• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 using namespace llvm;
46 
47 static cl::opt<bool> PrintWholeRegMask(
48     "print-whole-regmask",
49     cl::desc("Print the full contents of regmask operands in IR dumps"),
50     cl::init(true), cl::Hidden);
51 
52 //===----------------------------------------------------------------------===//
53 // MachineOperand Implementation
54 //===----------------------------------------------------------------------===//
55 
setReg(unsigned Reg)56 void MachineOperand::setReg(unsigned Reg) {
57   if (getReg() == Reg) return; // No change.
58 
59   // Otherwise, we have to change the register.  If this operand is embedded
60   // into a machine function, we need to update the old and new register's
61   // use/def lists.
62   if (MachineInstr *MI = getParent())
63     if (MachineBasicBlock *MBB = MI->getParent())
64       if (MachineFunction *MF = MBB->getParent()) {
65         MachineRegisterInfo &MRI = MF->getRegInfo();
66         MRI.removeRegOperandFromUseList(this);
67         SmallContents.RegNo = Reg;
68         MRI.addRegOperandToUseList(this);
69         return;
70       }
71 
72   // Otherwise, just change the register, no problem.  :)
73   SmallContents.RegNo = Reg;
74 }
75 
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
77                                   const TargetRegisterInfo &TRI) {
78   assert(TargetRegisterInfo::isVirtualRegister(Reg));
79   if (SubIdx && getSubReg())
80     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
81   setReg(Reg);
82   if (SubIdx)
83     setSubReg(SubIdx);
84 }
85 
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
87   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
88   if (getSubReg()) {
89     Reg = TRI.getSubReg(Reg, getSubReg());
90     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
91     // That won't happen in legal code.
92     setSubReg(0);
93   }
94   setReg(Reg);
95 }
96 
97 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)98 void MachineOperand::setIsDef(bool Val) {
99   assert(isReg() && "Wrong MachineOperand accessor");
100   assert((!Val || !isDebug()) && "Marking a debug operation as def");
101   if (IsDef == Val)
102     return;
103   // MRI may keep uses and defs in different list positions.
104   if (MachineInstr *MI = getParent())
105     if (MachineBasicBlock *MBB = MI->getParent())
106       if (MachineFunction *MF = MBB->getParent()) {
107         MachineRegisterInfo &MRI = MF->getRegInfo();
108         MRI.removeRegOperandFromUseList(this);
109         IsDef = Val;
110         MRI.addRegOperandToUseList(this);
111         return;
112       }
113   IsDef = Val;
114 }
115 
116 // If this operand is currently a register operand, and if this is in a
117 // function, deregister the operand from the register's use/def list.
removeRegFromUses()118 void MachineOperand::removeRegFromUses() {
119   if (!isReg() || !isOnRegUseList())
120     return;
121 
122   if (MachineInstr *MI = getParent()) {
123     if (MachineBasicBlock *MBB = MI->getParent()) {
124       if (MachineFunction *MF = MBB->getParent())
125         MF->getRegInfo().removeRegOperandFromUseList(this);
126     }
127   }
128 }
129 
130 /// ChangeToImmediate - Replace this operand with a new immediate operand of
131 /// the specified value.  If an operand is known to be an immediate already,
132 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
134   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
135 
136   removeRegFromUses();
137 
138   OpKind = MO_Immediate;
139   Contents.ImmVal = ImmVal;
140 }
141 
ChangeToFPImmediate(const ConstantFP * FPImm)142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
143   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
144 
145   removeRegFromUses();
146 
147   OpKind = MO_FPImmediate;
148   Contents.CFP = FPImm;
149 }
150 
ChangeToES(const char * SymName,unsigned char TargetFlags)151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
152   assert((!isReg() || !isTied()) &&
153          "Cannot change a tied operand into an external symbol");
154 
155   removeRegFromUses();
156 
157   OpKind = MO_ExternalSymbol;
158   Contents.OffsetedInfo.Val.SymbolName = SymName;
159   setOffset(0); // Offset is always 0.
160   setTargetFlags(TargetFlags);
161 }
162 
ChangeToMCSymbol(MCSymbol * Sym)163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
164   assert((!isReg() || !isTied()) &&
165          "Cannot change a tied operand into an MCSymbol");
166 
167   removeRegFromUses();
168 
169   OpKind = MO_MCSymbol;
170   Contents.Sym = Sym;
171 }
172 
173 /// ChangeToRegister - Replace this operand with a new register operand of
174 /// the specified value.  If an operand is known to be an register already,
175 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
177                                       bool isKill, bool isDead, bool isUndef,
178                                       bool isDebug) {
179   MachineRegisterInfo *RegInfo = nullptr;
180   if (MachineInstr *MI = getParent())
181     if (MachineBasicBlock *MBB = MI->getParent())
182       if (MachineFunction *MF = MBB->getParent())
183         RegInfo = &MF->getRegInfo();
184   // If this operand is already a register operand, remove it from the
185   // register's use/def lists.
186   bool WasReg = isReg();
187   if (RegInfo && WasReg)
188     RegInfo->removeRegOperandFromUseList(this);
189 
190   // Change this to a register and set the reg#.
191   OpKind = MO_Register;
192   SmallContents.RegNo = Reg;
193   SubReg_TargetFlags = 0;
194   IsDef = isDef;
195   IsImp = isImp;
196   IsKill = isKill;
197   IsDead = isDead;
198   IsUndef = isUndef;
199   IsInternalRead = false;
200   IsEarlyClobber = false;
201   IsDebug = isDebug;
202   // Ensure isOnRegUseList() returns false.
203   Contents.Reg.Prev = nullptr;
204   // Preserve the tie when the operand was already a register.
205   if (!WasReg)
206     TiedTo = 0;
207 
208   // If this operand is embedded in a function, add the operand to the
209   // register's use/def list.
210   if (RegInfo)
211     RegInfo->addRegOperandToUseList(this);
212 }
213 
214 /// isIdenticalTo - Return true if this operand is identical to the specified
215 /// operand. Note that this should stay in sync with the hash_value overload
216 /// below.
isIdenticalTo(const MachineOperand & Other) const217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
218   if (getType() != Other.getType() ||
219       getTargetFlags() != Other.getTargetFlags())
220     return false;
221 
222   switch (getType()) {
223   case MachineOperand::MO_Register:
224     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
225            getSubReg() == Other.getSubReg();
226   case MachineOperand::MO_Immediate:
227     return getImm() == Other.getImm();
228   case MachineOperand::MO_CImmediate:
229     return getCImm() == Other.getCImm();
230   case MachineOperand::MO_FPImmediate:
231     return getFPImm() == Other.getFPImm();
232   case MachineOperand::MO_MachineBasicBlock:
233     return getMBB() == Other.getMBB();
234   case MachineOperand::MO_FrameIndex:
235     return getIndex() == Other.getIndex();
236   case MachineOperand::MO_ConstantPoolIndex:
237   case MachineOperand::MO_TargetIndex:
238     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
239   case MachineOperand::MO_JumpTableIndex:
240     return getIndex() == Other.getIndex();
241   case MachineOperand::MO_GlobalAddress:
242     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
243   case MachineOperand::MO_ExternalSymbol:
244     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
245            getOffset() == Other.getOffset();
246   case MachineOperand::MO_BlockAddress:
247     return getBlockAddress() == Other.getBlockAddress() &&
248            getOffset() == Other.getOffset();
249   case MachineOperand::MO_RegisterMask:
250   case MachineOperand::MO_RegisterLiveOut:
251     return getRegMask() == Other.getRegMask();
252   case MachineOperand::MO_MCSymbol:
253     return getMCSymbol() == Other.getMCSymbol();
254   case MachineOperand::MO_CFIIndex:
255     return getCFIIndex() == Other.getCFIIndex();
256   case MachineOperand::MO_Metadata:
257     return getMetadata() == Other.getMetadata();
258   }
259   llvm_unreachable("Invalid machine operand type");
260 }
261 
262 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)263 hash_code llvm::hash_value(const MachineOperand &MO) {
264   switch (MO.getType()) {
265   case MachineOperand::MO_Register:
266     // Register operands don't have target flags.
267     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
268   case MachineOperand::MO_Immediate:
269     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
270   case MachineOperand::MO_CImmediate:
271     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
272   case MachineOperand::MO_FPImmediate:
273     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
274   case MachineOperand::MO_MachineBasicBlock:
275     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
276   case MachineOperand::MO_FrameIndex:
277     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
278   case MachineOperand::MO_ConstantPoolIndex:
279   case MachineOperand::MO_TargetIndex:
280     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
281                         MO.getOffset());
282   case MachineOperand::MO_JumpTableIndex:
283     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
284   case MachineOperand::MO_ExternalSymbol:
285     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
286                         MO.getSymbolName());
287   case MachineOperand::MO_GlobalAddress:
288     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
289                         MO.getOffset());
290   case MachineOperand::MO_BlockAddress:
291     return hash_combine(MO.getType(), MO.getTargetFlags(),
292                         MO.getBlockAddress(), MO.getOffset());
293   case MachineOperand::MO_RegisterMask:
294   case MachineOperand::MO_RegisterLiveOut:
295     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
296   case MachineOperand::MO_Metadata:
297     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
298   case MachineOperand::MO_MCSymbol:
299     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
300   case MachineOperand::MO_CFIIndex:
301     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
302   }
303   llvm_unreachable("Invalid machine operand type");
304 }
305 
print(raw_ostream & OS,const TargetRegisterInfo * TRI) const306 void MachineOperand::print(raw_ostream &OS,
307                            const TargetRegisterInfo *TRI) const {
308   ModuleSlotTracker DummyMST(nullptr);
309   print(OS, DummyMST, TRI);
310 }
311 
print(raw_ostream & OS,ModuleSlotTracker & MST,const TargetRegisterInfo * TRI) const312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
313                            const TargetRegisterInfo *TRI) const {
314   switch (getType()) {
315   case MachineOperand::MO_Register:
316     OS << PrintReg(getReg(), TRI, getSubReg());
317 
318     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
319         isInternalRead() || isEarlyClobber() || isTied()) {
320       OS << '<';
321       bool NeedComma = false;
322       if (isDef()) {
323         if (NeedComma) OS << ',';
324         if (isEarlyClobber())
325           OS << "earlyclobber,";
326         if (isImplicit())
327           OS << "imp-";
328         OS << "def";
329         NeedComma = true;
330         // <def,read-undef> only makes sense when getSubReg() is set.
331         // Don't clutter the output otherwise.
332         if (isUndef() && getSubReg())
333           OS << ",read-undef";
334       } else if (isImplicit()) {
335         OS << "imp-use";
336         NeedComma = true;
337       }
338 
339       if (isKill()) {
340         if (NeedComma) OS << ',';
341         OS << "kill";
342         NeedComma = true;
343       }
344       if (isDead()) {
345         if (NeedComma) OS << ',';
346         OS << "dead";
347         NeedComma = true;
348       }
349       if (isUndef() && isUse()) {
350         if (NeedComma) OS << ',';
351         OS << "undef";
352         NeedComma = true;
353       }
354       if (isInternalRead()) {
355         if (NeedComma) OS << ',';
356         OS << "internal";
357         NeedComma = true;
358       }
359       if (isTied()) {
360         if (NeedComma) OS << ',';
361         OS << "tied";
362         if (TiedTo != 15)
363           OS << unsigned(TiedTo - 1);
364       }
365       OS << '>';
366     }
367     break;
368   case MachineOperand::MO_Immediate:
369     OS << getImm();
370     break;
371   case MachineOperand::MO_CImmediate:
372     getCImm()->getValue().print(OS, false);
373     break;
374   case MachineOperand::MO_FPImmediate:
375     if (getFPImm()->getType()->isFloatTy())
376       OS << getFPImm()->getValueAPF().convertToFloat();
377     else
378       OS << getFPImm()->getValueAPF().convertToDouble();
379     break;
380   case MachineOperand::MO_MachineBasicBlock:
381     OS << "<BB#" << getMBB()->getNumber() << ">";
382     break;
383   case MachineOperand::MO_FrameIndex:
384     OS << "<fi#" << getIndex() << '>';
385     break;
386   case MachineOperand::MO_ConstantPoolIndex:
387     OS << "<cp#" << getIndex();
388     if (getOffset()) OS << "+" << getOffset();
389     OS << '>';
390     break;
391   case MachineOperand::MO_TargetIndex:
392     OS << "<ti#" << getIndex();
393     if (getOffset()) OS << "+" << getOffset();
394     OS << '>';
395     break;
396   case MachineOperand::MO_JumpTableIndex:
397     OS << "<jt#" << getIndex() << '>';
398     break;
399   case MachineOperand::MO_GlobalAddress:
400     OS << "<ga:";
401     getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
402     if (getOffset()) OS << "+" << getOffset();
403     OS << '>';
404     break;
405   case MachineOperand::MO_ExternalSymbol:
406     OS << "<es:" << getSymbolName();
407     if (getOffset()) OS << "+" << getOffset();
408     OS << '>';
409     break;
410   case MachineOperand::MO_BlockAddress:
411     OS << '<';
412     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
413     if (getOffset()) OS << "+" << getOffset();
414     OS << '>';
415     break;
416   case MachineOperand::MO_RegisterMask: {
417     unsigned NumRegsInMask = 0;
418     unsigned NumRegsEmitted = 0;
419     OS << "<regmask";
420     for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
421       unsigned MaskWord = i / 32;
422       unsigned MaskBit = i % 32;
423       if (getRegMask()[MaskWord] & (1 << MaskBit)) {
424         if (PrintWholeRegMask || NumRegsEmitted <= 10) {
425           OS << " " << PrintReg(i, TRI);
426           NumRegsEmitted++;
427         }
428         NumRegsInMask++;
429       }
430     }
431     if (NumRegsEmitted != NumRegsInMask)
432       OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
433     OS << ">";
434     break;
435   }
436   case MachineOperand::MO_RegisterLiveOut:
437     OS << "<regliveout>";
438     break;
439   case MachineOperand::MO_Metadata:
440     OS << '<';
441     getMetadata()->printAsOperand(OS, MST);
442     OS << '>';
443     break;
444   case MachineOperand::MO_MCSymbol:
445     OS << "<MCSym=" << *getMCSymbol() << '>';
446     break;
447   case MachineOperand::MO_CFIIndex:
448     OS << "<call frame instruction>";
449     break;
450   }
451 
452   if (unsigned TF = getTargetFlags())
453     OS << "[TF=" << TF << ']';
454 }
455 
456 //===----------------------------------------------------------------------===//
457 // MachineMemOperand Implementation
458 //===----------------------------------------------------------------------===//
459 
460 /// getAddrSpace - Return the LLVM IR address space number that this pointer
461 /// points into.
getAddrSpace() const462 unsigned MachinePointerInfo::getAddrSpace() const {
463   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
464   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
465 }
466 
467 /// getConstantPool - Return a MachinePointerInfo record that refers to the
468 /// constant pool.
getConstantPool(MachineFunction & MF)469 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
470   return MachinePointerInfo(MF.getPSVManager().getConstantPool());
471 }
472 
473 /// getFixedStack - Return a MachinePointerInfo record that refers to the
474 /// the specified FrameIndex.
getFixedStack(MachineFunction & MF,int FI,int64_t Offset)475 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
476                                                      int FI, int64_t Offset) {
477   return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
478 }
479 
getJumpTable(MachineFunction & MF)480 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
481   return MachinePointerInfo(MF.getPSVManager().getJumpTable());
482 }
483 
getGOT(MachineFunction & MF)484 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
485   return MachinePointerInfo(MF.getPSVManager().getGOT());
486 }
487 
getStack(MachineFunction & MF,int64_t Offset)488 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
489                                                 int64_t Offset) {
490   return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
491 }
492 
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const AAMDNodes & AAInfo,const MDNode * Ranges)493 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
494                                      uint64_t s, unsigned int a,
495                                      const AAMDNodes &AAInfo,
496                                      const MDNode *Ranges)
497   : PtrInfo(ptrinfo), Size(s),
498     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
499     AAInfo(AAInfo), Ranges(Ranges) {
500   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
501           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
502          "invalid pointer value");
503   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
504   assert((isLoad() || isStore()) && "Not a load/store!");
505 }
506 
507 /// Profile - Gather unique data for the object.
508 ///
Profile(FoldingSetNodeID & ID) const509 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
510   ID.AddInteger(getOffset());
511   ID.AddInteger(Size);
512   ID.AddPointer(getOpaqueValue());
513   ID.AddInteger(Flags);
514 }
515 
refineAlignment(const MachineMemOperand * MMO)516 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
517   // The Value and Offset may differ due to CSE. But the flags and size
518   // should be the same.
519   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
520   assert(MMO->getSize() == getSize() && "Size mismatch!");
521 
522   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
523     // Update the alignment value.
524     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
525       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
526     // Also update the base and offset, because the new alignment may
527     // not be applicable with the old ones.
528     PtrInfo = MMO->PtrInfo;
529   }
530 }
531 
532 /// getAlignment - Return the minimum known alignment in bytes of the
533 /// actual memory reference.
getAlignment() const534 uint64_t MachineMemOperand::getAlignment() const {
535   return MinAlign(getBaseAlignment(), getOffset());
536 }
537 
print(raw_ostream & OS) const538 void MachineMemOperand::print(raw_ostream &OS) const {
539   ModuleSlotTracker DummyMST(nullptr);
540   print(OS, DummyMST);
541 }
print(raw_ostream & OS,ModuleSlotTracker & MST) const542 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
543   assert((isLoad() || isStore()) &&
544          "SV has to be a load, store or both.");
545 
546   if (isVolatile())
547     OS << "Volatile ";
548 
549   if (isLoad())
550     OS << "LD";
551   if (isStore())
552     OS << "ST";
553   OS << getSize();
554 
555   // Print the address information.
556   OS << "[";
557   if (const Value *V = getValue())
558     V->printAsOperand(OS, /*PrintType=*/false, MST);
559   else if (const PseudoSourceValue *PSV = getPseudoValue())
560     PSV->printCustom(OS);
561   else
562     OS << "<unknown>";
563 
564   unsigned AS = getAddrSpace();
565   if (AS != 0)
566     OS << "(addrspace=" << AS << ')';
567 
568   // If the alignment of the memory reference itself differs from the alignment
569   // of the base pointer, print the base alignment explicitly, next to the base
570   // pointer.
571   if (getBaseAlignment() != getAlignment())
572     OS << "(align=" << getBaseAlignment() << ")";
573 
574   if (getOffset() != 0)
575     OS << "+" << getOffset();
576   OS << "]";
577 
578   // Print the alignment of the reference.
579   if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
580     OS << "(align=" << getAlignment() << ")";
581 
582   // Print TBAA info.
583   if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
584     OS << "(tbaa=";
585     if (TBAAInfo->getNumOperands() > 0)
586       TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
587     else
588       OS << "<unknown>";
589     OS << ")";
590   }
591 
592   // Print AA scope info.
593   if (const MDNode *ScopeInfo = getAAInfo().Scope) {
594     OS << "(alias.scope=";
595     if (ScopeInfo->getNumOperands() > 0)
596       for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
597         ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
598         if (i != ie-1)
599           OS << ",";
600       }
601     else
602       OS << "<unknown>";
603     OS << ")";
604   }
605 
606   // Print AA noalias scope info.
607   if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
608     OS << "(noalias=";
609     if (NoAliasInfo->getNumOperands() > 0)
610       for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
611         NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
612         if (i != ie-1)
613           OS << ",";
614       }
615     else
616       OS << "<unknown>";
617     OS << ")";
618   }
619 
620   // Print nontemporal info.
621   if (isNonTemporal())
622     OS << "(nontemporal)";
623 
624   if (isInvariant())
625     OS << "(invariant)";
626 }
627 
628 //===----------------------------------------------------------------------===//
629 // MachineInstr Implementation
630 //===----------------------------------------------------------------------===//
631 
addImplicitDefUseOperands(MachineFunction & MF)632 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
633   if (MCID->ImplicitDefs)
634     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
635            ++ImpDefs)
636       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
637   if (MCID->ImplicitUses)
638     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
639            ++ImpUses)
640       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
641 }
642 
643 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
644 /// implicit operands. It reserves space for the number of operands specified by
645 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)646 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
647                            DebugLoc dl, bool NoImp)
648     : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
649       AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
650       debugLoc(std::move(dl)) {
651   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
652 
653   // Reserve space for the expected number of operands.
654   if (unsigned NumOps = MCID->getNumOperands() +
655     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
656     CapOperands = OperandCapacity::get(NumOps);
657     Operands = MF.allocateOperandArray(CapOperands);
658   }
659 
660   if (!NoImp)
661     addImplicitDefUseOperands(MF);
662 }
663 
664 /// MachineInstr ctor - Copies MachineInstr arg exactly
665 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)666 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
667   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
668     Flags(0), AsmPrinterFlags(0),
669     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
670     debugLoc(MI.getDebugLoc()) {
671   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
672 
673   CapOperands = OperandCapacity::get(MI.getNumOperands());
674   Operands = MF.allocateOperandArray(CapOperands);
675 
676   // Copy operands.
677   for (const MachineOperand &MO : MI.operands())
678     addOperand(MF, MO);
679 
680   // Copy all the sensible flags.
681   setFlags(MI.Flags);
682 }
683 
684 /// getRegInfo - If this instruction is embedded into a MachineFunction,
685 /// return the MachineRegisterInfo object for the current function, otherwise
686 /// return null.
getRegInfo()687 MachineRegisterInfo *MachineInstr::getRegInfo() {
688   if (MachineBasicBlock *MBB = getParent())
689     return &MBB->getParent()->getRegInfo();
690   return nullptr;
691 }
692 
693 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
694 /// this instruction from their respective use lists.  This requires that the
695 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)696 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
697   for (MachineOperand &MO : operands())
698     if (MO.isReg())
699       MRI.removeRegOperandFromUseList(&MO);
700 }
701 
702 /// AddRegOperandsToUseLists - Add all of the register operands in
703 /// this instruction from their respective use lists.  This requires that the
704 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)705 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
706   for (MachineOperand &MO : operands())
707     if (MO.isReg())
708       MRI.addRegOperandToUseList(&MO);
709 }
710 
addOperand(const MachineOperand & Op)711 void MachineInstr::addOperand(const MachineOperand &Op) {
712   MachineBasicBlock *MBB = getParent();
713   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
714   MachineFunction *MF = MBB->getParent();
715   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
716   addOperand(*MF, Op);
717 }
718 
719 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
720 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)721 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
722                          unsigned NumOps, MachineRegisterInfo *MRI) {
723   if (MRI)
724     return MRI->moveOperands(Dst, Src, NumOps);
725 
726   // MachineOperand is a trivially copyable type so we can just use memmove.
727   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
728 }
729 
730 /// addOperand - Add the specified operand to the instruction.  If it is an
731 /// implicit operand, it is added to the end of the operand list.  If it is
732 /// an explicit operand it is added at the end of the explicit operand list
733 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)734 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
735   assert(MCID && "Cannot add operands before providing an instr descriptor");
736 
737   // Check if we're adding one of our existing operands.
738   if (&Op >= Operands && &Op < Operands + NumOperands) {
739     // This is unusual: MI->addOperand(MI->getOperand(i)).
740     // If adding Op requires reallocating or moving existing operands around,
741     // the Op reference could go stale. Support it by copying Op.
742     MachineOperand CopyOp(Op);
743     return addOperand(MF, CopyOp);
744   }
745 
746   // Find the insert location for the new operand.  Implicit registers go at
747   // the end, everything else goes before the implicit regs.
748   //
749   // FIXME: Allow mixed explicit and implicit operands on inline asm.
750   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
751   // implicit-defs, but they must not be moved around.  See the FIXME in
752   // InstrEmitter.cpp.
753   unsigned OpNo = getNumOperands();
754   bool isImpReg = Op.isReg() && Op.isImplicit();
755   if (!isImpReg && !isInlineAsm()) {
756     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
757       --OpNo;
758       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
759     }
760   }
761 
762 #ifndef NDEBUG
763   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
764   // OpNo now points as the desired insertion point.  Unless this is a variadic
765   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
766   // RegMask operands go between the explicit and implicit operands.
767   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
768           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
769          "Trying to add an operand to a machine instr that is already done!");
770 #endif
771 
772   MachineRegisterInfo *MRI = getRegInfo();
773 
774   // Determine if the Operands array needs to be reallocated.
775   // Save the old capacity and operand array.
776   OperandCapacity OldCap = CapOperands;
777   MachineOperand *OldOperands = Operands;
778   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
779     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
780     Operands = MF.allocateOperandArray(CapOperands);
781     // Move the operands before the insertion point.
782     if (OpNo)
783       moveOperands(Operands, OldOperands, OpNo, MRI);
784   }
785 
786   // Move the operands following the insertion point.
787   if (OpNo != NumOperands)
788     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
789                  MRI);
790   ++NumOperands;
791 
792   // Deallocate the old operand array.
793   if (OldOperands != Operands && OldOperands)
794     MF.deallocateOperandArray(OldCap, OldOperands);
795 
796   // Copy Op into place. It still needs to be inserted into the MRI use lists.
797   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
798   NewMO->ParentMI = this;
799 
800   // When adding a register operand, tell MRI about it.
801   if (NewMO->isReg()) {
802     // Ensure isOnRegUseList() returns false, regardless of Op's status.
803     NewMO->Contents.Reg.Prev = nullptr;
804     // Ignore existing ties. This is not a property that can be copied.
805     NewMO->TiedTo = 0;
806     // Add the new operand to MRI, but only for instructions in an MBB.
807     if (MRI)
808       MRI->addRegOperandToUseList(NewMO);
809     // The MCID operand information isn't accurate until we start adding
810     // explicit operands. The implicit operands are added first, then the
811     // explicits are inserted before them.
812     if (!isImpReg) {
813       // Tie uses to defs as indicated in MCInstrDesc.
814       if (NewMO->isUse()) {
815         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
816         if (DefIdx != -1)
817           tieOperands(DefIdx, OpNo);
818       }
819       // If the register operand is flagged as early, mark the operand as such.
820       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
821         NewMO->setIsEarlyClobber(true);
822     }
823   }
824 }
825 
826 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
827 /// fewer operand than it started with.
828 ///
RemoveOperand(unsigned OpNo)829 void MachineInstr::RemoveOperand(unsigned OpNo) {
830   assert(OpNo < getNumOperands() && "Invalid operand number");
831   untieRegOperand(OpNo);
832 
833 #ifndef NDEBUG
834   // Moving tied operands would break the ties.
835   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
836     if (Operands[i].isReg())
837       assert(!Operands[i].isTied() && "Cannot move tied operands");
838 #endif
839 
840   MachineRegisterInfo *MRI = getRegInfo();
841   if (MRI && Operands[OpNo].isReg())
842     MRI->removeRegOperandFromUseList(Operands + OpNo);
843 
844   // Don't call the MachineOperand destructor. A lot of this code depends on
845   // MachineOperand having a trivial destructor anyway, and adding a call here
846   // wouldn't make it 'destructor-correct'.
847 
848   if (unsigned N = NumOperands - 1 - OpNo)
849     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
850   --NumOperands;
851 }
852 
853 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
854 /// This function should be used only occasionally. The setMemRefs function
855 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)856 void MachineInstr::addMemOperand(MachineFunction &MF,
857                                  MachineMemOperand *MO) {
858   mmo_iterator OldMemRefs = MemRefs;
859   unsigned OldNumMemRefs = NumMemRefs;
860 
861   unsigned NewNum = NumMemRefs + 1;
862   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
863 
864   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
865   NewMemRefs[NewNum - 1] = MO;
866   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
867 }
868 
hasPropertyInBundle(unsigned Mask,QueryType Type) const869 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
870   assert(!isBundledWithPred() && "Must be called on bundle header");
871   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
872     if (MII->getDesc().getFlags() & Mask) {
873       if (Type == AnyInBundle)
874         return true;
875     } else {
876       if (Type == AllInBundle && !MII->isBundle())
877         return false;
878     }
879     // This was the last instruction in the bundle.
880     if (!MII->isBundledWithSucc())
881       return Type == AllInBundle;
882   }
883 }
884 
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const885 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
886                                  MICheckType Check) const {
887   // If opcodes or number of operands are not the same then the two
888   // instructions are obviously not identical.
889   if (Other->getOpcode() != getOpcode() ||
890       Other->getNumOperands() != getNumOperands())
891     return false;
892 
893   if (isBundle()) {
894     // Both instructions are bundles, compare MIs inside the bundle.
895     MachineBasicBlock::const_instr_iterator I1 = getIterator();
896     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
897     MachineBasicBlock::const_instr_iterator I2 = Other->getIterator();
898     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
899     while (++I1 != E1 && I1->isInsideBundle()) {
900       ++I2;
901       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check))
902         return false;
903     }
904   }
905 
906   // Check operands to make sure they match.
907   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
908     const MachineOperand &MO = getOperand(i);
909     const MachineOperand &OMO = Other->getOperand(i);
910     if (!MO.isReg()) {
911       if (!MO.isIdenticalTo(OMO))
912         return false;
913       continue;
914     }
915 
916     // Clients may or may not want to ignore defs when testing for equality.
917     // For example, machine CSE pass only cares about finding common
918     // subexpressions, so it's safe to ignore virtual register defs.
919     if (MO.isDef()) {
920       if (Check == IgnoreDefs)
921         continue;
922       else if (Check == IgnoreVRegDefs) {
923         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
924             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
925           if (MO.getReg() != OMO.getReg())
926             return false;
927       } else {
928         if (!MO.isIdenticalTo(OMO))
929           return false;
930         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
931           return false;
932       }
933     } else {
934       if (!MO.isIdenticalTo(OMO))
935         return false;
936       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
937         return false;
938     }
939   }
940   // If DebugLoc does not match then two dbg.values are not identical.
941   if (isDebugValue())
942     if (getDebugLoc() && Other->getDebugLoc() &&
943         getDebugLoc() != Other->getDebugLoc())
944       return false;
945   return true;
946 }
947 
removeFromParent()948 MachineInstr *MachineInstr::removeFromParent() {
949   assert(getParent() && "Not embedded in a basic block!");
950   return getParent()->remove(this);
951 }
952 
removeFromBundle()953 MachineInstr *MachineInstr::removeFromBundle() {
954   assert(getParent() && "Not embedded in a basic block!");
955   return getParent()->remove_instr(this);
956 }
957 
eraseFromParent()958 void MachineInstr::eraseFromParent() {
959   assert(getParent() && "Not embedded in a basic block!");
960   getParent()->erase(this);
961 }
962 
eraseFromParentAndMarkDBGValuesForRemoval()963 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
964   assert(getParent() && "Not embedded in a basic block!");
965   MachineBasicBlock *MBB = getParent();
966   MachineFunction *MF = MBB->getParent();
967   assert(MF && "Not embedded in a function!");
968 
969   MachineInstr *MI = (MachineInstr *)this;
970   MachineRegisterInfo &MRI = MF->getRegInfo();
971 
972   for (const MachineOperand &MO : MI->operands()) {
973     if (!MO.isReg() || !MO.isDef())
974       continue;
975     unsigned Reg = MO.getReg();
976     if (!TargetRegisterInfo::isVirtualRegister(Reg))
977       continue;
978     MRI.markUsesInDebugValueAsUndef(Reg);
979   }
980   MI->eraseFromParent();
981 }
982 
eraseFromBundle()983 void MachineInstr::eraseFromBundle() {
984   assert(getParent() && "Not embedded in a basic block!");
985   getParent()->erase_instr(this);
986 }
987 
988 /// getNumExplicitOperands - Returns the number of non-implicit operands.
989 ///
getNumExplicitOperands() const990 unsigned MachineInstr::getNumExplicitOperands() const {
991   unsigned NumOperands = MCID->getNumOperands();
992   if (!MCID->isVariadic())
993     return NumOperands;
994 
995   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
996     const MachineOperand &MO = getOperand(i);
997     if (!MO.isReg() || !MO.isImplicit())
998       NumOperands++;
999   }
1000   return NumOperands;
1001 }
1002 
bundleWithPred()1003 void MachineInstr::bundleWithPred() {
1004   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1005   setFlag(BundledPred);
1006   MachineBasicBlock::instr_iterator Pred = getIterator();
1007   --Pred;
1008   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1009   Pred->setFlag(BundledSucc);
1010 }
1011 
bundleWithSucc()1012 void MachineInstr::bundleWithSucc() {
1013   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1014   setFlag(BundledSucc);
1015   MachineBasicBlock::instr_iterator Succ = getIterator();
1016   ++Succ;
1017   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1018   Succ->setFlag(BundledPred);
1019 }
1020 
unbundleFromPred()1021 void MachineInstr::unbundleFromPred() {
1022   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1023   clearFlag(BundledPred);
1024   MachineBasicBlock::instr_iterator Pred = getIterator();
1025   --Pred;
1026   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1027   Pred->clearFlag(BundledSucc);
1028 }
1029 
unbundleFromSucc()1030 void MachineInstr::unbundleFromSucc() {
1031   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1032   clearFlag(BundledSucc);
1033   MachineBasicBlock::instr_iterator Succ = getIterator();
1034   ++Succ;
1035   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1036   Succ->clearFlag(BundledPred);
1037 }
1038 
isStackAligningInlineAsm() const1039 bool MachineInstr::isStackAligningInlineAsm() const {
1040   if (isInlineAsm()) {
1041     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1042     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1043       return true;
1044   }
1045   return false;
1046 }
1047 
getInlineAsmDialect() const1048 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1049   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1050   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1051   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1052 }
1053 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const1054 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1055                                        unsigned *GroupNo) const {
1056   assert(isInlineAsm() && "Expected an inline asm instruction");
1057   assert(OpIdx < getNumOperands() && "OpIdx out of range");
1058 
1059   // Ignore queries about the initial operands.
1060   if (OpIdx < InlineAsm::MIOp_FirstOperand)
1061     return -1;
1062 
1063   unsigned Group = 0;
1064   unsigned NumOps;
1065   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1066        i += NumOps) {
1067     const MachineOperand &FlagMO = getOperand(i);
1068     // If we reach the implicit register operands, stop looking.
1069     if (!FlagMO.isImm())
1070       return -1;
1071     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1072     if (i + NumOps > OpIdx) {
1073       if (GroupNo)
1074         *GroupNo = Group;
1075       return i;
1076     }
1077     ++Group;
1078   }
1079   return -1;
1080 }
1081 
1082 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1083 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1084                                     const TargetInstrInfo *TII,
1085                                     const TargetRegisterInfo *TRI) const {
1086   assert(getParent() && "Can't have an MBB reference here!");
1087   assert(getParent()->getParent() && "Can't have an MF reference here!");
1088   const MachineFunction &MF = *getParent()->getParent();
1089 
1090   // Most opcodes have fixed constraints in their MCInstrDesc.
1091   if (!isInlineAsm())
1092     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1093 
1094   if (!getOperand(OpIdx).isReg())
1095     return nullptr;
1096 
1097   // For tied uses on inline asm, get the constraint from the def.
1098   unsigned DefIdx;
1099   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1100     OpIdx = DefIdx;
1101 
1102   // Inline asm stores register class constraints in the flag word.
1103   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1104   if (FlagIdx < 0)
1105     return nullptr;
1106 
1107   unsigned Flag = getOperand(FlagIdx).getImm();
1108   unsigned RCID;
1109   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1110     return TRI->getRegClass(RCID);
1111 
1112   // Assume that all registers in a memory operand are pointers.
1113   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1114     return TRI->getPointerRegClass(MF);
1115 
1116   return nullptr;
1117 }
1118 
getRegClassConstraintEffectForVReg(unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const1119 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1120     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1121     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1122   // Check every operands inside the bundle if we have
1123   // been asked to.
1124   if (ExploreBundle)
1125     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1126          ++OpndIt)
1127       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1128           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1129   else
1130     // Otherwise, just check the current operands.
1131     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1132       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1133   return CurRC;
1134 }
1135 
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1136 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1137     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1138     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1139   assert(CurRC && "Invalid initial register class");
1140   // Check if Reg is constrained by some of its use/def from MI.
1141   const MachineOperand &MO = getOperand(OpIdx);
1142   if (!MO.isReg() || MO.getReg() != Reg)
1143     return CurRC;
1144   // If yes, accumulate the constraints through the operand.
1145   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1146 }
1147 
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1148 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1149     unsigned OpIdx, const TargetRegisterClass *CurRC,
1150     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1151   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1152   const MachineOperand &MO = getOperand(OpIdx);
1153   assert(MO.isReg() &&
1154          "Cannot get register constraints for non-register operand");
1155   assert(CurRC && "Invalid initial register class");
1156   if (unsigned SubIdx = MO.getSubReg()) {
1157     if (OpRC)
1158       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1159     else
1160       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1161   } else if (OpRC)
1162     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1163   return CurRC;
1164 }
1165 
1166 /// Return the number of instructions inside the MI bundle, not counting the
1167 /// header instruction.
getBundleSize() const1168 unsigned MachineInstr::getBundleSize() const {
1169   MachineBasicBlock::const_instr_iterator I = getIterator();
1170   unsigned Size = 0;
1171   while (I->isBundledWithSucc())
1172     ++Size, ++I;
1173   return Size;
1174 }
1175 
1176 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1177 /// the specific register or -1 if it is not found. It further tightens
1178 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1179 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1180                                           const TargetRegisterInfo *TRI) const {
1181   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1182     const MachineOperand &MO = getOperand(i);
1183     if (!MO.isReg() || !MO.isUse())
1184       continue;
1185     unsigned MOReg = MO.getReg();
1186     if (!MOReg)
1187       continue;
1188     if (MOReg == Reg ||
1189         (TRI &&
1190          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1191          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1192          TRI->isSubRegister(MOReg, Reg)))
1193       if (!isKill || MO.isKill())
1194         return i;
1195   }
1196   return -1;
1197 }
1198 
1199 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1200 /// indicating if this instruction reads or writes Reg. This also considers
1201 /// partial defines.
1202 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1203 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1204                                          SmallVectorImpl<unsigned> *Ops) const {
1205   bool PartDef = false; // Partial redefine.
1206   bool FullDef = false; // Full define.
1207   bool Use = false;
1208 
1209   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1210     const MachineOperand &MO = getOperand(i);
1211     if (!MO.isReg() || MO.getReg() != Reg)
1212       continue;
1213     if (Ops)
1214       Ops->push_back(i);
1215     if (MO.isUse())
1216       Use |= !MO.isUndef();
1217     else if (MO.getSubReg() && !MO.isUndef())
1218       // A partial <def,undef> doesn't count as reading the register.
1219       PartDef = true;
1220     else
1221       FullDef = true;
1222   }
1223   // A partial redefine uses Reg unless there is also a full define.
1224   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1225 }
1226 
1227 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1228 /// the specified register or -1 if it is not found. If isDead is true, defs
1229 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1230 /// also checks if there is a def of a super-register.
1231 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1232 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1233                                         const TargetRegisterInfo *TRI) const {
1234   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1235   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1236     const MachineOperand &MO = getOperand(i);
1237     // Accept regmask operands when Overlap is set.
1238     // Ignore them when looking for a specific def operand (Overlap == false).
1239     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1240       return i;
1241     if (!MO.isReg() || !MO.isDef())
1242       continue;
1243     unsigned MOReg = MO.getReg();
1244     bool Found = (MOReg == Reg);
1245     if (!Found && TRI && isPhys &&
1246         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1247       if (Overlap)
1248         Found = TRI->regsOverlap(MOReg, Reg);
1249       else
1250         Found = TRI->isSubRegister(MOReg, Reg);
1251     }
1252     if (Found && (!isDead || MO.isDead()))
1253       return i;
1254   }
1255   return -1;
1256 }
1257 
1258 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1259 /// operand list that is used to represent the predicate. It returns -1 if
1260 /// none is found.
findFirstPredOperandIdx() const1261 int MachineInstr::findFirstPredOperandIdx() const {
1262   // Don't call MCID.findFirstPredOperandIdx() because this variant
1263   // is sometimes called on an instruction that's not yet complete, and
1264   // so the number of operands is less than the MCID indicates. In
1265   // particular, the PTX target does this.
1266   const MCInstrDesc &MCID = getDesc();
1267   if (MCID.isPredicable()) {
1268     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1269       if (MCID.OpInfo[i].isPredicate())
1270         return i;
1271   }
1272 
1273   return -1;
1274 }
1275 
1276 // MachineOperand::TiedTo is 4 bits wide.
1277 const unsigned TiedMax = 15;
1278 
1279 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1280 ///
1281 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1282 /// field. TiedTo can have these values:
1283 ///
1284 /// 0:              Operand is not tied to anything.
1285 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1286 /// TiedMax:        Tied to an operand >= TiedMax-1.
1287 ///
1288 /// The tied def must be one of the first TiedMax operands on a normal
1289 /// instruction. INLINEASM instructions allow more tied defs.
1290 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1291 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1292   MachineOperand &DefMO = getOperand(DefIdx);
1293   MachineOperand &UseMO = getOperand(UseIdx);
1294   assert(DefMO.isDef() && "DefIdx must be a def operand");
1295   assert(UseMO.isUse() && "UseIdx must be a use operand");
1296   assert(!DefMO.isTied() && "Def is already tied to another use");
1297   assert(!UseMO.isTied() && "Use is already tied to another def");
1298 
1299   if (DefIdx < TiedMax)
1300     UseMO.TiedTo = DefIdx + 1;
1301   else {
1302     // Inline asm can use the group descriptors to find tied operands, but on
1303     // normal instruction, the tied def must be within the first TiedMax
1304     // operands.
1305     assert(isInlineAsm() && "DefIdx out of range");
1306     UseMO.TiedTo = TiedMax;
1307   }
1308 
1309   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1310   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1311 }
1312 
1313 /// Given the index of a tied register operand, find the operand it is tied to.
1314 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1315 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1316 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1317   const MachineOperand &MO = getOperand(OpIdx);
1318   assert(MO.isTied() && "Operand isn't tied");
1319 
1320   // Normally TiedTo is in range.
1321   if (MO.TiedTo < TiedMax)
1322     return MO.TiedTo - 1;
1323 
1324   // Uses on normal instructions can be out of range.
1325   if (!isInlineAsm()) {
1326     // Normal tied defs must be in the 0..TiedMax-1 range.
1327     if (MO.isUse())
1328       return TiedMax - 1;
1329     // MO is a def. Search for the tied use.
1330     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1331       const MachineOperand &UseMO = getOperand(i);
1332       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1333         return i;
1334     }
1335     llvm_unreachable("Can't find tied use");
1336   }
1337 
1338   // Now deal with inline asm by parsing the operand group descriptor flags.
1339   // Find the beginning of each operand group.
1340   SmallVector<unsigned, 8> GroupIdx;
1341   unsigned OpIdxGroup = ~0u;
1342   unsigned NumOps;
1343   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1344        i += NumOps) {
1345     const MachineOperand &FlagMO = getOperand(i);
1346     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1347     unsigned CurGroup = GroupIdx.size();
1348     GroupIdx.push_back(i);
1349     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1350     // OpIdx belongs to this operand group.
1351     if (OpIdx > i && OpIdx < i + NumOps)
1352       OpIdxGroup = CurGroup;
1353     unsigned TiedGroup;
1354     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1355       continue;
1356     // Operands in this group are tied to operands in TiedGroup which must be
1357     // earlier. Find the number of operands between the two groups.
1358     unsigned Delta = i - GroupIdx[TiedGroup];
1359 
1360     // OpIdx is a use tied to TiedGroup.
1361     if (OpIdxGroup == CurGroup)
1362       return OpIdx - Delta;
1363 
1364     // OpIdx is a def tied to this use group.
1365     if (OpIdxGroup == TiedGroup)
1366       return OpIdx + Delta;
1367   }
1368   llvm_unreachable("Invalid tied operand on inline asm");
1369 }
1370 
1371 /// clearKillInfo - Clears kill flags on all operands.
1372 ///
clearKillInfo()1373 void MachineInstr::clearKillInfo() {
1374   for (MachineOperand &MO : operands()) {
1375     if (MO.isReg() && MO.isUse())
1376       MO.setIsKill(false);
1377   }
1378 }
1379 
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1380 void MachineInstr::substituteRegister(unsigned FromReg,
1381                                       unsigned ToReg,
1382                                       unsigned SubIdx,
1383                                       const TargetRegisterInfo &RegInfo) {
1384   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1385     if (SubIdx)
1386       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1387     for (MachineOperand &MO : operands()) {
1388       if (!MO.isReg() || MO.getReg() != FromReg)
1389         continue;
1390       MO.substPhysReg(ToReg, RegInfo);
1391     }
1392   } else {
1393     for (MachineOperand &MO : operands()) {
1394       if (!MO.isReg() || MO.getReg() != FromReg)
1395         continue;
1396       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1397     }
1398   }
1399 }
1400 
1401 /// isSafeToMove - Return true if it is safe to move this instruction. If
1402 /// SawStore is set to true, it means that there is a store (or call) between
1403 /// the instruction's location and its intended destination.
isSafeToMove(AliasAnalysis * AA,bool & SawStore) const1404 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1405   // Ignore stuff that we obviously can't move.
1406   //
1407   // Treat volatile loads as stores. This is not strictly necessary for
1408   // volatiles, but it is required for atomic loads. It is not allowed to move
1409   // a load across an atomic load with Ordering > Monotonic.
1410   if (mayStore() || isCall() ||
1411       (mayLoad() && hasOrderedMemoryRef())) {
1412     SawStore = true;
1413     return false;
1414   }
1415 
1416   if (isPosition() || isDebugValue() || isTerminator() ||
1417       hasUnmodeledSideEffects())
1418     return false;
1419 
1420   // See if this instruction does a load.  If so, we have to guarantee that the
1421   // loaded value doesn't change between the load and the its intended
1422   // destination. The check for isInvariantLoad gives the targe the chance to
1423   // classify the load as always returning a constant, e.g. a constant pool
1424   // load.
1425   if (mayLoad() && !isInvariantLoad(AA))
1426     // Otherwise, this is a real load.  If there is a store between the load and
1427     // end of block, we can't move it.
1428     return !SawStore;
1429 
1430   return true;
1431 }
1432 
1433 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1434 /// or volatile memory reference, or if the information describing the memory
1435 /// reference is not available. Return false if it is known to have no ordered
1436 /// memory references.
hasOrderedMemoryRef() const1437 bool MachineInstr::hasOrderedMemoryRef() const {
1438   // An instruction known never to access memory won't have a volatile access.
1439   if (!mayStore() &&
1440       !mayLoad() &&
1441       !isCall() &&
1442       !hasUnmodeledSideEffects())
1443     return false;
1444 
1445   // Otherwise, if the instruction has no memory reference information,
1446   // conservatively assume it wasn't preserved.
1447   if (memoperands_empty())
1448     return true;
1449 
1450   // Check the memory reference information for ordered references.
1451   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1452     if (!(*I)->isUnordered())
1453       return true;
1454 
1455   return false;
1456 }
1457 
1458 /// isInvariantLoad - Return true if this instruction is loading from a
1459 /// location whose value is invariant across the function.  For example,
1460 /// loading a value from the constant pool or from the argument area
1461 /// of a function if it does not change.  This should only return true of
1462 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1463 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1464   // If the instruction doesn't load at all, it isn't an invariant load.
1465   if (!mayLoad())
1466     return false;
1467 
1468   // If the instruction has lost its memoperands, conservatively assume that
1469   // it may not be an invariant load.
1470   if (memoperands_empty())
1471     return false;
1472 
1473   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1474 
1475   for (mmo_iterator I = memoperands_begin(),
1476        E = memoperands_end(); I != E; ++I) {
1477     if ((*I)->isVolatile()) return false;
1478     if ((*I)->isStore()) return false;
1479     if ((*I)->isInvariant()) return true;
1480 
1481 
1482     // A load from a constant PseudoSourceValue is invariant.
1483     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1484       if (PSV->isConstant(MFI))
1485         continue;
1486 
1487     if (const Value *V = (*I)->getValue()) {
1488       // If we have an AliasAnalysis, ask it whether the memory is constant.
1489       if (AA &&
1490           AA->pointsToConstantMemory(
1491               MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo())))
1492         continue;
1493     }
1494 
1495     // Otherwise assume conservatively.
1496     return false;
1497   }
1498 
1499   // Everything checks out.
1500   return true;
1501 }
1502 
1503 /// isConstantValuePHI - If the specified instruction is a PHI that always
1504 /// merges together the same virtual register, return the register, otherwise
1505 /// return 0.
isConstantValuePHI() const1506 unsigned MachineInstr::isConstantValuePHI() const {
1507   if (!isPHI())
1508     return 0;
1509   assert(getNumOperands() >= 3 &&
1510          "It's illegal to have a PHI without source operands");
1511 
1512   unsigned Reg = getOperand(1).getReg();
1513   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1514     if (getOperand(i).getReg() != Reg)
1515       return 0;
1516   return Reg;
1517 }
1518 
hasUnmodeledSideEffects() const1519 bool MachineInstr::hasUnmodeledSideEffects() const {
1520   if (hasProperty(MCID::UnmodeledSideEffects))
1521     return true;
1522   if (isInlineAsm()) {
1523     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1524     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1525       return true;
1526   }
1527 
1528   return false;
1529 }
1530 
isLoadFoldBarrier() const1531 bool MachineInstr::isLoadFoldBarrier() const {
1532   return mayStore() || isCall() || hasUnmodeledSideEffects();
1533 }
1534 
1535 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1536 ///
allDefsAreDead() const1537 bool MachineInstr::allDefsAreDead() const {
1538   for (const MachineOperand &MO : operands()) {
1539     if (!MO.isReg() || MO.isUse())
1540       continue;
1541     if (!MO.isDead())
1542       return false;
1543   }
1544   return true;
1545 }
1546 
1547 /// copyImplicitOps - Copy implicit register operands from specified
1548 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1549 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1550                                    const MachineInstr *MI) {
1551   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1552        i != e; ++i) {
1553     const MachineOperand &MO = MI->getOperand(i);
1554     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1555       addOperand(MF, MO);
1556   }
1557 }
1558 
dump() const1559 void MachineInstr::dump() const {
1560 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1561   dbgs() << "  " << *this;
1562 #endif
1563 }
1564 
print(raw_ostream & OS,bool SkipOpers) const1565 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1566   const Module *M = nullptr;
1567   if (const MachineBasicBlock *MBB = getParent())
1568     if (const MachineFunction *MF = MBB->getParent())
1569       M = MF->getFunction()->getParent();
1570 
1571   ModuleSlotTracker MST(M);
1572   print(OS, MST, SkipOpers);
1573 }
1574 
print(raw_ostream & OS,ModuleSlotTracker & MST,bool SkipOpers) const1575 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1576                          bool SkipOpers) const {
1577   // We can be a bit tidier if we know the MachineFunction.
1578   const MachineFunction *MF = nullptr;
1579   const TargetRegisterInfo *TRI = nullptr;
1580   const MachineRegisterInfo *MRI = nullptr;
1581   const TargetInstrInfo *TII = nullptr;
1582   if (const MachineBasicBlock *MBB = getParent()) {
1583     MF = MBB->getParent();
1584     if (MF) {
1585       MRI = &MF->getRegInfo();
1586       TRI = MF->getSubtarget().getRegisterInfo();
1587       TII = MF->getSubtarget().getInstrInfo();
1588     }
1589   }
1590 
1591   // Save a list of virtual registers.
1592   SmallVector<unsigned, 8> VirtRegs;
1593 
1594   // Print explicitly defined operands on the left of an assignment syntax.
1595   unsigned StartOp = 0, e = getNumOperands();
1596   for (; StartOp < e && getOperand(StartOp).isReg() &&
1597          getOperand(StartOp).isDef() &&
1598          !getOperand(StartOp).isImplicit();
1599        ++StartOp) {
1600     if (StartOp != 0) OS << ", ";
1601     getOperand(StartOp).print(OS, MST, TRI);
1602     unsigned Reg = getOperand(StartOp).getReg();
1603     if (TargetRegisterInfo::isVirtualRegister(Reg))
1604       VirtRegs.push_back(Reg);
1605   }
1606 
1607   if (StartOp != 0)
1608     OS << " = ";
1609 
1610   // Print the opcode name.
1611   if (TII)
1612     OS << TII->getName(getOpcode());
1613   else
1614     OS << "UNKNOWN";
1615 
1616   if (SkipOpers)
1617     return;
1618 
1619   // Print the rest of the operands.
1620   bool OmittedAnyCallClobbers = false;
1621   bool FirstOp = true;
1622   unsigned AsmDescOp = ~0u;
1623   unsigned AsmOpCount = 0;
1624 
1625   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1626     // Print asm string.
1627     OS << " ";
1628     getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1629 
1630     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1631     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1632     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1633       OS << " [sideeffect]";
1634     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1635       OS << " [mayload]";
1636     if (ExtraInfo & InlineAsm::Extra_MayStore)
1637       OS << " [maystore]";
1638     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1639       OS << " [alignstack]";
1640     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1641       OS << " [attdialect]";
1642     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1643       OS << " [inteldialect]";
1644 
1645     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1646     FirstOp = false;
1647   }
1648 
1649   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1650     const MachineOperand &MO = getOperand(i);
1651 
1652     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1653       VirtRegs.push_back(MO.getReg());
1654 
1655     // Omit call-clobbered registers which aren't used anywhere. This makes
1656     // call instructions much less noisy on targets where calls clobber lots
1657     // of registers. Don't rely on MO.isDead() because we may be called before
1658     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1659     if (MRI && isCall() &&
1660         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1661       unsigned Reg = MO.getReg();
1662       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1663         if (MRI->use_empty(Reg)) {
1664           bool HasAliasLive = false;
1665           for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1666             unsigned AliasReg = *AI;
1667             if (!MRI->use_empty(AliasReg)) {
1668               HasAliasLive = true;
1669               break;
1670             }
1671           }
1672           if (!HasAliasLive) {
1673             OmittedAnyCallClobbers = true;
1674             continue;
1675           }
1676         }
1677       }
1678     }
1679 
1680     if (FirstOp) FirstOp = false; else OS << ",";
1681     OS << " ";
1682     if (i < getDesc().NumOperands) {
1683       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1684       if (MCOI.isPredicate())
1685         OS << "pred:";
1686       if (MCOI.isOptionalDef())
1687         OS << "opt:";
1688     }
1689     if (isDebugValue() && MO.isMetadata()) {
1690       // Pretty print DBG_VALUE instructions.
1691       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1692       if (DIV && !DIV->getName().empty())
1693         OS << "!\"" << DIV->getName() << '\"';
1694       else
1695         MO.print(OS, MST, TRI);
1696     } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1697       OS << TRI->getSubRegIndexName(MO.getImm());
1698     } else if (i == AsmDescOp && MO.isImm()) {
1699       // Pretty print the inline asm operand descriptor.
1700       OS << '$' << AsmOpCount++;
1701       unsigned Flag = MO.getImm();
1702       switch (InlineAsm::getKind(Flag)) {
1703       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1704       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1705       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1706       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1707       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1708       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1709       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1710       }
1711 
1712       unsigned RCID = 0;
1713       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1714         if (TRI) {
1715           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1716         } else
1717           OS << ":RC" << RCID;
1718       }
1719 
1720       unsigned TiedTo = 0;
1721       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1722         OS << " tiedto:$" << TiedTo;
1723 
1724       OS << ']';
1725 
1726       // Compute the index of the next operand descriptor.
1727       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1728     } else
1729       MO.print(OS, MST, TRI);
1730   }
1731 
1732   // Briefly indicate whether any call clobbers were omitted.
1733   if (OmittedAnyCallClobbers) {
1734     if (!FirstOp) OS << ",";
1735     OS << " ...";
1736   }
1737 
1738   bool HaveSemi = false;
1739   const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1740   if (Flags & PrintableFlags) {
1741     if (!HaveSemi) OS << ";"; HaveSemi = true;
1742     OS << " flags: ";
1743 
1744     if (Flags & FrameSetup)
1745       OS << "FrameSetup";
1746 
1747     if (Flags & FrameDestroy)
1748       OS << "FrameDestroy";
1749   }
1750 
1751   if (!memoperands_empty()) {
1752     if (!HaveSemi) OS << ";"; HaveSemi = true;
1753 
1754     OS << " mem:";
1755     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1756          i != e; ++i) {
1757       (*i)->print(OS, MST);
1758       if (std::next(i) != e)
1759         OS << " ";
1760     }
1761   }
1762 
1763   // Print the regclass of any virtual registers encountered.
1764   if (MRI && !VirtRegs.empty()) {
1765     if (!HaveSemi) OS << ";"; HaveSemi = true;
1766     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1767       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1768       OS << " " << TRI->getRegClassName(RC)
1769          << ':' << PrintReg(VirtRegs[i]);
1770       for (unsigned j = i+1; j != VirtRegs.size();) {
1771         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1772           ++j;
1773           continue;
1774         }
1775         if (VirtRegs[i] != VirtRegs[j])
1776           OS << "," << PrintReg(VirtRegs[j]);
1777         VirtRegs.erase(VirtRegs.begin()+j);
1778       }
1779     }
1780   }
1781 
1782   // Print debug location information.
1783   if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1784     if (!HaveSemi) OS << ";";
1785     auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1786     OS << " line no:" <<  DV->getLine();
1787     if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1788       DebugLoc InlinedAtDL(InlinedAt);
1789       if (InlinedAtDL && MF) {
1790         OS << " inlined @[ ";
1791         InlinedAtDL.print(OS);
1792         OS << " ]";
1793       }
1794     }
1795     if (isIndirectDebugValue())
1796       OS << " indirect";
1797   } else if (debugLoc && MF) {
1798     if (!HaveSemi) OS << ";";
1799     OS << " dbg:";
1800     debugLoc.print(OS);
1801   }
1802 
1803   OS << '\n';
1804 }
1805 
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1806 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1807                                      const TargetRegisterInfo *RegInfo,
1808                                      bool AddIfNotFound) {
1809   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1810   bool hasAliases = isPhysReg &&
1811     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1812   bool Found = false;
1813   SmallVector<unsigned,4> DeadOps;
1814   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1815     MachineOperand &MO = getOperand(i);
1816     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1817       continue;
1818     unsigned Reg = MO.getReg();
1819     if (!Reg)
1820       continue;
1821 
1822     if (Reg == IncomingReg) {
1823       if (!Found) {
1824         if (MO.isKill())
1825           // The register is already marked kill.
1826           return true;
1827         if (isPhysReg && isRegTiedToDefOperand(i))
1828           // Two-address uses of physregs must not be marked kill.
1829           return true;
1830         MO.setIsKill();
1831         Found = true;
1832       }
1833     } else if (hasAliases && MO.isKill() &&
1834                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1835       // A super-register kill already exists.
1836       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1837         return true;
1838       if (RegInfo->isSubRegister(IncomingReg, Reg))
1839         DeadOps.push_back(i);
1840     }
1841   }
1842 
1843   // Trim unneeded kill operands.
1844   while (!DeadOps.empty()) {
1845     unsigned OpIdx = DeadOps.back();
1846     if (getOperand(OpIdx).isImplicit())
1847       RemoveOperand(OpIdx);
1848     else
1849       getOperand(OpIdx).setIsKill(false);
1850     DeadOps.pop_back();
1851   }
1852 
1853   // If not found, this means an alias of one of the operands is killed. Add a
1854   // new implicit operand if required.
1855   if (!Found && AddIfNotFound) {
1856     addOperand(MachineOperand::CreateReg(IncomingReg,
1857                                          false /*IsDef*/,
1858                                          true  /*IsImp*/,
1859                                          true  /*IsKill*/));
1860     return true;
1861   }
1862   return Found;
1863 }
1864 
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1865 void MachineInstr::clearRegisterKills(unsigned Reg,
1866                                       const TargetRegisterInfo *RegInfo) {
1867   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1868     RegInfo = nullptr;
1869   for (MachineOperand &MO : operands()) {
1870     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1871       continue;
1872     unsigned OpReg = MO.getReg();
1873     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1874       MO.setIsKill(false);
1875   }
1876 }
1877 
addRegisterDead(unsigned Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1878 bool MachineInstr::addRegisterDead(unsigned Reg,
1879                                    const TargetRegisterInfo *RegInfo,
1880                                    bool AddIfNotFound) {
1881   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1882   bool hasAliases = isPhysReg &&
1883     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1884   bool Found = false;
1885   SmallVector<unsigned,4> DeadOps;
1886   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1887     MachineOperand &MO = getOperand(i);
1888     if (!MO.isReg() || !MO.isDef())
1889       continue;
1890     unsigned MOReg = MO.getReg();
1891     if (!MOReg)
1892       continue;
1893 
1894     if (MOReg == Reg) {
1895       MO.setIsDead();
1896       Found = true;
1897     } else if (hasAliases && MO.isDead() &&
1898                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1899       // There exists a super-register that's marked dead.
1900       if (RegInfo->isSuperRegister(Reg, MOReg))
1901         return true;
1902       if (RegInfo->isSubRegister(Reg, MOReg))
1903         DeadOps.push_back(i);
1904     }
1905   }
1906 
1907   // Trim unneeded dead operands.
1908   while (!DeadOps.empty()) {
1909     unsigned OpIdx = DeadOps.back();
1910     if (getOperand(OpIdx).isImplicit())
1911       RemoveOperand(OpIdx);
1912     else
1913       getOperand(OpIdx).setIsDead(false);
1914     DeadOps.pop_back();
1915   }
1916 
1917   // If not found, this means an alias of one of the operands is dead. Add a
1918   // new implicit operand if required.
1919   if (Found || !AddIfNotFound)
1920     return Found;
1921 
1922   addOperand(MachineOperand::CreateReg(Reg,
1923                                        true  /*IsDef*/,
1924                                        true  /*IsImp*/,
1925                                        false /*IsKill*/,
1926                                        true  /*IsDead*/));
1927   return true;
1928 }
1929 
clearRegisterDeads(unsigned Reg)1930 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1931   for (MachineOperand &MO : operands()) {
1932     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1933       continue;
1934     MO.setIsDead(false);
1935   }
1936 }
1937 
setRegisterDefReadUndef(unsigned Reg,bool IsUndef)1938 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1939   for (MachineOperand &MO : operands()) {
1940     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1941       continue;
1942     MO.setIsUndef(IsUndef);
1943   }
1944 }
1945 
addRegisterDefined(unsigned Reg,const TargetRegisterInfo * RegInfo)1946 void MachineInstr::addRegisterDefined(unsigned Reg,
1947                                       const TargetRegisterInfo *RegInfo) {
1948   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1949     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1950     if (MO)
1951       return;
1952   } else {
1953     for (const MachineOperand &MO : operands()) {
1954       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1955           MO.getSubReg() == 0)
1956         return;
1957     }
1958   }
1959   addOperand(MachineOperand::CreateReg(Reg,
1960                                        true  /*IsDef*/,
1961                                        true  /*IsImp*/));
1962 }
1963 
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1964 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1965                                          const TargetRegisterInfo &TRI) {
1966   bool HasRegMask = false;
1967   for (MachineOperand &MO : operands()) {
1968     if (MO.isRegMask()) {
1969       HasRegMask = true;
1970       continue;
1971     }
1972     if (!MO.isReg() || !MO.isDef()) continue;
1973     unsigned Reg = MO.getReg();
1974     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1975     // If there are no uses, including partial uses, the def is dead.
1976     if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
1977                      [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1978       MO.setIsDead();
1979   }
1980 
1981   // This is a call with a register mask operand.
1982   // Mask clobbers are always dead, so add defs for the non-dead defines.
1983   if (HasRegMask)
1984     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1985          I != E; ++I)
1986       addRegisterDefined(*I, &TRI);
1987 }
1988 
1989 unsigned
getHashValue(const MachineInstr * const & MI)1990 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1991   // Build up a buffer of hash code components.
1992   SmallVector<size_t, 8> HashComponents;
1993   HashComponents.reserve(MI->getNumOperands() + 1);
1994   HashComponents.push_back(MI->getOpcode());
1995   for (const MachineOperand &MO : MI->operands()) {
1996     if (MO.isReg() && MO.isDef() &&
1997         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1998       continue;  // Skip virtual register defs.
1999 
2000     HashComponents.push_back(hash_value(MO));
2001   }
2002   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2003 }
2004 
emitError(StringRef Msg) const2005 void MachineInstr::emitError(StringRef Msg) const {
2006   // Find the source location cookie.
2007   unsigned LocCookie = 0;
2008   const MDNode *LocMD = nullptr;
2009   for (unsigned i = getNumOperands(); i != 0; --i) {
2010     if (getOperand(i-1).isMetadata() &&
2011         (LocMD = getOperand(i-1).getMetadata()) &&
2012         LocMD->getNumOperands() != 0) {
2013       if (const ConstantInt *CI =
2014               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2015         LocCookie = CI->getZExtValue();
2016         break;
2017       }
2018     }
2019   }
2020 
2021   if (const MachineBasicBlock *MBB = getParent())
2022     if (const MachineFunction *MF = MBB->getParent())
2023       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2024   report_fatal_error(Msg);
2025 }
2026