1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/edit_distance.h"
14 #include <bitset>
15
16 using namespace llvm;
17
18 // MSVC emits references to this into the translation units which reference it.
19 #ifndef _MSC_VER
20 const size_t StringRef::npos;
21 #endif
22
ascii_tolower(char x)23 static char ascii_tolower(char x) {
24 if (x >= 'A' && x <= 'Z')
25 return x - 'A' + 'a';
26 return x;
27 }
28
ascii_toupper(char x)29 static char ascii_toupper(char x) {
30 if (x >= 'a' && x <= 'z')
31 return x - 'a' + 'A';
32 return x;
33 }
34
ascii_isdigit(char x)35 static bool ascii_isdigit(char x) {
36 return x >= '0' && x <= '9';
37 }
38
39 // strncasecmp() is not available on non-POSIX systems, so define an
40 // alternative function here.
ascii_strncasecmp(const char * LHS,const char * RHS,size_t Length)41 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
42 for (size_t I = 0; I < Length; ++I) {
43 unsigned char LHC = ascii_tolower(LHS[I]);
44 unsigned char RHC = ascii_tolower(RHS[I]);
45 if (LHC != RHC)
46 return LHC < RHC ? -1 : 1;
47 }
48 return 0;
49 }
50
51 /// compare_lower - Compare strings, ignoring case.
compare_lower(StringRef RHS) const52 int StringRef::compare_lower(StringRef RHS) const {
53 if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
54 return Res;
55 if (Length == RHS.Length)
56 return 0;
57 return Length < RHS.Length ? -1 : 1;
58 }
59
60 /// Check if this string starts with the given \p Prefix, ignoring case.
startswith_lower(StringRef Prefix) const61 bool StringRef::startswith_lower(StringRef Prefix) const {
62 return Length >= Prefix.Length &&
63 ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
64 }
65
66 /// Check if this string ends with the given \p Suffix, ignoring case.
endswith_lower(StringRef Suffix) const67 bool StringRef::endswith_lower(StringRef Suffix) const {
68 return Length >= Suffix.Length &&
69 ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
70 }
71
72 /// compare_numeric - Compare strings, handle embedded numbers.
compare_numeric(StringRef RHS) const73 int StringRef::compare_numeric(StringRef RHS) const {
74 for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
75 // Check for sequences of digits.
76 if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
77 // The longer sequence of numbers is considered larger.
78 // This doesn't really handle prefixed zeros well.
79 size_t J;
80 for (J = I + 1; J != E + 1; ++J) {
81 bool ld = J < Length && ascii_isdigit(Data[J]);
82 bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
83 if (ld != rd)
84 return rd ? -1 : 1;
85 if (!rd)
86 break;
87 }
88 // The two number sequences have the same length (J-I), just memcmp them.
89 if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
90 return Res < 0 ? -1 : 1;
91 // Identical number sequences, continue search after the numbers.
92 I = J - 1;
93 continue;
94 }
95 if (Data[I] != RHS.Data[I])
96 return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
97 }
98 if (Length == RHS.Length)
99 return 0;
100 return Length < RHS.Length ? -1 : 1;
101 }
102
103 // Compute the edit distance between the two given strings.
edit_distance(llvm::StringRef Other,bool AllowReplacements,unsigned MaxEditDistance) const104 unsigned StringRef::edit_distance(llvm::StringRef Other,
105 bool AllowReplacements,
106 unsigned MaxEditDistance) const {
107 return llvm::ComputeEditDistance(
108 makeArrayRef(data(), size()),
109 makeArrayRef(Other.data(), Other.size()),
110 AllowReplacements, MaxEditDistance);
111 }
112
113 //===----------------------------------------------------------------------===//
114 // String Operations
115 //===----------------------------------------------------------------------===//
116
lower() const117 std::string StringRef::lower() const {
118 std::string Result(size(), char());
119 for (size_type i = 0, e = size(); i != e; ++i) {
120 Result[i] = ascii_tolower(Data[i]);
121 }
122 return Result;
123 }
124
upper() const125 std::string StringRef::upper() const {
126 std::string Result(size(), char());
127 for (size_type i = 0, e = size(); i != e; ++i) {
128 Result[i] = ascii_toupper(Data[i]);
129 }
130 return Result;
131 }
132
133 //===----------------------------------------------------------------------===//
134 // String Searching
135 //===----------------------------------------------------------------------===//
136
137
138 /// find - Search for the first string \arg Str in the string.
139 ///
140 /// \return - The index of the first occurrence of \arg Str, or npos if not
141 /// found.
find(StringRef Str,size_t From) const142 size_t StringRef::find(StringRef Str, size_t From) const {
143 if (From > Length)
144 return npos;
145
146 const char *Needle = Str.data();
147 size_t N = Str.size();
148 if (N == 0)
149 return From;
150
151 size_t Size = Length - From;
152 if (Size < N)
153 return npos;
154
155 const char *Start = Data + From;
156 const char *Stop = Start + (Size - N + 1);
157
158 // For short haystacks or unsupported needles fall back to the naive algorithm
159 if (Size < 16 || N > 255) {
160 do {
161 if (std::memcmp(Start, Needle, N) == 0)
162 return Start - Data;
163 ++Start;
164 } while (Start < Stop);
165 return npos;
166 }
167
168 // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
169 uint8_t BadCharSkip[256];
170 std::memset(BadCharSkip, N, 256);
171 for (unsigned i = 0; i != N-1; ++i)
172 BadCharSkip[(uint8_t)Str[i]] = N-1-i;
173
174 do {
175 if (std::memcmp(Start, Needle, N) == 0)
176 return Start - Data;
177
178 // Otherwise skip the appropriate number of bytes.
179 Start += BadCharSkip[(uint8_t)Start[N-1]];
180 } while (Start < Stop);
181
182 return npos;
183 }
184
185 /// rfind - Search for the last string \arg Str in the string.
186 ///
187 /// \return - The index of the last occurrence of \arg Str, or npos if not
188 /// found.
rfind(StringRef Str) const189 size_t StringRef::rfind(StringRef Str) const {
190 size_t N = Str.size();
191 if (N > Length)
192 return npos;
193 for (size_t i = Length - N + 1, e = 0; i != e;) {
194 --i;
195 if (substr(i, N).equals(Str))
196 return i;
197 }
198 return npos;
199 }
200
201 /// find_first_of - Find the first character in the string that is in \arg
202 /// Chars, or npos if not found.
203 ///
204 /// Note: O(size() + Chars.size())
find_first_of(StringRef Chars,size_t From) const205 StringRef::size_type StringRef::find_first_of(StringRef Chars,
206 size_t From) const {
207 std::bitset<1 << CHAR_BIT> CharBits;
208 for (size_type i = 0; i != Chars.size(); ++i)
209 CharBits.set((unsigned char)Chars[i]);
210
211 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
212 if (CharBits.test((unsigned char)Data[i]))
213 return i;
214 return npos;
215 }
216
217 /// find_first_not_of - Find the first character in the string that is not
218 /// \arg C or npos if not found.
find_first_not_of(char C,size_t From) const219 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
220 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
221 if (Data[i] != C)
222 return i;
223 return npos;
224 }
225
226 /// find_first_not_of - Find the first character in the string that is not
227 /// in the string \arg Chars, or npos if not found.
228 ///
229 /// Note: O(size() + Chars.size())
find_first_not_of(StringRef Chars,size_t From) const230 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
231 size_t From) const {
232 std::bitset<1 << CHAR_BIT> CharBits;
233 for (size_type i = 0; i != Chars.size(); ++i)
234 CharBits.set((unsigned char)Chars[i]);
235
236 for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
237 if (!CharBits.test((unsigned char)Data[i]))
238 return i;
239 return npos;
240 }
241
242 /// find_last_of - Find the last character in the string that is in \arg C,
243 /// or npos if not found.
244 ///
245 /// Note: O(size() + Chars.size())
find_last_of(StringRef Chars,size_t From) const246 StringRef::size_type StringRef::find_last_of(StringRef Chars,
247 size_t From) const {
248 std::bitset<1 << CHAR_BIT> CharBits;
249 for (size_type i = 0; i != Chars.size(); ++i)
250 CharBits.set((unsigned char)Chars[i]);
251
252 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
253 if (CharBits.test((unsigned char)Data[i]))
254 return i;
255 return npos;
256 }
257
258 /// find_last_not_of - Find the last character in the string that is not
259 /// \arg C, or npos if not found.
find_last_not_of(char C,size_t From) const260 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
261 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
262 if (Data[i] != C)
263 return i;
264 return npos;
265 }
266
267 /// find_last_not_of - Find the last character in the string that is not in
268 /// \arg Chars, or npos if not found.
269 ///
270 /// Note: O(size() + Chars.size())
find_last_not_of(StringRef Chars,size_t From) const271 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
272 size_t From) const {
273 std::bitset<1 << CHAR_BIT> CharBits;
274 for (size_type i = 0, e = Chars.size(); i != e; ++i)
275 CharBits.set((unsigned char)Chars[i]);
276
277 for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
278 if (!CharBits.test((unsigned char)Data[i]))
279 return i;
280 return npos;
281 }
282
split(SmallVectorImpl<StringRef> & A,StringRef Separator,int MaxSplit,bool KeepEmpty) const283 void StringRef::split(SmallVectorImpl<StringRef> &A,
284 StringRef Separator, int MaxSplit,
285 bool KeepEmpty) const {
286 StringRef S = *this;
287
288 // Count down from MaxSplit. When MaxSplit is -1, this will just split
289 // "forever". This doesn't support splitting more than 2^31 times
290 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
291 // but that seems unlikely to be useful.
292 while (MaxSplit-- != 0) {
293 size_t Idx = S.find(Separator);
294 if (Idx == npos)
295 break;
296
297 // Push this split.
298 if (KeepEmpty || Idx > 0)
299 A.push_back(S.slice(0, Idx));
300
301 // Jump forward.
302 S = S.slice(Idx + Separator.size(), npos);
303 }
304
305 // Push the tail.
306 if (KeepEmpty || !S.empty())
307 A.push_back(S);
308 }
309
split(SmallVectorImpl<StringRef> & A,char Separator,int MaxSplit,bool KeepEmpty) const310 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
311 int MaxSplit, bool KeepEmpty) const {
312 StringRef S = *this;
313
314 // Count down from MaxSplit. When MaxSplit is -1, this will just split
315 // "forever". This doesn't support splitting more than 2^31 times
316 // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
317 // but that seems unlikely to be useful.
318 while (MaxSplit-- != 0) {
319 size_t Idx = S.find(Separator);
320 if (Idx == npos)
321 break;
322
323 // Push this split.
324 if (KeepEmpty || Idx > 0)
325 A.push_back(S.slice(0, Idx));
326
327 // Jump forward.
328 S = S.slice(Idx + 1, npos);
329 }
330
331 // Push the tail.
332 if (KeepEmpty || !S.empty())
333 A.push_back(S);
334 }
335
336 //===----------------------------------------------------------------------===//
337 // Helpful Algorithms
338 //===----------------------------------------------------------------------===//
339
340 /// count - Return the number of non-overlapped occurrences of \arg Str in
341 /// the string.
count(StringRef Str) const342 size_t StringRef::count(StringRef Str) const {
343 size_t Count = 0;
344 size_t N = Str.size();
345 if (N > Length)
346 return 0;
347 for (size_t i = 0, e = Length - N + 1; i != e; ++i)
348 if (substr(i, N).equals(Str))
349 ++Count;
350 return Count;
351 }
352
GetAutoSenseRadix(StringRef & Str)353 static unsigned GetAutoSenseRadix(StringRef &Str) {
354 if (Str.startswith("0x")) {
355 Str = Str.substr(2);
356 return 16;
357 }
358
359 if (Str.startswith("0b")) {
360 Str = Str.substr(2);
361 return 2;
362 }
363
364 if (Str.startswith("0o")) {
365 Str = Str.substr(2);
366 return 8;
367 }
368
369 if (Str.startswith("0"))
370 return 8;
371
372 return 10;
373 }
374
375
376 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
377 /// sequence of radix up to 36 to an unsigned long long value.
getAsUnsignedInteger(StringRef Str,unsigned Radix,unsigned long long & Result)378 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
379 unsigned long long &Result) {
380 // Autosense radix if not specified.
381 if (Radix == 0)
382 Radix = GetAutoSenseRadix(Str);
383
384 // Empty strings (after the radix autosense) are invalid.
385 if (Str.empty()) return true;
386
387 // Parse all the bytes of the string given this radix. Watch for overflow.
388 Result = 0;
389 while (!Str.empty()) {
390 unsigned CharVal;
391 if (Str[0] >= '0' && Str[0] <= '9')
392 CharVal = Str[0]-'0';
393 else if (Str[0] >= 'a' && Str[0] <= 'z')
394 CharVal = Str[0]-'a'+10;
395 else if (Str[0] >= 'A' && Str[0] <= 'Z')
396 CharVal = Str[0]-'A'+10;
397 else
398 return true;
399
400 // If the parsed value is larger than the integer radix, the string is
401 // invalid.
402 if (CharVal >= Radix)
403 return true;
404
405 // Add in this character.
406 unsigned long long PrevResult = Result;
407 Result = Result*Radix+CharVal;
408
409 // Check for overflow by shifting back and seeing if bits were lost.
410 if (Result/Radix < PrevResult)
411 return true;
412
413 Str = Str.substr(1);
414 }
415
416 return false;
417 }
418
getAsSignedInteger(StringRef Str,unsigned Radix,long long & Result)419 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
420 long long &Result) {
421 unsigned long long ULLVal;
422
423 // Handle positive strings first.
424 if (Str.empty() || Str.front() != '-') {
425 if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
426 // Check for value so large it overflows a signed value.
427 (long long)ULLVal < 0)
428 return true;
429 Result = ULLVal;
430 return false;
431 }
432
433 // Get the positive part of the value.
434 if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
435 // Reject values so large they'd overflow as negative signed, but allow
436 // "-0". This negates the unsigned so that the negative isn't undefined
437 // on signed overflow.
438 (long long)-ULLVal > 0)
439 return true;
440
441 Result = -ULLVal;
442 return false;
443 }
444
getAsInteger(unsigned Radix,APInt & Result) const445 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
446 StringRef Str = *this;
447
448 // Autosense radix if not specified.
449 if (Radix == 0)
450 Radix = GetAutoSenseRadix(Str);
451
452 assert(Radix > 1 && Radix <= 36);
453
454 // Empty strings (after the radix autosense) are invalid.
455 if (Str.empty()) return true;
456
457 // Skip leading zeroes. This can be a significant improvement if
458 // it means we don't need > 64 bits.
459 while (!Str.empty() && Str.front() == '0')
460 Str = Str.substr(1);
461
462 // If it was nothing but zeroes....
463 if (Str.empty()) {
464 Result = APInt(64, 0);
465 return false;
466 }
467
468 // (Over-)estimate the required number of bits.
469 unsigned Log2Radix = 0;
470 while ((1U << Log2Radix) < Radix) Log2Radix++;
471 bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
472
473 unsigned BitWidth = Log2Radix * Str.size();
474 if (BitWidth < Result.getBitWidth())
475 BitWidth = Result.getBitWidth(); // don't shrink the result
476 else if (BitWidth > Result.getBitWidth())
477 Result = Result.zext(BitWidth);
478
479 APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
480 if (!IsPowerOf2Radix) {
481 // These must have the same bit-width as Result.
482 RadixAP = APInt(BitWidth, Radix);
483 CharAP = APInt(BitWidth, 0);
484 }
485
486 // Parse all the bytes of the string given this radix.
487 Result = 0;
488 while (!Str.empty()) {
489 unsigned CharVal;
490 if (Str[0] >= '0' && Str[0] <= '9')
491 CharVal = Str[0]-'0';
492 else if (Str[0] >= 'a' && Str[0] <= 'z')
493 CharVal = Str[0]-'a'+10;
494 else if (Str[0] >= 'A' && Str[0] <= 'Z')
495 CharVal = Str[0]-'A'+10;
496 else
497 return true;
498
499 // If the parsed value is larger than the integer radix, the string is
500 // invalid.
501 if (CharVal >= Radix)
502 return true;
503
504 // Add in this character.
505 if (IsPowerOf2Radix) {
506 Result <<= Log2Radix;
507 Result |= CharVal;
508 } else {
509 Result *= RadixAP;
510 CharAP = CharVal;
511 Result += CharAP;
512 }
513
514 Str = Str.substr(1);
515 }
516
517 return false;
518 }
519
520
521 // Implementation of StringRef hashing.
hash_value(StringRef S)522 hash_code llvm::hash_value(StringRef S) {
523 return hash_combine_range(S.begin(), S.end());
524 }
525