
13 // http://code.google.com/p/data-race-test
14 //
15 // The instrumentation phase is quite simple:
16 //   - Insert calls to run-time library before every memory access.
17 //      - Optimizations may apply to avoid instrumenting some of the accesses.
18 //   - Insert calls at function entry/exit.
19 // The rest is handled by the run-time library.
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Instrumentation.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/ModuleUtils.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "tsan"
49 
50 static cl::opt<bool>  ClInstrumentMemoryAccesses(
51     "tsan-instrument-memory-accesses", cl::init(true),
52     cl::desc("Instrument memory accesses"), cl::Hidden);
53 static cl::opt<bool>  ClInstrumentFuncEntryExit(
54     "tsan-instrument-func-entry-exit", cl::init(true),
55     cl::desc("Instrument function entry and exit"), cl::Hidden);
56 static cl::opt<bool>  ClInstrumentAtomics(
57     "tsan-instrument-atomics", cl::init(true),
58     cl::desc("Instrument atomics"), cl::Hidden);
59 static cl::opt<bool>  ClInstrumentMemIntrinsics(
60     "tsan-instrument-memintrinsics", cl::init(true),
61     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
62 
63 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
64 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
65 STATISTIC(NumOmittedReadsBeforeWrite,
66           "Number of reads ignored due to following writes");
67 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
68 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
69 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
70 STATISTIC(NumOmittedReadsFromConstantGlobals,
71           "Number of reads from constant globals");
72 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
73 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
74 
75 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
76 static const char *const kTsanInitName = "__tsan_init";
77 
78 namespace {
79 
80 /// ThreadSanitizer: instrument the code in module to find races.
81 struct ThreadSanitizer : public FunctionPass {
ThreadSanitizer__anon5c3140d00111::ThreadSanitizer82   ThreadSanitizer() : FunctionPass(ID) {}
83   const char *getPassName() const override;
84   bool runOnFunction(Function &F) override;
85   bool doInitialization(Module &M) override;
86   static char ID;  // Pass identification, replacement for typeid.
87 
88  private:
89   void initializeCallbacks(Module &M);
90   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
91   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
92   bool instrumentMemIntrinsic(Instruction *I);
93   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
94                                       SmallVectorImpl<Instruction *> &All,
95                                       const DataLayout &DL);
96   bool addrPointsToConstantData(Value *Addr);
97   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
98 
99   Type *IntptrTy;
100   IntegerType *OrdTy;
101   // Callbacks to run-time library are computed in doInitialization.
102   Function *TsanFuncEntry;
103   Function *TsanFuncExit;
104   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
105   static const size_t kNumberOfAccessSizes = 5;
106   Function *TsanRead[kNumberOfAccessSizes];
107   Function *TsanWrite[kNumberOfAccessSizes];
108   Function *TsanUnalignedRead[kNumberOfAccessSizes];
109   Function *TsanUnalignedWrite[kNumberOfAccessSizes];
110   Function *TsanAtomicLoad[kNumberOfAccessSizes];
111   Function *TsanAtomicStore[kNumberOfAccessSizes];
112   Function *TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
113   Function *TsanAtomicCAS[kNumberOfAccessSizes];
114   Function *TsanAtomicThreadFence;
115   Function *TsanAtomicSignalFence;
116   Function *TsanVptrUpdate;
117   Function *TsanVptrLoad;
118   Function *MemmoveFn, *MemcpyFn, *MemsetFn;
119   Function *TsanCtorFunction;
120 };
121 }  // namespace
122 
123 char ThreadSanitizer::ID = 0;
124 INITIALIZE_PASS(ThreadSanitizer, "tsan",
125     "ThreadSanitizer: detects data races.",
126     false, false)
127 
getPassName() const128 const char *ThreadSanitizer::getPassName() const {
129   return "ThreadSanitizer";
130 }
131 
createThreadSanitizerPass()132 FunctionPass *llvm::createThreadSanitizerPass() {
133   return new ThreadSanitizer();
134 }
135 
initializeCallbacks(Module & M)136 void ThreadSanitizer::initializeCallbacks(Module &M) {
137   IRBuilder<> IRB(M.getContext());
138   // Initialize the callbacks.
139   TsanFuncEntry = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
140       "__tsan_func_entry", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
141   TsanFuncExit = checkSanitizerInterfaceFunction(
142       M.getOrInsertFunction("__tsan_func_exit", IRB.getVoidTy(), nullptr));
143   OrdTy = IRB.getInt32Ty();
144   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
145     const unsigned ByteSize = 1U << i;
146     const unsigned BitSize = ByteSize * 8;
147     std::string ByteSizeStr = utostr(ByteSize);
148     std::string BitSizeStr = utostr(BitSize);
149     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
150     TsanRead[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
151         ReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
152 
153     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
154     TsanWrite[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
155         WriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
156 
157     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
158     TsanUnalignedRead[i] =
159         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
160             UnalignedReadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
161 
162     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
163     TsanUnalignedWrite[i] =
164         checkSanitizerInterfaceFunction(M.getOrInsertFunction(
165             UnalignedWriteName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
166 
167     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
168     Type *PtrTy = Ty->getPointerTo();
169     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
170     TsanAtomicLoad[i] = checkSanitizerInterfaceFunction(
171         M.getOrInsertFunction(AtomicLoadName, Ty, PtrTy, OrdTy, nullptr));
172 
173     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
174     TsanAtomicStore[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
175         AtomicStoreName, IRB.getVoidTy(), PtrTy, Ty, OrdTy, nullptr));
176 
177     for (int op = AtomicRMWInst::FIRST_BINOP;
178         op <= AtomicRMWInst::LAST_BINOP; ++op) {
179       TsanAtomicRMW[op][i] = nullptr;
180       const char *NamePart = nullptr;
181       if (op == AtomicRMWInst::Xchg)
182         NamePart = "_exchange";
183       else if (op == AtomicRMWInst::Add)
184         NamePart = "_fetch_add";
185       else if (op == AtomicRMWInst::Sub)
186         NamePart = "_fetch_sub";
187       else if (op == AtomicRMWInst::And)
188         NamePart = "_fetch_and";
189       else if (op == AtomicRMWInst::Or)
190         NamePart = "_fetch_or";
191       else if (op == AtomicRMWInst::Xor)
192         NamePart = "_fetch_xor";
193       else if (op == AtomicRMWInst::Nand)
194         NamePart = "_fetch_nand";
195       else
196         continue;
197       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
198       TsanAtomicRMW[op][i] = checkSanitizerInterfaceFunction(
199           M.getOrInsertFunction(RMWName, Ty, PtrTy, Ty, OrdTy, nullptr));
200     }
201 
202     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
203                                   "_compare_exchange_val");
204     TsanAtomicCAS[i] = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
205         AtomicCASName, Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, nullptr));
206   }
207   TsanVptrUpdate = checkSanitizerInterfaceFunction(
208       M.getOrInsertFunction("__tsan_vptr_update", IRB.getVoidTy(),
209                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), nullptr));
210   TsanVptrLoad = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
211       "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
212   TsanAtomicThreadFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
213       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, nullptr));
214   TsanAtomicSignalFence = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
215       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, nullptr));
216 
217   MemmoveFn = checkSanitizerInterfaceFunction(
218       M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
219                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
220   MemcpyFn = checkSanitizerInterfaceFunction(
221       M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
222                             IRB.getInt8PtrTy(), IntptrTy, nullptr));
223   MemsetFn = checkSanitizerInterfaceFunction(
224       M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
225                             IRB.getInt32Ty(), IntptrTy, nullptr));
226 }
227 
doInitialization(Module & M)228 bool ThreadSanitizer::doInitialization(Module &M) {
229   const DataLayout &DL = M.getDataLayout();
230   IntptrTy = DL.getIntPtrType(M.getContext());
231   std::tie(TsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
232       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
233       /*InitArgs=*/{});
234 
235   appendToGlobalCtors(M, TsanCtorFunction, 0);
236 
237   return true;
238 }
239 
isVtableAccess(Instruction * I)240 static bool isVtableAccess(Instruction *I) {
241   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
242     return Tag->isTBAAVtableAccess();
243   return false;
244 }
245 
addrPointsToConstantData(Value * Addr)246 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
247   // If this is a GEP, just analyze its pointer operand.
248   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
249     Addr = GEP->getPointerOperand();
250 
251   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
252     if (GV->isConstant()) {
253       // Reads from constant globals can not race with any writes.
254       NumOmittedReadsFromConstantGlobals++;
255       return true;
256     }
257   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
258     if (isVtableAccess(L)) {
259       // Reads from a vtable pointer can not race with any writes.
260       NumOmittedReadsFromVtable++;
261       return true;
262     }
263   }
264   return false;
265 }
266 
267 // Instrumenting some of the accesses may be proven redundant.
268 // Currently handled:
269 //  - read-before-write (within same BB, no calls between)
270 //  - not captured variables
271 //
272 // We do not handle some of the patterns that should not survive
273 // after the classic compiler optimizations.
274 // E.g. two reads from the same temp should be eliminated by CSE,
275 // two writes should be eliminated by DSE, etc.
276 //
277 // 'Local' is a vector of insns within the same BB (no calls between).
278 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)279 void ThreadSanitizer::chooseInstructionsToInstrument(
280     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
281     const DataLayout &DL) {
282   SmallSet<Value*, 8> WriteTargets;
283   // Iterate from the end.
284   for (SmallVectorImpl<Instruction*>::reverse_iterator It = Local.rbegin(),
285        E = Local.rend(); It != E; ++It) {
286     Instruction *I = *It;
287     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
288       WriteTargets.insert(Store->getPointerOperand());
289     } else {
290       LoadInst *Load = cast<LoadInst>(I);
291       Value *Addr = Load->getPointerOperand();
292       if (WriteTargets.count(Addr)) {
293         // We will write to this temp, so no reason to analyze the read.
294         NumOmittedReadsBeforeWrite++;
295         continue;
296       }
297       if (addrPointsToConstantData(Addr)) {
298         // Addr points to some constant data -- it can not race with any writes.
299         continue;
300       }
301     }
302     Value *Addr = isa<StoreInst>(*I)
303         ? cast<StoreInst>(I)->getPointerOperand()
304         : cast<LoadInst>(I)->getPointerOperand();
305     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
306         !PointerMayBeCaptured(Addr, true, true)) {
307       // The variable is addressable but not captured, so it cannot be
308       // referenced from a different thread and participate in a data race
309       // (see llvm/Analysis/CaptureTracking.h for details).
310       NumOmittedNonCaptured++;
311       continue;
312     }
313     All.push_back(I);
314   }
315   Local.clear();
316 }
317 
isAtomic(Instruction * I)318 static bool isAtomic(Instruction *I) {
319   if (LoadInst *LI = dyn_cast<LoadInst>(I))
320     return LI->isAtomic() && LI->getSynchScope() == CrossThread;
321   if (StoreInst *SI = dyn_cast<StoreInst>(I))
322     return SI->isAtomic() && SI->getSynchScope() == CrossThread;
323   if (isa<AtomicRMWInst>(I))
324     return true;
325   if (isa<AtomicCmpXchgInst>(I))
326     return true;
327   if (isa<FenceInst>(I))
328     return true;
329   return false;
330 }
331 
runOnFunction(Function & F)332 bool ThreadSanitizer::runOnFunction(Function &F) {
333   // This is required to prevent instrumenting call to __tsan_init from within
334   // the module constructor.
335   if (&F == TsanCtorFunction)
336     return false;
337   initializeCallbacks(*F.getParent());
338   SmallVector<Instruction*, 8> RetVec;
339   SmallVector<Instruction*, 8> AllLoadsAndStores;
340   SmallVector<Instruction*, 8> LocalLoadsAndStores;
341   SmallVector<Instruction*, 8> AtomicAccesses;
342   SmallVector<Instruction*, 8> MemIntrinCalls;
343   bool Res = false;
344   bool HasCalls = false;
345   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
346   const DataLayout &DL = F.getParent()->getDataLayout();
347 
348   // Traverse all instructions, collect loads/stores/returns, check for calls.
349   for (auto &BB : F) {
350     for (auto &Inst : BB) {
351       if (isAtomic(&Inst))
352         AtomicAccesses.push_back(&Inst);
353       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
354         LocalLoadsAndStores.push_back(&Inst);
355       else if (isa<ReturnInst>(Inst))
356         RetVec.push_back(&Inst);
357       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
358         if (isa<MemIntrinsic>(Inst))
359           MemIntrinCalls.push_back(&Inst);
360         HasCalls = true;
361         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
362                                        DL);
363       }
364     }
365     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
366   }
367 
368   // We have collected all loads and stores.
369   // FIXME: many of these accesses do not need to be checked for races
370   // (e.g. variables that do not escape, etc).
371 
372   // Instrument memory accesses only if we want to report bugs in the function.
373   if (ClInstrumentMemoryAccesses && SanitizeFunction)
374     for (auto Inst : AllLoadsAndStores) {
375       Res |= instrumentLoadOrStore(Inst, DL);
376     }
377 
378   // Instrument atomic memory accesses in any case (they can be used to
379   // implement synchronization).
380   if (ClInstrumentAtomics)
381     for (auto Inst : AtomicAccesses) {
382       Res |= instrumentAtomic(Inst, DL);
383     }
384 
385   if (ClInstrumentMemIntrinsics && SanitizeFunction)
386     for (auto Inst : MemIntrinCalls) {
387       Res |= instrumentMemIntrinsic(Inst);
388     }
389 
390   // Instrument function entry/exit points if there were instrumented accesses.
391   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
392     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
393     Value *ReturnAddress = IRB.CreateCall(
394         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
395         IRB.getInt32(0));
396     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
397     for (auto RetInst : RetVec) {
398       IRBuilder<> IRBRet(RetInst);
399       IRBRet.CreateCall(TsanFuncExit, {});
400     }
401     Res = true;
402   }
403   return Res;
404 }
405 
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)406 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
407                                             const DataLayout &DL) {
408   IRBuilder<> IRB(I);
409   bool IsWrite = isa<StoreInst>(*I);
410   Value *Addr = IsWrite
411       ? cast<StoreInst>(I)->getPointerOperand()
412       : cast<LoadInst>(I)->getPointerOperand();
413   int Idx = getMemoryAccessFuncIndex(Addr, DL);
414   if (Idx < 0)
415     return false;
416   if (IsWrite && isVtableAccess(I)) {
417     DEBUG(dbgs() << "  VPTR : " << *I << "\n");
418     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
419     // StoredValue may be a vector type if we are storing several vptrs at once.
420     // In this case, just take the first element of the vector since this is
421     // enough to find vptr races.
422     if (isa<VectorType>(StoredValue->getType()))
423       StoredValue = IRB.CreateExtractElement(
424           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
425     if (StoredValue->getType()->isIntegerTy())
426       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
427     // Call TsanVptrUpdate.
428     IRB.CreateCall(TsanVptrUpdate,
429                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
430                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
431     NumInstrumentedVtableWrites++;
432     return true;
433   }
434   if (!IsWrite && isVtableAccess(I)) {
435     IRB.CreateCall(TsanVptrLoad,
436                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
437     NumInstrumentedVtableReads++;
438     return true;
439   }
440   const unsigned Alignment = IsWrite
441       ? cast<StoreInst>(I)->getAlignment()
442       : cast<LoadInst>(I)->getAlignment();
443   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
444   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
445   Value *OnAccessFunc = nullptr;
446   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
447     OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
448   else
449     OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
450   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
451   if (IsWrite) NumInstrumentedWrites++;
452   else         NumInstrumentedReads++;
453   return true;
454 }
455 
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)456 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
457   uint32_t v = 0;
458   switch (ord) {
459     case NotAtomic: llvm_unreachable("unexpected atomic ordering!");
460     case Unordered:              // Fall-through.
461     case Monotonic:              v = 0; break;
462     // case Consume:                v = 1; break;  // Not specified yet.
463     case Acquire:                v = 2; break;
464     case Release:                v = 3; break;
465     case AcquireRelease:         v = 4; break;
466     case SequentiallyConsistent: v = 5; break;
467   }
468   return IRB->getInt32(v);
469 }
470 
471 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
472 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
473 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
474 // instead we simply replace them with regular function calls, which are then
475 // intercepted by the run-time.
476 // Since tsan is running after everyone else, the calls should not be
477 // replaced back with intrinsics. If that becomes wrong at some point,
478 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)479 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
480   IRBuilder<> IRB(I);
481   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
482     IRB.CreateCall(
483         MemsetFn,
484         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
485          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
486          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
487     I->eraseFromParent();
488   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
489     IRB.CreateCall(
490         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
491         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
492          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
493          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
494     I->eraseFromParent();
495   }
496   return false;
497 }
498 
499 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
500 // standards.  For background see C++11 standard.  A slightly older, publicly
501 // available draft of the standard (not entirely up-to-date, but close enough
502 // for casual browsing) is available here:
503 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
504 // The following page contains more background information:
505 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
506 
instrumentAtomic(Instruction * I,const DataLayout & DL)507 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
508   IRBuilder<> IRB(I);
509   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
510     Value *Addr = LI->getPointerOperand();
511     int Idx = getMemoryAccessFuncIndex(Addr, DL);
512     if (Idx < 0)
513       return false;
514     const unsigned ByteSize = 1U << Idx;
515     const unsigned BitSize = ByteSize * 8;
516     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
517     Type *PtrTy = Ty->getPointerTo();
518     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
519                      createOrdering(&IRB, LI->getOrdering())};
520     CallInst *C = CallInst::Create(TsanAtomicLoad[Idx], Args);
521     ReplaceInstWithInst(I, C);
522 
523   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
524     Value *Addr = SI->getPointerOperand();
525     int Idx = getMemoryAccessFuncIndex(Addr, DL);
526     if (Idx < 0)
527       return false;
528     const unsigned ByteSize = 1U << Idx;
529     const unsigned BitSize = ByteSize * 8;
530     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
531     Type *PtrTy = Ty->getPointerTo();
532     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
533                      IRB.CreateIntCast(SI->getValueOperand(), Ty, false),
534                      createOrdering(&IRB, SI->getOrdering())};
535     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
536     ReplaceInstWithInst(I, C);
537   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
538     Value *Addr = RMWI->getPointerOperand();
539     int Idx = getMemoryAccessFuncIndex(Addr, DL);
540     if (Idx < 0)
541       return false;
542     Function *F = TsanAtomicRMW[RMWI->getOperation()][Idx];
543     if (!F)
544       return false;
545     const unsigned ByteSize = 1U << Idx;
546     const unsigned BitSize = ByteSize * 8;
547     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
548     Type *PtrTy = Ty->getPointerTo();
549     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
550                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
551                      createOrdering(&IRB, RMWI->getOrdering())};
552     CallInst *C = CallInst::Create(F, Args);
553     ReplaceInstWithInst(I, C);
554   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
555     Value *Addr = CASI->getPointerOperand();
556     int Idx = getMemoryAccessFuncIndex(Addr, DL);
557     if (Idx < 0)
558       return false;
559     const unsigned ByteSize = 1U << Idx;
560     const unsigned BitSize = ByteSize * 8;
561     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
562     Type *PtrTy = Ty->getPointerTo();
563     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
564                      IRB.CreateIntCast(CASI->getCompareOperand(), Ty, false),
565                      IRB.CreateIntCast(CASI->getNewValOperand(), Ty, false),
566                      createOrdering(&IRB, CASI->getSuccessOrdering()),
567                      createOrdering(&IRB, CASI->getFailureOrdering())};
568     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
569     Value *Success = IRB.CreateICmpEQ(C, CASI->getCompareOperand());
570 
571     Value *Res = IRB.CreateInsertValue(UndefValue::get(CASI->getType()), C, 0);
572     Res = IRB.CreateInsertValue(Res, Success, 1);
573 
574     I->replaceAllUsesWith(Res);
575     I->eraseFromParent();
576   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
577     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
578     Function *F = FI->getSynchScope() == SingleThread ?
579         TsanAtomicSignalFence : TsanAtomicThreadFence;
580     CallInst *C = CallInst::Create(F, Args);
581     ReplaceInstWithInst(I, C);
582   }
583   return true;
584 }
585 
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)586 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
587                                               const DataLayout &DL) {
588   Type *OrigPtrTy = Addr->getType();
589   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
590   assert(OrigTy->isSized());
591   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
592   if (TypeSize != 8  && TypeSize != 16 &&
593       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
594     NumAccessesWithBadSize++;
595     // Ignore all unusual sizes.
596     return -1;
597   }
598   size_t Idx = countTrailingZeros(TypeSize / 8);
599   assert(Idx < kNumberOfAccessSizes);
600   return Idx;
601 }
602