• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 **
3 ** Copyright 2007, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 //#define LOG_NDEBUG 0
19 #define LOG_TAG "AudioTrack"
20 
21 #include <inttypes.h>
22 #include <math.h>
23 #include <sys/resource.h>
24 
25 #include <audio_utils/primitives.h>
26 #include <binder/IPCThreadState.h>
27 #include <media/AudioTrack.h>
28 #include <utils/Log.h>
29 #include <private/media/AudioTrackShared.h>
30 #include <media/IAudioFlinger.h>
31 #include <media/AudioPolicyHelper.h>
32 #include <media/AudioResamplerPublic.h>
33 
34 #define WAIT_PERIOD_MS                  10
35 #define WAIT_STREAM_END_TIMEOUT_SEC     120
36 static const int kMaxLoopCountNotifications = 32;
37 
38 namespace android {
39 // ---------------------------------------------------------------------------
40 
41 // TODO: Move to a separate .h
42 
43 template <typename T>
min(const T & x,const T & y)44 static inline const T &min(const T &x, const T &y) {
45     return x < y ? x : y;
46 }
47 
48 template <typename T>
max(const T & x,const T & y)49 static inline const T &max(const T &x, const T &y) {
50     return x > y ? x : y;
51 }
52 
framesToNanoseconds(ssize_t frames,uint32_t sampleRate,float speed)53 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
54 {
55     return ((double)frames * 1000000000) / ((double)sampleRate * speed);
56 }
57 
convertTimespecToUs(const struct timespec & tv)58 static int64_t convertTimespecToUs(const struct timespec &tv)
59 {
60     return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
61 }
62 
63 // current monotonic time in microseconds.
getNowUs()64 static int64_t getNowUs()
65 {
66     struct timespec tv;
67     (void) clock_gettime(CLOCK_MONOTONIC, &tv);
68     return convertTimespecToUs(tv);
69 }
70 
71 // FIXME: we don't use the pitch setting in the time stretcher (not working);
72 // instead we emulate it using our sample rate converter.
73 static const bool kFixPitch = true; // enable pitch fix
adjustSampleRate(uint32_t sampleRate,float pitch)74 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
75 {
76     return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
77 }
78 
adjustSpeed(float speed,float pitch)79 static inline float adjustSpeed(float speed, float pitch)
80 {
81     return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
82 }
83 
adjustPitch(float pitch)84 static inline float adjustPitch(float pitch)
85 {
86     return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
87 }
88 
89 // Must match similar computation in createTrack_l in Threads.cpp.
90 // TODO: Move to a common library
calculateMinFrameCount(uint32_t afLatencyMs,uint32_t afFrameCount,uint32_t afSampleRate,uint32_t sampleRate,float speed)91 static size_t calculateMinFrameCount(
92         uint32_t afLatencyMs, uint32_t afFrameCount, uint32_t afSampleRate,
93         uint32_t sampleRate, float speed /*, uint32_t notificationsPerBufferReq*/)
94 {
95     // Ensure that buffer depth covers at least audio hardware latency
96     uint32_t minBufCount = afLatencyMs / ((1000 * afFrameCount) / afSampleRate);
97     if (minBufCount < 2) {
98         minBufCount = 2;
99     }
100 #if 0
101     // The notificationsPerBufferReq parameter is not yet used for non-fast tracks,
102     // but keeping the code here to make it easier to add later.
103     if (minBufCount < notificationsPerBufferReq) {
104         minBufCount = notificationsPerBufferReq;
105     }
106 #endif
107     ALOGV("calculateMinFrameCount afLatency %u  afFrameCount %u  afSampleRate %u  "
108             "sampleRate %u  speed %f  minBufCount: %u" /*"  notificationsPerBufferReq %u"*/,
109             afLatencyMs, afFrameCount, afSampleRate, sampleRate, speed, minBufCount
110             /*, notificationsPerBufferReq*/);
111     return minBufCount * sourceFramesNeededWithTimestretch(
112             sampleRate, afFrameCount, afSampleRate, speed);
113 }
114 
115 // static
getMinFrameCount(size_t * frameCount,audio_stream_type_t streamType,uint32_t sampleRate)116 status_t AudioTrack::getMinFrameCount(
117         size_t* frameCount,
118         audio_stream_type_t streamType,
119         uint32_t sampleRate)
120 {
121     if (frameCount == NULL) {
122         return BAD_VALUE;
123     }
124 
125     // FIXME handle in server, like createTrack_l(), possible missing info:
126     //          audio_io_handle_t output
127     //          audio_format_t format
128     //          audio_channel_mask_t channelMask
129     //          audio_output_flags_t flags (FAST)
130     uint32_t afSampleRate;
131     status_t status;
132     status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
133     if (status != NO_ERROR) {
134         ALOGE("Unable to query output sample rate for stream type %d; status %d",
135                 streamType, status);
136         return status;
137     }
138     size_t afFrameCount;
139     status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
140     if (status != NO_ERROR) {
141         ALOGE("Unable to query output frame count for stream type %d; status %d",
142                 streamType, status);
143         return status;
144     }
145     uint32_t afLatency;
146     status = AudioSystem::getOutputLatency(&afLatency, streamType);
147     if (status != NO_ERROR) {
148         ALOGE("Unable to query output latency for stream type %d; status %d",
149                 streamType, status);
150         return status;
151     }
152 
153     // When called from createTrack, speed is 1.0f (normal speed).
154     // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
155     *frameCount = calculateMinFrameCount(afLatency, afFrameCount, afSampleRate, sampleRate, 1.0f
156             /*, 0 notificationsPerBufferReq*/);
157 
158     // The formula above should always produce a non-zero value under normal circumstances:
159     // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
160     // Return error in the unlikely event that it does not, as that's part of the API contract.
161     if (*frameCount == 0) {
162         ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u",
163                 streamType, sampleRate);
164         return BAD_VALUE;
165     }
166     ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
167             *frameCount, afFrameCount, afSampleRate, afLatency);
168     return NO_ERROR;
169 }
170 
171 // ---------------------------------------------------------------------------
172 
AudioTrack()173 AudioTrack::AudioTrack()
174     : mStatus(NO_INIT),
175       mState(STATE_STOPPED),
176       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
177       mPreviousSchedulingGroup(SP_DEFAULT),
178       mPausedPosition(0),
179       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
180 {
181     mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
182     mAttributes.usage = AUDIO_USAGE_UNKNOWN;
183     mAttributes.flags = 0x0;
184     strcpy(mAttributes.tags, "");
185 }
186 
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)187 AudioTrack::AudioTrack(
188         audio_stream_type_t streamType,
189         uint32_t sampleRate,
190         audio_format_t format,
191         audio_channel_mask_t channelMask,
192         size_t frameCount,
193         audio_output_flags_t flags,
194         callback_t cbf,
195         void* user,
196         int32_t notificationFrames,
197         audio_session_t sessionId,
198         transfer_type transferType,
199         const audio_offload_info_t *offloadInfo,
200         int uid,
201         pid_t pid,
202         const audio_attributes_t* pAttributes,
203         bool doNotReconnect,
204         float maxRequiredSpeed)
205     : mStatus(NO_INIT),
206       mState(STATE_STOPPED),
207       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
208       mPreviousSchedulingGroup(SP_DEFAULT),
209       mPausedPosition(0),
210       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
211 {
212     mStatus = set(streamType, sampleRate, format, channelMask,
213             frameCount, flags, cbf, user, notificationFrames,
214             0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
215             offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
216 }
217 
AudioTrack(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,const sp<IMemory> & sharedBuffer,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)218 AudioTrack::AudioTrack(
219         audio_stream_type_t streamType,
220         uint32_t sampleRate,
221         audio_format_t format,
222         audio_channel_mask_t channelMask,
223         const sp<IMemory>& sharedBuffer,
224         audio_output_flags_t flags,
225         callback_t cbf,
226         void* user,
227         int32_t notificationFrames,
228         audio_session_t sessionId,
229         transfer_type transferType,
230         const audio_offload_info_t *offloadInfo,
231         int uid,
232         pid_t pid,
233         const audio_attributes_t* pAttributes,
234         bool doNotReconnect,
235         float maxRequiredSpeed)
236     : mStatus(NO_INIT),
237       mState(STATE_STOPPED),
238       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
239       mPreviousSchedulingGroup(SP_DEFAULT),
240       mPausedPosition(0),
241       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
242 {
243     mStatus = set(streamType, sampleRate, format, channelMask,
244             0 /*frameCount*/, flags, cbf, user, notificationFrames,
245             sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
246             uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
247 }
248 
~AudioTrack()249 AudioTrack::~AudioTrack()
250 {
251     if (mStatus == NO_ERROR) {
252         // Make sure that callback function exits in the case where
253         // it is looping on buffer full condition in obtainBuffer().
254         // Otherwise the callback thread will never exit.
255         stop();
256         if (mAudioTrackThread != 0) {
257             mProxy->interrupt();
258             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
259             mAudioTrackThread->requestExitAndWait();
260             mAudioTrackThread.clear();
261         }
262         // No lock here: worst case we remove a NULL callback which will be a nop
263         if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
264             AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
265         }
266         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
267         mAudioTrack.clear();
268         mCblkMemory.clear();
269         mSharedBuffer.clear();
270         IPCThreadState::self()->flushCommands();
271         ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d",
272                 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
273         AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
274     }
275 }
276 
set(audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,audio_output_flags_t flags,callback_t cbf,void * user,int32_t notificationFrames,const sp<IMemory> & sharedBuffer,bool threadCanCallJava,audio_session_t sessionId,transfer_type transferType,const audio_offload_info_t * offloadInfo,int uid,pid_t pid,const audio_attributes_t * pAttributes,bool doNotReconnect,float maxRequiredSpeed)277 status_t AudioTrack::set(
278         audio_stream_type_t streamType,
279         uint32_t sampleRate,
280         audio_format_t format,
281         audio_channel_mask_t channelMask,
282         size_t frameCount,
283         audio_output_flags_t flags,
284         callback_t cbf,
285         void* user,
286         int32_t notificationFrames,
287         const sp<IMemory>& sharedBuffer,
288         bool threadCanCallJava,
289         audio_session_t sessionId,
290         transfer_type transferType,
291         const audio_offload_info_t *offloadInfo,
292         int uid,
293         pid_t pid,
294         const audio_attributes_t* pAttributes,
295         bool doNotReconnect,
296         float maxRequiredSpeed)
297 {
298     ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
299           "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
300           streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
301           sessionId, transferType, uid, pid);
302 
303     mThreadCanCallJava = threadCanCallJava;
304 
305     switch (transferType) {
306     case TRANSFER_DEFAULT:
307         if (sharedBuffer != 0) {
308             transferType = TRANSFER_SHARED;
309         } else if (cbf == NULL || threadCanCallJava) {
310             transferType = TRANSFER_SYNC;
311         } else {
312             transferType = TRANSFER_CALLBACK;
313         }
314         break;
315     case TRANSFER_CALLBACK:
316         if (cbf == NULL || sharedBuffer != 0) {
317             ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0");
318             return BAD_VALUE;
319         }
320         break;
321     case TRANSFER_OBTAIN:
322     case TRANSFER_SYNC:
323         if (sharedBuffer != 0) {
324             ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0");
325             return BAD_VALUE;
326         }
327         break;
328     case TRANSFER_SHARED:
329         if (sharedBuffer == 0) {
330             ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0");
331             return BAD_VALUE;
332         }
333         break;
334     default:
335         ALOGE("Invalid transfer type %d", transferType);
336         return BAD_VALUE;
337     }
338     mSharedBuffer = sharedBuffer;
339     mTransfer = transferType;
340     mDoNotReconnect = doNotReconnect;
341 
342     ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(),
343             sharedBuffer->size());
344 
345     ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags);
346 
347     // invariant that mAudioTrack != 0 is true only after set() returns successfully
348     if (mAudioTrack != 0) {
349         ALOGE("Track already in use");
350         return INVALID_OPERATION;
351     }
352 
353     // handle default values first.
354     if (streamType == AUDIO_STREAM_DEFAULT) {
355         streamType = AUDIO_STREAM_MUSIC;
356     }
357     if (pAttributes == NULL) {
358         if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
359             ALOGE("Invalid stream type %d", streamType);
360             return BAD_VALUE;
361         }
362         mStreamType = streamType;
363 
364     } else {
365         // stream type shouldn't be looked at, this track has audio attributes
366         memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
367         ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]",
368                 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
369         mStreamType = AUDIO_STREAM_DEFAULT;
370         if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
371             flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC);
372         }
373         if ((mAttributes.flags & AUDIO_FLAG_LOW_LATENCY) != 0) {
374             flags = (audio_output_flags_t) (flags | AUDIO_OUTPUT_FLAG_FAST);
375         }
376     }
377 
378     // these below should probably come from the audioFlinger too...
379     if (format == AUDIO_FORMAT_DEFAULT) {
380         format = AUDIO_FORMAT_PCM_16_BIT;
381     } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
382         mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
383     }
384 
385     // validate parameters
386     if (!audio_is_valid_format(format)) {
387         ALOGE("Invalid format %#x", format);
388         return BAD_VALUE;
389     }
390     mFormat = format;
391 
392     if (!audio_is_output_channel(channelMask)) {
393         ALOGE("Invalid channel mask %#x", channelMask);
394         return BAD_VALUE;
395     }
396     mChannelMask = channelMask;
397     uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
398     mChannelCount = channelCount;
399 
400     // force direct flag if format is not linear PCM
401     // or offload was requested
402     if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
403             || !audio_is_linear_pcm(format)) {
404         ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
405                     ? "Offload request, forcing to Direct Output"
406                     : "Not linear PCM, forcing to Direct Output");
407         flags = (audio_output_flags_t)
408                 // FIXME why can't we allow direct AND fast?
409                 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
410     }
411 
412     // force direct flag if HW A/V sync requested
413     if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
414         flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
415     }
416 
417     if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
418         if (audio_has_proportional_frames(format)) {
419             mFrameSize = channelCount * audio_bytes_per_sample(format);
420         } else {
421             mFrameSize = sizeof(uint8_t);
422         }
423     } else {
424         ALOG_ASSERT(audio_has_proportional_frames(format));
425         mFrameSize = channelCount * audio_bytes_per_sample(format);
426         // createTrack will return an error if PCM format is not supported by server,
427         // so no need to check for specific PCM formats here
428     }
429 
430     // sampling rate must be specified for direct outputs
431     if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
432         return BAD_VALUE;
433     }
434     mSampleRate = sampleRate;
435     mOriginalSampleRate = sampleRate;
436     mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
437     // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
438     mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
439 
440     // Make copy of input parameter offloadInfo so that in the future:
441     //  (a) createTrack_l doesn't need it as an input parameter
442     //  (b) we can support re-creation of offloaded tracks
443     if (offloadInfo != NULL) {
444         mOffloadInfoCopy = *offloadInfo;
445         mOffloadInfo = &mOffloadInfoCopy;
446     } else {
447         mOffloadInfo = NULL;
448     }
449 
450     mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
451     mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
452     mSendLevel = 0.0f;
453     // mFrameCount is initialized in createTrack_l
454     mReqFrameCount = frameCount;
455     if (notificationFrames >= 0) {
456         mNotificationFramesReq = notificationFrames;
457         mNotificationsPerBufferReq = 0;
458     } else {
459         if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
460             ALOGE("notificationFrames=%d not permitted for non-fast track",
461                     notificationFrames);
462             return BAD_VALUE;
463         }
464         if (frameCount > 0) {
465             ALOGE("notificationFrames=%d not permitted with non-zero frameCount=%zu",
466                     notificationFrames, frameCount);
467             return BAD_VALUE;
468         }
469         mNotificationFramesReq = 0;
470         const uint32_t minNotificationsPerBuffer = 1;
471         const uint32_t maxNotificationsPerBuffer = 8;
472         mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
473                 max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
474         ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
475                 "notificationFrames=%d clamped to the range -%u to -%u",
476                 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
477     }
478     mNotificationFramesAct = 0;
479     if (sessionId == AUDIO_SESSION_ALLOCATE) {
480         mSessionId = (audio_session_t) AudioSystem::newAudioUniqueId(AUDIO_UNIQUE_ID_USE_SESSION);
481     } else {
482         mSessionId = sessionId;
483     }
484     int callingpid = IPCThreadState::self()->getCallingPid();
485     int mypid = getpid();
486     if (uid == -1 || (callingpid != mypid)) {
487         mClientUid = IPCThreadState::self()->getCallingUid();
488     } else {
489         mClientUid = uid;
490     }
491     if (pid == -1 || (callingpid != mypid)) {
492         mClientPid = callingpid;
493     } else {
494         mClientPid = pid;
495     }
496     mAuxEffectId = 0;
497     mOrigFlags = mFlags = flags;
498     mCbf = cbf;
499 
500     if (cbf != NULL) {
501         mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);
502         mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
503         // thread begins in paused state, and will not reference us until start()
504     }
505 
506     // create the IAudioTrack
507     status_t status = createTrack_l();
508 
509     if (status != NO_ERROR) {
510         if (mAudioTrackThread != 0) {
511             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
512             mAudioTrackThread->requestExitAndWait();
513             mAudioTrackThread.clear();
514         }
515         return status;
516     }
517 
518     mStatus = NO_ERROR;
519     mUserData = user;
520     mLoopCount = 0;
521     mLoopStart = 0;
522     mLoopEnd = 0;
523     mLoopCountNotified = 0;
524     mMarkerPosition = 0;
525     mMarkerReached = false;
526     mNewPosition = 0;
527     mUpdatePeriod = 0;
528     mPosition = 0;
529     mReleased = 0;
530     mStartUs = 0;
531     AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
532     mSequence = 1;
533     mObservedSequence = mSequence;
534     mInUnderrun = false;
535     mPreviousTimestampValid = false;
536     mTimestampStartupGlitchReported = false;
537     mRetrogradeMotionReported = false;
538     mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
539     mUnderrunCountOffset = 0;
540     mFramesWritten = 0;
541     mFramesWrittenServerOffset = 0;
542 
543     return NO_ERROR;
544 }
545 
546 // -------------------------------------------------------------------------
547 
start()548 status_t AudioTrack::start()
549 {
550     AutoMutex lock(mLock);
551 
552     if (mState == STATE_ACTIVE) {
553         return INVALID_OPERATION;
554     }
555 
556     mInUnderrun = true;
557 
558     State previousState = mState;
559     if (previousState == STATE_PAUSED_STOPPING) {
560         mState = STATE_STOPPING;
561     } else {
562         mState = STATE_ACTIVE;
563     }
564     (void) updateAndGetPosition_l();
565     if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
566         // reset current position as seen by client to 0
567         mPosition = 0;
568         mPreviousTimestampValid = false;
569         mTimestampStartupGlitchReported = false;
570         mRetrogradeMotionReported = false;
571         mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
572 
573         // read last server side position change via timestamp.
574         ExtendedTimestamp ets;
575         if (mProxy->getTimestamp(&ets) == OK &&
576                 ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
577             // Server side has consumed something, but is it finished consuming?
578             // It is possible since flush and stop are asynchronous that the server
579             // is still active at this point.
580             ALOGV("start: server read:%lld  cumulative flushed:%lld  client written:%lld",
581                     (long long)(mFramesWrittenServerOffset
582                             + ets.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
583                     (long long)ets.mFlushed,
584                     (long long)mFramesWritten);
585             mFramesWrittenServerOffset = -ets.mPosition[ExtendedTimestamp::LOCATION_SERVER];
586         }
587         mFramesWritten = 0;
588         mProxy->clearTimestamp(); // need new server push for valid timestamp
589         mMarkerReached = false;
590 
591         // For offloaded tracks, we don't know if the hardware counters are really zero here,
592         // since the flush is asynchronous and stop may not fully drain.
593         // We save the time when the track is started to later verify whether
594         // the counters are realistic (i.e. start from zero after this time).
595         mStartUs = getNowUs();
596 
597         // force refresh of remaining frames by processAudioBuffer() as last
598         // write before stop could be partial.
599         mRefreshRemaining = true;
600     }
601     mNewPosition = mPosition + mUpdatePeriod;
602     int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
603 
604     status_t status = NO_ERROR;
605     if (!(flags & CBLK_INVALID)) {
606         status = mAudioTrack->start();
607         if (status == DEAD_OBJECT) {
608             flags |= CBLK_INVALID;
609         }
610     }
611     if (flags & CBLK_INVALID) {
612         status = restoreTrack_l("start");
613     }
614 
615     // resume or pause the callback thread as needed.
616     sp<AudioTrackThread> t = mAudioTrackThread;
617     if (status == NO_ERROR) {
618         if (t != 0) {
619             if (previousState == STATE_STOPPING) {
620                 mProxy->interrupt();
621             } else {
622                 t->resume();
623             }
624         } else {
625             mPreviousPriority = getpriority(PRIO_PROCESS, 0);
626             get_sched_policy(0, &mPreviousSchedulingGroup);
627             androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
628         }
629     } else {
630         ALOGE("start() status %d", status);
631         mState = previousState;
632         if (t != 0) {
633             if (previousState != STATE_STOPPING) {
634                 t->pause();
635             }
636         } else {
637             setpriority(PRIO_PROCESS, 0, mPreviousPriority);
638             set_sched_policy(0, mPreviousSchedulingGroup);
639         }
640     }
641 
642     return status;
643 }
644 
stop()645 void AudioTrack::stop()
646 {
647     AutoMutex lock(mLock);
648     if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
649         return;
650     }
651 
652     if (isOffloaded_l()) {
653         mState = STATE_STOPPING;
654     } else {
655         mState = STATE_STOPPED;
656         mReleased = 0;
657     }
658 
659     mProxy->interrupt();
660     mAudioTrack->stop();
661 
662     // Note: legacy handling - stop does not clear playback marker
663     // and periodic update counter, but flush does for streaming tracks.
664 
665     if (mSharedBuffer != 0) {
666         // clear buffer position and loop count.
667         mStaticProxy->setBufferPositionAndLoop(0 /* position */,
668                 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
669     }
670 
671     sp<AudioTrackThread> t = mAudioTrackThread;
672     if (t != 0) {
673         if (!isOffloaded_l()) {
674             t->pause();
675         }
676     } else {
677         setpriority(PRIO_PROCESS, 0, mPreviousPriority);
678         set_sched_policy(0, mPreviousSchedulingGroup);
679     }
680 }
681 
stopped() const682 bool AudioTrack::stopped() const
683 {
684     AutoMutex lock(mLock);
685     return mState != STATE_ACTIVE;
686 }
687 
flush()688 void AudioTrack::flush()
689 {
690     if (mSharedBuffer != 0) {
691         return;
692     }
693     AutoMutex lock(mLock);
694     if (mState == STATE_ACTIVE || mState == STATE_FLUSHED) {
695         return;
696     }
697     flush_l();
698 }
699 
flush_l()700 void AudioTrack::flush_l()
701 {
702     ALOG_ASSERT(mState != STATE_ACTIVE);
703 
704     // clear playback marker and periodic update counter
705     mMarkerPosition = 0;
706     mMarkerReached = false;
707     mUpdatePeriod = 0;
708     mRefreshRemaining = true;
709 
710     mState = STATE_FLUSHED;
711     mReleased = 0;
712     if (isOffloaded_l()) {
713         mProxy->interrupt();
714     }
715     mProxy->flush();
716     mAudioTrack->flush();
717 }
718 
pause()719 void AudioTrack::pause()
720 {
721     AutoMutex lock(mLock);
722     if (mState == STATE_ACTIVE) {
723         mState = STATE_PAUSED;
724     } else if (mState == STATE_STOPPING) {
725         mState = STATE_PAUSED_STOPPING;
726     } else {
727         return;
728     }
729     mProxy->interrupt();
730     mAudioTrack->pause();
731 
732     if (isOffloaded_l()) {
733         if (mOutput != AUDIO_IO_HANDLE_NONE) {
734             // An offload output can be re-used between two audio tracks having
735             // the same configuration. A timestamp query for a paused track
736             // while the other is running would return an incorrect time.
737             // To fix this, cache the playback position on a pause() and return
738             // this time when requested until the track is resumed.
739 
740             // OffloadThread sends HAL pause in its threadLoop. Time saved
741             // here can be slightly off.
742 
743             // TODO: check return code for getRenderPosition.
744 
745             uint32_t halFrames;
746             AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
747             ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition);
748         }
749     }
750 }
751 
setVolume(float left,float right)752 status_t AudioTrack::setVolume(float left, float right)
753 {
754     // This duplicates a test by AudioTrack JNI, but that is not the only caller
755     if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
756             isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
757         return BAD_VALUE;
758     }
759 
760     AutoMutex lock(mLock);
761     mVolume[AUDIO_INTERLEAVE_LEFT] = left;
762     mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
763 
764     mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
765 
766     if (isOffloaded_l()) {
767         mAudioTrack->signal();
768     }
769     return NO_ERROR;
770 }
771 
setVolume(float volume)772 status_t AudioTrack::setVolume(float volume)
773 {
774     return setVolume(volume, volume);
775 }
776 
setAuxEffectSendLevel(float level)777 status_t AudioTrack::setAuxEffectSendLevel(float level)
778 {
779     // This duplicates a test by AudioTrack JNI, but that is not the only caller
780     if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
781         return BAD_VALUE;
782     }
783 
784     AutoMutex lock(mLock);
785     mSendLevel = level;
786     mProxy->setSendLevel(level);
787 
788     return NO_ERROR;
789 }
790 
getAuxEffectSendLevel(float * level) const791 void AudioTrack::getAuxEffectSendLevel(float* level) const
792 {
793     if (level != NULL) {
794         *level = mSendLevel;
795     }
796 }
797 
setSampleRate(uint32_t rate)798 status_t AudioTrack::setSampleRate(uint32_t rate)
799 {
800     AutoMutex lock(mLock);
801     if (rate == mSampleRate) {
802         return NO_ERROR;
803     }
804     if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) {
805         return INVALID_OPERATION;
806     }
807     if (mOutput == AUDIO_IO_HANDLE_NONE) {
808         return NO_INIT;
809     }
810     // NOTE: it is theoretically possible, but highly unlikely, that a device change
811     // could mean a previously allowed sampling rate is no longer allowed.
812     uint32_t afSamplingRate;
813     if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
814         return NO_INIT;
815     }
816     // pitch is emulated by adjusting speed and sampleRate
817     const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
818     if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
819         return BAD_VALUE;
820     }
821     // TODO: Should we also check if the buffer size is compatible?
822 
823     mSampleRate = rate;
824     mProxy->setSampleRate(effectiveSampleRate);
825 
826     return NO_ERROR;
827 }
828 
getSampleRate() const829 uint32_t AudioTrack::getSampleRate() const
830 {
831     AutoMutex lock(mLock);
832 
833     // sample rate can be updated during playback by the offloaded decoder so we need to
834     // query the HAL and update if needed.
835 // FIXME use Proxy return channel to update the rate from server and avoid polling here
836     if (isOffloadedOrDirect_l()) {
837         if (mOutput != AUDIO_IO_HANDLE_NONE) {
838             uint32_t sampleRate = 0;
839             status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
840             if (status == NO_ERROR) {
841                 mSampleRate = sampleRate;
842             }
843         }
844     }
845     return mSampleRate;
846 }
847 
getOriginalSampleRate() const848 uint32_t AudioTrack::getOriginalSampleRate() const
849 {
850     return mOriginalSampleRate;
851 }
852 
setPlaybackRate(const AudioPlaybackRate & playbackRate)853 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
854 {
855     AutoMutex lock(mLock);
856     if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
857         return NO_ERROR;
858     }
859     if (isOffloadedOrDirect_l()) {
860         return INVALID_OPERATION;
861     }
862     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
863         return INVALID_OPERATION;
864     }
865 
866     ALOGV("setPlaybackRate (input): mSampleRate:%u  mSpeed:%f  mPitch:%f",
867             mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
868     // pitch is emulated by adjusting speed and sampleRate
869     const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
870     const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
871     const float effectivePitch = adjustPitch(playbackRate.mPitch);
872     AudioPlaybackRate playbackRateTemp = playbackRate;
873     playbackRateTemp.mSpeed = effectiveSpeed;
874     playbackRateTemp.mPitch = effectivePitch;
875 
876     ALOGV("setPlaybackRate (effective): mSampleRate:%u  mSpeed:%f  mPitch:%f",
877             effectiveRate, effectiveSpeed, effectivePitch);
878 
879     if (!isAudioPlaybackRateValid(playbackRateTemp)) {
880         ALOGV("setPlaybackRate(%f, %f) failed (effective rate out of bounds)",
881                 playbackRate.mSpeed, playbackRate.mPitch);
882         return BAD_VALUE;
883     }
884     // Check if the buffer size is compatible.
885     if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
886         ALOGV("setPlaybackRate(%f, %f) failed (buffer size)",
887                 playbackRate.mSpeed, playbackRate.mPitch);
888         return BAD_VALUE;
889     }
890 
891     // Check resampler ratios are within bounds
892     if ((uint64_t)effectiveRate > (uint64_t)mSampleRate * (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
893         ALOGV("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value",
894                 playbackRate.mSpeed, playbackRate.mPitch);
895         return BAD_VALUE;
896     }
897 
898     if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
899         ALOGV("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value",
900                         playbackRate.mSpeed, playbackRate.mPitch);
901         return BAD_VALUE;
902     }
903     mPlaybackRate = playbackRate;
904     //set effective rates
905     mProxy->setPlaybackRate(playbackRateTemp);
906     mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
907     return NO_ERROR;
908 }
909 
getPlaybackRate() const910 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
911 {
912     AutoMutex lock(mLock);
913     return mPlaybackRate;
914 }
915 
getBufferSizeInFrames()916 ssize_t AudioTrack::getBufferSizeInFrames()
917 {
918     AutoMutex lock(mLock);
919     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
920         return NO_INIT;
921     }
922     return (ssize_t) mProxy->getBufferSizeInFrames();
923 }
924 
getBufferDurationInUs(int64_t * duration)925 status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
926 {
927     if (duration == nullptr) {
928         return BAD_VALUE;
929     }
930     AutoMutex lock(mLock);
931     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
932         return NO_INIT;
933     }
934     ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
935     if (bufferSizeInFrames < 0) {
936         return (status_t)bufferSizeInFrames;
937     }
938     *duration = (int64_t)((double)bufferSizeInFrames * 1000000
939             / ((double)mSampleRate * mPlaybackRate.mSpeed));
940     return NO_ERROR;
941 }
942 
setBufferSizeInFrames(size_t bufferSizeInFrames)943 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
944 {
945     AutoMutex lock(mLock);
946     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
947         return NO_INIT;
948     }
949     // Reject if timed track or compressed audio.
950     if (!audio_is_linear_pcm(mFormat)) {
951         return INVALID_OPERATION;
952     }
953     return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
954 }
955 
setLoop(uint32_t loopStart,uint32_t loopEnd,int loopCount)956 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
957 {
958     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
959         return INVALID_OPERATION;
960     }
961 
962     if (loopCount == 0) {
963         ;
964     } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
965             loopEnd - loopStart >= MIN_LOOP) {
966         ;
967     } else {
968         return BAD_VALUE;
969     }
970 
971     AutoMutex lock(mLock);
972     // See setPosition() regarding setting parameters such as loop points or position while active
973     if (mState == STATE_ACTIVE) {
974         return INVALID_OPERATION;
975     }
976     setLoop_l(loopStart, loopEnd, loopCount);
977     return NO_ERROR;
978 }
979 
setLoop_l(uint32_t loopStart,uint32_t loopEnd,int loopCount)980 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
981 {
982     // We do not update the periodic notification point.
983     // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
984     mLoopCount = loopCount;
985     mLoopEnd = loopEnd;
986     mLoopStart = loopStart;
987     mLoopCountNotified = loopCount;
988     mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
989 
990     // Waking the AudioTrackThread is not needed as this cannot be called when active.
991 }
992 
setMarkerPosition(uint32_t marker)993 status_t AudioTrack::setMarkerPosition(uint32_t marker)
994 {
995     // The only purpose of setting marker position is to get a callback
996     if (mCbf == NULL || isOffloadedOrDirect()) {
997         return INVALID_OPERATION;
998     }
999 
1000     AutoMutex lock(mLock);
1001     mMarkerPosition = marker;
1002     mMarkerReached = false;
1003 
1004     sp<AudioTrackThread> t = mAudioTrackThread;
1005     if (t != 0) {
1006         t->wake();
1007     }
1008     return NO_ERROR;
1009 }
1010 
getMarkerPosition(uint32_t * marker) const1011 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
1012 {
1013     if (isOffloadedOrDirect()) {
1014         return INVALID_OPERATION;
1015     }
1016     if (marker == NULL) {
1017         return BAD_VALUE;
1018     }
1019 
1020     AutoMutex lock(mLock);
1021     mMarkerPosition.getValue(marker);
1022 
1023     return NO_ERROR;
1024 }
1025 
setPositionUpdatePeriod(uint32_t updatePeriod)1026 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
1027 {
1028     // The only purpose of setting position update period is to get a callback
1029     if (mCbf == NULL || isOffloadedOrDirect()) {
1030         return INVALID_OPERATION;
1031     }
1032 
1033     AutoMutex lock(mLock);
1034     mNewPosition = updateAndGetPosition_l() + updatePeriod;
1035     mUpdatePeriod = updatePeriod;
1036 
1037     sp<AudioTrackThread> t = mAudioTrackThread;
1038     if (t != 0) {
1039         t->wake();
1040     }
1041     return NO_ERROR;
1042 }
1043 
getPositionUpdatePeriod(uint32_t * updatePeriod) const1044 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
1045 {
1046     if (isOffloadedOrDirect()) {
1047         return INVALID_OPERATION;
1048     }
1049     if (updatePeriod == NULL) {
1050         return BAD_VALUE;
1051     }
1052 
1053     AutoMutex lock(mLock);
1054     *updatePeriod = mUpdatePeriod;
1055 
1056     return NO_ERROR;
1057 }
1058 
setPosition(uint32_t position)1059 status_t AudioTrack::setPosition(uint32_t position)
1060 {
1061     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1062         return INVALID_OPERATION;
1063     }
1064     if (position > mFrameCount) {
1065         return BAD_VALUE;
1066     }
1067 
1068     AutoMutex lock(mLock);
1069     // Currently we require that the player is inactive before setting parameters such as position
1070     // or loop points.  Otherwise, there could be a race condition: the application could read the
1071     // current position, compute a new position or loop parameters, and then set that position or
1072     // loop parameters but it would do the "wrong" thing since the position has continued to advance
1073     // in the mean time.  If we ever provide a sequencer in server, we could allow a way for the app
1074     // to specify how it wants to handle such scenarios.
1075     if (mState == STATE_ACTIVE) {
1076         return INVALID_OPERATION;
1077     }
1078     // After setting the position, use full update period before notification.
1079     mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
1080     mStaticProxy->setBufferPosition(position);
1081 
1082     // Waking the AudioTrackThread is not needed as this cannot be called when active.
1083     return NO_ERROR;
1084 }
1085 
getPosition(uint32_t * position)1086 status_t AudioTrack::getPosition(uint32_t *position)
1087 {
1088     if (position == NULL) {
1089         return BAD_VALUE;
1090     }
1091 
1092     AutoMutex lock(mLock);
1093     // FIXME: offloaded and direct tracks call into the HAL for render positions
1094     // for compressed/synced data; however, we use proxy position for pure linear pcm data
1095     // as we do not know the capability of the HAL for pcm position support and standby.
1096     // There may be some latency differences between the HAL position and the proxy position.
1097     if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
1098         uint32_t dspFrames = 0;
1099 
1100         if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
1101             ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition);
1102             *position = mPausedPosition;
1103             return NO_ERROR;
1104         }
1105 
1106         if (mOutput != AUDIO_IO_HANDLE_NONE) {
1107             uint32_t halFrames; // actually unused
1108             (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
1109             // FIXME: on getRenderPosition() error, we return OK with frame position 0.
1110         }
1111         // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
1112         // due to hardware latency. We leave this behavior for now.
1113         *position = dspFrames;
1114     } else {
1115         if (mCblk->mFlags & CBLK_INVALID) {
1116             (void) restoreTrack_l("getPosition");
1117             // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
1118             // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
1119         }
1120 
1121         // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
1122         *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
1123                 0 : updateAndGetPosition_l().value();
1124     }
1125     return NO_ERROR;
1126 }
1127 
getBufferPosition(uint32_t * position)1128 status_t AudioTrack::getBufferPosition(uint32_t *position)
1129 {
1130     if (mSharedBuffer == 0) {
1131         return INVALID_OPERATION;
1132     }
1133     if (position == NULL) {
1134         return BAD_VALUE;
1135     }
1136 
1137     AutoMutex lock(mLock);
1138     *position = mStaticProxy->getBufferPosition();
1139     return NO_ERROR;
1140 }
1141 
reload()1142 status_t AudioTrack::reload()
1143 {
1144     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
1145         return INVALID_OPERATION;
1146     }
1147 
1148     AutoMutex lock(mLock);
1149     // See setPosition() regarding setting parameters such as loop points or position while active
1150     if (mState == STATE_ACTIVE) {
1151         return INVALID_OPERATION;
1152     }
1153     mNewPosition = mUpdatePeriod;
1154     (void) updateAndGetPosition_l();
1155     mPosition = 0;
1156     mPreviousTimestampValid = false;
1157 #if 0
1158     // The documentation is not clear on the behavior of reload() and the restoration
1159     // of loop count. Historically we have not restored loop count, start, end,
1160     // but it makes sense if one desires to repeat playing a particular sound.
1161     if (mLoopCount != 0) {
1162         mLoopCountNotified = mLoopCount;
1163         mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
1164     }
1165 #endif
1166     mStaticProxy->setBufferPosition(0);
1167     return NO_ERROR;
1168 }
1169 
getOutput() const1170 audio_io_handle_t AudioTrack::getOutput() const
1171 {
1172     AutoMutex lock(mLock);
1173     return mOutput;
1174 }
1175 
setOutputDevice(audio_port_handle_t deviceId)1176 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
1177     AutoMutex lock(mLock);
1178     if (mSelectedDeviceId != deviceId) {
1179         mSelectedDeviceId = deviceId;
1180         android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
1181     }
1182     return NO_ERROR;
1183 }
1184 
getOutputDevice()1185 audio_port_handle_t AudioTrack::getOutputDevice() {
1186     AutoMutex lock(mLock);
1187     return mSelectedDeviceId;
1188 }
1189 
getRoutedDeviceId()1190 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
1191     AutoMutex lock(mLock);
1192     if (mOutput == AUDIO_IO_HANDLE_NONE) {
1193         return AUDIO_PORT_HANDLE_NONE;
1194     }
1195     return AudioSystem::getDeviceIdForIo(mOutput);
1196 }
1197 
attachAuxEffect(int effectId)1198 status_t AudioTrack::attachAuxEffect(int effectId)
1199 {
1200     AutoMutex lock(mLock);
1201     status_t status = mAudioTrack->attachAuxEffect(effectId);
1202     if (status == NO_ERROR) {
1203         mAuxEffectId = effectId;
1204     }
1205     return status;
1206 }
1207 
streamType() const1208 audio_stream_type_t AudioTrack::streamType() const
1209 {
1210     if (mStreamType == AUDIO_STREAM_DEFAULT) {
1211         return audio_attributes_to_stream_type(&mAttributes);
1212     }
1213     return mStreamType;
1214 }
1215 
1216 // -------------------------------------------------------------------------
1217 
1218 // must be called with mLock held
createTrack_l()1219 status_t AudioTrack::createTrack_l()
1220 {
1221     const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
1222     if (audioFlinger == 0) {
1223         ALOGE("Could not get audioflinger");
1224         return NO_INIT;
1225     }
1226 
1227     if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
1228         AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
1229     }
1230     audio_io_handle_t output;
1231     audio_stream_type_t streamType = mStreamType;
1232     audio_attributes_t *attr = (mStreamType == AUDIO_STREAM_DEFAULT) ? &mAttributes : NULL;
1233 
1234     // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
1235     // After fast request is denied, we will request again if IAudioTrack is re-created.
1236 
1237     status_t status;
1238     status = AudioSystem::getOutputForAttr(attr, &output,
1239                                            mSessionId, &streamType, mClientUid,
1240                                            mSampleRate, mFormat, mChannelMask,
1241                                            mFlags, mSelectedDeviceId, mOffloadInfo);
1242 
1243     if (status != NO_ERROR || output == AUDIO_IO_HANDLE_NONE) {
1244         ALOGE("Could not get audio output for session %d, stream type %d, usage %d, sample rate %u, format %#x,"
1245               " channel mask %#x, flags %#x",
1246               mSessionId, streamType, mAttributes.usage, mSampleRate, mFormat, mChannelMask, mFlags);
1247         return BAD_VALUE;
1248     }
1249     {
1250     // Now that we have a reference to an I/O handle and have not yet handed it off to AudioFlinger,
1251     // we must release it ourselves if anything goes wrong.
1252 
1253     // Not all of these values are needed under all conditions, but it is easier to get them all
1254     status = AudioSystem::getLatency(output, &mAfLatency);
1255     if (status != NO_ERROR) {
1256         ALOGE("getLatency(%d) failed status %d", output, status);
1257         goto release;
1258     }
1259     ALOGV("createTrack_l() output %d afLatency %u", output, mAfLatency);
1260 
1261     status = AudioSystem::getFrameCount(output, &mAfFrameCount);
1262     if (status != NO_ERROR) {
1263         ALOGE("getFrameCount(output=%d) status %d", output, status);
1264         goto release;
1265     }
1266 
1267     // TODO consider making this a member variable if there are other uses for it later
1268     size_t afFrameCountHAL;
1269     status = AudioSystem::getFrameCountHAL(output, &afFrameCountHAL);
1270     if (status != NO_ERROR) {
1271         ALOGE("getFrameCountHAL(output=%d) status %d", output, status);
1272         goto release;
1273     }
1274     ALOG_ASSERT(afFrameCountHAL > 0);
1275 
1276     status = AudioSystem::getSamplingRate(output, &mAfSampleRate);
1277     if (status != NO_ERROR) {
1278         ALOGE("getSamplingRate(output=%d) status %d", output, status);
1279         goto release;
1280     }
1281     if (mSampleRate == 0) {
1282         mSampleRate = mAfSampleRate;
1283         mOriginalSampleRate = mAfSampleRate;
1284     }
1285 
1286     // Client can only express a preference for FAST.  Server will perform additional tests.
1287     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1288         bool useCaseAllowed =
1289             // either of these use cases:
1290             // use case 1: shared buffer
1291             (mSharedBuffer != 0) ||
1292             // use case 2: callback transfer mode
1293             (mTransfer == TRANSFER_CALLBACK) ||
1294             // use case 3: obtain/release mode
1295             (mTransfer == TRANSFER_OBTAIN) ||
1296             // use case 4: synchronous write
1297             ((mTransfer == TRANSFER_SYNC) && mThreadCanCallJava);
1298         // sample rates must also match
1299         bool fastAllowed = useCaseAllowed && (mSampleRate == mAfSampleRate);
1300         if (!fastAllowed) {
1301             ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by client; transfer %d, "
1302                 "track %u Hz, output %u Hz",
1303                 mTransfer, mSampleRate, mAfSampleRate);
1304             mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
1305         }
1306     }
1307 
1308     mNotificationFramesAct = mNotificationFramesReq;
1309 
1310     size_t frameCount = mReqFrameCount;
1311     if (!audio_has_proportional_frames(mFormat)) {
1312 
1313         if (mSharedBuffer != 0) {
1314             // Same comment as below about ignoring frameCount parameter for set()
1315             frameCount = mSharedBuffer->size();
1316         } else if (frameCount == 0) {
1317             frameCount = mAfFrameCount;
1318         }
1319         if (mNotificationFramesAct != frameCount) {
1320             mNotificationFramesAct = frameCount;
1321         }
1322     } else if (mSharedBuffer != 0) {
1323         // FIXME: Ensure client side memory buffers need
1324         // not have additional alignment beyond sample
1325         // (e.g. 16 bit stereo accessed as 32 bit frame).
1326         size_t alignment = audio_bytes_per_sample(mFormat);
1327         if (alignment & 1) {
1328             // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
1329             alignment = 1;
1330         }
1331         if (mChannelCount > 1) {
1332             // More than 2 channels does not require stronger alignment than stereo
1333             alignment <<= 1;
1334         }
1335         if (((uintptr_t)mSharedBuffer->pointer() & (alignment - 1)) != 0) {
1336             ALOGE("Invalid buffer alignment: address %p, channel count %u",
1337                     mSharedBuffer->pointer(), mChannelCount);
1338             status = BAD_VALUE;
1339             goto release;
1340         }
1341 
1342         // When initializing a shared buffer AudioTrack via constructors,
1343         // there's no frameCount parameter.
1344         // But when initializing a shared buffer AudioTrack via set(),
1345         // there _is_ a frameCount parameter.  We silently ignore it.
1346         frameCount = mSharedBuffer->size() / mFrameSize;
1347     } else {
1348         size_t minFrameCount = 0;
1349         // For fast tracks the frame count calculations and checks are mostly done by server,
1350         // but we try to respect the application's request for notifications per buffer.
1351         if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1352             if (mNotificationsPerBufferReq > 0) {
1353                 // Avoid possible arithmetic overflow during multiplication.
1354                 // mNotificationsPerBuffer is clamped to a small integer earlier, so it is unlikely.
1355                 if (mNotificationsPerBufferReq > SIZE_MAX / afFrameCountHAL) {
1356                     ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
1357                             mNotificationsPerBufferReq, afFrameCountHAL);
1358                 } else {
1359                     minFrameCount = afFrameCountHAL * mNotificationsPerBufferReq;
1360                 }
1361             }
1362         } else {
1363             // for normal tracks precompute the frame count based on speed.
1364             const float speed = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
1365                             max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
1366             minFrameCount = calculateMinFrameCount(
1367                     mAfLatency, mAfFrameCount, mAfSampleRate, mSampleRate,
1368                     speed /*, 0 mNotificationsPerBufferReq*/);
1369         }
1370         if (frameCount < minFrameCount) {
1371             frameCount = minFrameCount;
1372         }
1373     }
1374 
1375     audio_output_flags_t flags = mFlags;
1376 
1377     pid_t tid = -1;
1378     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1379         if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
1380             tid = mAudioTrackThread->getTid();
1381         }
1382     }
1383 
1384     size_t temp = frameCount;   // temp may be replaced by a revised value of frameCount,
1385                                 // but we will still need the original value also
1386     audio_session_t originalSessionId = mSessionId;
1387     sp<IAudioTrack> track = audioFlinger->createTrack(streamType,
1388                                                       mSampleRate,
1389                                                       mFormat,
1390                                                       mChannelMask,
1391                                                       &temp,
1392                                                       &flags,
1393                                                       mSharedBuffer,
1394                                                       output,
1395                                                       mClientPid,
1396                                                       tid,
1397                                                       &mSessionId,
1398                                                       mClientUid,
1399                                                       &status);
1400     ALOGE_IF(originalSessionId != AUDIO_SESSION_ALLOCATE && mSessionId != originalSessionId,
1401             "session ID changed from %d to %d", originalSessionId, mSessionId);
1402 
1403     if (status != NO_ERROR) {
1404         ALOGE("AudioFlinger could not create track, status: %d", status);
1405         goto release;
1406     }
1407     ALOG_ASSERT(track != 0);
1408 
1409     // AudioFlinger now owns the reference to the I/O handle,
1410     // so we are no longer responsible for releasing it.
1411 
1412     // FIXME compare to AudioRecord
1413     sp<IMemory> iMem = track->getCblk();
1414     if (iMem == 0) {
1415         ALOGE("Could not get control block");
1416         return NO_INIT;
1417     }
1418     void *iMemPointer = iMem->pointer();
1419     if (iMemPointer == NULL) {
1420         ALOGE("Could not get control block pointer");
1421         return NO_INIT;
1422     }
1423     // invariant that mAudioTrack != 0 is true only after set() returns successfully
1424     if (mAudioTrack != 0) {
1425         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
1426         mDeathNotifier.clear();
1427     }
1428     mAudioTrack = track;
1429     mCblkMemory = iMem;
1430     IPCThreadState::self()->flushCommands();
1431 
1432     audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
1433     mCblk = cblk;
1434     // note that temp is the (possibly revised) value of frameCount
1435     if (temp < frameCount || (frameCount == 0 && temp == 0)) {
1436         // In current design, AudioTrack client checks and ensures frame count validity before
1437         // passing it to AudioFlinger so AudioFlinger should not return a different value except
1438         // for fast track as it uses a special method of assigning frame count.
1439         ALOGW("Requested frameCount %zu but received frameCount %zu", frameCount, temp);
1440     }
1441     frameCount = temp;
1442 
1443     mAwaitBoost = false;
1444     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1445         if (flags & AUDIO_OUTPUT_FLAG_FAST) {
1446             ALOGV("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu", frameCount);
1447             if (!mThreadCanCallJava) {
1448                 mAwaitBoost = true;
1449             }
1450         } else {
1451             ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu", frameCount);
1452         }
1453     }
1454     mFlags = flags;
1455 
1456     // Make sure that application is notified with sufficient margin before underrun.
1457     // The client can divide the AudioTrack buffer into sub-buffers,
1458     // and expresses its desire to server as the notification frame count.
1459     if (mSharedBuffer == 0 && audio_is_linear_pcm(mFormat)) {
1460         size_t maxNotificationFrames;
1461         if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
1462             // notify every HAL buffer, regardless of the size of the track buffer
1463             maxNotificationFrames = afFrameCountHAL;
1464         } else {
1465             // For normal tracks, use at least double-buffering if no sample rate conversion,
1466             // or at least triple-buffering if there is sample rate conversion
1467             const int nBuffering = mOriginalSampleRate == mAfSampleRate ? 2 : 3;
1468             maxNotificationFrames = frameCount / nBuffering;
1469         }
1470         if (mNotificationFramesAct == 0 || mNotificationFramesAct > maxNotificationFrames) {
1471             if (mNotificationFramesAct == 0) {
1472                 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
1473                     maxNotificationFrames, frameCount);
1474             } else {
1475                 ALOGW("Client adjusted notificationFrames from %u to %zu for frameCount %zu",
1476                     mNotificationFramesAct, maxNotificationFrames, frameCount);
1477             }
1478             mNotificationFramesAct = (uint32_t) maxNotificationFrames;
1479         }
1480     }
1481 
1482     // We retain a copy of the I/O handle, but don't own the reference
1483     mOutput = output;
1484     mRefreshRemaining = true;
1485 
1486     // Starting address of buffers in shared memory.  If there is a shared buffer, buffers
1487     // is the value of pointer() for the shared buffer, otherwise buffers points
1488     // immediately after the control block.  This address is for the mapping within client
1489     // address space.  AudioFlinger::TrackBase::mBuffer is for the server address space.
1490     void* buffers;
1491     if (mSharedBuffer == 0) {
1492         buffers = cblk + 1;
1493     } else {
1494         buffers = mSharedBuffer->pointer();
1495         if (buffers == NULL) {
1496             ALOGE("Could not get buffer pointer");
1497             return NO_INIT;
1498         }
1499     }
1500 
1501     mAudioTrack->attachAuxEffect(mAuxEffectId);
1502     // FIXME doesn't take into account speed or future sample rate changes (until restoreTrack)
1503     // FIXME don't believe this lie
1504     mLatency = mAfLatency + (1000*frameCount) / mSampleRate;
1505 
1506     mFrameCount = frameCount;
1507     // If IAudioTrack is re-created, don't let the requested frameCount
1508     // decrease.  This can confuse clients that cache frameCount().
1509     if (frameCount > mReqFrameCount) {
1510         mReqFrameCount = frameCount;
1511     }
1512 
1513     // reset server position to 0 as we have new cblk.
1514     mServer = 0;
1515 
1516     // update proxy
1517     if (mSharedBuffer == 0) {
1518         mStaticProxy.clear();
1519         mProxy = new AudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1520     } else {
1521         mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, frameCount, mFrameSize);
1522         mProxy = mStaticProxy;
1523     }
1524 
1525     mProxy->setVolumeLR(gain_minifloat_pack(
1526             gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
1527             gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
1528 
1529     mProxy->setSendLevel(mSendLevel);
1530     const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
1531     const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
1532     const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
1533     mProxy->setSampleRate(effectiveSampleRate);
1534 
1535     AudioPlaybackRate playbackRateTemp = mPlaybackRate;
1536     playbackRateTemp.mSpeed = effectiveSpeed;
1537     playbackRateTemp.mPitch = effectivePitch;
1538     mProxy->setPlaybackRate(playbackRateTemp);
1539     mProxy->setMinimum(mNotificationFramesAct);
1540 
1541     mDeathNotifier = new DeathNotifier(this);
1542     IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
1543 
1544     if (mDeviceCallback != 0) {
1545         AudioSystem::addAudioDeviceCallback(mDeviceCallback, mOutput);
1546     }
1547 
1548     return NO_ERROR;
1549     }
1550 
1551 release:
1552     AudioSystem::releaseOutput(output, streamType, mSessionId);
1553     if (status == NO_ERROR) {
1554         status = NO_INIT;
1555     }
1556     return status;
1557 }
1558 
obtainBuffer(Buffer * audioBuffer,int32_t waitCount,size_t * nonContig)1559 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
1560 {
1561     if (audioBuffer == NULL) {
1562         if (nonContig != NULL) {
1563             *nonContig = 0;
1564         }
1565         return BAD_VALUE;
1566     }
1567     if (mTransfer != TRANSFER_OBTAIN) {
1568         audioBuffer->frameCount = 0;
1569         audioBuffer->size = 0;
1570         audioBuffer->raw = NULL;
1571         if (nonContig != NULL) {
1572             *nonContig = 0;
1573         }
1574         return INVALID_OPERATION;
1575     }
1576 
1577     const struct timespec *requested;
1578     struct timespec timeout;
1579     if (waitCount == -1) {
1580         requested = &ClientProxy::kForever;
1581     } else if (waitCount == 0) {
1582         requested = &ClientProxy::kNonBlocking;
1583     } else if (waitCount > 0) {
1584         long long ms = WAIT_PERIOD_MS * (long long) waitCount;
1585         timeout.tv_sec = ms / 1000;
1586         timeout.tv_nsec = (int) (ms % 1000) * 1000000;
1587         requested = &timeout;
1588     } else {
1589         ALOGE("%s invalid waitCount %d", __func__, waitCount);
1590         requested = NULL;
1591     }
1592     return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
1593 }
1594 
obtainBuffer(Buffer * audioBuffer,const struct timespec * requested,struct timespec * elapsed,size_t * nonContig)1595 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
1596         struct timespec *elapsed, size_t *nonContig)
1597 {
1598     // previous and new IAudioTrack sequence numbers are used to detect track re-creation
1599     uint32_t oldSequence = 0;
1600     uint32_t newSequence;
1601 
1602     Proxy::Buffer buffer;
1603     status_t status = NO_ERROR;
1604 
1605     static const int32_t kMaxTries = 5;
1606     int32_t tryCounter = kMaxTries;
1607 
1608     do {
1609         // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
1610         // keep them from going away if another thread re-creates the track during obtainBuffer()
1611         sp<AudioTrackClientProxy> proxy;
1612         sp<IMemory> iMem;
1613 
1614         {   // start of lock scope
1615             AutoMutex lock(mLock);
1616 
1617             newSequence = mSequence;
1618             // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
1619             if (status == DEAD_OBJECT) {
1620                 // re-create track, unless someone else has already done so
1621                 if (newSequence == oldSequence) {
1622                     status = restoreTrack_l("obtainBuffer");
1623                     if (status != NO_ERROR) {
1624                         buffer.mFrameCount = 0;
1625                         buffer.mRaw = NULL;
1626                         buffer.mNonContig = 0;
1627                         break;
1628                     }
1629                 }
1630             }
1631             oldSequence = newSequence;
1632 
1633             if (status == NOT_ENOUGH_DATA) {
1634                 restartIfDisabled();
1635             }
1636 
1637             // Keep the extra references
1638             proxy = mProxy;
1639             iMem = mCblkMemory;
1640 
1641             if (mState == STATE_STOPPING) {
1642                 status = -EINTR;
1643                 buffer.mFrameCount = 0;
1644                 buffer.mRaw = NULL;
1645                 buffer.mNonContig = 0;
1646                 break;
1647             }
1648 
1649             // Non-blocking if track is stopped or paused
1650             if (mState != STATE_ACTIVE) {
1651                 requested = &ClientProxy::kNonBlocking;
1652             }
1653 
1654         }   // end of lock scope
1655 
1656         buffer.mFrameCount = audioBuffer->frameCount;
1657         // FIXME starts the requested timeout and elapsed over from scratch
1658         status = proxy->obtainBuffer(&buffer, requested, elapsed);
1659     } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
1660 
1661     audioBuffer->frameCount = buffer.mFrameCount;
1662     audioBuffer->size = buffer.mFrameCount * mFrameSize;
1663     audioBuffer->raw = buffer.mRaw;
1664     if (nonContig != NULL) {
1665         *nonContig = buffer.mNonContig;
1666     }
1667     return status;
1668 }
1669 
releaseBuffer(const Buffer * audioBuffer)1670 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
1671 {
1672     // FIXME add error checking on mode, by adding an internal version
1673     if (mTransfer == TRANSFER_SHARED) {
1674         return;
1675     }
1676 
1677     size_t stepCount = audioBuffer->size / mFrameSize;
1678     if (stepCount == 0) {
1679         return;
1680     }
1681 
1682     Proxy::Buffer buffer;
1683     buffer.mFrameCount = stepCount;
1684     buffer.mRaw = audioBuffer->raw;
1685 
1686     AutoMutex lock(mLock);
1687     mReleased += stepCount;
1688     mInUnderrun = false;
1689     mProxy->releaseBuffer(&buffer);
1690 
1691     // restart track if it was disabled by audioflinger due to previous underrun
1692     restartIfDisabled();
1693 }
1694 
restartIfDisabled()1695 void AudioTrack::restartIfDisabled()
1696 {
1697     int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
1698     if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
1699         ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this);
1700         // FIXME ignoring status
1701         mAudioTrack->start();
1702     }
1703 }
1704 
1705 // -------------------------------------------------------------------------
1706 
write(const void * buffer,size_t userSize,bool blocking)1707 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
1708 {
1709     if (mTransfer != TRANSFER_SYNC) {
1710         return INVALID_OPERATION;
1711     }
1712 
1713     if (isDirect()) {
1714         AutoMutex lock(mLock);
1715         int32_t flags = android_atomic_and(
1716                             ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
1717                             &mCblk->mFlags);
1718         if (flags & CBLK_INVALID) {
1719             return DEAD_OBJECT;
1720         }
1721     }
1722 
1723     if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
1724         // Sanity-check: user is most-likely passing an error code, and it would
1725         // make the return value ambiguous (actualSize vs error).
1726         ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize);
1727         return BAD_VALUE;
1728     }
1729 
1730     size_t written = 0;
1731     Buffer audioBuffer;
1732 
1733     while (userSize >= mFrameSize) {
1734         audioBuffer.frameCount = userSize / mFrameSize;
1735 
1736         status_t err = obtainBuffer(&audioBuffer,
1737                 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
1738         if (err < 0) {
1739             if (written > 0) {
1740                 break;
1741             }
1742             if (err == TIMED_OUT || err == -EINTR) {
1743                 err = WOULD_BLOCK;
1744             }
1745             return ssize_t(err);
1746         }
1747 
1748         size_t toWrite = audioBuffer.size;
1749         memcpy(audioBuffer.i8, buffer, toWrite);
1750         buffer = ((const char *) buffer) + toWrite;
1751         userSize -= toWrite;
1752         written += toWrite;
1753 
1754         releaseBuffer(&audioBuffer);
1755     }
1756 
1757     if (written > 0) {
1758         mFramesWritten += written / mFrameSize;
1759     }
1760     return written;
1761 }
1762 
1763 // -------------------------------------------------------------------------
1764 
processAudioBuffer()1765 nsecs_t AudioTrack::processAudioBuffer()
1766 {
1767     // Currently the AudioTrack thread is not created if there are no callbacks.
1768     // Would it ever make sense to run the thread, even without callbacks?
1769     // If so, then replace this by checks at each use for mCbf != NULL.
1770     LOG_ALWAYS_FATAL_IF(mCblk == NULL);
1771 
1772     mLock.lock();
1773     if (mAwaitBoost) {
1774         mAwaitBoost = false;
1775         mLock.unlock();
1776         static const int32_t kMaxTries = 5;
1777         int32_t tryCounter = kMaxTries;
1778         uint32_t pollUs = 10000;
1779         do {
1780             int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
1781             if (policy == SCHED_FIFO || policy == SCHED_RR) {
1782                 break;
1783             }
1784             usleep(pollUs);
1785             pollUs <<= 1;
1786         } while (tryCounter-- > 0);
1787         if (tryCounter < 0) {
1788             ALOGE("did not receive expected priority boost on time");
1789         }
1790         // Run again immediately
1791         return 0;
1792     }
1793 
1794     // Can only reference mCblk while locked
1795     int32_t flags = android_atomic_and(
1796         ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
1797 
1798     // Check for track invalidation
1799     if (flags & CBLK_INVALID) {
1800         // for offloaded tracks restoreTrack_l() will just update the sequence and clear
1801         // AudioSystem cache. We should not exit here but after calling the callback so
1802         // that the upper layers can recreate the track
1803         if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
1804             status_t status __unused = restoreTrack_l("processAudioBuffer");
1805             // FIXME unused status
1806             // after restoration, continue below to make sure that the loop and buffer events
1807             // are notified because they have been cleared from mCblk->mFlags above.
1808         }
1809     }
1810 
1811     bool waitStreamEnd = mState == STATE_STOPPING;
1812     bool active = mState == STATE_ACTIVE;
1813 
1814     // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
1815     bool newUnderrun = false;
1816     if (flags & CBLK_UNDERRUN) {
1817 #if 0
1818         // Currently in shared buffer mode, when the server reaches the end of buffer,
1819         // the track stays active in continuous underrun state.  It's up to the application
1820         // to pause or stop the track, or set the position to a new offset within buffer.
1821         // This was some experimental code to auto-pause on underrun.   Keeping it here
1822         // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
1823         if (mTransfer == TRANSFER_SHARED) {
1824             mState = STATE_PAUSED;
1825             active = false;
1826         }
1827 #endif
1828         if (!mInUnderrun) {
1829             mInUnderrun = true;
1830             newUnderrun = true;
1831         }
1832     }
1833 
1834     // Get current position of server
1835     Modulo<uint32_t> position(updateAndGetPosition_l());
1836 
1837     // Manage marker callback
1838     bool markerReached = false;
1839     Modulo<uint32_t> markerPosition(mMarkerPosition);
1840     // uses 32 bit wraparound for comparison with position.
1841     if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
1842         mMarkerReached = markerReached = true;
1843     }
1844 
1845     // Determine number of new position callback(s) that will be needed, while locked
1846     size_t newPosCount = 0;
1847     Modulo<uint32_t> newPosition(mNewPosition);
1848     uint32_t updatePeriod = mUpdatePeriod;
1849     // FIXME fails for wraparound, need 64 bits
1850     if (updatePeriod > 0 && position >= newPosition) {
1851         newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
1852         mNewPosition += updatePeriod * newPosCount;
1853     }
1854 
1855     // Cache other fields that will be needed soon
1856     uint32_t sampleRate = mSampleRate;
1857     float speed = mPlaybackRate.mSpeed;
1858     const uint32_t notificationFrames = mNotificationFramesAct;
1859     if (mRefreshRemaining) {
1860         mRefreshRemaining = false;
1861         mRemainingFrames = notificationFrames;
1862         mRetryOnPartialBuffer = false;
1863     }
1864     size_t misalignment = mProxy->getMisalignment();
1865     uint32_t sequence = mSequence;
1866     sp<AudioTrackClientProxy> proxy = mProxy;
1867 
1868     // Determine the number of new loop callback(s) that will be needed, while locked.
1869     int loopCountNotifications = 0;
1870     uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
1871 
1872     if (mLoopCount > 0) {
1873         int loopCount;
1874         size_t bufferPosition;
1875         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
1876         loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
1877         loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
1878         mLoopCountNotified = loopCount; // discard any excess notifications
1879     } else if (mLoopCount < 0) {
1880         // FIXME: We're not accurate with notification count and position with infinite looping
1881         // since loopCount from server side will always return -1 (we could decrement it).
1882         size_t bufferPosition = mStaticProxy->getBufferPosition();
1883         loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
1884         loopPeriod = mLoopEnd - bufferPosition;
1885     } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
1886         size_t bufferPosition = mStaticProxy->getBufferPosition();
1887         loopPeriod = mFrameCount - bufferPosition;
1888     }
1889 
1890     // These fields don't need to be cached, because they are assigned only by set():
1891     //     mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
1892     // mFlags is also assigned by createTrack_l(), but not the bit we care about.
1893 
1894     mLock.unlock();
1895 
1896     // get anchor time to account for callbacks.
1897     const nsecs_t timeBeforeCallbacks = systemTime();
1898 
1899     if (waitStreamEnd) {
1900         // FIXME:  Instead of blocking in proxy->waitStreamEndDone(), Callback thread
1901         // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
1902         // (and make sure we don't callback for more data while we're stopping).
1903         // This helps with position, marker notifications, and track invalidation.
1904         struct timespec timeout;
1905         timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
1906         timeout.tv_nsec = 0;
1907 
1908         status_t status = proxy->waitStreamEndDone(&timeout);
1909         switch (status) {
1910         case NO_ERROR:
1911         case DEAD_OBJECT:
1912         case TIMED_OUT:
1913             if (status != DEAD_OBJECT) {
1914                 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
1915                 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
1916                 mCbf(EVENT_STREAM_END, mUserData, NULL);
1917             }
1918             {
1919                 AutoMutex lock(mLock);
1920                 // The previously assigned value of waitStreamEnd is no longer valid,
1921                 // since the mutex has been unlocked and either the callback handler
1922                 // or another thread could have re-started the AudioTrack during that time.
1923                 waitStreamEnd = mState == STATE_STOPPING;
1924                 if (waitStreamEnd) {
1925                     mState = STATE_STOPPED;
1926                     mReleased = 0;
1927                 }
1928             }
1929             if (waitStreamEnd && status != DEAD_OBJECT) {
1930                return NS_INACTIVE;
1931             }
1932             break;
1933         }
1934         return 0;
1935     }
1936 
1937     // perform callbacks while unlocked
1938     if (newUnderrun) {
1939         mCbf(EVENT_UNDERRUN, mUserData, NULL);
1940     }
1941     while (loopCountNotifications > 0) {
1942         mCbf(EVENT_LOOP_END, mUserData, NULL);
1943         --loopCountNotifications;
1944     }
1945     if (flags & CBLK_BUFFER_END) {
1946         mCbf(EVENT_BUFFER_END, mUserData, NULL);
1947     }
1948     if (markerReached) {
1949         mCbf(EVENT_MARKER, mUserData, &markerPosition);
1950     }
1951     while (newPosCount > 0) {
1952         size_t temp = newPosition.value(); // FIXME size_t != uint32_t
1953         mCbf(EVENT_NEW_POS, mUserData, &temp);
1954         newPosition += updatePeriod;
1955         newPosCount--;
1956     }
1957 
1958     if (mObservedSequence != sequence) {
1959         mObservedSequence = sequence;
1960         mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
1961         // for offloaded tracks, just wait for the upper layers to recreate the track
1962         if (isOffloadedOrDirect()) {
1963             return NS_INACTIVE;
1964         }
1965     }
1966 
1967     // if inactive, then don't run me again until re-started
1968     if (!active) {
1969         return NS_INACTIVE;
1970     }
1971 
1972     // Compute the estimated time until the next timed event (position, markers, loops)
1973     // FIXME only for non-compressed audio
1974     uint32_t minFrames = ~0;
1975     if (!markerReached && position < markerPosition) {
1976         minFrames = (markerPosition - position).value();
1977     }
1978     if (loopPeriod > 0 && loopPeriod < minFrames) {
1979         // loopPeriod is already adjusted for actual position.
1980         minFrames = loopPeriod;
1981     }
1982     if (updatePeriod > 0) {
1983         minFrames = min(minFrames, (newPosition - position).value());
1984     }
1985 
1986     // If > 0, poll periodically to recover from a stuck server.  A good value is 2.
1987     static const uint32_t kPoll = 0;
1988     if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
1989         minFrames = kPoll * notificationFrames;
1990     }
1991 
1992     // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
1993     static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
1994     const nsecs_t timeAfterCallbacks = systemTime();
1995 
1996     // Convert frame units to time units
1997     nsecs_t ns = NS_WHENEVER;
1998     if (minFrames != (uint32_t) ~0) {
1999         ns = framesToNanoseconds(minFrames, sampleRate, speed) + kWaitPeriodNs;
2000         ns -= (timeAfterCallbacks - timeBeforeCallbacks);  // account for callback time
2001         // TODO: Should we warn if the callback time is too long?
2002         if (ns < 0) ns = 0;
2003     }
2004 
2005     // If not supplying data by EVENT_MORE_DATA, then we're done
2006     if (mTransfer != TRANSFER_CALLBACK) {
2007         return ns;
2008     }
2009 
2010     // EVENT_MORE_DATA callback handling.
2011     // Timing for linear pcm audio data formats can be derived directly from the
2012     // buffer fill level.
2013     // Timing for compressed data is not directly available from the buffer fill level,
2014     // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
2015     // to return a certain fill level.
2016 
2017     struct timespec timeout;
2018     const struct timespec *requested = &ClientProxy::kForever;
2019     if (ns != NS_WHENEVER) {
2020         timeout.tv_sec = ns / 1000000000LL;
2021         timeout.tv_nsec = ns % 1000000000LL;
2022         ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
2023         requested = &timeout;
2024     }
2025 
2026     size_t writtenFrames = 0;
2027     while (mRemainingFrames > 0) {
2028 
2029         Buffer audioBuffer;
2030         audioBuffer.frameCount = mRemainingFrames;
2031         size_t nonContig;
2032         status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
2033         LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
2034                 "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
2035         requested = &ClientProxy::kNonBlocking;
2036         size_t avail = audioBuffer.frameCount + nonContig;
2037         ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
2038                 mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
2039         if (err != NO_ERROR) {
2040             if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
2041                     (isOffloaded() && (err == DEAD_OBJECT))) {
2042                 // FIXME bug 25195759
2043                 return 1000000;
2044             }
2045             ALOGE("Error %d obtaining an audio buffer, giving up.", err);
2046             return NS_NEVER;
2047         }
2048 
2049         if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
2050             mRetryOnPartialBuffer = false;
2051             if (avail < mRemainingFrames) {
2052                 if (ns > 0) { // account for obtain time
2053                     const nsecs_t timeNow = systemTime();
2054                     ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2055                 }
2056                 nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2057                 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2058                     ns = myns;
2059                 }
2060                 return ns;
2061             }
2062         }
2063 
2064         size_t reqSize = audioBuffer.size;
2065         mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
2066         size_t writtenSize = audioBuffer.size;
2067 
2068         // Sanity check on returned size
2069         if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
2070             ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
2071                     reqSize, ssize_t(writtenSize));
2072             return NS_NEVER;
2073         }
2074 
2075         if (writtenSize == 0) {
2076             // The callback is done filling buffers
2077             // Keep this thread going to handle timed events and
2078             // still try to get more data in intervals of WAIT_PERIOD_MS
2079             // but don't just loop and block the CPU, so wait
2080 
2081             // mCbf(EVENT_MORE_DATA, ...) might either
2082             // (1) Block until it can fill the buffer, returning 0 size on EOS.
2083             // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
2084             // (3) Return 0 size when no data is available, does not wait for more data.
2085             //
2086             // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
2087             // We try to compute the wait time to avoid a tight sleep-wait cycle,
2088             // especially for case (3).
2089             //
2090             // The decision to support (1) and (2) affect the sizing of mRemainingFrames
2091             // and this loop; whereas for case (3) we could simply check once with the full
2092             // buffer size and skip the loop entirely.
2093 
2094             nsecs_t myns;
2095             if (audio_has_proportional_frames(mFormat)) {
2096                 // time to wait based on buffer occupancy
2097                 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
2098                         framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
2099                 // audio flinger thread buffer size (TODO: adjust for fast tracks)
2100                 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
2101                 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
2102                 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
2103                 myns = datans + (afns / 2);
2104             } else {
2105                 // FIXME: This could ping quite a bit if the buffer isn't full.
2106                 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
2107                 myns = kWaitPeriodNs;
2108             }
2109             if (ns > 0) { // account for obtain and callback time
2110                 const nsecs_t timeNow = systemTime();
2111                 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
2112             }
2113             if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
2114                 ns = myns;
2115             }
2116             return ns;
2117         }
2118 
2119         size_t releasedFrames = writtenSize / mFrameSize;
2120         audioBuffer.frameCount = releasedFrames;
2121         mRemainingFrames -= releasedFrames;
2122         if (misalignment >= releasedFrames) {
2123             misalignment -= releasedFrames;
2124         } else {
2125             misalignment = 0;
2126         }
2127 
2128         releaseBuffer(&audioBuffer);
2129         writtenFrames += releasedFrames;
2130 
2131         // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
2132         // if callback doesn't like to accept the full chunk
2133         if (writtenSize < reqSize) {
2134             continue;
2135         }
2136 
2137         // There could be enough non-contiguous frames available to satisfy the remaining request
2138         if (mRemainingFrames <= nonContig) {
2139             continue;
2140         }
2141 
2142 #if 0
2143         // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
2144         // sum <= notificationFrames.  It replaces that series by at most two EVENT_MORE_DATA
2145         // that total to a sum == notificationFrames.
2146         if (0 < misalignment && misalignment <= mRemainingFrames) {
2147             mRemainingFrames = misalignment;
2148             return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
2149         }
2150 #endif
2151 
2152     }
2153     if (writtenFrames > 0) {
2154         AutoMutex lock(mLock);
2155         mFramesWritten += writtenFrames;
2156     }
2157     mRemainingFrames = notificationFrames;
2158     mRetryOnPartialBuffer = true;
2159 
2160     // A lot has transpired since ns was calculated, so run again immediately and re-calculate
2161     return 0;
2162 }
2163 
restoreTrack_l(const char * from)2164 status_t AudioTrack::restoreTrack_l(const char *from)
2165 {
2166     ALOGW("dead IAudioTrack, %s, creating a new one from %s()",
2167           isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
2168     ++mSequence;
2169 
2170     // refresh the audio configuration cache in this process to make sure we get new
2171     // output parameters and new IAudioFlinger in createTrack_l()
2172     AudioSystem::clearAudioConfigCache();
2173 
2174     if (isOffloadedOrDirect_l() || mDoNotReconnect) {
2175         // FIXME re-creation of offloaded and direct tracks is not yet implemented;
2176         // reconsider enabling for linear PCM encodings when position can be preserved.
2177         return DEAD_OBJECT;
2178     }
2179 
2180     // Save so we can return count since creation.
2181     mUnderrunCountOffset = getUnderrunCount_l();
2182 
2183     // save the old static buffer position
2184     size_t bufferPosition = 0;
2185     int loopCount = 0;
2186     if (mStaticProxy != 0) {
2187         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
2188     }
2189 
2190     mFlags = mOrigFlags;
2191 
2192     // If a new IAudioTrack is successfully created, createTrack_l() will modify the
2193     // following member variables: mAudioTrack, mCblkMemory and mCblk.
2194     // It will also delete the strong references on previous IAudioTrack and IMemory.
2195     // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
2196     status_t result = createTrack_l();
2197 
2198     if (result == NO_ERROR) {
2199         // take the frames that will be lost by track recreation into account in saved position
2200         // For streaming tracks, this is the amount we obtained from the user/client
2201         // (not the number actually consumed at the server - those are already lost).
2202         if (mStaticProxy == 0) {
2203             mPosition = mReleased;
2204         }
2205         // Continue playback from last known position and restore loop.
2206         if (mStaticProxy != 0) {
2207             if (loopCount != 0) {
2208                 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
2209                         mLoopStart, mLoopEnd, loopCount);
2210             } else {
2211                 mStaticProxy->setBufferPosition(bufferPosition);
2212                 if (bufferPosition == mFrameCount) {
2213                     ALOGD("restoring track at end of static buffer");
2214                 }
2215             }
2216         }
2217         if (mState == STATE_ACTIVE) {
2218             result = mAudioTrack->start();
2219             mFramesWrittenServerOffset = mFramesWritten; // server resets to zero so we offset
2220         }
2221     }
2222     if (result != NO_ERROR) {
2223         ALOGW("restoreTrack_l() failed status %d", result);
2224         mState = STATE_STOPPED;
2225         mReleased = 0;
2226     }
2227 
2228     return result;
2229 }
2230 
updateAndGetPosition_l()2231 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
2232 {
2233     // This is the sole place to read server consumed frames
2234     Modulo<uint32_t> newServer(mProxy->getPosition());
2235     const int32_t delta = (newServer - mServer).signedValue();
2236     // TODO There is controversy about whether there can be "negative jitter" in server position.
2237     //      This should be investigated further, and if possible, it should be addressed.
2238     //      A more definite failure mode is infrequent polling by client.
2239     //      One could call (void)getPosition_l() in releaseBuffer(),
2240     //      so mReleased and mPosition are always lock-step as best possible.
2241     //      That should ensure delta never goes negative for infrequent polling
2242     //      unless the server has more than 2^31 frames in its buffer,
2243     //      in which case the use of uint32_t for these counters has bigger issues.
2244     ALOGE_IF(delta < 0,
2245             "detected illegal retrograde motion by the server: mServer advanced by %d",
2246             delta);
2247     mServer = newServer;
2248     if (delta > 0) { // avoid retrograde
2249         mPosition += delta;
2250     }
2251     return mPosition;
2252 }
2253 
isSampleRateSpeedAllowed_l(uint32_t sampleRate,float speed) const2254 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed) const
2255 {
2256     // applicable for mixing tracks only (not offloaded or direct)
2257     if (mStaticProxy != 0) {
2258         return true; // static tracks do not have issues with buffer sizing.
2259     }
2260     const size_t minFrameCount =
2261             calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed
2262                 /*, 0 mNotificationsPerBufferReq*/);
2263     ALOGV("isSampleRateSpeedAllowed_l mFrameCount %zu  minFrameCount %zu",
2264             mFrameCount, minFrameCount);
2265     return mFrameCount >= minFrameCount;
2266 }
2267 
setParameters(const String8 & keyValuePairs)2268 status_t AudioTrack::setParameters(const String8& keyValuePairs)
2269 {
2270     AutoMutex lock(mLock);
2271     return mAudioTrack->setParameters(keyValuePairs);
2272 }
2273 
getTimestamp(ExtendedTimestamp * timestamp)2274 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
2275 {
2276     if (timestamp == nullptr) {
2277         return BAD_VALUE;
2278     }
2279     AutoMutex lock(mLock);
2280     return getTimestamp_l(timestamp);
2281 }
2282 
getTimestamp_l(ExtendedTimestamp * timestamp)2283 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
2284 {
2285     if (mCblk->mFlags & CBLK_INVALID) {
2286         const status_t status = restoreTrack_l("getTimestampExtended");
2287         if (status != OK) {
2288             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2289             // recommending that the track be recreated.
2290             return DEAD_OBJECT;
2291         }
2292     }
2293     // check for offloaded/direct here in case restoring somehow changed those flags.
2294     if (isOffloadedOrDirect_l()) {
2295         return INVALID_OPERATION; // not supported
2296     }
2297     status_t status = mProxy->getTimestamp(timestamp);
2298     LOG_ALWAYS_FATAL_IF(status != OK, "status %d not allowed from proxy getTimestamp", status);
2299     bool found = false;
2300     timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
2301     timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
2302     // server side frame offset in case AudioTrack has been restored.
2303     for (int i = ExtendedTimestamp::LOCATION_SERVER;
2304             i < ExtendedTimestamp::LOCATION_MAX; ++i) {
2305         if (timestamp->mTimeNs[i] >= 0) {
2306             // apply server offset (frames flushed is ignored
2307             // so we don't report the jump when the flush occurs).
2308             timestamp->mPosition[i] += mFramesWrittenServerOffset;
2309             found = true;
2310         }
2311     }
2312     return found ? OK : WOULD_BLOCK;
2313 }
2314 
getTimestamp(AudioTimestamp & timestamp)2315 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
2316 {
2317     AutoMutex lock(mLock);
2318 
2319     bool previousTimestampValid = mPreviousTimestampValid;
2320     // Set false here to cover all the error return cases.
2321     mPreviousTimestampValid = false;
2322 
2323     switch (mState) {
2324     case STATE_ACTIVE:
2325     case STATE_PAUSED:
2326         break; // handle below
2327     case STATE_FLUSHED:
2328     case STATE_STOPPED:
2329         return WOULD_BLOCK;
2330     case STATE_STOPPING:
2331     case STATE_PAUSED_STOPPING:
2332         if (!isOffloaded_l()) {
2333             return INVALID_OPERATION;
2334         }
2335         break; // offloaded tracks handled below
2336     default:
2337         LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState);
2338         break;
2339     }
2340 
2341     if (mCblk->mFlags & CBLK_INVALID) {
2342         const status_t status = restoreTrack_l("getTimestamp");
2343         if (status != OK) {
2344             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
2345             // recommending that the track be recreated.
2346             return DEAD_OBJECT;
2347         }
2348     }
2349 
2350     // The presented frame count must always lag behind the consumed frame count.
2351     // To avoid a race, read the presented frames first.  This ensures that presented <= consumed.
2352 
2353     status_t status;
2354     if (isOffloadedOrDirect_l()) {
2355         // use Binder to get timestamp
2356         status = mAudioTrack->getTimestamp(timestamp);
2357     } else {
2358         // read timestamp from shared memory
2359         ExtendedTimestamp ets;
2360         status = mProxy->getTimestamp(&ets);
2361         if (status == OK) {
2362             ExtendedTimestamp::Location location;
2363             status = ets.getBestTimestamp(&timestamp, &location);
2364 
2365             if (status == OK) {
2366                 // It is possible that the best location has moved from the kernel to the server.
2367                 // In this case we adjust the position from the previous computed latency.
2368                 if (location == ExtendedTimestamp::LOCATION_SERVER) {
2369                     ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
2370                             "getTimestamp() location moved from kernel to server");
2371                     // check that the last kernel OK time info exists and the positions
2372                     // are valid (if they predate the current track, the positions may
2373                     // be zero or negative).
2374                     const int64_t frames =
2375                             (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
2376                             ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
2377                             ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
2378                             ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
2379                             ?
2380                             int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
2381                                     / 1000)
2382                             :
2383                             (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
2384                             - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
2385                     ALOGV("frame adjustment:%lld  timestamp:%s",
2386                             (long long)frames, ets.toString().c_str());
2387                     if (frames >= ets.mPosition[location]) {
2388                         timestamp.mPosition = 0;
2389                     } else {
2390                         timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
2391                     }
2392                 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
2393                     ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
2394                             "getTimestamp() location moved from server to kernel");
2395                 }
2396                 mPreviousLocation = location;
2397             } else {
2398                 // right after AudioTrack is started, one may not find a timestamp
2399                 ALOGV("getBestTimestamp did not find timestamp");
2400             }
2401         }
2402         if (status == INVALID_OPERATION) {
2403             status = WOULD_BLOCK;
2404         }
2405     }
2406     if (status != NO_ERROR) {
2407         ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status);
2408         return status;
2409     }
2410     if (isOffloadedOrDirect_l()) {
2411         if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
2412             // use cached paused position in case another offloaded track is running.
2413             timestamp.mPosition = mPausedPosition;
2414             clock_gettime(CLOCK_MONOTONIC, &timestamp.mTime);
2415             return NO_ERROR;
2416         }
2417 
2418         // Check whether a pending flush or stop has completed, as those commands may
2419         // be asynchronous or return near finish or exhibit glitchy behavior.
2420         //
2421         // Originally this showed up as the first timestamp being a continuation of
2422         // the previous song under gapless playback.
2423         // However, we sometimes see zero timestamps, then a glitch of
2424         // the previous song's position, and then correct timestamps afterwards.
2425         if (mStartUs != 0 && mSampleRate != 0) {
2426             static const int kTimeJitterUs = 100000; // 100 ms
2427             static const int k1SecUs = 1000000;
2428 
2429             const int64_t timeNow = getNowUs();
2430 
2431             if (timeNow < mStartUs + k1SecUs) { // within first second of starting
2432                 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
2433                 if (timestampTimeUs < mStartUs) {
2434                     return WOULD_BLOCK;  // stale timestamp time, occurs before start.
2435                 }
2436                 const int64_t deltaTimeUs = timestampTimeUs - mStartUs;
2437                 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
2438                         / ((double)mSampleRate * mPlaybackRate.mSpeed);
2439 
2440                 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
2441                     // Verify that the counter can't count faster than the sample rate
2442                     // since the start time.  If greater, then that means we may have failed
2443                     // to completely flush or stop the previous playing track.
2444                     ALOGW_IF(!mTimestampStartupGlitchReported,
2445                             "getTimestamp startup glitch detected"
2446                             " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
2447                             (long long)deltaTimeUs, (long long)deltaPositionByUs,
2448                             timestamp.mPosition);
2449                     mTimestampStartupGlitchReported = true;
2450                     if (previousTimestampValid
2451                             && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
2452                         timestamp = mPreviousTimestamp;
2453                         mPreviousTimestampValid = true;
2454                         return NO_ERROR;
2455                     }
2456                     return WOULD_BLOCK;
2457                 }
2458                 if (deltaPositionByUs != 0) {
2459                     mStartUs = 0; // don't check again, we got valid nonzero position.
2460                 }
2461             } else {
2462                 mStartUs = 0; // don't check again, start time expired.
2463             }
2464             mTimestampStartupGlitchReported = false;
2465         }
2466     } else {
2467         // Update the mapping between local consumed (mPosition) and server consumed (mServer)
2468         (void) updateAndGetPosition_l();
2469         // Server consumed (mServer) and presented both use the same server time base,
2470         // and server consumed is always >= presented.
2471         // The delta between these represents the number of frames in the buffer pipeline.
2472         // If this delta between these is greater than the client position, it means that
2473         // actually presented is still stuck at the starting line (figuratively speaking),
2474         // waiting for the first frame to go by.  So we can't report a valid timestamp yet.
2475         // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
2476         // mPosition exceeds 32 bits.
2477         // TODO Remove when timestamp is updated to contain pipeline status info.
2478         const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
2479         if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
2480                 && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
2481             return INVALID_OPERATION;
2482         }
2483         // Convert timestamp position from server time base to client time base.
2484         // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
2485         // But if we change it to 64-bit then this could fail.
2486         // Use Modulo computation here.
2487         timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
2488         // Immediately after a call to getPosition_l(), mPosition and
2489         // mServer both represent the same frame position.  mPosition is
2490         // in client's point of view, and mServer is in server's point of
2491         // view.  So the difference between them is the "fudge factor"
2492         // between client and server views due to stop() and/or new
2493         // IAudioTrack.  And timestamp.mPosition is initially in server's
2494         // point of view, so we need to apply the same fudge factor to it.
2495     }
2496 
2497     // Prevent retrograde motion in timestamp.
2498     // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
2499     if (status == NO_ERROR) {
2500         if (previousTimestampValid) {
2501 #define TIME_TO_NANOS(time) ((int64_t)time.tv_sec * 1000000000 + time.tv_nsec)
2502             const int64_t previousTimeNanos = TIME_TO_NANOS(mPreviousTimestamp.mTime);
2503             const int64_t currentTimeNanos = TIME_TO_NANOS(timestamp.mTime);
2504 #undef TIME_TO_NANOS
2505             if (currentTimeNanos < previousTimeNanos) {
2506                 ALOGW("retrograde timestamp time");
2507                 // FIXME Consider blocking this from propagating upwards.
2508             }
2509 
2510             // Looking at signed delta will work even when the timestamps
2511             // are wrapping around.
2512             int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
2513                     - mPreviousTimestamp.mPosition).signedValue();
2514             // position can bobble slightly as an artifact; this hides the bobble
2515             static const int32_t MINIMUM_POSITION_DELTA = 8;
2516             if (deltaPosition < 0) {
2517                 // Only report once per position instead of spamming the log.
2518                 if (!mRetrogradeMotionReported) {
2519                     ALOGW("retrograde timestamp position corrected, %d = %u - %u",
2520                             deltaPosition,
2521                             timestamp.mPosition,
2522                             mPreviousTimestamp.mPosition);
2523                     mRetrogradeMotionReported = true;
2524                 }
2525             } else {
2526                 mRetrogradeMotionReported = false;
2527             }
2528             if (deltaPosition < MINIMUM_POSITION_DELTA) {
2529                 timestamp = mPreviousTimestamp;  // Use last valid timestamp.
2530             }
2531         }
2532         mPreviousTimestamp = timestamp;
2533         mPreviousTimestampValid = true;
2534     }
2535 
2536     return status;
2537 }
2538 
getParameters(const String8 & keys)2539 String8 AudioTrack::getParameters(const String8& keys)
2540 {
2541     audio_io_handle_t output = getOutput();
2542     if (output != AUDIO_IO_HANDLE_NONE) {
2543         return AudioSystem::getParameters(output, keys);
2544     } else {
2545         return String8::empty();
2546     }
2547 }
2548 
isOffloaded() const2549 bool AudioTrack::isOffloaded() const
2550 {
2551     AutoMutex lock(mLock);
2552     return isOffloaded_l();
2553 }
2554 
isDirect() const2555 bool AudioTrack::isDirect() const
2556 {
2557     AutoMutex lock(mLock);
2558     return isDirect_l();
2559 }
2560 
isOffloadedOrDirect() const2561 bool AudioTrack::isOffloadedOrDirect() const
2562 {
2563     AutoMutex lock(mLock);
2564     return isOffloadedOrDirect_l();
2565 }
2566 
2567 
dump(int fd,const Vector<String16> & args __unused) const2568 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
2569 {
2570 
2571     const size_t SIZE = 256;
2572     char buffer[SIZE];
2573     String8 result;
2574 
2575     result.append(" AudioTrack::dump\n");
2576     snprintf(buffer, 255, "  stream type(%d), left - right volume(%f, %f)\n", mStreamType,
2577             mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
2578     result.append(buffer);
2579     snprintf(buffer, 255, "  format(%d), channel count(%d), frame count(%zu)\n", mFormat,
2580             mChannelCount, mFrameCount);
2581     result.append(buffer);
2582     snprintf(buffer, 255, "  sample rate(%u), speed(%f), status(%d)\n",
2583             mSampleRate, mPlaybackRate.mSpeed, mStatus);
2584     result.append(buffer);
2585     snprintf(buffer, 255, "  state(%d), latency (%d)\n", mState, mLatency);
2586     result.append(buffer);
2587     ::write(fd, result.string(), result.size());
2588     return NO_ERROR;
2589 }
2590 
getUnderrunCount() const2591 uint32_t AudioTrack::getUnderrunCount() const
2592 {
2593     AutoMutex lock(mLock);
2594     return getUnderrunCount_l();
2595 }
2596 
getUnderrunCount_l() const2597 uint32_t AudioTrack::getUnderrunCount_l() const
2598 {
2599     return mProxy->getUnderrunCount() + mUnderrunCountOffset;
2600 }
2601 
getUnderrunFrames() const2602 uint32_t AudioTrack::getUnderrunFrames() const
2603 {
2604     AutoMutex lock(mLock);
2605     return mProxy->getUnderrunFrames();
2606 }
2607 
addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2608 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
2609 {
2610     if (callback == 0) {
2611         ALOGW("%s adding NULL callback!", __FUNCTION__);
2612         return BAD_VALUE;
2613     }
2614     AutoMutex lock(mLock);
2615     if (mDeviceCallback == callback) {
2616         ALOGW("%s adding same callback!", __FUNCTION__);
2617         return INVALID_OPERATION;
2618     }
2619     status_t status = NO_ERROR;
2620     if (mOutput != AUDIO_IO_HANDLE_NONE) {
2621         if (mDeviceCallback != 0) {
2622             ALOGW("%s callback already present!", __FUNCTION__);
2623             AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2624         }
2625         status = AudioSystem::addAudioDeviceCallback(callback, mOutput);
2626     }
2627     mDeviceCallback = callback;
2628     return status;
2629 }
2630 
removeAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback> & callback)2631 status_t AudioTrack::removeAudioDeviceCallback(
2632         const sp<AudioSystem::AudioDeviceCallback>& callback)
2633 {
2634     if (callback == 0) {
2635         ALOGW("%s removing NULL callback!", __FUNCTION__);
2636         return BAD_VALUE;
2637     }
2638     AutoMutex lock(mLock);
2639     if (mDeviceCallback != callback) {
2640         ALOGW("%s removing different callback!", __FUNCTION__);
2641         return INVALID_OPERATION;
2642     }
2643     if (mOutput != AUDIO_IO_HANDLE_NONE) {
2644         AudioSystem::removeAudioDeviceCallback(mDeviceCallback, mOutput);
2645     }
2646     mDeviceCallback = 0;
2647     return NO_ERROR;
2648 }
2649 
pendingDuration(int32_t * msec,ExtendedTimestamp::Location location)2650 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
2651 {
2652     if (msec == nullptr ||
2653             (location != ExtendedTimestamp::LOCATION_SERVER
2654                     && location != ExtendedTimestamp::LOCATION_KERNEL)) {
2655         return BAD_VALUE;
2656     }
2657     AutoMutex lock(mLock);
2658     // inclusive of offloaded and direct tracks.
2659     //
2660     // It is possible, but not enabled, to allow duration computation for non-pcm
2661     // audio_has_proportional_frames() formats because currently they have
2662     // the drain rate equivalent to the pcm sample rate * framesize.
2663     if (!isPurePcmData_l()) {
2664         return INVALID_OPERATION;
2665     }
2666     ExtendedTimestamp ets;
2667     if (getTimestamp_l(&ets) == OK
2668             && ets.mTimeNs[location] > 0) {
2669         int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
2670                 - ets.mPosition[location];
2671         if (diff < 0) {
2672             *msec = 0;
2673         } else {
2674             // ms is the playback time by frames
2675             int64_t ms = (int64_t)((double)diff * 1000 /
2676                     ((double)mSampleRate * mPlaybackRate.mSpeed));
2677             // clockdiff is the timestamp age (negative)
2678             int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
2679                     ets.mTimeNs[location]
2680                     + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
2681                     - systemTime(SYSTEM_TIME_MONOTONIC);
2682 
2683             //ALOGV("ms: %lld  clockdiff: %lld", (long long)ms, (long long)clockdiff);
2684             static const int NANOS_PER_MILLIS = 1000000;
2685             *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
2686         }
2687         return NO_ERROR;
2688     }
2689     if (location != ExtendedTimestamp::LOCATION_SERVER) {
2690         return INVALID_OPERATION; // LOCATION_KERNEL is not available
2691     }
2692     // use server position directly (offloaded and direct arrive here)
2693     updateAndGetPosition_l();
2694     int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
2695     *msec = (diff <= 0) ? 0
2696             : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
2697     return NO_ERROR;
2698 }
2699 
2700 // =========================================================================
2701 
binderDied(const wp<IBinder> & who __unused)2702 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
2703 {
2704     sp<AudioTrack> audioTrack = mAudioTrack.promote();
2705     if (audioTrack != 0) {
2706         AutoMutex lock(audioTrack->mLock);
2707         audioTrack->mProxy->binderDied();
2708     }
2709 }
2710 
2711 // =========================================================================
2712 
AudioTrackThread(AudioTrack & receiver,bool bCanCallJava)2713 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)
2714     : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
2715       mIgnoreNextPausedInt(false)
2716 {
2717 }
2718 
~AudioTrackThread()2719 AudioTrack::AudioTrackThread::~AudioTrackThread()
2720 {
2721 }
2722 
threadLoop()2723 bool AudioTrack::AudioTrackThread::threadLoop()
2724 {
2725     {
2726         AutoMutex _l(mMyLock);
2727         if (mPaused) {
2728             mMyCond.wait(mMyLock);
2729             // caller will check for exitPending()
2730             return true;
2731         }
2732         if (mIgnoreNextPausedInt) {
2733             mIgnoreNextPausedInt = false;
2734             mPausedInt = false;
2735         }
2736         if (mPausedInt) {
2737             if (mPausedNs > 0) {
2738                 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
2739             } else {
2740                 mMyCond.wait(mMyLock);
2741             }
2742             mPausedInt = false;
2743             return true;
2744         }
2745     }
2746     if (exitPending()) {
2747         return false;
2748     }
2749     nsecs_t ns = mReceiver.processAudioBuffer();
2750     switch (ns) {
2751     case 0:
2752         return true;
2753     case NS_INACTIVE:
2754         pauseInternal();
2755         return true;
2756     case NS_NEVER:
2757         return false;
2758     case NS_WHENEVER:
2759         // Event driven: call wake() when callback notifications conditions change.
2760         ns = INT64_MAX;
2761         // fall through
2762     default:
2763         LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
2764         pauseInternal(ns);
2765         return true;
2766     }
2767 }
2768 
requestExit()2769 void AudioTrack::AudioTrackThread::requestExit()
2770 {
2771     // must be in this order to avoid a race condition
2772     Thread::requestExit();
2773     resume();
2774 }
2775 
pause()2776 void AudioTrack::AudioTrackThread::pause()
2777 {
2778     AutoMutex _l(mMyLock);
2779     mPaused = true;
2780 }
2781 
resume()2782 void AudioTrack::AudioTrackThread::resume()
2783 {
2784     AutoMutex _l(mMyLock);
2785     mIgnoreNextPausedInt = true;
2786     if (mPaused || mPausedInt) {
2787         mPaused = false;
2788         mPausedInt = false;
2789         mMyCond.signal();
2790     }
2791 }
2792 
wake()2793 void AudioTrack::AudioTrackThread::wake()
2794 {
2795     AutoMutex _l(mMyLock);
2796     if (!mPaused) {
2797         // wake() might be called while servicing a callback - ignore the next
2798         // pause time and call processAudioBuffer.
2799         mIgnoreNextPausedInt = true;
2800         if (mPausedInt && mPausedNs > 0) {
2801             // audio track is active and internally paused with timeout.
2802             mPausedInt = false;
2803             mMyCond.signal();
2804         }
2805     }
2806 }
2807 
pauseInternal(nsecs_t ns)2808 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
2809 {
2810     AutoMutex _l(mMyLock);
2811     mPausedInt = true;
2812     mPausedNs = ns;
2813 }
2814 
2815 } // namespace android
2816