1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <ctype.h>
18 #include <errno.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <sys/mount.h>
23 #include <unistd.h>
24
25 #include "fs_mgr_priv.h"
26
27 struct fs_mgr_flag_values {
28 char *key_loc;
29 char *verity_loc;
30 long long part_length;
31 char *label;
32 int partnum;
33 int swap_prio;
34 unsigned int zram_size;
35 unsigned int file_encryption_mode;
36 };
37
38 struct flag_list {
39 const char *name;
40 unsigned int flag;
41 };
42
43 static struct flag_list mount_flags[] = {
44 { "noatime", MS_NOATIME },
45 { "noexec", MS_NOEXEC },
46 { "nosuid", MS_NOSUID },
47 { "nodev", MS_NODEV },
48 { "nodiratime", MS_NODIRATIME },
49 { "ro", MS_RDONLY },
50 { "rw", 0 },
51 { "remount", MS_REMOUNT },
52 { "bind", MS_BIND },
53 { "rec", MS_REC },
54 { "unbindable", MS_UNBINDABLE },
55 { "private", MS_PRIVATE },
56 { "slave", MS_SLAVE },
57 { "shared", MS_SHARED },
58 { "defaults", 0 },
59 { 0, 0 },
60 };
61
62 static struct flag_list fs_mgr_flags[] = {
63 { "wait", MF_WAIT },
64 { "check", MF_CHECK },
65 { "encryptable=",MF_CRYPT },
66 { "forceencrypt=",MF_FORCECRYPT },
67 { "fileencryption=",MF_FILEENCRYPTION },
68 { "forcefdeorfbe=",MF_FORCEFDEORFBE },
69 { "nonremovable",MF_NONREMOVABLE },
70 { "voldmanaged=",MF_VOLDMANAGED},
71 { "length=", MF_LENGTH },
72 { "recoveryonly",MF_RECOVERYONLY },
73 { "swapprio=", MF_SWAPPRIO },
74 { "zramsize=", MF_ZRAMSIZE },
75 { "verify", MF_VERIFY },
76 { "noemulatedsd", MF_NOEMULATEDSD },
77 { "notrim", MF_NOTRIM },
78 { "formattable", MF_FORMATTABLE },
79 { "slotselect", MF_SLOTSELECT },
80 { "nofail", MF_NOFAIL },
81 { "defaults", 0 },
82 { 0, 0 },
83 };
84
85 #define EM_SOFTWARE 1
86 #define EM_ICE 2
87
88 static struct flag_list encryption_modes[] = {
89 {"software", EM_SOFTWARE},
90 {"ice", EM_ICE},
91 {0, 0}
92 };
93
calculate_zram_size(unsigned int percentage)94 static uint64_t calculate_zram_size(unsigned int percentage)
95 {
96 uint64_t total;
97
98 total = sysconf(_SC_PHYS_PAGES);
99 total *= percentage;
100 total /= 100;
101
102 total *= sysconf(_SC_PAGESIZE);
103
104 return total;
105 }
106
parse_flags(char * flags,struct flag_list * fl,struct fs_mgr_flag_values * flag_vals,char * fs_options,int fs_options_len)107 static int parse_flags(char *flags, struct flag_list *fl,
108 struct fs_mgr_flag_values *flag_vals,
109 char *fs_options, int fs_options_len)
110 {
111 int f = 0;
112 int i;
113 char *p;
114 char *savep;
115
116 /* initialize flag values. If we find a relevant flag, we'll
117 * update the value */
118 if (flag_vals) {
119 memset(flag_vals, 0, sizeof(*flag_vals));
120 flag_vals->partnum = -1;
121 flag_vals->swap_prio = -1; /* negative means it wasn't specified. */
122 }
123
124 /* initialize fs_options to the null string */
125 if (fs_options && (fs_options_len > 0)) {
126 fs_options[0] = '\0';
127 }
128
129 p = strtok_r(flags, ",", &savep);
130 while (p) {
131 /* Look for the flag "p" in the flag list "fl"
132 * If not found, the loop exits with fl[i].name being null.
133 */
134 for (i = 0; fl[i].name; i++) {
135 if (!strncmp(p, fl[i].name, strlen(fl[i].name))) {
136 f |= fl[i].flag;
137 if ((fl[i].flag == MF_CRYPT) && flag_vals) {
138 /* The encryptable flag is followed by an = and the
139 * location of the keys. Get it and return it.
140 */
141 flag_vals->key_loc = strdup(strchr(p, '=') + 1);
142 } else if ((fl[i].flag == MF_VERIFY) && flag_vals) {
143 /* If the verify flag is followed by an = and the
144 * location for the verity state, get it and return it.
145 */
146 char *start = strchr(p, '=');
147 if (start) {
148 flag_vals->verity_loc = strdup(start + 1);
149 }
150 } else if ((fl[i].flag == MF_FORCECRYPT) && flag_vals) {
151 /* The forceencrypt flag is followed by an = and the
152 * location of the keys. Get it and return it.
153 */
154 flag_vals->key_loc = strdup(strchr(p, '=') + 1);
155 } else if ((fl[i].flag == MF_FORCEFDEORFBE) && flag_vals) {
156 /* The forcefdeorfbe flag is followed by an = and the
157 * location of the keys. Get it and return it.
158 */
159 flag_vals->key_loc = strdup(strchr(p, '=') + 1);
160 flag_vals->file_encryption_mode = EM_SOFTWARE;
161 } else if ((fl[i].flag == MF_FILEENCRYPTION) && flag_vals) {
162 /* The fileencryption flag is followed by an = and the
163 * type of the encryption. Get it and return it.
164 */
165 const struct flag_list *j;
166 const char *mode = strchr(p, '=') + 1;
167 for (j = encryption_modes; j->name; ++j) {
168 if (!strcmp(mode, j->name)) {
169 flag_vals->file_encryption_mode = j->flag;
170 }
171 }
172 if (flag_vals->file_encryption_mode == 0) {
173 ERROR("Unknown file encryption mode: %s\n", mode);
174 }
175 } else if ((fl[i].flag == MF_LENGTH) && flag_vals) {
176 /* The length flag is followed by an = and the
177 * size of the partition. Get it and return it.
178 */
179 flag_vals->part_length = strtoll(strchr(p, '=') + 1, NULL, 0);
180 } else if ((fl[i].flag == MF_VOLDMANAGED) && flag_vals) {
181 /* The voldmanaged flag is followed by an = and the
182 * label, a colon and the partition number or the
183 * word "auto", e.g.
184 * voldmanaged=sdcard:3
185 * Get and return them.
186 */
187 char *label_start;
188 char *label_end;
189 char *part_start;
190
191 label_start = strchr(p, '=') + 1;
192 label_end = strchr(p, ':');
193 if (label_end) {
194 flag_vals->label = strndup(label_start,
195 (int) (label_end - label_start));
196 part_start = strchr(p, ':') + 1;
197 if (!strcmp(part_start, "auto")) {
198 flag_vals->partnum = -1;
199 } else {
200 flag_vals->partnum = strtol(part_start, NULL, 0);
201 }
202 } else {
203 ERROR("Warning: voldmanaged= flag malformed\n");
204 }
205 } else if ((fl[i].flag == MF_SWAPPRIO) && flag_vals) {
206 flag_vals->swap_prio = strtoll(strchr(p, '=') + 1, NULL, 0);
207 } else if ((fl[i].flag == MF_ZRAMSIZE) && flag_vals) {
208 int is_percent = !!strrchr(p, '%');
209 unsigned int val = strtoll(strchr(p, '=') + 1, NULL, 0);
210 if (is_percent)
211 flag_vals->zram_size = calculate_zram_size(val);
212 else
213 flag_vals->zram_size = val;
214 }
215 break;
216 }
217 }
218
219 if (!fl[i].name) {
220 if (fs_options) {
221 /* It's not a known flag, so it must be a filesystem specific
222 * option. Add it to fs_options if it was passed in.
223 */
224 strlcat(fs_options, p, fs_options_len);
225 strlcat(fs_options, ",", fs_options_len);
226 } else {
227 /* fs_options was not passed in, so if the flag is unknown
228 * it's an error.
229 */
230 ERROR("Warning: unknown flag %s\n", p);
231 }
232 }
233 p = strtok_r(NULL, ",", &savep);
234 }
235
236 if (fs_options && fs_options[0]) {
237 /* remove the last trailing comma from the list of options */
238 fs_options[strlen(fs_options) - 1] = '\0';
239 }
240
241 return f;
242 }
243
fs_mgr_read_fstab(const char * fstab_path)244 struct fstab *fs_mgr_read_fstab(const char *fstab_path)
245 {
246 FILE *fstab_file;
247 int cnt, entries;
248 ssize_t len;
249 size_t alloc_len = 0;
250 char *line = NULL;
251 const char *delim = " \t";
252 char *save_ptr, *p;
253 struct fstab *fstab = NULL;
254 struct fs_mgr_flag_values flag_vals;
255 #define FS_OPTIONS_LEN 1024
256 char tmp_fs_options[FS_OPTIONS_LEN];
257
258 fstab_file = fopen(fstab_path, "r");
259 if (!fstab_file) {
260 ERROR("Cannot open file %s\n", fstab_path);
261 return 0;
262 }
263
264 entries = 0;
265 while ((len = getline(&line, &alloc_len, fstab_file)) != -1) {
266 /* if the last character is a newline, shorten the string by 1 byte */
267 if (line[len - 1] == '\n') {
268 line[len - 1] = '\0';
269 }
270 /* Skip any leading whitespace */
271 p = line;
272 while (isspace(*p)) {
273 p++;
274 }
275 /* ignore comments or empty lines */
276 if (*p == '#' || *p == '\0')
277 continue;
278 entries++;
279 }
280
281 if (!entries) {
282 ERROR("No entries found in fstab\n");
283 goto err;
284 }
285
286 /* Allocate and init the fstab structure */
287 fstab = calloc(1, sizeof(struct fstab));
288 fstab->num_entries = entries;
289 fstab->fstab_filename = strdup(fstab_path);
290 fstab->recs = calloc(fstab->num_entries, sizeof(struct fstab_rec));
291
292 fseek(fstab_file, 0, SEEK_SET);
293
294 cnt = 0;
295 while ((len = getline(&line, &alloc_len, fstab_file)) != -1) {
296 /* if the last character is a newline, shorten the string by 1 byte */
297 if (line[len - 1] == '\n') {
298 line[len - 1] = '\0';
299 }
300
301 /* Skip any leading whitespace */
302 p = line;
303 while (isspace(*p)) {
304 p++;
305 }
306 /* ignore comments or empty lines */
307 if (*p == '#' || *p == '\0')
308 continue;
309
310 /* If a non-comment entry is greater than the size we allocated, give an
311 * error and quit. This can happen in the unlikely case the file changes
312 * between the two reads.
313 */
314 if (cnt >= entries) {
315 ERROR("Tried to process more entries than counted\n");
316 break;
317 }
318
319 if (!(p = strtok_r(line, delim, &save_ptr))) {
320 ERROR("Error parsing mount source\n");
321 goto err;
322 }
323 fstab->recs[cnt].blk_device = strdup(p);
324
325 if (!(p = strtok_r(NULL, delim, &save_ptr))) {
326 ERROR("Error parsing mount_point\n");
327 goto err;
328 }
329 fstab->recs[cnt].mount_point = strdup(p);
330
331 if (!(p = strtok_r(NULL, delim, &save_ptr))) {
332 ERROR("Error parsing fs_type\n");
333 goto err;
334 }
335 fstab->recs[cnt].fs_type = strdup(p);
336
337 if (!(p = strtok_r(NULL, delim, &save_ptr))) {
338 ERROR("Error parsing mount_flags\n");
339 goto err;
340 }
341 tmp_fs_options[0] = '\0';
342 fstab->recs[cnt].flags = parse_flags(p, mount_flags, NULL,
343 tmp_fs_options, FS_OPTIONS_LEN);
344
345 /* fs_options are optional */
346 if (tmp_fs_options[0]) {
347 fstab->recs[cnt].fs_options = strdup(tmp_fs_options);
348 } else {
349 fstab->recs[cnt].fs_options = NULL;
350 }
351
352 if (!(p = strtok_r(NULL, delim, &save_ptr))) {
353 ERROR("Error parsing fs_mgr_options\n");
354 goto err;
355 }
356 fstab->recs[cnt].fs_mgr_flags = parse_flags(p, fs_mgr_flags,
357 &flag_vals, NULL, 0);
358 fstab->recs[cnt].key_loc = flag_vals.key_loc;
359 fstab->recs[cnt].verity_loc = flag_vals.verity_loc;
360 fstab->recs[cnt].length = flag_vals.part_length;
361 fstab->recs[cnt].label = flag_vals.label;
362 fstab->recs[cnt].partnum = flag_vals.partnum;
363 fstab->recs[cnt].swap_prio = flag_vals.swap_prio;
364 fstab->recs[cnt].zram_size = flag_vals.zram_size;
365 fstab->recs[cnt].file_encryption_mode = flag_vals.file_encryption_mode;
366 cnt++;
367 }
368 /* If an A/B partition, modify block device to be the real block device */
369 if (fs_mgr_update_for_slotselect(fstab) != 0) {
370 ERROR("Error updating for slotselect\n");
371 goto err;
372 }
373 fclose(fstab_file);
374 free(line);
375 return fstab;
376
377 err:
378 fclose(fstab_file);
379 free(line);
380 if (fstab)
381 fs_mgr_free_fstab(fstab);
382 return NULL;
383 }
384
fs_mgr_free_fstab(struct fstab * fstab)385 void fs_mgr_free_fstab(struct fstab *fstab)
386 {
387 int i;
388
389 if (!fstab) {
390 return;
391 }
392
393 for (i = 0; i < fstab->num_entries; i++) {
394 /* Free the pointers return by strdup(3) */
395 free(fstab->recs[i].blk_device);
396 free(fstab->recs[i].mount_point);
397 free(fstab->recs[i].fs_type);
398 free(fstab->recs[i].fs_options);
399 free(fstab->recs[i].key_loc);
400 free(fstab->recs[i].label);
401 }
402
403 /* Free the fstab_recs array created by calloc(3) */
404 free(fstab->recs);
405
406 /* Free the fstab filename */
407 free(fstab->fstab_filename);
408
409 /* Free fstab */
410 free(fstab);
411 }
412
413 /* Add an entry to the fstab, and return 0 on success or -1 on error */
fs_mgr_add_entry(struct fstab * fstab,const char * mount_point,const char * fs_type,const char * blk_device)414 int fs_mgr_add_entry(struct fstab *fstab,
415 const char *mount_point, const char *fs_type,
416 const char *blk_device)
417 {
418 struct fstab_rec *new_fstab_recs;
419 int n = fstab->num_entries;
420
421 new_fstab_recs = (struct fstab_rec *)
422 realloc(fstab->recs, sizeof(struct fstab_rec) * (n + 1));
423
424 if (!new_fstab_recs) {
425 return -1;
426 }
427
428 /* A new entry was added, so initialize it */
429 memset(&new_fstab_recs[n], 0, sizeof(struct fstab_rec));
430 new_fstab_recs[n].mount_point = strdup(mount_point);
431 new_fstab_recs[n].fs_type = strdup(fs_type);
432 new_fstab_recs[n].blk_device = strdup(blk_device);
433 new_fstab_recs[n].length = 0;
434
435 /* Update the fstab struct */
436 fstab->recs = new_fstab_recs;
437 fstab->num_entries++;
438
439 return 0;
440 }
441
442 /*
443 * Returns the 1st matching fstab_rec that follows the start_rec.
444 * start_rec is the result of a previous search or NULL.
445 */
fs_mgr_get_entry_for_mount_point_after(struct fstab_rec * start_rec,struct fstab * fstab,const char * path)446 struct fstab_rec *fs_mgr_get_entry_for_mount_point_after(struct fstab_rec *start_rec, struct fstab *fstab, const char *path)
447 {
448 int i;
449 if (!fstab) {
450 return NULL;
451 }
452
453 if (start_rec) {
454 for (i = 0; i < fstab->num_entries; i++) {
455 if (&fstab->recs[i] == start_rec) {
456 i++;
457 break;
458 }
459 }
460 } else {
461 i = 0;
462 }
463 for (; i < fstab->num_entries; i++) {
464 int len = strlen(fstab->recs[i].mount_point);
465 if (strncmp(path, fstab->recs[i].mount_point, len) == 0 &&
466 (path[len] == '\0' || path[len] == '/')) {
467 return &fstab->recs[i];
468 }
469 }
470 return NULL;
471 }
472
473 /*
474 * Returns the 1st matching mount point.
475 * There might be more. To look for others, use fs_mgr_get_entry_for_mount_point_after()
476 * and give the fstab_rec from the previous search.
477 */
fs_mgr_get_entry_for_mount_point(struct fstab * fstab,const char * path)478 struct fstab_rec *fs_mgr_get_entry_for_mount_point(struct fstab *fstab, const char *path)
479 {
480 return fs_mgr_get_entry_for_mount_point_after(NULL, fstab, path);
481 }
482
fs_mgr_is_voldmanaged(const struct fstab_rec * fstab)483 int fs_mgr_is_voldmanaged(const struct fstab_rec *fstab)
484 {
485 return fstab->fs_mgr_flags & MF_VOLDMANAGED;
486 }
487
fs_mgr_is_nonremovable(const struct fstab_rec * fstab)488 int fs_mgr_is_nonremovable(const struct fstab_rec *fstab)
489 {
490 return fstab->fs_mgr_flags & MF_NONREMOVABLE;
491 }
492
fs_mgr_is_verified(const struct fstab_rec * fstab)493 int fs_mgr_is_verified(const struct fstab_rec *fstab)
494 {
495 return fstab->fs_mgr_flags & MF_VERIFY;
496 }
497
fs_mgr_is_encryptable(const struct fstab_rec * fstab)498 int fs_mgr_is_encryptable(const struct fstab_rec *fstab)
499 {
500 return fstab->fs_mgr_flags & (MF_CRYPT | MF_FORCECRYPT | MF_FORCEFDEORFBE);
501 }
502
fs_mgr_is_file_encrypted(const struct fstab_rec * fstab)503 int fs_mgr_is_file_encrypted(const struct fstab_rec *fstab)
504 {
505 return fstab->fs_mgr_flags & MF_FILEENCRYPTION;
506 }
507
fs_mgr_get_file_encryption_mode(const struct fstab_rec * fstab)508 const char* fs_mgr_get_file_encryption_mode(const struct fstab_rec *fstab)
509 {
510 const struct flag_list *j;
511 for (j = encryption_modes; j->name; ++j) {
512 if (fstab->file_encryption_mode == j->flag) {
513 return j->name;
514 }
515 }
516 return NULL;
517 }
518
fs_mgr_is_convertible_to_fbe(const struct fstab_rec * fstab)519 int fs_mgr_is_convertible_to_fbe(const struct fstab_rec *fstab)
520 {
521 return fstab->fs_mgr_flags & MF_FORCEFDEORFBE;
522 }
523
fs_mgr_is_noemulatedsd(const struct fstab_rec * fstab)524 int fs_mgr_is_noemulatedsd(const struct fstab_rec *fstab)
525 {
526 return fstab->fs_mgr_flags & MF_NOEMULATEDSD;
527 }
528
fs_mgr_is_notrim(struct fstab_rec * fstab)529 int fs_mgr_is_notrim(struct fstab_rec *fstab)
530 {
531 return fstab->fs_mgr_flags & MF_NOTRIM;
532 }
533
fs_mgr_is_formattable(struct fstab_rec * fstab)534 int fs_mgr_is_formattable(struct fstab_rec *fstab)
535 {
536 return fstab->fs_mgr_flags & (MF_FORMATTABLE);
537 }
538
fs_mgr_is_slotselect(struct fstab_rec * fstab)539 int fs_mgr_is_slotselect(struct fstab_rec *fstab)
540 {
541 return fstab->fs_mgr_flags & MF_SLOTSELECT;
542 }
543
fs_mgr_is_nofail(struct fstab_rec * fstab)544 int fs_mgr_is_nofail(struct fstab_rec *fstab)
545 {
546 return fstab->fs_mgr_flags & MF_NOFAIL;
547 }
548