• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the top level handling of macro expansion for the
11 // preprocessor.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Lex/Preprocessor.h"
16 #include "clang/Basic/Attributes.h"
17 #include "clang/Basic/FileManager.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Lex/CodeCompletionHandler.h"
21 #include "clang/Lex/ExternalPreprocessorSource.h"
22 #include "clang/Lex/LexDiagnostic.h"
23 #include "clang/Lex/MacroArgs.h"
24 #include "clang/Lex/MacroInfo.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cstdio>
33 #include <ctime>
34 using namespace clang;
35 
36 MacroDirective *
getLocalMacroDirectiveHistory(const IdentifierInfo * II) const37 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
38   if (!II->hadMacroDefinition())
39     return nullptr;
40   auto Pos = CurSubmoduleState->Macros.find(II);
41   return Pos == CurSubmoduleState->Macros.end() ? nullptr
42                                                 : Pos->second.getLatest();
43 }
44 
appendMacroDirective(IdentifierInfo * II,MacroDirective * MD)45 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
46   assert(MD && "MacroDirective should be non-zero!");
47   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
48 
49   MacroState &StoredMD = CurSubmoduleState->Macros[II];
50   auto *OldMD = StoredMD.getLatest();
51   MD->setPrevious(OldMD);
52   StoredMD.setLatest(MD);
53   StoredMD.overrideActiveModuleMacros(*this, II);
54 
55   // Set up the identifier as having associated macro history.
56   II->setHasMacroDefinition(true);
57   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
58     II->setHasMacroDefinition(false);
59   if (II->isFromAST())
60     II->setChangedSinceDeserialization();
61 }
62 
setLoadedMacroDirective(IdentifierInfo * II,MacroDirective * MD)63 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
64                                            MacroDirective *MD) {
65   assert(II && MD);
66   MacroState &StoredMD = CurSubmoduleState->Macros[II];
67   assert(!StoredMD.getLatest() &&
68          "the macro history was modified before initializing it from a pch");
69   StoredMD = MD;
70   // Setup the identifier as having associated macro history.
71   II->setHasMacroDefinition(true);
72   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
73     II->setHasMacroDefinition(false);
74 }
75 
addModuleMacro(Module * Mod,IdentifierInfo * II,MacroInfo * Macro,ArrayRef<ModuleMacro * > Overrides,bool & New)76 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
77                                           MacroInfo *Macro,
78                                           ArrayRef<ModuleMacro *> Overrides,
79                                           bool &New) {
80   llvm::FoldingSetNodeID ID;
81   ModuleMacro::Profile(ID, Mod, II);
82 
83   void *InsertPos;
84   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
85     New = false;
86     return MM;
87   }
88 
89   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
90   ModuleMacros.InsertNode(MM, InsertPos);
91 
92   // Each overridden macro is now overridden by one more macro.
93   bool HidAny = false;
94   for (auto *O : Overrides) {
95     HidAny |= (O->NumOverriddenBy == 0);
96     ++O->NumOverriddenBy;
97   }
98 
99   // If we were the first overrider for any macro, it's no longer a leaf.
100   auto &LeafMacros = LeafModuleMacros[II];
101   if (HidAny) {
102     LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
103                                     [](ModuleMacro *MM) {
104                                       return MM->NumOverriddenBy != 0;
105                                     }),
106                      LeafMacros.end());
107   }
108 
109   // The new macro is always a leaf macro.
110   LeafMacros.push_back(MM);
111   // The identifier now has defined macros (that may or may not be visible).
112   II->setHasMacroDefinition(true);
113 
114   New = true;
115   return MM;
116 }
117 
getModuleMacro(Module * Mod,IdentifierInfo * II)118 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
119   llvm::FoldingSetNodeID ID;
120   ModuleMacro::Profile(ID, Mod, II);
121 
122   void *InsertPos;
123   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
124 }
125 
updateModuleMacroInfo(const IdentifierInfo * II,ModuleMacroInfo & Info)126 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
127                                          ModuleMacroInfo &Info) {
128   assert(Info.ActiveModuleMacrosGeneration !=
129              CurSubmoduleState->VisibleModules.getGeneration() &&
130          "don't need to update this macro name info");
131   Info.ActiveModuleMacrosGeneration =
132       CurSubmoduleState->VisibleModules.getGeneration();
133 
134   auto Leaf = LeafModuleMacros.find(II);
135   if (Leaf == LeafModuleMacros.end()) {
136     // No imported macros at all: nothing to do.
137     return;
138   }
139 
140   Info.ActiveModuleMacros.clear();
141 
142   // Every macro that's locally overridden is overridden by a visible macro.
143   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
144   for (auto *O : Info.OverriddenMacros)
145     NumHiddenOverrides[O] = -1;
146 
147   // Collect all macros that are not overridden by a visible macro.
148   llvm::SmallVector<ModuleMacro *, 16> Worklist;
149   for (auto *LeafMM : Leaf->second) {
150     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
151     if (NumHiddenOverrides.lookup(LeafMM) == 0)
152       Worklist.push_back(LeafMM);
153   }
154   while (!Worklist.empty()) {
155     auto *MM = Worklist.pop_back_val();
156     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
157       // We only care about collecting definitions; undefinitions only act
158       // to override other definitions.
159       if (MM->getMacroInfo())
160         Info.ActiveModuleMacros.push_back(MM);
161     } else {
162       for (auto *O : MM->overrides())
163         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
164           Worklist.push_back(O);
165     }
166   }
167   // Our reverse postorder walk found the macros in reverse order.
168   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
169 
170   // Determine whether the macro name is ambiguous.
171   MacroInfo *MI = nullptr;
172   bool IsSystemMacro = true;
173   bool IsAmbiguous = false;
174   if (auto *MD = Info.MD) {
175     while (MD && isa<VisibilityMacroDirective>(MD))
176       MD = MD->getPrevious();
177     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
178       MI = DMD->getInfo();
179       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
180     }
181   }
182   for (auto *Active : Info.ActiveModuleMacros) {
183     auto *NewMI = Active->getMacroInfo();
184 
185     // Before marking the macro as ambiguous, check if this is a case where
186     // both macros are in system headers. If so, we trust that the system
187     // did not get it wrong. This also handles cases where Clang's own
188     // headers have a different spelling of certain system macros:
189     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
190     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
191     //
192     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
193     // overrides the system limits.h's macros, so there's no conflict here.
194     if (MI && NewMI != MI &&
195         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
196       IsAmbiguous = true;
197     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
198                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
199     MI = NewMI;
200   }
201   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
202 }
203 
dumpMacroInfo(const IdentifierInfo * II)204 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
205   ArrayRef<ModuleMacro*> Leaf;
206   auto LeafIt = LeafModuleMacros.find(II);
207   if (LeafIt != LeafModuleMacros.end())
208     Leaf = LeafIt->second;
209   const MacroState *State = nullptr;
210   auto Pos = CurSubmoduleState->Macros.find(II);
211   if (Pos != CurSubmoduleState->Macros.end())
212     State = &Pos->second;
213 
214   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
215   if (State && State->isAmbiguous(*this, II))
216     llvm::errs() << " ambiguous";
217   if (State && !State->getOverriddenMacros().empty()) {
218     llvm::errs() << " overrides";
219     for (auto *O : State->getOverriddenMacros())
220       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
221   }
222   llvm::errs() << "\n";
223 
224   // Dump local macro directives.
225   for (auto *MD = State ? State->getLatest() : nullptr; MD;
226        MD = MD->getPrevious()) {
227     llvm::errs() << " ";
228     MD->dump();
229   }
230 
231   // Dump module macros.
232   llvm::DenseSet<ModuleMacro*> Active;
233   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
234     Active.insert(MM);
235   llvm::DenseSet<ModuleMacro*> Visited;
236   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
237   while (!Worklist.empty()) {
238     auto *MM = Worklist.pop_back_val();
239     llvm::errs() << " ModuleMacro " << MM << " "
240                  << MM->getOwningModule()->getFullModuleName();
241     if (!MM->getMacroInfo())
242       llvm::errs() << " undef";
243 
244     if (Active.count(MM))
245       llvm::errs() << " active";
246     else if (!CurSubmoduleState->VisibleModules.isVisible(
247                  MM->getOwningModule()))
248       llvm::errs() << " hidden";
249     else if (MM->getMacroInfo())
250       llvm::errs() << " overridden";
251 
252     if (!MM->overrides().empty()) {
253       llvm::errs() << " overrides";
254       for (auto *O : MM->overrides()) {
255         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
256         if (Visited.insert(O).second)
257           Worklist.push_back(O);
258       }
259     }
260     llvm::errs() << "\n";
261     if (auto *MI = MM->getMacroInfo()) {
262       llvm::errs() << "  ";
263       MI->dump();
264       llvm::errs() << "\n";
265     }
266   }
267 }
268 
269 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
270 /// table and mark it as a builtin macro to be expanded.
RegisterBuiltinMacro(Preprocessor & PP,const char * Name)271 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
272   // Get the identifier.
273   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
274 
275   // Mark it as being a macro that is builtin.
276   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
277   MI->setIsBuiltinMacro();
278   PP.appendDefMacroDirective(Id, MI);
279   return Id;
280 }
281 
282 
283 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
284 /// identifier table.
RegisterBuiltinMacros()285 void Preprocessor::RegisterBuiltinMacros() {
286   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
287   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
288   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
289   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
290   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
291   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
292 
293   // C++ Standing Document Extensions.
294   if (LangOpts.CPlusPlus)
295     Ident__has_cpp_attribute =
296         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
297   else
298     Ident__has_cpp_attribute = nullptr;
299 
300   // GCC Extensions.
301   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
302   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
303   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
304 
305   // Microsoft Extensions.
306   if (LangOpts.MicrosoftExt) {
307     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
308     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
309   } else {
310     Ident__identifier = nullptr;
311     Ident__pragma = nullptr;
312   }
313 
314   // Clang Extensions.
315   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
316   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
317   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
318   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
319   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
320   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
321   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
322   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
323   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
324 
325   // Modules.
326   if (LangOpts.Modules) {
327     Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
328 
329     // __MODULE__
330     if (!LangOpts.CurrentModule.empty())
331       Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
332     else
333       Ident__MODULE__ = nullptr;
334   } else {
335     Ident__building_module = nullptr;
336     Ident__MODULE__ = nullptr;
337   }
338 }
339 
340 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
341 /// in its expansion, currently expands to that token literally.
isTrivialSingleTokenExpansion(const MacroInfo * MI,const IdentifierInfo * MacroIdent,Preprocessor & PP)342 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
343                                           const IdentifierInfo *MacroIdent,
344                                           Preprocessor &PP) {
345   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
346 
347   // If the token isn't an identifier, it's always literally expanded.
348   if (!II) return true;
349 
350   // If the information about this identifier is out of date, update it from
351   // the external source.
352   if (II->isOutOfDate())
353     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
354 
355   // If the identifier is a macro, and if that macro is enabled, it may be
356   // expanded so it's not a trivial expansion.
357   if (auto *ExpansionMI = PP.getMacroInfo(II))
358     if (ExpansionMI->isEnabled() &&
359         // Fast expanding "#define X X" is ok, because X would be disabled.
360         II != MacroIdent)
361       return false;
362 
363   // If this is an object-like macro invocation, it is safe to trivially expand
364   // it.
365   if (MI->isObjectLike()) return true;
366 
367   // If this is a function-like macro invocation, it's safe to trivially expand
368   // as long as the identifier is not a macro argument.
369   return std::find(MI->arg_begin(), MI->arg_end(), II) == MI->arg_end();
370 
371 }
372 
373 
374 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
375 /// lexed is a '('.  If so, consume the token and return true, if not, this
376 /// method should have no observable side-effect on the lexed tokens.
isNextPPTokenLParen()377 bool Preprocessor::isNextPPTokenLParen() {
378   // Do some quick tests for rejection cases.
379   unsigned Val;
380   if (CurLexer)
381     Val = CurLexer->isNextPPTokenLParen();
382   else if (CurPTHLexer)
383     Val = CurPTHLexer->isNextPPTokenLParen();
384   else
385     Val = CurTokenLexer->isNextTokenLParen();
386 
387   if (Val == 2) {
388     // We have run off the end.  If it's a source file we don't
389     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
390     // macro stack.
391     if (CurPPLexer)
392       return false;
393     for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
394       IncludeStackInfo &Entry = IncludeMacroStack[i-1];
395       if (Entry.TheLexer)
396         Val = Entry.TheLexer->isNextPPTokenLParen();
397       else if (Entry.ThePTHLexer)
398         Val = Entry.ThePTHLexer->isNextPPTokenLParen();
399       else
400         Val = Entry.TheTokenLexer->isNextTokenLParen();
401 
402       if (Val != 2)
403         break;
404 
405       // Ran off the end of a source file?
406       if (Entry.ThePPLexer)
407         return false;
408     }
409   }
410 
411   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
412   // have found something that isn't a '(' or we found the end of the
413   // translation unit.  In either case, return false.
414   return Val == 1;
415 }
416 
417 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
418 /// expanded as a macro, handle it and return the next token as 'Identifier'.
HandleMacroExpandedIdentifier(Token & Identifier,const MacroDefinition & M)419 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
420                                                  const MacroDefinition &M) {
421   MacroInfo *MI = M.getMacroInfo();
422 
423   // If this is a macro expansion in the "#if !defined(x)" line for the file,
424   // then the macro could expand to different things in other contexts, we need
425   // to disable the optimization in this case.
426   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
427 
428   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
429   if (MI->isBuiltinMacro()) {
430     if (Callbacks)
431       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
432                               /*Args=*/nullptr);
433     ExpandBuiltinMacro(Identifier);
434     return true;
435   }
436 
437   /// Args - If this is a function-like macro expansion, this contains,
438   /// for each macro argument, the list of tokens that were provided to the
439   /// invocation.
440   MacroArgs *Args = nullptr;
441 
442   // Remember where the end of the expansion occurred.  For an object-like
443   // macro, this is the identifier.  For a function-like macro, this is the ')'.
444   SourceLocation ExpansionEnd = Identifier.getLocation();
445 
446   // If this is a function-like macro, read the arguments.
447   if (MI->isFunctionLike()) {
448     // Remember that we are now parsing the arguments to a macro invocation.
449     // Preprocessor directives used inside macro arguments are not portable, and
450     // this enables the warning.
451     InMacroArgs = true;
452     Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
453 
454     // Finished parsing args.
455     InMacroArgs = false;
456 
457     // If there was an error parsing the arguments, bail out.
458     if (!Args) return true;
459 
460     ++NumFnMacroExpanded;
461   } else {
462     ++NumMacroExpanded;
463   }
464 
465   // Notice that this macro has been used.
466   markMacroAsUsed(MI);
467 
468   // Remember where the token is expanded.
469   SourceLocation ExpandLoc = Identifier.getLocation();
470   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
471 
472   if (Callbacks) {
473     if (InMacroArgs) {
474       // We can have macro expansion inside a conditional directive while
475       // reading the function macro arguments. To ensure, in that case, that
476       // MacroExpands callbacks still happen in source order, queue this
477       // callback to have it happen after the function macro callback.
478       DelayedMacroExpandsCallbacks.push_back(
479           MacroExpandsInfo(Identifier, M, ExpansionRange));
480     } else {
481       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
482       if (!DelayedMacroExpandsCallbacks.empty()) {
483         for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
484           MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
485           // FIXME: We lose macro args info with delayed callback.
486           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
487                                   /*Args=*/nullptr);
488         }
489         DelayedMacroExpandsCallbacks.clear();
490       }
491     }
492   }
493 
494   // If the macro definition is ambiguous, complain.
495   if (M.isAmbiguous()) {
496     Diag(Identifier, diag::warn_pp_ambiguous_macro)
497       << Identifier.getIdentifierInfo();
498     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
499       << Identifier.getIdentifierInfo();
500     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
501       if (OtherMI != MI)
502         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
503           << Identifier.getIdentifierInfo();
504     });
505   }
506 
507   // If we started lexing a macro, enter the macro expansion body.
508 
509   // If this macro expands to no tokens, don't bother to push it onto the
510   // expansion stack, only to take it right back off.
511   if (MI->getNumTokens() == 0) {
512     // No need for arg info.
513     if (Args) Args->destroy(*this);
514 
515     // Propagate whitespace info as if we had pushed, then popped,
516     // a macro context.
517     Identifier.setFlag(Token::LeadingEmptyMacro);
518     PropagateLineStartLeadingSpaceInfo(Identifier);
519     ++NumFastMacroExpanded;
520     return false;
521   } else if (MI->getNumTokens() == 1 &&
522              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
523                                            *this)) {
524     // Otherwise, if this macro expands into a single trivially-expanded
525     // token: expand it now.  This handles common cases like
526     // "#define VAL 42".
527 
528     // No need for arg info.
529     if (Args) Args->destroy(*this);
530 
531     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
532     // identifier to the expanded token.
533     bool isAtStartOfLine = Identifier.isAtStartOfLine();
534     bool hasLeadingSpace = Identifier.hasLeadingSpace();
535 
536     // Replace the result token.
537     Identifier = MI->getReplacementToken(0);
538 
539     // Restore the StartOfLine/LeadingSpace markers.
540     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
541     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
542 
543     // Update the tokens location to include both its expansion and physical
544     // locations.
545     SourceLocation Loc =
546       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
547                                    ExpansionEnd,Identifier.getLength());
548     Identifier.setLocation(Loc);
549 
550     // If this is a disabled macro or #define X X, we must mark the result as
551     // unexpandable.
552     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
553       if (MacroInfo *NewMI = getMacroInfo(NewII))
554         if (!NewMI->isEnabled() || NewMI == MI) {
555           Identifier.setFlag(Token::DisableExpand);
556           // Don't warn for "#define X X" like "#define bool bool" from
557           // stdbool.h.
558           if (NewMI != MI || MI->isFunctionLike())
559             Diag(Identifier, diag::pp_disabled_macro_expansion);
560         }
561     }
562 
563     // Since this is not an identifier token, it can't be macro expanded, so
564     // we're done.
565     ++NumFastMacroExpanded;
566     return true;
567   }
568 
569   // Start expanding the macro.
570   EnterMacro(Identifier, ExpansionEnd, MI, Args);
571   return false;
572 }
573 
574 enum Bracket {
575   Brace,
576   Paren
577 };
578 
579 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
580 /// token vector are properly nested.
CheckMatchedBrackets(const SmallVectorImpl<Token> & Tokens)581 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
582   SmallVector<Bracket, 8> Brackets;
583   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
584                                               E = Tokens.end();
585        I != E; ++I) {
586     if (I->is(tok::l_paren)) {
587       Brackets.push_back(Paren);
588     } else if (I->is(tok::r_paren)) {
589       if (Brackets.empty() || Brackets.back() == Brace)
590         return false;
591       Brackets.pop_back();
592     } else if (I->is(tok::l_brace)) {
593       Brackets.push_back(Brace);
594     } else if (I->is(tok::r_brace)) {
595       if (Brackets.empty() || Brackets.back() == Paren)
596         return false;
597       Brackets.pop_back();
598     }
599   }
600   if (!Brackets.empty())
601     return false;
602   return true;
603 }
604 
605 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
606 /// vector of tokens in NewTokens.  The new number of arguments will be placed
607 /// in NumArgs and the ranges which need to surrounded in parentheses will be
608 /// in ParenHints.
609 /// Returns false if the token stream cannot be changed.  If this is because
610 /// of an initializer list starting a macro argument, the range of those
611 /// initializer lists will be place in InitLists.
GenerateNewArgTokens(Preprocessor & PP,SmallVectorImpl<Token> & OldTokens,SmallVectorImpl<Token> & NewTokens,unsigned & NumArgs,SmallVectorImpl<SourceRange> & ParenHints,SmallVectorImpl<SourceRange> & InitLists)612 static bool GenerateNewArgTokens(Preprocessor &PP,
613                                  SmallVectorImpl<Token> &OldTokens,
614                                  SmallVectorImpl<Token> &NewTokens,
615                                  unsigned &NumArgs,
616                                  SmallVectorImpl<SourceRange> &ParenHints,
617                                  SmallVectorImpl<SourceRange> &InitLists) {
618   if (!CheckMatchedBrackets(OldTokens))
619     return false;
620 
621   // Once it is known that the brackets are matched, only a simple count of the
622   // braces is needed.
623   unsigned Braces = 0;
624 
625   // First token of a new macro argument.
626   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
627 
628   // First closing brace in a new macro argument.  Used to generate
629   // SourceRanges for InitLists.
630   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
631   NumArgs = 0;
632   Token TempToken;
633   // Set to true when a macro separator token is found inside a braced list.
634   // If true, the fixed argument spans multiple old arguments and ParenHints
635   // will be updated.
636   bool FoundSeparatorToken = false;
637   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
638                                         E = OldTokens.end();
639        I != E; ++I) {
640     if (I->is(tok::l_brace)) {
641       ++Braces;
642     } else if (I->is(tok::r_brace)) {
643       --Braces;
644       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
645         ClosingBrace = I;
646     } else if (I->is(tok::eof)) {
647       // EOF token is used to separate macro arguments
648       if (Braces != 0) {
649         // Assume comma separator is actually braced list separator and change
650         // it back to a comma.
651         FoundSeparatorToken = true;
652         I->setKind(tok::comma);
653         I->setLength(1);
654       } else { // Braces == 0
655         // Separator token still separates arguments.
656         ++NumArgs;
657 
658         // If the argument starts with a brace, it can't be fixed with
659         // parentheses.  A different diagnostic will be given.
660         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
661           InitLists.push_back(
662               SourceRange(ArgStartIterator->getLocation(),
663                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
664           ClosingBrace = E;
665         }
666 
667         // Add left paren
668         if (FoundSeparatorToken) {
669           TempToken.startToken();
670           TempToken.setKind(tok::l_paren);
671           TempToken.setLocation(ArgStartIterator->getLocation());
672           TempToken.setLength(0);
673           NewTokens.push_back(TempToken);
674         }
675 
676         // Copy over argument tokens
677         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
678 
679         // Add right paren and store the paren locations in ParenHints
680         if (FoundSeparatorToken) {
681           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
682           TempToken.startToken();
683           TempToken.setKind(tok::r_paren);
684           TempToken.setLocation(Loc);
685           TempToken.setLength(0);
686           NewTokens.push_back(TempToken);
687           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
688                                            Loc));
689         }
690 
691         // Copy separator token
692         NewTokens.push_back(*I);
693 
694         // Reset values
695         ArgStartIterator = I + 1;
696         FoundSeparatorToken = false;
697       }
698     }
699   }
700 
701   return !ParenHints.empty() && InitLists.empty();
702 }
703 
704 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
705 /// token is the '(' of the macro, this method is invoked to read all of the
706 /// actual arguments specified for the macro invocation.  This returns null on
707 /// error.
ReadFunctionLikeMacroArgs(Token & MacroName,MacroInfo * MI,SourceLocation & MacroEnd)708 MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
709                                                    MacroInfo *MI,
710                                                    SourceLocation &MacroEnd) {
711   // The number of fixed arguments to parse.
712   unsigned NumFixedArgsLeft = MI->getNumArgs();
713   bool isVariadic = MI->isVariadic();
714 
715   // Outer loop, while there are more arguments, keep reading them.
716   Token Tok;
717 
718   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
719   // an argument value in a macro could expand to ',' or '(' or ')'.
720   LexUnexpandedToken(Tok);
721   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
722 
723   // ArgTokens - Build up a list of tokens that make up each argument.  Each
724   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
725   // heap allocations in the common case.
726   SmallVector<Token, 64> ArgTokens;
727   bool ContainsCodeCompletionTok = false;
728 
729   SourceLocation TooManyArgsLoc;
730 
731   unsigned NumActuals = 0;
732   while (Tok.isNot(tok::r_paren)) {
733     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
734       break;
735 
736     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
737            "only expect argument separators here");
738 
739     unsigned ArgTokenStart = ArgTokens.size();
740     SourceLocation ArgStartLoc = Tok.getLocation();
741 
742     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
743     // that we already consumed the first one.
744     unsigned NumParens = 0;
745 
746     while (1) {
747       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
748       // an argument value in a macro could expand to ',' or '(' or ')'.
749       LexUnexpandedToken(Tok);
750 
751       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
752         if (!ContainsCodeCompletionTok) {
753           Diag(MacroName, diag::err_unterm_macro_invoc);
754           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
755             << MacroName.getIdentifierInfo();
756           // Do not lose the EOF/EOD.  Return it to the client.
757           MacroName = Tok;
758           return nullptr;
759         } else {
760           // Do not lose the EOF/EOD.
761           Token *Toks = new Token[1];
762           Toks[0] = Tok;
763           EnterTokenStream(Toks, 1, true, true);
764           break;
765         }
766       } else if (Tok.is(tok::r_paren)) {
767         // If we found the ) token, the macro arg list is done.
768         if (NumParens-- == 0) {
769           MacroEnd = Tok.getLocation();
770           break;
771         }
772       } else if (Tok.is(tok::l_paren)) {
773         ++NumParens;
774       } else if (Tok.is(tok::comma) && NumParens == 0 &&
775                  !(Tok.getFlags() & Token::IgnoredComma)) {
776         // In Microsoft-compatibility mode, single commas from nested macro
777         // expansions should not be considered as argument separators. We test
778         // for this with the IgnoredComma token flag above.
779 
780         // Comma ends this argument if there are more fixed arguments expected.
781         // However, if this is a variadic macro, and this is part of the
782         // variadic part, then the comma is just an argument token.
783         if (!isVariadic) break;
784         if (NumFixedArgsLeft > 1)
785           break;
786       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
787         // If this is a comment token in the argument list and we're just in
788         // -C mode (not -CC mode), discard the comment.
789         continue;
790       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
791         // Reading macro arguments can cause macros that we are currently
792         // expanding from to be popped off the expansion stack.  Doing so causes
793         // them to be reenabled for expansion.  Here we record whether any
794         // identifiers we lex as macro arguments correspond to disabled macros.
795         // If so, we mark the token as noexpand.  This is a subtle aspect of
796         // C99 6.10.3.4p2.
797         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
798           if (!MI->isEnabled())
799             Tok.setFlag(Token::DisableExpand);
800       } else if (Tok.is(tok::code_completion)) {
801         ContainsCodeCompletionTok = true;
802         if (CodeComplete)
803           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
804                                                   MI, NumActuals);
805         // Don't mark that we reached the code-completion point because the
806         // parser is going to handle the token and there will be another
807         // code-completion callback.
808       }
809 
810       ArgTokens.push_back(Tok);
811     }
812 
813     // If this was an empty argument list foo(), don't add this as an empty
814     // argument.
815     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
816       break;
817 
818     // If this is not a variadic macro, and too many args were specified, emit
819     // an error.
820     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
821       if (ArgTokens.size() != ArgTokenStart)
822         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
823       else
824         TooManyArgsLoc = ArgStartLoc;
825     }
826 
827     // Empty arguments are standard in C99 and C++0x, and are supported as an
828     // extension in other modes.
829     if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
830       Diag(Tok, LangOpts.CPlusPlus11 ?
831            diag::warn_cxx98_compat_empty_fnmacro_arg :
832            diag::ext_empty_fnmacro_arg);
833 
834     // Add a marker EOF token to the end of the token list for this argument.
835     Token EOFTok;
836     EOFTok.startToken();
837     EOFTok.setKind(tok::eof);
838     EOFTok.setLocation(Tok.getLocation());
839     EOFTok.setLength(0);
840     ArgTokens.push_back(EOFTok);
841     ++NumActuals;
842     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
843       --NumFixedArgsLeft;
844   }
845 
846   // Okay, we either found the r_paren.  Check to see if we parsed too few
847   // arguments.
848   unsigned MinArgsExpected = MI->getNumArgs();
849 
850   // If this is not a variadic macro, and too many args were specified, emit
851   // an error.
852   if (!isVariadic && NumActuals > MinArgsExpected &&
853       !ContainsCodeCompletionTok) {
854     // Emit the diagnostic at the macro name in case there is a missing ).
855     // Emitting it at the , could be far away from the macro name.
856     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
857     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
858       << MacroName.getIdentifierInfo();
859 
860     // Commas from braced initializer lists will be treated as argument
861     // separators inside macros.  Attempt to correct for this with parentheses.
862     // TODO: See if this can be generalized to angle brackets for templates
863     // inside macro arguments.
864 
865     SmallVector<Token, 4> FixedArgTokens;
866     unsigned FixedNumArgs = 0;
867     SmallVector<SourceRange, 4> ParenHints, InitLists;
868     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
869                               ParenHints, InitLists)) {
870       if (!InitLists.empty()) {
871         DiagnosticBuilder DB =
872             Diag(MacroName,
873                  diag::note_init_list_at_beginning_of_macro_argument);
874         for (SourceRange Range : InitLists)
875           DB << Range;
876       }
877       return nullptr;
878     }
879     if (FixedNumArgs != MinArgsExpected)
880       return nullptr;
881 
882     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
883     for (SourceRange ParenLocation : ParenHints) {
884       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
885       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
886     }
887     ArgTokens.swap(FixedArgTokens);
888     NumActuals = FixedNumArgs;
889   }
890 
891   // See MacroArgs instance var for description of this.
892   bool isVarargsElided = false;
893 
894   if (ContainsCodeCompletionTok) {
895     // Recover from not-fully-formed macro invocation during code-completion.
896     Token EOFTok;
897     EOFTok.startToken();
898     EOFTok.setKind(tok::eof);
899     EOFTok.setLocation(Tok.getLocation());
900     EOFTok.setLength(0);
901     for (; NumActuals < MinArgsExpected; ++NumActuals)
902       ArgTokens.push_back(EOFTok);
903   }
904 
905   if (NumActuals < MinArgsExpected) {
906     // There are several cases where too few arguments is ok, handle them now.
907     if (NumActuals == 0 && MinArgsExpected == 1) {
908       // #define A(X)  or  #define A(...)   ---> A()
909 
910       // If there is exactly one argument, and that argument is missing,
911       // then we have an empty "()" argument empty list.  This is fine, even if
912       // the macro expects one argument (the argument is just empty).
913       isVarargsElided = MI->isVariadic();
914     } else if (MI->isVariadic() &&
915                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
916                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
917       // Varargs where the named vararg parameter is missing: OK as extension.
918       //   #define A(x, ...)
919       //   A("blah")
920       //
921       // If the macro contains the comma pasting extension, the diagnostic
922       // is suppressed; we know we'll get another diagnostic later.
923       if (!MI->hasCommaPasting()) {
924         Diag(Tok, diag::ext_missing_varargs_arg);
925         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
926           << MacroName.getIdentifierInfo();
927       }
928 
929       // Remember this occurred, allowing us to elide the comma when used for
930       // cases like:
931       //   #define A(x, foo...) blah(a, ## foo)
932       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
933       //   #define C(...) blah(a, ## __VA_ARGS__)
934       //  A(x) B(x) C()
935       isVarargsElided = true;
936     } else if (!ContainsCodeCompletionTok) {
937       // Otherwise, emit the error.
938       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
939       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
940         << MacroName.getIdentifierInfo();
941       return nullptr;
942     }
943 
944     // Add a marker EOF token to the end of the token list for this argument.
945     SourceLocation EndLoc = Tok.getLocation();
946     Tok.startToken();
947     Tok.setKind(tok::eof);
948     Tok.setLocation(EndLoc);
949     Tok.setLength(0);
950     ArgTokens.push_back(Tok);
951 
952     // If we expect two arguments, add both as empty.
953     if (NumActuals == 0 && MinArgsExpected == 2)
954       ArgTokens.push_back(Tok);
955 
956   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
957              !ContainsCodeCompletionTok) {
958     // Emit the diagnostic at the macro name in case there is a missing ).
959     // Emitting it at the , could be far away from the macro name.
960     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
961     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
962       << MacroName.getIdentifierInfo();
963     return nullptr;
964   }
965 
966   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
967 }
968 
969 /// \brief Keeps macro expanded tokens for TokenLexers.
970 //
971 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
972 /// going to lex in the cache and when it finishes the tokens are removed
973 /// from the end of the cache.
cacheMacroExpandedTokens(TokenLexer * tokLexer,ArrayRef<Token> tokens)974 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
975                                               ArrayRef<Token> tokens) {
976   assert(tokLexer);
977   if (tokens.empty())
978     return nullptr;
979 
980   size_t newIndex = MacroExpandedTokens.size();
981   bool cacheNeedsToGrow = tokens.size() >
982                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
983   MacroExpandedTokens.append(tokens.begin(), tokens.end());
984 
985   if (cacheNeedsToGrow) {
986     // Go through all the TokenLexers whose 'Tokens' pointer points in the
987     // buffer and update the pointers to the (potential) new buffer array.
988     for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
989       TokenLexer *prevLexer;
990       size_t tokIndex;
991       std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
992       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
993     }
994   }
995 
996   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
997   return MacroExpandedTokens.data() + newIndex;
998 }
999 
removeCachedMacroExpandedTokensOfLastLexer()1000 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1001   assert(!MacroExpandingLexersStack.empty());
1002   size_t tokIndex = MacroExpandingLexersStack.back().second;
1003   assert(tokIndex < MacroExpandedTokens.size());
1004   // Pop the cached macro expanded tokens from the end.
1005   MacroExpandedTokens.resize(tokIndex);
1006   MacroExpandingLexersStack.pop_back();
1007 }
1008 
1009 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1010 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1011 /// the identifier tokens inserted.
ComputeDATE_TIME(SourceLocation & DATELoc,SourceLocation & TIMELoc,Preprocessor & PP)1012 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1013                              Preprocessor &PP) {
1014   time_t TT = time(nullptr);
1015   struct tm *TM = localtime(&TT);
1016 
1017   static const char * const Months[] = {
1018     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1019   };
1020 
1021   {
1022     SmallString<32> TmpBuffer;
1023     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1024     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1025                               TM->tm_mday, TM->tm_year + 1900);
1026     Token TmpTok;
1027     TmpTok.startToken();
1028     PP.CreateString(TmpStream.str(), TmpTok);
1029     DATELoc = TmpTok.getLocation();
1030   }
1031 
1032   {
1033     SmallString<32> TmpBuffer;
1034     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1035     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1036                               TM->tm_hour, TM->tm_min, TM->tm_sec);
1037     Token TmpTok;
1038     TmpTok.startToken();
1039     PP.CreateString(TmpStream.str(), TmpTok);
1040     TIMELoc = TmpTok.getLocation();
1041   }
1042 }
1043 
1044 
1045 /// HasFeature - Return true if we recognize and implement the feature
1046 /// specified by the identifier as a standard language feature.
HasFeature(const Preprocessor & PP,const IdentifierInfo * II)1047 static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
1048   const LangOptions &LangOpts = PP.getLangOpts();
1049   StringRef Feature = II->getName();
1050 
1051   // Normalize the feature name, __foo__ becomes foo.
1052   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1053     Feature = Feature.substr(2, Feature.size() - 4);
1054 
1055   return llvm::StringSwitch<bool>(Feature)
1056       .Case("address_sanitizer",
1057             LangOpts.Sanitize.hasOneOf(SanitizerKind::Address |
1058                                        SanitizerKind::KernelAddress))
1059       .Case("assume_nonnull", true)
1060       .Case("attribute_analyzer_noreturn", true)
1061       .Case("attribute_availability", true)
1062       .Case("attribute_availability_with_message", true)
1063       .Case("attribute_availability_app_extension", true)
1064       .Case("attribute_availability_with_version_underscores", true)
1065       .Case("attribute_availability_tvos", true)
1066       .Case("attribute_availability_watchos", true)
1067       .Case("attribute_cf_returns_not_retained", true)
1068       .Case("attribute_cf_returns_retained", true)
1069       .Case("attribute_cf_returns_on_parameters", true)
1070       .Case("attribute_deprecated_with_message", true)
1071       .Case("attribute_ext_vector_type", true)
1072       .Case("attribute_ns_returns_not_retained", true)
1073       .Case("attribute_ns_returns_retained", true)
1074       .Case("attribute_ns_consumes_self", true)
1075       .Case("attribute_ns_consumed", true)
1076       .Case("attribute_cf_consumed", true)
1077       .Case("attribute_objc_ivar_unused", true)
1078       .Case("attribute_objc_method_family", true)
1079       .Case("attribute_overloadable", true)
1080       .Case("attribute_unavailable_with_message", true)
1081       .Case("attribute_unused_on_fields", true)
1082       .Case("blocks", LangOpts.Blocks)
1083       .Case("c_thread_safety_attributes", true)
1084       .Case("cxx_exceptions", LangOpts.CXXExceptions)
1085       .Case("cxx_rtti", LangOpts.RTTI && LangOpts.RTTIData)
1086       .Case("enumerator_attributes", true)
1087       .Case("nullability", true)
1088       .Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory))
1089       .Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread))
1090       .Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow))
1091       // Objective-C features
1092       .Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
1093       .Case("objc_arc", LangOpts.ObjCAutoRefCount)
1094       .Case("objc_arc_weak", LangOpts.ObjCWeak)
1095       .Case("objc_default_synthesize_properties", LangOpts.ObjC2)
1096       .Case("objc_fixed_enum", LangOpts.ObjC2)
1097       .Case("objc_instancetype", LangOpts.ObjC2)
1098       .Case("objc_kindof", LangOpts.ObjC2)
1099       .Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
1100       .Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
1101       .Case("objc_property_explicit_atomic",
1102             true) // Does clang support explicit "atomic" keyword?
1103       .Case("objc_protocol_qualifier_mangling", true)
1104       .Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
1105       .Case("ownership_holds", true)
1106       .Case("ownership_returns", true)
1107       .Case("ownership_takes", true)
1108       .Case("objc_bool", true)
1109       .Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
1110       .Case("objc_array_literals", LangOpts.ObjC2)
1111       .Case("objc_dictionary_literals", LangOpts.ObjC2)
1112       .Case("objc_boxed_expressions", LangOpts.ObjC2)
1113       .Case("objc_boxed_nsvalue_expressions", LangOpts.ObjC2)
1114       .Case("arc_cf_code_audited", true)
1115       .Case("objc_bridge_id", true)
1116       .Case("objc_bridge_id_on_typedefs", true)
1117       .Case("objc_generics", LangOpts.ObjC2)
1118       .Case("objc_generics_variance", LangOpts.ObjC2)
1119       // C11 features
1120       .Case("c_alignas", LangOpts.C11)
1121       .Case("c_alignof", LangOpts.C11)
1122       .Case("c_atomic", LangOpts.C11)
1123       .Case("c_generic_selections", LangOpts.C11)
1124       .Case("c_static_assert", LangOpts.C11)
1125       .Case("c_thread_local",
1126             LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
1127       // C++11 features
1128       .Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
1129       .Case("cxx_alias_templates", LangOpts.CPlusPlus11)
1130       .Case("cxx_alignas", LangOpts.CPlusPlus11)
1131       .Case("cxx_alignof", LangOpts.CPlusPlus11)
1132       .Case("cxx_atomic", LangOpts.CPlusPlus11)
1133       .Case("cxx_attributes", LangOpts.CPlusPlus11)
1134       .Case("cxx_auto_type", LangOpts.CPlusPlus11)
1135       .Case("cxx_constexpr", LangOpts.CPlusPlus11)
1136       .Case("cxx_decltype", LangOpts.CPlusPlus11)
1137       .Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
1138       .Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
1139       .Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
1140       .Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
1141       .Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
1142       .Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
1143       .Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
1144       .Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
1145       .Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
1146       .Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
1147       .Case("cxx_lambdas", LangOpts.CPlusPlus11)
1148       .Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
1149       .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
1150       .Case("cxx_noexcept", LangOpts.CPlusPlus11)
1151       .Case("cxx_nullptr", LangOpts.CPlusPlus11)
1152       .Case("cxx_override_control", LangOpts.CPlusPlus11)
1153       .Case("cxx_range_for", LangOpts.CPlusPlus11)
1154       .Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
1155       .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
1156       .Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
1157       .Case("cxx_strong_enums", LangOpts.CPlusPlus11)
1158       .Case("cxx_static_assert", LangOpts.CPlusPlus11)
1159       .Case("cxx_thread_local",
1160             LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
1161       .Case("cxx_trailing_return", LangOpts.CPlusPlus11)
1162       .Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
1163       .Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
1164       .Case("cxx_user_literals", LangOpts.CPlusPlus11)
1165       .Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
1166       // C++1y features
1167       .Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14)
1168       .Case("cxx_binary_literals", LangOpts.CPlusPlus14)
1169       .Case("cxx_contextual_conversions", LangOpts.CPlusPlus14)
1170       .Case("cxx_decltype_auto", LangOpts.CPlusPlus14)
1171       .Case("cxx_generic_lambdas", LangOpts.CPlusPlus14)
1172       .Case("cxx_init_captures", LangOpts.CPlusPlus14)
1173       .Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14)
1174       .Case("cxx_return_type_deduction", LangOpts.CPlusPlus14)
1175       .Case("cxx_variable_templates", LangOpts.CPlusPlus14)
1176       // C++ TSes
1177       //.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays)
1178       //.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts)
1179       // FIXME: Should this be __has_feature or __has_extension?
1180       //.Case("raw_invocation_type", LangOpts.CPlusPlus)
1181       // Type traits
1182       .Case("has_nothrow_assign", LangOpts.CPlusPlus)
1183       .Case("has_nothrow_copy", LangOpts.CPlusPlus)
1184       .Case("has_nothrow_constructor", LangOpts.CPlusPlus)
1185       .Case("has_trivial_assign", LangOpts.CPlusPlus)
1186       .Case("has_trivial_copy", LangOpts.CPlusPlus)
1187       .Case("has_trivial_constructor", LangOpts.CPlusPlus)
1188       .Case("has_trivial_destructor", LangOpts.CPlusPlus)
1189       .Case("has_virtual_destructor", LangOpts.CPlusPlus)
1190       .Case("is_abstract", LangOpts.CPlusPlus)
1191       .Case("is_base_of", LangOpts.CPlusPlus)
1192       .Case("is_class", LangOpts.CPlusPlus)
1193       .Case("is_constructible", LangOpts.CPlusPlus)
1194       .Case("is_convertible_to", LangOpts.CPlusPlus)
1195       .Case("is_empty", LangOpts.CPlusPlus)
1196       .Case("is_enum", LangOpts.CPlusPlus)
1197       .Case("is_final", LangOpts.CPlusPlus)
1198       .Case("is_literal", LangOpts.CPlusPlus)
1199       .Case("is_standard_layout", LangOpts.CPlusPlus)
1200       .Case("is_pod", LangOpts.CPlusPlus)
1201       .Case("is_polymorphic", LangOpts.CPlusPlus)
1202       .Case("is_sealed", LangOpts.MicrosoftExt)
1203       .Case("is_trivial", LangOpts.CPlusPlus)
1204       .Case("is_trivially_assignable", LangOpts.CPlusPlus)
1205       .Case("is_trivially_constructible", LangOpts.CPlusPlus)
1206       .Case("is_trivially_copyable", LangOpts.CPlusPlus)
1207       .Case("is_union", LangOpts.CPlusPlus)
1208       .Case("modules", LangOpts.Modules)
1209       .Case("safe_stack", LangOpts.Sanitize.has(SanitizerKind::SafeStack))
1210       .Case("tls", PP.getTargetInfo().isTLSSupported())
1211       .Case("underlying_type", LangOpts.CPlusPlus)
1212       .Default(false);
1213 }
1214 
1215 /// HasExtension - Return true if we recognize and implement the feature
1216 /// specified by the identifier, either as an extension or a standard language
1217 /// feature.
HasExtension(const Preprocessor & PP,const IdentifierInfo * II)1218 static bool HasExtension(const Preprocessor &PP, const IdentifierInfo *II) {
1219   if (HasFeature(PP, II))
1220     return true;
1221 
1222   // If the use of an extension results in an error diagnostic, extensions are
1223   // effectively unavailable, so just return false here.
1224   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1225       diag::Severity::Error)
1226     return false;
1227 
1228   const LangOptions &LangOpts = PP.getLangOpts();
1229   StringRef Extension = II->getName();
1230 
1231   // Normalize the extension name, __foo__ becomes foo.
1232   if (Extension.startswith("__") && Extension.endswith("__") &&
1233       Extension.size() >= 4)
1234     Extension = Extension.substr(2, Extension.size() - 4);
1235 
1236   // Because we inherit the feature list from HasFeature, this string switch
1237   // must be less restrictive than HasFeature's.
1238   return llvm::StringSwitch<bool>(Extension)
1239            // C11 features supported by other languages as extensions.
1240            .Case("c_alignas", true)
1241            .Case("c_alignof", true)
1242            .Case("c_atomic", true)
1243            .Case("c_generic_selections", true)
1244            .Case("c_static_assert", true)
1245            .Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
1246            // C++11 features supported by other languages as extensions.
1247            .Case("cxx_atomic", LangOpts.CPlusPlus)
1248            .Case("cxx_deleted_functions", LangOpts.CPlusPlus)
1249            .Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
1250            .Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
1251            .Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
1252            .Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
1253            .Case("cxx_override_control", LangOpts.CPlusPlus)
1254            .Case("cxx_range_for", LangOpts.CPlusPlus)
1255            .Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
1256            .Case("cxx_rvalue_references", LangOpts.CPlusPlus)
1257            .Case("cxx_variadic_templates", LangOpts.CPlusPlus)
1258            // C++1y features supported by other languages as extensions.
1259            .Case("cxx_binary_literals", true)
1260            .Case("cxx_init_captures", LangOpts.CPlusPlus11)
1261            .Case("cxx_variable_templates", LangOpts.CPlusPlus)
1262            .Default(false);
1263 }
1264 
1265 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1266 /// or '__has_include_next("path")' expression.
1267 /// Returns true if successful.
EvaluateHasIncludeCommon(Token & Tok,IdentifierInfo * II,Preprocessor & PP,const DirectoryLookup * LookupFrom,const FileEntry * LookupFromFile)1268 static bool EvaluateHasIncludeCommon(Token &Tok,
1269                                      IdentifierInfo *II, Preprocessor &PP,
1270                                      const DirectoryLookup *LookupFrom,
1271                                      const FileEntry *LookupFromFile) {
1272   // Save the location of the current token.  If a '(' is later found, use
1273   // that location.  If not, use the end of this location instead.
1274   SourceLocation LParenLoc = Tok.getLocation();
1275 
1276   // These expressions are only allowed within a preprocessor directive.
1277   if (!PP.isParsingIfOrElifDirective()) {
1278     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
1279     // Return a valid identifier token.
1280     assert(Tok.is(tok::identifier));
1281     Tok.setIdentifierInfo(II);
1282     return false;
1283   }
1284 
1285   // Get '('.
1286   PP.LexNonComment(Tok);
1287 
1288   // Ensure we have a '('.
1289   if (Tok.isNot(tok::l_paren)) {
1290     // No '(', use end of last token.
1291     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1292     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1293     // If the next token looks like a filename or the start of one,
1294     // assume it is and process it as such.
1295     if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
1296         !Tok.is(tok::less))
1297       return false;
1298   } else {
1299     // Save '(' location for possible missing ')' message.
1300     LParenLoc = Tok.getLocation();
1301 
1302     if (PP.getCurrentLexer()) {
1303       // Get the file name.
1304       PP.getCurrentLexer()->LexIncludeFilename(Tok);
1305     } else {
1306       // We're in a macro, so we can't use LexIncludeFilename; just
1307       // grab the next token.
1308       PP.Lex(Tok);
1309     }
1310   }
1311 
1312   // Reserve a buffer to get the spelling.
1313   SmallString<128> FilenameBuffer;
1314   StringRef Filename;
1315   SourceLocation EndLoc;
1316 
1317   switch (Tok.getKind()) {
1318   case tok::eod:
1319     // If the token kind is EOD, the error has already been diagnosed.
1320     return false;
1321 
1322   case tok::angle_string_literal:
1323   case tok::string_literal: {
1324     bool Invalid = false;
1325     Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1326     if (Invalid)
1327       return false;
1328     break;
1329   }
1330 
1331   case tok::less:
1332     // This could be a <foo/bar.h> file coming from a macro expansion.  In this
1333     // case, glue the tokens together into FilenameBuffer and interpret those.
1334     FilenameBuffer.push_back('<');
1335     if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
1336       // Let the caller know a <eod> was found by changing the Token kind.
1337       Tok.setKind(tok::eod);
1338       return false;   // Found <eod> but no ">"?  Diagnostic already emitted.
1339     }
1340     Filename = FilenameBuffer;
1341     break;
1342   default:
1343     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1344     return false;
1345   }
1346 
1347   SourceLocation FilenameLoc = Tok.getLocation();
1348 
1349   // Get ')'.
1350   PP.LexNonComment(Tok);
1351 
1352   // Ensure we have a trailing ).
1353   if (Tok.isNot(tok::r_paren)) {
1354     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1355         << II << tok::r_paren;
1356     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1357     return false;
1358   }
1359 
1360   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1361   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1362   // error.
1363   if (Filename.empty())
1364     return false;
1365 
1366   // Search include directories.
1367   const DirectoryLookup *CurDir;
1368   const FileEntry *File =
1369       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1370                     CurDir, nullptr, nullptr, nullptr);
1371 
1372   // Get the result value.  A result of true means the file exists.
1373   return File != nullptr;
1374 }
1375 
1376 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1377 /// Returns true if successful.
EvaluateHasInclude(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1378 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1379                                Preprocessor &PP) {
1380   return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1381 }
1382 
1383 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1384 /// Returns true if successful.
EvaluateHasIncludeNext(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1385 static bool EvaluateHasIncludeNext(Token &Tok,
1386                                    IdentifierInfo *II, Preprocessor &PP) {
1387   // __has_include_next is like __has_include, except that we start
1388   // searching after the current found directory.  If we can't do this,
1389   // issue a diagnostic.
1390   // FIXME: Factor out duplication with
1391   // Preprocessor::HandleIncludeNextDirective.
1392   const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1393   const FileEntry *LookupFromFile = nullptr;
1394   if (PP.isInPrimaryFile()) {
1395     Lookup = nullptr;
1396     PP.Diag(Tok, diag::pp_include_next_in_primary);
1397   } else if (PP.getCurrentSubmodule()) {
1398     // Start looking up in the directory *after* the one in which the current
1399     // file would be found, if any.
1400     assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1401     LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1402     Lookup = nullptr;
1403   } else if (!Lookup) {
1404     PP.Diag(Tok, diag::pp_include_next_absolute_path);
1405   } else {
1406     // Start looking up in the next directory.
1407     ++Lookup;
1408   }
1409 
1410   return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1411 }
1412 
1413 /// \brief Process __building_module(identifier) expression.
1414 /// \returns true if we are building the named module, false otherwise.
EvaluateBuildingModule(Token & Tok,IdentifierInfo * II,Preprocessor & PP)1415 static bool EvaluateBuildingModule(Token &Tok,
1416                                    IdentifierInfo *II, Preprocessor &PP) {
1417   // Get '('.
1418   PP.LexNonComment(Tok);
1419 
1420   // Ensure we have a '('.
1421   if (Tok.isNot(tok::l_paren)) {
1422     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1423                                                             << tok::l_paren;
1424     return false;
1425   }
1426 
1427   // Save '(' location for possible missing ')' message.
1428   SourceLocation LParenLoc = Tok.getLocation();
1429 
1430   // Get the module name.
1431   PP.LexNonComment(Tok);
1432 
1433   // Ensure that we have an identifier.
1434   if (Tok.isNot(tok::identifier)) {
1435     PP.Diag(Tok.getLocation(), diag::err_expected_id_building_module);
1436     return false;
1437   }
1438 
1439   bool Result
1440     = Tok.getIdentifierInfo()->getName() == PP.getLangOpts().CurrentModule;
1441 
1442   // Get ')'.
1443   PP.LexNonComment(Tok);
1444 
1445   // Ensure we have a trailing ).
1446   if (Tok.isNot(tok::r_paren)) {
1447     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1448                                                             << tok::r_paren;
1449     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1450     return false;
1451   }
1452 
1453   return Result;
1454 }
1455 
1456 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1457 /// as a builtin macro, handle it and return the next token as 'Tok'.
ExpandBuiltinMacro(Token & Tok)1458 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1459   // Figure out which token this is.
1460   IdentifierInfo *II = Tok.getIdentifierInfo();
1461   assert(II && "Can't be a macro without id info!");
1462 
1463   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1464   // invoke the pragma handler, then lex the token after it.
1465   if (II == Ident_Pragma)
1466     return Handle_Pragma(Tok);
1467   else if (II == Ident__pragma) // in non-MS mode this is null
1468     return HandleMicrosoft__pragma(Tok);
1469 
1470   ++NumBuiltinMacroExpanded;
1471 
1472   SmallString<128> TmpBuffer;
1473   llvm::raw_svector_ostream OS(TmpBuffer);
1474 
1475   // Set up the return result.
1476   Tok.setIdentifierInfo(nullptr);
1477   Tok.clearFlag(Token::NeedsCleaning);
1478 
1479   if (II == Ident__LINE__) {
1480     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1481     // source file) of the current source line (an integer constant)".  This can
1482     // be affected by #line.
1483     SourceLocation Loc = Tok.getLocation();
1484 
1485     // Advance to the location of the first _, this might not be the first byte
1486     // of the token if it starts with an escaped newline.
1487     Loc = AdvanceToTokenCharacter(Loc, 0);
1488 
1489     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1490     // a macro expansion.  This doesn't matter for object-like macros, but
1491     // can matter for a function-like macro that expands to contain __LINE__.
1492     // Skip down through expansion points until we find a file loc for the
1493     // end of the expansion history.
1494     Loc = SourceMgr.getExpansionRange(Loc).second;
1495     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1496 
1497     // __LINE__ expands to a simple numeric value.
1498     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1499     Tok.setKind(tok::numeric_constant);
1500   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
1501     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1502     // character string literal)". This can be affected by #line.
1503     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1504 
1505     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1506     // #include stack instead of the current file.
1507     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1508       SourceLocation NextLoc = PLoc.getIncludeLoc();
1509       while (NextLoc.isValid()) {
1510         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1511         if (PLoc.isInvalid())
1512           break;
1513 
1514         NextLoc = PLoc.getIncludeLoc();
1515       }
1516     }
1517 
1518     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1519     SmallString<128> FN;
1520     if (PLoc.isValid()) {
1521       FN += PLoc.getFilename();
1522       Lexer::Stringify(FN);
1523       OS << '"' << FN << '"';
1524     }
1525     Tok.setKind(tok::string_literal);
1526   } else if (II == Ident__DATE__) {
1527     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1528     if (!DATELoc.isValid())
1529       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1530     Tok.setKind(tok::string_literal);
1531     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1532     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1533                                                  Tok.getLocation(),
1534                                                  Tok.getLength()));
1535     return;
1536   } else if (II == Ident__TIME__) {
1537     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1538     if (!TIMELoc.isValid())
1539       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1540     Tok.setKind(tok::string_literal);
1541     Tok.setLength(strlen("\"hh:mm:ss\""));
1542     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1543                                                  Tok.getLocation(),
1544                                                  Tok.getLength()));
1545     return;
1546   } else if (II == Ident__INCLUDE_LEVEL__) {
1547     // Compute the presumed include depth of this token.  This can be affected
1548     // by GNU line markers.
1549     unsigned Depth = 0;
1550 
1551     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1552     if (PLoc.isValid()) {
1553       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1554       for (; PLoc.isValid(); ++Depth)
1555         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1556     }
1557 
1558     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1559     OS << Depth;
1560     Tok.setKind(tok::numeric_constant);
1561   } else if (II == Ident__TIMESTAMP__) {
1562     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1563     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1564     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1565 
1566     // Get the file that we are lexing out of.  If we're currently lexing from
1567     // a macro, dig into the include stack.
1568     const FileEntry *CurFile = nullptr;
1569     PreprocessorLexer *TheLexer = getCurrentFileLexer();
1570 
1571     if (TheLexer)
1572       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1573 
1574     const char *Result;
1575     if (CurFile) {
1576       time_t TT = CurFile->getModificationTime();
1577       struct tm *TM = localtime(&TT);
1578       Result = asctime(TM);
1579     } else {
1580       Result = "??? ??? ?? ??:??:?? ????\n";
1581     }
1582     // Surround the string with " and strip the trailing newline.
1583     OS << '"' << StringRef(Result).drop_back() << '"';
1584     Tok.setKind(tok::string_literal);
1585   } else if (II == Ident__COUNTER__) {
1586     // __COUNTER__ expands to a simple numeric value.
1587     OS << CounterValue++;
1588     Tok.setKind(tok::numeric_constant);
1589   } else if (II == Ident__has_feature   ||
1590              II == Ident__has_extension ||
1591              II == Ident__has_builtin   ||
1592              II == Ident__is_identifier ||
1593              II == Ident__has_attribute ||
1594              II == Ident__has_declspec  ||
1595              II == Ident__has_cpp_attribute) {
1596     // The argument to these builtins should be a parenthesized identifier.
1597     SourceLocation StartLoc = Tok.getLocation();
1598 
1599     bool IsValid = false;
1600     IdentifierInfo *FeatureII = nullptr;
1601     IdentifierInfo *ScopeII = nullptr;
1602 
1603     // Read the '('.
1604     LexUnexpandedToken(Tok);
1605     if (Tok.is(tok::l_paren)) {
1606       // Read the identifier
1607       LexUnexpandedToken(Tok);
1608       if ((FeatureII = Tok.getIdentifierInfo())) {
1609         // If we're checking __has_cpp_attribute, it is possible to receive a
1610         // scope token. Read the "::", if it's available.
1611         LexUnexpandedToken(Tok);
1612         bool IsScopeValid = true;
1613         if (II == Ident__has_cpp_attribute && Tok.is(tok::coloncolon)) {
1614           LexUnexpandedToken(Tok);
1615           // The first thing we read was not the feature, it was the scope.
1616           ScopeII = FeatureII;
1617           if ((FeatureII = Tok.getIdentifierInfo()))
1618             LexUnexpandedToken(Tok);
1619           else
1620             IsScopeValid = false;
1621         }
1622         // Read the closing paren.
1623         if (IsScopeValid && Tok.is(tok::r_paren))
1624           IsValid = true;
1625       }
1626       // Eat tokens until ')'.
1627       while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
1628              Tok.isNot(tok::eof))
1629         LexUnexpandedToken(Tok);
1630     }
1631 
1632     int Value = 0;
1633     if (!IsValid)
1634       Diag(StartLoc, diag::err_feature_check_malformed);
1635     else if (II == Ident__is_identifier)
1636       Value = FeatureII->getTokenID() == tok::identifier;
1637     else if (II == Ident__has_builtin) {
1638       // Check for a builtin is trivial.
1639       if (FeatureII->getBuiltinID() != 0) {
1640         Value = true;
1641       } else {
1642         StringRef Feature = FeatureII->getName();
1643         Value = llvm::StringSwitch<bool>(Feature)
1644                     .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1645                     .Default(false);
1646       }
1647     } else if (II == Ident__has_attribute)
1648       Value = hasAttribute(AttrSyntax::GNU, nullptr, FeatureII,
1649                            getTargetInfo(), getLangOpts());
1650     else if (II == Ident__has_cpp_attribute)
1651       Value = hasAttribute(AttrSyntax::CXX, ScopeII, FeatureII,
1652                            getTargetInfo(), getLangOpts());
1653     else if (II == Ident__has_declspec)
1654       Value = hasAttribute(AttrSyntax::Declspec, nullptr, FeatureII,
1655                            getTargetInfo(), getLangOpts());
1656     else if (II == Ident__has_extension)
1657       Value = HasExtension(*this, FeatureII);
1658     else {
1659       assert(II == Ident__has_feature && "Must be feature check");
1660       Value = HasFeature(*this, FeatureII);
1661     }
1662 
1663     if (!IsValid)
1664       return;
1665     OS << Value;
1666     Tok.setKind(tok::numeric_constant);
1667   } else if (II == Ident__has_include ||
1668              II == Ident__has_include_next) {
1669     // The argument to these two builtins should be a parenthesized
1670     // file name string literal using angle brackets (<>) or
1671     // double-quotes ("").
1672     bool Value;
1673     if (II == Ident__has_include)
1674       Value = EvaluateHasInclude(Tok, II, *this);
1675     else
1676       Value = EvaluateHasIncludeNext(Tok, II, *this);
1677 
1678     if (Tok.isNot(tok::r_paren))
1679       return;
1680     OS << (int)Value;
1681     Tok.setKind(tok::numeric_constant);
1682   } else if (II == Ident__has_warning) {
1683     // The argument should be a parenthesized string literal.
1684     // The argument to these builtins should be a parenthesized identifier.
1685     SourceLocation StartLoc = Tok.getLocation();
1686     bool IsValid = false;
1687     bool Value = false;
1688     // Read the '('.
1689     LexUnexpandedToken(Tok);
1690     do {
1691       if (Tok.isNot(tok::l_paren)) {
1692         Diag(StartLoc, diag::err_warning_check_malformed);
1693         break;
1694       }
1695 
1696       LexUnexpandedToken(Tok);
1697       std::string WarningName;
1698       SourceLocation StrStartLoc = Tok.getLocation();
1699       if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1700                                   /*MacroExpansion=*/false)) {
1701         // Eat tokens until ')'.
1702         while (Tok.isNot(tok::r_paren) && Tok.isNot(tok::eod) &&
1703                Tok.isNot(tok::eof))
1704           LexUnexpandedToken(Tok);
1705         break;
1706       }
1707 
1708       // Is the end a ')'?
1709       if (!(IsValid = Tok.is(tok::r_paren))) {
1710         Diag(StartLoc, diag::err_warning_check_malformed);
1711         break;
1712       }
1713 
1714       // FIXME: Should we accept "-R..." flags here, or should that be handled
1715       // by a separate __has_remark?
1716       if (WarningName.size() < 3 || WarningName[0] != '-' ||
1717           WarningName[1] != 'W') {
1718         Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1719         break;
1720       }
1721 
1722       // Finally, check if the warning flags maps to a diagnostic group.
1723       // We construct a SmallVector here to talk to getDiagnosticIDs().
1724       // Although we don't use the result, this isn't a hot path, and not
1725       // worth special casing.
1726       SmallVector<diag::kind, 10> Diags;
1727       Value = !getDiagnostics().getDiagnosticIDs()->
1728         getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1729                               WarningName.substr(2), Diags);
1730     } while (false);
1731 
1732     if (!IsValid)
1733       return;
1734     OS << (int)Value;
1735     Tok.setKind(tok::numeric_constant);
1736   } else if (II == Ident__building_module) {
1737     // The argument to this builtin should be an identifier. The
1738     // builtin evaluates to 1 when that identifier names the module we are
1739     // currently building.
1740     OS << (int)EvaluateBuildingModule(Tok, II, *this);
1741     Tok.setKind(tok::numeric_constant);
1742   } else if (II == Ident__MODULE__) {
1743     // The current module as an identifier.
1744     OS << getLangOpts().CurrentModule;
1745     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1746     Tok.setIdentifierInfo(ModuleII);
1747     Tok.setKind(ModuleII->getTokenID());
1748   } else if (II == Ident__identifier) {
1749     SourceLocation Loc = Tok.getLocation();
1750 
1751     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1752     // if the parens are missing.
1753     LexNonComment(Tok);
1754     if (Tok.isNot(tok::l_paren)) {
1755       // No '(', use end of last token.
1756       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1757         << II << tok::l_paren;
1758       // If the next token isn't valid as our argument, we can't recover.
1759       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1760         Tok.setKind(tok::identifier);
1761       return;
1762     }
1763 
1764     SourceLocation LParenLoc = Tok.getLocation();
1765     LexNonComment(Tok);
1766 
1767     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1768       Tok.setKind(tok::identifier);
1769     else {
1770       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1771         << Tok.getKind();
1772       // Don't walk past anything that's not a real token.
1773       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1774         return;
1775     }
1776 
1777     // Discard the ')', preserving 'Tok' as our result.
1778     Token RParen;
1779     LexNonComment(RParen);
1780     if (RParen.isNot(tok::r_paren)) {
1781       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1782         << Tok.getKind() << tok::r_paren;
1783       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1784     }
1785     return;
1786   } else {
1787     llvm_unreachable("Unknown identifier!");
1788   }
1789   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1790 }
1791 
markMacroAsUsed(MacroInfo * MI)1792 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1793   // If the 'used' status changed, and the macro requires 'unused' warning,
1794   // remove its SourceLocation from the warn-for-unused-macro locations.
1795   if (MI->isWarnIfUnused() && !MI->isUsed())
1796     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1797   MI->setIsUsed(true);
1798 }
1799