1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 /*
44 * Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts
45 * Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013.
46 */
47
48 #include "precomp.hpp"
49 #include "opencv2/core.hpp"
50 #include "scd_def.hpp"
51 #include <limits>
52
53 namespace cv
54 {
55 class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor
56 {
57 public:
58 /* Constructors */
ShapeContextDistanceExtractorImpl(int _nAngularBins,int _nRadialBins,float _innerRadius,float _outerRadius,int _iterations,const Ptr<HistogramCostExtractor> & _comparer,const Ptr<ShapeTransformer> & _transformer)59 ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations,
60 const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer)
61 {
62 nAngularBins=_nAngularBins;
63 nRadialBins=_nRadialBins;
64 innerRadius=_innerRadius;
65 outerRadius=_outerRadius;
66 rotationInvariant=false;
67 comparer=_comparer;
68 iterations=_iterations;
69 transformer=_transformer;
70 bendingEnergyWeight=0.3f;
71 imageAppearanceWeight=0.0f;
72 shapeContextWeight=1.0f;
73 sigma=10.0f;
74 name_ = "ShapeDistanceExtractor.SCD";
75 }
76
77 /* Destructor */
~ShapeContextDistanceExtractorImpl()78 ~ShapeContextDistanceExtractorImpl()
79 {
80 }
81
82 //! the main operator
83 virtual float computeDistance(InputArray contour1, InputArray contour2);
84
85 //! Setters/Getters
setAngularBins(int _nAngularBins)86 virtual void setAngularBins(int _nAngularBins){CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins;}
getAngularBins() const87 virtual int getAngularBins() const {return nAngularBins;}
88
setRadialBins(int _nRadialBins)89 virtual void setRadialBins(int _nRadialBins){CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins;}
getRadialBins() const90 virtual int getRadialBins() const {return nRadialBins;}
91
setInnerRadius(float _innerRadius)92 virtual void setInnerRadius(float _innerRadius) {CV_Assert(_innerRadius>0); innerRadius=_innerRadius;}
getInnerRadius() const93 virtual float getInnerRadius() const {return innerRadius;}
94
setOuterRadius(float _outerRadius)95 virtual void setOuterRadius(float _outerRadius) {CV_Assert(_outerRadius>0); outerRadius=_outerRadius;}
getOuterRadius() const96 virtual float getOuterRadius() const {return outerRadius;}
97
setRotationInvariant(bool _rotationInvariant)98 virtual void setRotationInvariant(bool _rotationInvariant) {rotationInvariant=_rotationInvariant;}
getRotationInvariant() const99 virtual bool getRotationInvariant() const {return rotationInvariant;}
100
setCostExtractor(Ptr<HistogramCostExtractor> _comparer)101 virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) { comparer = _comparer; }
getCostExtractor() const102 virtual Ptr<HistogramCostExtractor> getCostExtractor() const { return comparer; }
103
setShapeContextWeight(float _shapeContextWeight)104 virtual void setShapeContextWeight(float _shapeContextWeight) {shapeContextWeight=_shapeContextWeight;}
getShapeContextWeight() const105 virtual float getShapeContextWeight() const {return shapeContextWeight;}
106
setImageAppearanceWeight(float _imageAppearanceWeight)107 virtual void setImageAppearanceWeight(float _imageAppearanceWeight) {imageAppearanceWeight=_imageAppearanceWeight;}
getImageAppearanceWeight() const108 virtual float getImageAppearanceWeight() const {return imageAppearanceWeight;}
109
setBendingEnergyWeight(float _bendingEnergyWeight)110 virtual void setBendingEnergyWeight(float _bendingEnergyWeight) {bendingEnergyWeight=_bendingEnergyWeight;}
getBendingEnergyWeight() const111 virtual float getBendingEnergyWeight() const {return bendingEnergyWeight;}
112
setStdDev(float _sigma)113 virtual void setStdDev(float _sigma) {sigma=_sigma;}
getStdDev() const114 virtual float getStdDev() const {return sigma;}
115
setImages(InputArray _image1,InputArray _image2)116 virtual void setImages(InputArray _image1, InputArray _image2)
117 {
118 Mat image1_=_image1.getMat(), image2_=_image2.getMat();
119 CV_Assert((image1_.depth()==0) && (image2_.depth()==0));
120 image1=image1_;
121 image2=image2_;
122 }
123
getImages(OutputArray _image1,OutputArray _image2) const124 virtual void getImages(OutputArray _image1, OutputArray _image2) const
125 {
126 CV_Assert((!image1.empty()) && (!image2.empty()));
127 _image1.create(image1.size(), image1.type());
128 _image2.create(image2.size(), image2.type());
129 _image1.getMat()=image1;
130 _image2.getMat()=image2;
131 }
132
setIterations(int _iterations)133 virtual void setIterations(int _iterations) {CV_Assert(_iterations>0); iterations=_iterations;}
getIterations() const134 virtual int getIterations() const {return iterations;}
135
setTransformAlgorithm(Ptr<ShapeTransformer> _transformer)136 virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) {transformer=_transformer;}
getTransformAlgorithm() const137 virtual Ptr<ShapeTransformer> getTransformAlgorithm() const {return transformer;}
138
139 //! write/read
write(FileStorage & fs) const140 virtual void write(FileStorage& fs) const
141 {
142 fs << "name" << name_
143 << "nRads" << nRadialBins
144 << "nAngs" << nAngularBins
145 << "iters" << iterations
146 << "img_1" << image1
147 << "img_2" << image2
148 << "beWei" << bendingEnergyWeight
149 << "scWei" << shapeContextWeight
150 << "iaWei" << imageAppearanceWeight
151 << "costF" << costFlag
152 << "rotIn" << rotationInvariant
153 << "sigma" << sigma;
154 }
155
read(const FileNode & fn)156 virtual void read(const FileNode& fn)
157 {
158 CV_Assert( (String)fn["name"] == name_ );
159 nRadialBins = (int)fn["nRads"];
160 nAngularBins = (int)fn["nAngs"];
161 iterations = (int)fn["iters"];
162 bendingEnergyWeight = (float)fn["beWei"];
163 shapeContextWeight = (float)fn["scWei"];
164 imageAppearanceWeight = (float)fn["iaWei"];
165 costFlag = (int)fn["costF"];
166 sigma = (float)fn["sigma"];
167 }
168
169 protected:
170 int nAngularBins;
171 int nRadialBins;
172 float innerRadius;
173 float outerRadius;
174 bool rotationInvariant;
175 int costFlag;
176 int iterations;
177 Ptr<ShapeTransformer> transformer;
178 Ptr<HistogramCostExtractor> comparer;
179 Mat image1;
180 Mat image2;
181 float bendingEnergyWeight;
182 float imageAppearanceWeight;
183 float shapeContextWeight;
184 float sigma;
185 String name_;
186 };
187
computeDistance(InputArray contour1,InputArray contour2)188 float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2)
189 {
190 // Checking //
191 Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2;
192 if (set1.type() != CV_32F)
193 sset1.convertTo(set1, CV_32F);
194 else
195 sset1.copyTo(set1);
196
197 if (set2.type() != CV_32F)
198 sset2.convertTo(set2, CV_32F);
199 else
200 sset2.copyTo(set2);
201
202 CV_Assert((set1.channels()==2) && (set1.cols>0));
203 CV_Assert((set2.channels()==2) && (set2.cols>0));
204 if (imageAppearanceWeight!=0)
205 {
206 CV_Assert((!image1.empty()) && (!image2.empty()));
207 }
208
209 // Initializing Extractor, Descriptor structures and Matcher //
210 SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
211 Mat set1SCD;
212 SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant);
213 Mat set2SCD;
214 SCDMatcher matcher;
215 std::vector<DMatch> matches;
216
217 // Distance components (The output is a linear combination of these 3) //
218 float sDistance=0, bEnergy=0, iAppearance=0;
219 float beta;
220
221 // Initializing some variables //
222 std::vector<int> inliers1, inliers2;
223
224 Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>();
225
226 Mat warpedImage;
227 int ii, jj, pt;
228
229 for (ii=0; ii<iterations; ii++)
230 {
231 // Extract SCD descriptor in the set1 //
232 set1SCE.extractSCD(set1, set1SCD, inliers1);
233
234 // Extract SCD descriptor of the set2 (TARGET) //
235 set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance());
236
237 // regularization parameter with annealing rate annRate //
238 beta=set1SCE.getMeanDistance();
239 beta *= beta;
240
241 // match //
242 matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2);
243
244 // apply TPS transform //
245 if ( !transDown.empty() )
246 transDown->setRegularizationParameter(beta);
247 transformer->estimateTransformation(set1, set2, matches);
248 bEnergy += transformer->applyTransformation(set1, set1);
249
250 // Image appearance //
251 if (imageAppearanceWeight!=0)
252 {
253 // Have to accumulate the transformation along all the iterations
254 if (ii==0)
255 {
256 if ( !transDown.empty() )
257 {
258 image2.copyTo(warpedImage);
259 }
260 else
261 {
262 image1.copyTo(warpedImage);
263 }
264 }
265 transformer->warpImage(warpedImage, warpedImage);
266 }
267 }
268
269 Mat gaussWindow, diffIm;
270 if (imageAppearanceWeight!=0)
271 {
272 // compute appearance cost
273 if ( !transDown.empty() )
274 {
275 resize(warpedImage, warpedImage, image1.size());
276 Mat temp=(warpedImage-image1);
277 multiply(temp, temp, diffIm);
278 }
279 else
280 {
281 resize(warpedImage, warpedImage, image2.size());
282 Mat temp=(warpedImage-image2);
283 multiply(temp, temp, diffIm);
284 }
285 gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F);
286 for (pt=0; pt<sset1.cols; pt++)
287 {
288 Point2f p = sset1.at<Point2f>(0,pt);
289 for (ii=0; ii<diffIm.rows; ii++)
290 {
291 for (jj=0; jj<diffIm.cols; jj++)
292 {
293 float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI));
294 gaussWindow.at<float>(ii,jj) += val;
295 }
296 }
297 }
298
299 Mat appIm(diffIm.rows, diffIm.cols, CV_32F);
300 for (ii=0; ii<diffIm.rows; ii++)
301 {
302 for (jj=0; jj<diffIm.cols; jj++)
303 {
304 float elema=float( diffIm.at<uchar>(ii,jj) )/255;
305 float elemb=gaussWindow.at<float>(ii,jj);
306 appIm.at<float>(ii,jj) = elema*elemb;
307 }
308 }
309 iAppearance = float(cv::sum(appIm)[0]/sset1.cols);
310 }
311 sDistance = matcher.getMatchingCost();
312
313 return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight);
314 }
315
createShapeContextDistanceExtractor(int nAngularBins,int nRadialBins,float innerRadius,float outerRadius,int iterations,const Ptr<HistogramCostExtractor> & comparer,const Ptr<ShapeTransformer> & transformer)316 Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations,
317 const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer)
318 {
319 return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius,
320 outerRadius, iterations, comparer, transformer) );
321 }
322
323 //! SCD
extractSCD(cv::Mat & contour,cv::Mat & descriptors,const std::vector<int> & queryInliers,const float _meanDistance)324 void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance)
325 {
326 cv::Mat contourMat = contour;
327 cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
328 cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F);
329
330 std::vector<double> logspaces, angspaces;
331 logarithmicSpaces(logspaces);
332 angularSpaces(angspaces);
333 buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance);
334 buildAngleMatrix(contourMat, angleMatrix);
335
336 // Now, build the descriptor matrix (each row is a point) //
337 descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F);
338
339 for (int ptidx=0; ptidx<contourMat.cols; ptidx++)
340 {
341 for (int cmp=0; cmp<contourMat.cols; cmp++)
342 {
343 if (ptidx==cmp) continue;
344 if ((int)queryInliers.size()>0)
345 {
346 if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
347 }
348
349 int angidx=-1, radidx=-1;
350 for (int i=0; i<nRadialBins; i++)
351 {
352 if (disMatrix.at<float>(ptidx, cmp)<logspaces[i])
353 {
354 radidx=i;
355 break;
356 }
357 }
358 for (int i=0; i<nAngularBins; i++)
359 {
360 if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i])
361 {
362 angidx=i;
363 break;
364 }
365 }
366 if (angidx!=-1 && radidx!=-1)
367 {
368 int idx = angidx+radidx*nAngularBins;
369 descriptors.at<float>(ptidx, idx)++;
370 }
371 }
372 }
373 }
374
logarithmicSpaces(std::vector<double> & vecSpaces) const375 void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const
376 {
377 double logmin=log10(innerRadius);
378 double logmax=log10(outerRadius);
379 double delta=(logmax-logmin)/(nRadialBins-1);
380 double accdelta=0;
381
382 for (int i=0; i<nRadialBins; i++)
383 {
384 double val = std::pow(10,logmin+accdelta);
385 vecSpaces.push_back(val);
386 accdelta += delta;
387 }
388 }
389
angularSpaces(std::vector<double> & vecSpaces) const390 void SCD::angularSpaces(std::vector<double> &vecSpaces) const
391 {
392 double delta=2*CV_PI/nAngularBins;
393 double val=0;
394
395 for (int i=0; i<nAngularBins; i++)
396 {
397 val += delta;
398 vecSpaces.push_back(val);
399 }
400 }
401
buildNormalizedDistanceMatrix(cv::Mat & contour,cv::Mat & disMatrix,const std::vector<int> & queryInliers,const float _meanDistance)402 void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance)
403 {
404 cv::Mat contourMat = contour;
405 cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U);
406
407 for (int i=0; i<contourMat.cols; i++)
408 {
409 for (int j=0; j<contourMat.cols; j++)
410 {
411 disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 );
412 if (_meanDistance<0)
413 {
414 if (queryInliers.size()>0)
415 {
416 mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]);
417 }
418 else
419 {
420 mask.at<char>(i,j)=1;
421 }
422 }
423 }
424 }
425
426 if (_meanDistance<0)
427 {
428 meanDistance=(float)mean(disMatrix, mask)[0];
429 }
430 else
431 {
432 meanDistance=_meanDistance;
433 }
434 disMatrix/=meanDistance+FLT_EPSILON;
435 }
436
buildAngleMatrix(cv::Mat & contour,cv::Mat & angleMatrix) const437 void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const
438 {
439 cv::Mat contourMat = contour;
440
441 // if descriptor is rotationInvariant compute massCenter //
442 cv::Point2f massCenter(0,0);
443 if (rotationInvariant)
444 {
445 for (int i=0; i<contourMat.cols; i++)
446 {
447 massCenter+=contourMat.at<cv::Point2f>(0,i);
448 }
449 massCenter.x=massCenter.x/(float)contourMat.cols;
450 massCenter.y=massCenter.y/(float)contourMat.cols;
451 }
452
453
454 for (int i=0; i<contourMat.cols; i++)
455 {
456 for (int j=0; j<contourMat.cols; j++)
457 {
458 if (i==j)
459 {
460 angleMatrix.at<float>(i,j)=0.0;
461 }
462 else
463 {
464 cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j);
465 angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x);
466
467 if (rotationInvariant)
468 {
469 cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter;
470 float refAngle = atan2(refPt.y, refPt.x);
471 angleMatrix.at<float>(i,j) -= refAngle;
472 }
473 angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI);
474 }
475 }
476 }
477 }
478
479 //! SCDMatcher
matchDescriptors(cv::Mat & descriptors1,cv::Mat & descriptors2,std::vector<cv::DMatch> & matches,cv::Ptr<cv::HistogramCostExtractor> & comparer,std::vector<int> & inliers1,std::vector<int> & inliers2)480 void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches,
481 cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2)
482 {
483 matches.clear();
484
485 // Build the cost Matrix between descriptors //
486 cv::Mat costMat;
487 buildCostMatrix(descriptors1, descriptors2, costMat, comparer);
488
489 // Solve the matching problem using the hungarian method //
490 hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows);
491 }
492
buildCostMatrix(const cv::Mat & descriptors1,const cv::Mat & descriptors2,cv::Mat & costMatrix,cv::Ptr<cv::HistogramCostExtractor> & comparer) const493 void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2,
494 cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const
495 {
496 comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix);
497 }
498
hungarian(cv::Mat & costMatrix,std::vector<cv::DMatch> & outMatches,std::vector<int> & inliers1,std::vector<int> & inliers2,int sizeScd1,int sizeScd2)499 void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1,
500 std::vector<int> &inliers2, int sizeScd1, int sizeScd2)
501 {
502 std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0);
503 std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows);
504 std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows);
505
506 const float LOWV = 1e-10f;
507 bool unassignedfound;
508 int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0;
509 int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0;
510 float min=0, h=0, umin=0, usubmin=0, v2=0;
511
512 // COLUMN REDUCTION //
513 for (j = costMatrix.rows-1; j >= 0; j--)
514 {
515 // find minimum cost over rows.
516 min = costMatrix.at<float>(0,j);
517 imin = 0;
518 for (i = 1; i < costMatrix.rows; i++)
519 if (costMatrix.at<float>(i,j) < min)
520 {
521 min = costMatrix.at<float>(i,j);
522 imin = i;
523 }
524 v[j] = min;
525
526 if (++matches[imin] == 1)
527 {
528 rowsol[imin] = j;
529 colsol[j] = imin;
530 }
531 else
532 {
533 colsol[j]=-1;
534 }
535 }
536
537 // REDUCTION TRANSFER //
538 for (i=0; i<costMatrix.rows; i++)
539 {
540 if (matches[i] == 0)
541 {
542 free[numfree++] = i;
543 }
544 else
545 {
546 if (matches[i] == 1)
547 {
548 j1=rowsol[i];
549 min=std::numeric_limits<float>::max();
550 for (j=0; j<costMatrix.rows; j++)
551 {
552 if (j!=j1)
553 {
554 if (costMatrix.at<float>(i,j)-v[j] < min)
555 {
556 min=costMatrix.at<float>(i,j)-v[j];
557 }
558 }
559 }
560 v[j1] = v[j1]-min;
561 }
562 }
563 }
564 // AUGMENTING ROW REDUCTION //
565 int loopcnt = 0;
566 do
567 {
568 loopcnt++;
569 k=0;
570 prvnumfree=numfree;
571 numfree=0;
572 while (k < prvnumfree)
573 {
574 i=free[k];
575 k++;
576 umin = costMatrix.at<float>(i,0)-v[0];
577 j1=0;
578 usubmin = std::numeric_limits<float>::max();
579 for (j=1; j<costMatrix.rows; j++)
580 {
581 h = costMatrix.at<float>(i,j)-v[j];
582 if (h < usubmin)
583 {
584 if (h >= umin)
585 {
586 usubmin = h;
587 j2 = j;
588 }
589 else
590 {
591 usubmin = umin;
592 umin = h;
593 j2 = j1;
594 j1 = j;
595 }
596 }
597 }
598 i0 = colsol[j1];
599
600 if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
601 {
602 v[j1] = v[j1] - (usubmin - umin);
603 }
604 else // minimum and subminimum equal.
605 {
606 if (i0 >= 0) // minimum column j1 is assigned.
607 {
608 j1 = j2;
609 i0 = colsol[j2];
610 }
611 }
612 // (re-)assign i to j1, possibly de-assigning an i0.
613 rowsol[i]=j1;
614 colsol[j1]=i;
615
616 if (i0 >= 0)
617 {
618 //if( umin < usubmin )
619 if (fabs(umin-usubmin) > LOWV)
620 {
621 free[--k] = i0;
622 }
623 else
624 {
625 free[numfree++] = i0;
626 }
627 }
628 }
629 }while (loopcnt<2); // repeat once.
630
631 // AUGMENT SOLUTION for each free row //
632 for (f = 0; f<numfree; f++)
633 {
634 freerow = free[f]; // start row of augmenting path.
635 // Dijkstra shortest path algorithm.
636 // runs until unassigned column added to shortest path tree.
637 for (j = 0; j < costMatrix.rows; j++)
638 {
639 d[j] = costMatrix.at<float>(freerow,j) - v[j];
640 pred[j] = float(freerow);
641 collist[j] = j; // init column list.
642 }
643
644 low=0; // columns in 0..low-1 are ready, now none.
645 up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
646 unassignedfound = false;
647 do
648 {
649 if (up == low)
650 {
651 last=low-1;
652 min = d[collist[up++]];
653 for (k = up; k < costMatrix.rows; k++)
654 {
655 j = collist[k];
656 h = d[j];
657 if (h <= min)
658 {
659 if (h < min) // new minimum.
660 {
661 up = low; // restart list at index low.
662 min = h;
663 }
664 collist[k] = collist[up];
665 collist[up++] = j;
666 }
667 }
668 for (k=low; k<up; k++)
669 {
670 if (colsol[collist[k]] < 0)
671 {
672 endofpath = collist[k];
673 unassignedfound = true;
674 break;
675 }
676 }
677 }
678
679 if (!unassignedfound)
680 {
681 // update 'distances' between freerow and all unscanned columns, via next scanned column.
682 j1 = collist[low];
683 low++;
684 i = colsol[j1];
685 h = costMatrix.at<float>(i,j1)-v[j1]-min;
686
687 for (k = up; k < costMatrix.rows; k++)
688 {
689 j = collist[k];
690 v2 = costMatrix.at<float>(i,j) - v[j] - h;
691 if (v2 < d[j])
692 {
693 pred[j] = float(i);
694 if (v2 == min)
695 {
696 if (colsol[j] < 0)
697 {
698 // if unassigned, shortest augmenting path is complete.
699 endofpath = j;
700 unassignedfound = true;
701 break;
702 }
703 else
704 {
705 collist[k] = collist[up];
706 collist[up++] = j;
707 }
708 }
709 d[j] = v2;
710 }
711 }
712 }
713 }while (!unassignedfound);
714
715 // update column prices.
716 for (k = 0; k <= last; k++)
717 {
718 j1 = collist[k];
719 v[j1] = v[j1] + d[j1] - min;
720 }
721
722 // reset row and column assignments along the alternating path.
723 do
724 {
725 i = int(pred[endofpath]);
726 colsol[endofpath] = i;
727 j1 = endofpath;
728 endofpath = rowsol[i];
729 rowsol[i] = j1;
730 }while (i != freerow);
731 }
732
733 // calculate symmetric shape context cost
734 cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2));
735 float leftcost = 0;
736 for (int nrow=0; nrow<trueCostMatrix.rows; nrow++)
737 {
738 double minval;
739 minMaxIdx(trueCostMatrix.row(nrow), &minval);
740 leftcost+=float(minval);
741 }
742 leftcost /= trueCostMatrix.rows;
743
744 float rightcost = 0;
745 for (int ncol=0; ncol<trueCostMatrix.cols; ncol++)
746 {
747 double minval;
748 minMaxIdx(trueCostMatrix.col(ncol), &minval);
749 rightcost+=float(minval);
750 }
751 rightcost /= trueCostMatrix.cols;
752
753 minMatchCost = std::max(leftcost,rightcost);
754
755 // Save in a DMatch vector
756 for (i=0;i<costMatrix.cols;i++)
757 {
758 cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
759 outMatches.push_back(singleMatch);
760 }
761
762 // Update inliers
763 inliers1.reserve(sizeScd1);
764 for (size_t kc = 0; kc<inliers1.size(); kc++)
765 {
766 if (rowsol[kc]<sizeScd1) // if a real match
767 inliers1[kc]=1;
768 else
769 inliers1[kc]=0;
770 }
771 inliers2.reserve(sizeScd2);
772 for (size_t kc = 0; kc<inliers2.size(); kc++)
773 {
774 if (colsol[kc]<sizeScd2) // if a real match
775 inliers2[kc]=1;
776 else
777 inliers2[kc]=0;
778 }
779 }
780
781 }
782