1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenTypes(CodeGenModule & cgm)32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout = false;
37 }
38
~CodeGenTypes()39 CodeGenTypes::~CodeGenTypes() {
40 llvm::DeleteContainerSeconds(CGRecordLayouts);
41
42 for (llvm::FoldingSet<CGFunctionInfo>::iterator
43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44 delete &*I++;
45 }
46
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
48 llvm::StructType *Ty,
49 StringRef suffix) {
50 SmallString<256> TypeName;
51 llvm::raw_svector_ostream OS(TypeName);
52 OS << RD->getKindName() << '.';
53
54 // Name the codegen type after the typedef name
55 // if there is no tag type name available
56 if (RD->getIdentifier()) {
57 // FIXME: We should not have to check for a null decl context here.
58 // Right now we do it because the implicit Obj-C decls don't have one.
59 if (RD->getDeclContext())
60 RD->printQualifiedName(OS);
61 else
62 RD->printName(OS);
63 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
64 // FIXME: We should not have to check for a null decl context here.
65 // Right now we do it because the implicit Obj-C decls don't have one.
66 if (TDD->getDeclContext())
67 TDD->printQualifiedName(OS);
68 else
69 TDD->printName(OS);
70 } else
71 OS << "anon";
72
73 if (!suffix.empty())
74 OS << suffix;
75
76 Ty->setName(OS.str());
77 }
78
79 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
80 /// ConvertType in that it is used to convert to the memory representation for
81 /// a type. For example, the scalar representation for _Bool is i1, but the
82 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
84 llvm::Type *R = ConvertType(T);
85
86 // If this is a non-bool type, don't map it.
87 if (!R->isIntegerTy(1))
88 return R;
89
90 // Otherwise, return an integer of the target-specified size.
91 return llvm::IntegerType::get(getLLVMContext(),
92 (unsigned)Context.getTypeSize(T));
93 }
94
95
96 /// isRecordLayoutComplete - Return true if the specified type is already
97 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
99 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
100 RecordDeclTypes.find(Ty);
101 return I != RecordDeclTypes.end() && !I->second->isOpaque();
102 }
103
104 static bool
105 isSafeToConvert(QualType T, CodeGenTypes &CGT,
106 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
107
108
109 /// isSafeToConvert - Return true if it is safe to convert the specified record
110 /// decl to IR and lay it out, false if doing so would cause us to get into a
111 /// recursive compilation mess.
112 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
114 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
115 // If we have already checked this type (maybe the same type is used by-value
116 // multiple times in multiple structure fields, don't check again.
117 if (!AlreadyChecked.insert(RD).second)
118 return true;
119
120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121
122 // If this type is already laid out, converting it is a noop.
123 if (CGT.isRecordLayoutComplete(Key)) return true;
124
125 // If this type is currently being laid out, we can't recursively compile it.
126 if (CGT.isRecordBeingLaidOut(Key))
127 return false;
128
129 // If this type would require laying out bases that are currently being laid
130 // out, don't do it. This includes virtual base classes which get laid out
131 // when a class is translated, even though they aren't embedded by-value into
132 // the class.
133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134 for (const auto &I : CRD->bases())
135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136 CGT, AlreadyChecked))
137 return false;
138 }
139
140 // If this type would require laying out members that are currently being laid
141 // out, don't do it.
142 for (const auto *I : RD->fields())
143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144 return false;
145
146 // If there are no problems, lets do it.
147 return true;
148 }
149
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156 // Strip off atomic type sugar.
157 if (const auto *AT = T->getAs<AtomicType>())
158 T = AT->getValueType();
159
160 // If this is a record, check it.
161 if (const auto *RT = T->getAs<RecordType>())
162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163
164 // If this is an array, check the elements, which are embedded inline.
165 if (const auto *AT = CGT.getContext().getAsArrayType(T))
166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167
168 // Otherwise, there is no concern about transforming this. We only care about
169 // things that are contained by-value in a structure that can have another
170 // structure as a member.
171 return true;
172 }
173
174
175 /// isSafeToConvert - Return true if it is safe to convert the specified record
176 /// decl to IR and lay it out, false if doing so would cause us to get into a
177 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179 // If no structs are being laid out, we can certainly do this one.
180 if (CGT.noRecordsBeingLaidOut()) return true;
181
182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183 return isSafeToConvert(RD, CGT, AlreadyChecked);
184 }
185
186 /// isFuncParamTypeConvertible - Return true if the specified type in a
187 /// function parameter or result position can be converted to an IR type at this
188 /// point. This boils down to being whether it is complete, as well as whether
189 /// we've temporarily deferred expanding the type because we're in a recursive
190 /// context.
isFuncParamTypeConvertible(QualType Ty)191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
192 // Some ABIs cannot have their member pointers represented in IR unless
193 // certain circumstances have been reached.
194 if (const auto *MPT = Ty->getAs<MemberPointerType>())
195 return getCXXABI().isMemberPointerConvertible(MPT);
196
197 // If this isn't a tagged type, we can convert it!
198 const TagType *TT = Ty->getAs<TagType>();
199 if (!TT) return true;
200
201 // Incomplete types cannot be converted.
202 if (TT->isIncompleteType())
203 return false;
204
205 // If this is an enum, then it is always safe to convert.
206 const RecordType *RT = dyn_cast<RecordType>(TT);
207 if (!RT) return true;
208
209 // Otherwise, we have to be careful. If it is a struct that we're in the
210 // process of expanding, then we can't convert the function type. That's ok
211 // though because we must be in a pointer context under the struct, so we can
212 // just convert it to a dummy type.
213 //
214 // We decide this by checking whether ConvertRecordDeclType returns us an
215 // opaque type for a struct that we know is defined.
216 return isSafeToConvert(RT->getDecl(), *this);
217 }
218
219
220 /// Code to verify a given function type is complete, i.e. the return type
221 /// and all of the parameter types are complete. Also check to see if we are in
222 /// a RS_StructPointer context, and if so whether any struct types have been
223 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
224 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
226 if (!isFuncParamTypeConvertible(FT->getReturnType()))
227 return false;
228
229 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
230 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
231 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
232 return false;
233
234 return true;
235 }
236
237 /// UpdateCompletedType - When we find the full definition for a TagDecl,
238 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
240 // If this is an enum being completed, then we flush all non-struct types from
241 // the cache. This allows function types and other things that may be derived
242 // from the enum to be recomputed.
243 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
244 // Only flush the cache if we've actually already converted this type.
245 if (TypeCache.count(ED->getTypeForDecl())) {
246 // Okay, we formed some types based on this. We speculated that the enum
247 // would be lowered to i32, so we only need to flush the cache if this
248 // didn't happen.
249 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
250 TypeCache.clear();
251 }
252 // If necessary, provide the full definition of a type only used with a
253 // declaration so far.
254 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
255 DI->completeType(ED);
256 return;
257 }
258
259 // If we completed a RecordDecl that we previously used and converted to an
260 // anonymous type, then go ahead and complete it now.
261 const RecordDecl *RD = cast<RecordDecl>(TD);
262 if (RD->isDependentType()) return;
263
264 // Only complete it if we converted it already. If we haven't converted it
265 // yet, we'll just do it lazily.
266 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
267 ConvertRecordDeclType(RD);
268
269 // If necessary, provide the full definition of a type only used with a
270 // declaration so far.
271 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
272 DI->completeType(RD);
273 }
274
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)275 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
276 const llvm::fltSemantics &format,
277 bool UseNativeHalf = false) {
278 if (&format == &llvm::APFloat::IEEEhalf) {
279 if (UseNativeHalf)
280 return llvm::Type::getHalfTy(VMContext);
281 else
282 return llvm::Type::getInt16Ty(VMContext);
283 }
284 if (&format == &llvm::APFloat::IEEEsingle)
285 return llvm::Type::getFloatTy(VMContext);
286 if (&format == &llvm::APFloat::IEEEdouble)
287 return llvm::Type::getDoubleTy(VMContext);
288 if (&format == &llvm::APFloat::IEEEquad)
289 return llvm::Type::getFP128Ty(VMContext);
290 if (&format == &llvm::APFloat::PPCDoubleDouble)
291 return llvm::Type::getPPC_FP128Ty(VMContext);
292 if (&format == &llvm::APFloat::x87DoubleExtended)
293 return llvm::Type::getX86_FP80Ty(VMContext);
294 llvm_unreachable("Unknown float format!");
295 }
296
ConvertFunctionType(QualType QFT,const FunctionDecl * FD)297 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT,
298 const FunctionDecl *FD) {
299 assert(QFT.isCanonical());
300 const Type *Ty = QFT.getTypePtr();
301 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
302 // First, check whether we can build the full function type. If the
303 // function type depends on an incomplete type (e.g. a struct or enum), we
304 // cannot lower the function type.
305 if (!isFuncTypeConvertible(FT)) {
306 // This function's type depends on an incomplete tag type.
307
308 // Force conversion of all the relevant record types, to make sure
309 // we re-convert the FunctionType when appropriate.
310 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
311 ConvertRecordDeclType(RT->getDecl());
312 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
313 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
314 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
315 ConvertRecordDeclType(RT->getDecl());
316
317 SkippedLayout = true;
318
319 // Return a placeholder type.
320 return llvm::StructType::get(getLLVMContext());
321 }
322
323 // While we're converting the parameter types for a function, we don't want
324 // to recursively convert any pointed-to structs. Converting directly-used
325 // structs is ok though.
326 if (!RecordsBeingLaidOut.insert(Ty).second) {
327 SkippedLayout = true;
328 return llvm::StructType::get(getLLVMContext());
329 }
330
331 // The function type can be built; call the appropriate routines to
332 // build it.
333 const CGFunctionInfo *FI;
334 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
335 FI = &arrangeFreeFunctionType(
336 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD);
337 } else {
338 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
339 FI = &arrangeFreeFunctionType(
340 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
341 }
342
343 llvm::Type *ResultType = nullptr;
344 // If there is something higher level prodding our CGFunctionInfo, then
345 // don't recurse into it again.
346 if (FunctionsBeingProcessed.count(FI)) {
347
348 ResultType = llvm::StructType::get(getLLVMContext());
349 SkippedLayout = true;
350 } else {
351
352 // Otherwise, we're good to go, go ahead and convert it.
353 ResultType = GetFunctionType(*FI);
354 }
355
356 RecordsBeingLaidOut.erase(Ty);
357
358 if (SkippedLayout)
359 TypeCache.clear();
360
361 if (RecordsBeingLaidOut.empty())
362 while (!DeferredRecords.empty())
363 ConvertRecordDeclType(DeferredRecords.pop_back_val());
364 return ResultType;
365 }
366
367 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)368 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
369 T = Context.getCanonicalType(T);
370
371 const Type *Ty = T.getTypePtr();
372
373 // RecordTypes are cached and processed specially.
374 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
375 return ConvertRecordDeclType(RT->getDecl());
376
377 // See if type is already cached.
378 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
379 // If type is found in map then use it. Otherwise, convert type T.
380 if (TCI != TypeCache.end())
381 return TCI->second;
382
383 // If we don't have it in the cache, convert it now.
384 llvm::Type *ResultType = nullptr;
385 switch (Ty->getTypeClass()) {
386 case Type::Record: // Handled above.
387 #define TYPE(Class, Base)
388 #define ABSTRACT_TYPE(Class, Base)
389 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
390 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
391 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
392 #include "clang/AST/TypeNodes.def"
393 llvm_unreachable("Non-canonical or dependent types aren't possible.");
394
395 case Type::Builtin: {
396 switch (cast<BuiltinType>(Ty)->getKind()) {
397 case BuiltinType::Void:
398 case BuiltinType::ObjCId:
399 case BuiltinType::ObjCClass:
400 case BuiltinType::ObjCSel:
401 // LLVM void type can only be used as the result of a function call. Just
402 // map to the same as char.
403 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
404 break;
405
406 case BuiltinType::Bool:
407 // Note that we always return bool as i1 for use as a scalar type.
408 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
409 break;
410
411 case BuiltinType::Char_S:
412 case BuiltinType::Char_U:
413 case BuiltinType::SChar:
414 case BuiltinType::UChar:
415 case BuiltinType::Short:
416 case BuiltinType::UShort:
417 case BuiltinType::Int:
418 case BuiltinType::UInt:
419 case BuiltinType::Long:
420 case BuiltinType::ULong:
421 case BuiltinType::LongLong:
422 case BuiltinType::ULongLong:
423 case BuiltinType::WChar_S:
424 case BuiltinType::WChar_U:
425 case BuiltinType::Char16:
426 case BuiltinType::Char32:
427 ResultType = llvm::IntegerType::get(getLLVMContext(),
428 static_cast<unsigned>(Context.getTypeSize(T)));
429 break;
430
431 case BuiltinType::Half:
432 // Half FP can either be storage-only (lowered to i16) or native.
433 ResultType =
434 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
435 Context.getLangOpts().NativeHalfType ||
436 Context.getLangOpts().HalfArgsAndReturns);
437 break;
438 case BuiltinType::Float:
439 case BuiltinType::Double:
440 case BuiltinType::LongDouble:
441 ResultType = getTypeForFormat(getLLVMContext(),
442 Context.getFloatTypeSemantics(T),
443 /* UseNativeHalf = */ false);
444 break;
445
446 case BuiltinType::NullPtr:
447 // Model std::nullptr_t as i8*
448 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
449 break;
450
451 case BuiltinType::UInt128:
452 case BuiltinType::Int128:
453 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
454 break;
455
456 case BuiltinType::OCLImage1d:
457 case BuiltinType::OCLImage1dArray:
458 case BuiltinType::OCLImage1dBuffer:
459 case BuiltinType::OCLImage2d:
460 case BuiltinType::OCLImage2dArray:
461 case BuiltinType::OCLImage2dDepth:
462 case BuiltinType::OCLImage2dArrayDepth:
463 case BuiltinType::OCLImage2dMSAA:
464 case BuiltinType::OCLImage2dArrayMSAA:
465 case BuiltinType::OCLImage2dMSAADepth:
466 case BuiltinType::OCLImage2dArrayMSAADepth:
467 case BuiltinType::OCLImage3d:
468 case BuiltinType::OCLSampler:
469 case BuiltinType::OCLEvent:
470 case BuiltinType::OCLClkEvent:
471 case BuiltinType::OCLQueue:
472 case BuiltinType::OCLNDRange:
473 case BuiltinType::OCLReserveID:
474 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
475 break;
476
477 case BuiltinType::Dependent:
478 #define BUILTIN_TYPE(Id, SingletonId)
479 #define PLACEHOLDER_TYPE(Id, SingletonId) \
480 case BuiltinType::Id:
481 #include "clang/AST/BuiltinTypes.def"
482 llvm_unreachable("Unexpected placeholder builtin type!");
483 }
484 break;
485 }
486 case Type::Auto:
487 llvm_unreachable("Unexpected undeduced auto type!");
488 case Type::Complex: {
489 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
490 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
491 break;
492 }
493 case Type::LValueReference:
494 case Type::RValueReference: {
495 const ReferenceType *RTy = cast<ReferenceType>(Ty);
496 QualType ETy = RTy->getPointeeType();
497 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
498 unsigned AS = Context.getTargetAddressSpace(ETy);
499 ResultType = llvm::PointerType::get(PointeeType, AS);
500 break;
501 }
502 case Type::Pointer: {
503 const PointerType *PTy = cast<PointerType>(Ty);
504 QualType ETy = PTy->getPointeeType();
505 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
506 if (PointeeType->isVoidTy())
507 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
508 unsigned AS = Context.getTargetAddressSpace(ETy);
509 ResultType = llvm::PointerType::get(PointeeType, AS);
510 break;
511 }
512
513 case Type::VariableArray: {
514 const VariableArrayType *A = cast<VariableArrayType>(Ty);
515 assert(A->getIndexTypeCVRQualifiers() == 0 &&
516 "FIXME: We only handle trivial array types so far!");
517 // VLAs resolve to the innermost element type; this matches
518 // the return of alloca, and there isn't any obviously better choice.
519 ResultType = ConvertTypeForMem(A->getElementType());
520 break;
521 }
522 case Type::IncompleteArray: {
523 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
524 assert(A->getIndexTypeCVRQualifiers() == 0 &&
525 "FIXME: We only handle trivial array types so far!");
526 // int X[] -> [0 x int], unless the element type is not sized. If it is
527 // unsized (e.g. an incomplete struct) just use [0 x i8].
528 ResultType = ConvertTypeForMem(A->getElementType());
529 if (!ResultType->isSized()) {
530 SkippedLayout = true;
531 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
532 }
533 ResultType = llvm::ArrayType::get(ResultType, 0);
534 break;
535 }
536 case Type::ConstantArray: {
537 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
538 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
539
540 // Lower arrays of undefined struct type to arrays of i8 just to have a
541 // concrete type.
542 if (!EltTy->isSized()) {
543 SkippedLayout = true;
544 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
545 }
546
547 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
548 break;
549 }
550 case Type::ExtVector:
551 case Type::Vector: {
552 const VectorType *VT = cast<VectorType>(Ty);
553 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
554 VT->getNumElements());
555 break;
556 }
557 case Type::FunctionNoProto:
558 case Type::FunctionProto:
559 ResultType = ConvertFunctionType(T);
560 break;
561 case Type::ObjCObject:
562 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
563 break;
564
565 case Type::ObjCInterface: {
566 // Objective-C interfaces are always opaque (outside of the
567 // runtime, which can do whatever it likes); we never refine
568 // these.
569 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
570 if (!T)
571 T = llvm::StructType::create(getLLVMContext());
572 ResultType = T;
573 break;
574 }
575
576 case Type::ObjCObjectPointer: {
577 // Protocol qualifications do not influence the LLVM type, we just return a
578 // pointer to the underlying interface type. We don't need to worry about
579 // recursive conversion.
580 llvm::Type *T =
581 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
582 ResultType = T->getPointerTo();
583 break;
584 }
585
586 case Type::Enum: {
587 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
588 if (ED->isCompleteDefinition() || ED->isFixed())
589 return ConvertType(ED->getIntegerType());
590 // Return a placeholder 'i32' type. This can be changed later when the
591 // type is defined (see UpdateCompletedType), but is likely to be the
592 // "right" answer.
593 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
594 break;
595 }
596
597 case Type::BlockPointer: {
598 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
599 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
600 unsigned AS = Context.getTargetAddressSpace(FTy);
601 ResultType = llvm::PointerType::get(PointeeType, AS);
602 break;
603 }
604
605 case Type::MemberPointer: {
606 if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
607 return llvm::StructType::create(getLLVMContext());
608 ResultType =
609 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
610 break;
611 }
612
613 case Type::Atomic: {
614 QualType valueType = cast<AtomicType>(Ty)->getValueType();
615 ResultType = ConvertTypeForMem(valueType);
616
617 // Pad out to the inflated size if necessary.
618 uint64_t valueSize = Context.getTypeSize(valueType);
619 uint64_t atomicSize = Context.getTypeSize(Ty);
620 if (valueSize != atomicSize) {
621 assert(valueSize < atomicSize);
622 llvm::Type *elts[] = {
623 ResultType,
624 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
625 };
626 ResultType = llvm::StructType::get(getLLVMContext(),
627 llvm::makeArrayRef(elts));
628 }
629 break;
630 }
631 }
632
633 assert(ResultType && "Didn't convert a type?");
634
635 TypeCache[Ty] = ResultType;
636 return ResultType;
637 }
638
isPaddedAtomicType(QualType type)639 bool CodeGenModule::isPaddedAtomicType(QualType type) {
640 return isPaddedAtomicType(type->castAs<AtomicType>());
641 }
642
isPaddedAtomicType(const AtomicType * type)643 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
644 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
645 }
646
647 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)648 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
649 // TagDecl's are not necessarily unique, instead use the (clang)
650 // type connected to the decl.
651 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
652
653 llvm::StructType *&Entry = RecordDeclTypes[Key];
654
655 // If we don't have a StructType at all yet, create the forward declaration.
656 if (!Entry) {
657 Entry = llvm::StructType::create(getLLVMContext());
658 addRecordTypeName(RD, Entry, "");
659 }
660 llvm::StructType *Ty = Entry;
661
662 // If this is still a forward declaration, or the LLVM type is already
663 // complete, there's nothing more to do.
664 RD = RD->getDefinition();
665 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
666 return Ty;
667
668 // If converting this type would cause us to infinitely loop, don't do it!
669 if (!isSafeToConvert(RD, *this)) {
670 DeferredRecords.push_back(RD);
671 return Ty;
672 }
673
674 // Okay, this is a definition of a type. Compile the implementation now.
675 bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
676 (void)InsertResult;
677 assert(InsertResult && "Recursively compiling a struct?");
678
679 // Force conversion of non-virtual base classes recursively.
680 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
681 for (const auto &I : CRD->bases()) {
682 if (I.isVirtual()) continue;
683
684 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
685 }
686 }
687
688 // Layout fields.
689 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
690 CGRecordLayouts[Key] = Layout;
691
692 // We're done laying out this struct.
693 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
694 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
695
696 // If this struct blocked a FunctionType conversion, then recompute whatever
697 // was derived from that.
698 // FIXME: This is hugely overconservative.
699 if (SkippedLayout)
700 TypeCache.clear();
701
702 // If we're done converting the outer-most record, then convert any deferred
703 // structs as well.
704 if (RecordsBeingLaidOut.empty())
705 while (!DeferredRecords.empty())
706 ConvertRecordDeclType(DeferredRecords.pop_back_val());
707
708 return Ty;
709 }
710
711 /// getCGRecordLayout - Return record layout info for the given record decl.
712 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)713 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
714 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
715
716 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
717 if (!Layout) {
718 // Compute the type information.
719 ConvertRecordDeclType(RD);
720
721 // Now try again.
722 Layout = CGRecordLayouts.lookup(Key);
723 }
724
725 assert(Layout && "Unable to find record layout information for type");
726 return *Layout;
727 }
728
isZeroInitializable(QualType T)729 bool CodeGenTypes::isZeroInitializable(QualType T) {
730 // No need to check for member pointers when not compiling C++.
731 if (!Context.getLangOpts().CPlusPlus)
732 return true;
733
734 if (const auto *AT = Context.getAsArrayType(T)) {
735 if (isa<IncompleteArrayType>(AT))
736 return true;
737 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
738 if (Context.getConstantArrayElementCount(CAT) == 0)
739 return true;
740 T = Context.getBaseElementType(T);
741 }
742
743 // Records are non-zero-initializable if they contain any
744 // non-zero-initializable subobjects.
745 if (const RecordType *RT = T->getAs<RecordType>()) {
746 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
747 return isZeroInitializable(RD);
748 }
749
750 // We have to ask the ABI about member pointers.
751 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
752 return getCXXABI().isZeroInitializable(MPT);
753
754 // Everything else is okay.
755 return true;
756 }
757
isZeroInitializable(const RecordDecl * RD)758 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
759 return getCGRecordLayout(RD).isZeroInitializable();
760 }
761