• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 
36 #ifndef INCLUDED_IMATHMATRIXALGO_H
37 #define INCLUDED_IMATHMATRIXALGO_H
38 
39 //-------------------------------------------------------------------------
40 //
41 //      This file contains algorithms applied to or in conjunction with
42 //	transformation matrices (Imath::Matrix33 and Imath::Matrix44).
43 //	The assumption made is that these functions are called much less
44 //	often than the basic point functions or these functions require
45 //	more support classes.
46 //
47 //	This file also defines a few predefined constant matrices.
48 //
49 //-------------------------------------------------------------------------
50 
51 #include "ImathMatrix.h"
52 #include "ImathQuat.h"
53 #include "ImathEuler.h"
54 #include "ImathExc.h"
55 #include "ImathVec.h"
56 #include "ImathLimits.h"
57 #include <math.h>
58 
59 
60 #ifdef OPENEXR_DLL
61     #ifdef IMATH_EXPORTS
62         #define IMATH_EXPORT_CONST extern __declspec(dllexport)
63     #else
64     #define IMATH_EXPORT_CONST extern __declspec(dllimport)
65     #endif
66 #else
67     #define IMATH_EXPORT_CONST extern const
68 #endif
69 
70 
71 namespace Imath {
72 
73 //------------------
74 // Identity matrices
75 //------------------
76 
77 IMATH_EXPORT_CONST M33f identity33f;
78 IMATH_EXPORT_CONST M44f identity44f;
79 IMATH_EXPORT_CONST M33d identity33d;
80 IMATH_EXPORT_CONST M44d identity44d;
81 
82 //----------------------------------------------------------------------
83 // Extract scale, shear, rotation, and translation values from a matrix:
84 //
85 // Notes:
86 //
87 // This implementation follows the technique described in the paper by
88 // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
89 // Matrix into Simple Transformations", p. 320.
90 //
91 // - Some of the functions below have an optional exc parameter
92 //   that determines the functions' behavior when the matrix'
93 //   scaling is very close to zero:
94 //
95 //   If exc is true, the functions throw an Imath::ZeroScale exception.
96 //
97 //   If exc is false:
98 //
99 //      extractScaling (m, s)            returns false, s is invalid
100 //	sansScaling (m)		         returns m
101 //	removeScaling (m)	         returns false, m is unchanged
102 //      sansScalingAndShear (m)          returns m
103 //      removeScalingAndShear (m)        returns false, m is unchanged
104 //      extractAndRemoveScalingAndShear (m, s, h)
105 //                                       returns false, m is unchanged,
106 //                                                      (sh) are invalid
107 //      checkForZeroScaleInRow ()        returns false
108 //	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
109 //
110 // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
111 //   assume that the matrix does not include shear or non-uniform scaling,
112 //   but they do not examine the matrix to verify this assumption.
113 //   Matrices with shear or non-uniform scaling are likely to produce
114 //   meaningless results.  Therefore, you should use the
115 //   removeScalingAndShear() routine, if necessary, prior to calling
116 //   extractEuler...() .
117 //
118 // - All functions assume that the matrix does not include perspective
119 //   transformation(s), but they do not examine the matrix to verify
120 //   this assumption.  Matrices with perspective transformations are
121 //   likely to produce meaningless results.
122 //
123 //----------------------------------------------------------------------
124 
125 
126 //
127 // Declarations for 4x4 matrix.
128 //
129 
130 template <class T>  bool        extractScaling
131                                             (const Matrix44<T> &mat,
132                          Vec3<T> &scl,
133                          bool exc = true);
134 
135 template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat,
136                          bool exc = true);
137 
138 template <class T>  bool        removeScaling
139                                             (Matrix44<T> &mat,
140                          bool exc = true);
141 
142 template <class T>  bool        extractScalingAndShear
143                                             (const Matrix44<T> &mat,
144                          Vec3<T> &scl,
145                          Vec3<T> &shr,
146                          bool exc = true);
147 
148 template <class T>  Matrix44<T> sansScalingAndShear
149                                             (const Matrix44<T> &mat,
150                          bool exc = true);
151 
152 template <class T>  void        sansScalingAndShear
153                                             (Matrix44<T> &result,
154                                              const Matrix44<T> &mat,
155                          bool exc = true);
156 
157 template <class T>  bool        removeScalingAndShear
158                                             (Matrix44<T> &mat,
159                          bool exc = true);
160 
161 template <class T>  bool        extractAndRemoveScalingAndShear
162                                             (Matrix44<T> &mat,
163                          Vec3<T>     &scl,
164                          Vec3<T>     &shr,
165                          bool exc = true);
166 
167 template <class T>  void	extractEulerXYZ
168                                             (const Matrix44<T> &mat,
169                          Vec3<T> &rot);
170 
171 template <class T>  void	extractEulerZYX
172                                             (const Matrix44<T> &mat,
173                          Vec3<T> &rot);
174 
175 template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);
176 
177 template <class T>  bool	extractSHRT
178                                     (const Matrix44<T> &mat,
179                      Vec3<T> &s,
180                      Vec3<T> &h,
181                      Vec3<T> &r,
182                      Vec3<T> &t,
183                      bool exc /*= true*/,
184                      typename Euler<T>::Order rOrder);
185 
186 template <class T>  bool	extractSHRT
187                                     (const Matrix44<T> &mat,
188                      Vec3<T> &s,
189                      Vec3<T> &h,
190                      Vec3<T> &r,
191                      Vec3<T> &t,
192                      bool exc = true);
193 
194 template <class T>  bool	extractSHRT
195                                     (const Matrix44<T> &mat,
196                      Vec3<T> &s,
197                      Vec3<T> &h,
198                      Euler<T> &r,
199                      Vec3<T> &t,
200                      bool exc = true);
201 
202 //
203 // Internal utility function.
204 //
205 
206 template <class T>  bool	checkForZeroScaleInRow
207                                             (const T       &scl,
208                          const Vec3<T> &row,
209                          bool exc = true);
210 
211 template <class T>  Matrix44<T> outerProduct
212                                             ( const Vec4<T> &a,
213                                               const Vec4<T> &b);
214 
215 
216 //
217 // Returns a matrix that rotates "fromDirection" vector to "toDirection"
218 // vector.
219 //
220 
221 template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
222                         const Vec3<T> &toDirection);
223 
224 
225 
226 //
227 // Returns a matrix that rotates the "fromDir" vector
228 // so that it points towards "toDir".  You may also
229 // specify that you want the up vector to be pointing
230 // in a certain direction "upDir".
231 //
232 
233 template <class T> Matrix44<T>	rotationMatrixWithUpDir
234                                             (const Vec3<T> &fromDir,
235                          const Vec3<T> &toDir,
236                          const Vec3<T> &upDir);
237 
238 
239 //
240 // Constructs a matrix that rotates the z-axis so that it
241 // points towards "targetDir".  You must also specify
242 // that you want the up vector to be pointing in a
243 // certain direction "upDir".
244 //
245 // Notes: The following degenerate cases are handled:
246 //        (a) when the directions given by "toDir" and "upDir"
247 //            are parallel or opposite;
248 //            (the direction vectors must have a non-zero cross product)
249 //        (b) when any of the given direction vectors have zero length
250 //
251 
252 template <class T> void	alignZAxisWithTargetDir
253                                             (Matrix44<T> &result,
254                                              Vec3<T>      targetDir,
255                          Vec3<T>      upDir);
256 
257 
258 // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
259 // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
260 // Inputs are :
261 //     -the position of the frame
262 //     -the x axis direction of the frame
263 //     -a normal to the y axis of the frame
264 // Return is the orthonormal frame
265 template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
266                                                   const Vec3<T>& xDir,
267                                                   const Vec3<T>& normal);
268 
269 // Add a translate/rotate/scale offset to an input frame
270 // and put it in another frame of reference
271 // Inputs are :
272 //     - input frame
273 //     - translate offset
274 //     - rotate    offset in degrees
275 //     - scale     offset
276 //     - frame of reference
277 // Output is the offsetted frame
278 template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
279                                           const Vec3<T>&     tOffset,
280                                           const Vec3<T>&     rOffset,
281                                           const Vec3<T>&     sOffset,
282                                           const Vec3<T>&     ref);
283 
284 // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
285 // Inputs are :
286 //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
287 //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
288 //      -Matrix A
289 //      -Matrix B
290 // Return Matrix A with tweaked rotation/scale
291 template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
292                                                 bool               keepScaleA,
293                                                 const Matrix44<T>& A,
294                                                 const Matrix44<T>& B);
295 
296 
297 //----------------------------------------------------------------------
298 
299 
300 //
301 // Declarations for 3x3 matrix.
302 //
303 
304 
305 template <class T>  bool        extractScaling
306                                             (const Matrix33<T> &mat,
307                          Vec2<T> &scl,
308                          bool exc = true);
309 
310 template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat,
311                          bool exc = true);
312 
313 template <class T>  bool        removeScaling
314                                             (Matrix33<T> &mat,
315                          bool exc = true);
316 
317 template <class T>  bool        extractScalingAndShear
318                                             (const Matrix33<T> &mat,
319                          Vec2<T> &scl,
320                          T &h,
321                          bool exc = true);
322 
323 template <class T>  Matrix33<T> sansScalingAndShear
324                                             (const Matrix33<T> &mat,
325                          bool exc = true);
326 
327 template <class T>  bool        removeScalingAndShear
328                                             (Matrix33<T> &mat,
329                          bool exc = true);
330 
331 template <class T>  bool        extractAndRemoveScalingAndShear
332                                             (Matrix33<T> &mat,
333                          Vec2<T>     &scl,
334                          T           &shr,
335                          bool exc = true);
336 
337 template <class T>  void	extractEuler
338                                             (const Matrix33<T> &mat,
339                          T       &rot);
340 
341 template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
342                          Vec2<T> &s,
343                          T       &h,
344                          T       &r,
345                          Vec2<T> &t,
346                          bool exc = true);
347 
348 template <class T>  bool	checkForZeroScaleInRow
349                                             (const T       &scl,
350                          const Vec2<T> &row,
351                          bool exc = true);
352 
353 template <class T>  Matrix33<T> outerProduct
354                                             ( const Vec3<T> &a,
355                                               const Vec3<T> &b);
356 
357 
358 //-----------------------------------------------------------------------------
359 // Implementation for 4x4 Matrix
360 //------------------------------
361 
362 
363 template <class T>
364 bool
extractScaling(const Matrix44<T> & mat,Vec3<T> & scl,bool exc)365 extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
366 {
367     Vec3<T> shr;
368     Matrix44<T> M (mat);
369 
370     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
371     return false;
372 
373     return true;
374 }
375 
376 
377 template <class T>
378 Matrix44<T>
sansScaling(const Matrix44<T> & mat,bool exc)379 sansScaling (const Matrix44<T> &mat, bool exc)
380 {
381     Vec3<T> scl;
382     Vec3<T> shr;
383     Vec3<T> rot;
384     Vec3<T> tran;
385 
386     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
387     return mat;
388 
389     Matrix44<T> M;
390 
391     M.translate (tran);
392     M.rotate (rot);
393     M.shear (shr);
394 
395     return M;
396 }
397 
398 
399 template <class T>
400 bool
removeScaling(Matrix44<T> & mat,bool exc)401 removeScaling (Matrix44<T> &mat, bool exc)
402 {
403     Vec3<T> scl;
404     Vec3<T> shr;
405     Vec3<T> rot;
406     Vec3<T> tran;
407 
408     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
409     return false;
410 
411     mat.makeIdentity ();
412     mat.translate (tran);
413     mat.rotate (rot);
414     mat.shear (shr);
415 
416     return true;
417 }
418 
419 
420 template <class T>
421 bool
extractScalingAndShear(const Matrix44<T> & mat,Vec3<T> & scl,Vec3<T> & shr,bool exc)422 extractScalingAndShear (const Matrix44<T> &mat,
423             Vec3<T> &scl, Vec3<T> &shr, bool exc)
424 {
425     Matrix44<T> M (mat);
426 
427     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
428     return false;
429 
430     return true;
431 }
432 
433 
434 template <class T>
435 Matrix44<T>
sansScalingAndShear(const Matrix44<T> & mat,bool exc)436 sansScalingAndShear (const Matrix44<T> &mat, bool exc)
437 {
438     Vec3<T> scl;
439     Vec3<T> shr;
440     Matrix44<T> M (mat);
441 
442     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
443     return mat;
444 
445     return M;
446 }
447 
448 
449 template <class T>
450 void
sansScalingAndShear(Matrix44<T> & result,const Matrix44<T> & mat,bool exc)451 sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
452 {
453     Vec3<T> scl;
454     Vec3<T> shr;
455 
456     if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
457     result = mat;
458 }
459 
460 
461 template <class T>
462 bool
removeScalingAndShear(Matrix44<T> & mat,bool exc)463 removeScalingAndShear (Matrix44<T> &mat, bool exc)
464 {
465     Vec3<T> scl;
466     Vec3<T> shr;
467 
468     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
469     return false;
470 
471     return true;
472 }
473 
474 
475 template <class T>
476 bool
extractAndRemoveScalingAndShear(Matrix44<T> & mat,Vec3<T> & scl,Vec3<T> & shr,bool exc)477 extractAndRemoveScalingAndShear (Matrix44<T> &mat,
478                  Vec3<T> &scl, Vec3<T> &shr, bool exc)
479 {
480     //
481     // This implementation follows the technique described in the paper by
482     // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
483     // Matrix into Simple Transformations", p. 320.
484     //
485 
486     Vec3<T> row[3];
487 
488     row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
489     row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
490     row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
491 
492     T maxVal = 0;
493     for (int i=0; i < 3; i++)
494     for (int j=0; j < 3; j++)
495         if (Imath::abs (row[i][j]) > maxVal)
496         maxVal = Imath::abs (row[i][j]);
497 
498     //
499     // We normalize the 3x3 matrix here.
500     // It was noticed that this can improve numerical stability significantly,
501     // especially when many of the upper 3x3 matrix's coefficients are very
502     // close to zero; we correct for this step at the end by multiplying the
503     // scaling factors by maxVal at the end (shear and rotation are not
504     // affected by the normalization).
505 
506     if (maxVal != 0)
507     {
508     for (int i=0; i < 3; i++)
509         if (! checkForZeroScaleInRow (maxVal, row[i], exc))
510         return false;
511         else
512         row[i] /= maxVal;
513     }
514 
515     // Compute X scale factor.
516     scl.x = row[0].length ();
517     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
518     return false;
519 
520     // Normalize first row.
521     row[0] /= scl.x;
522 
523     // An XY shear factor will shear the X coord. as the Y coord. changes.
524     // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
525     // extract the first 3 because we can effect the last 3 by shearing in
526     // XY, XZ, YZ combined rotations and scales.
527     //
528     // shear matrix <   1,  YX,  ZX,  0,
529     //                 XY,   1,  ZY,  0,
530     //                 XZ,  YZ,   1,  0,
531     //                  0,   0,   0,  1 >
532 
533     // Compute XY shear factor and make 2nd row orthogonal to 1st.
534     shr[0]  = row[0].dot (row[1]);
535     row[1] -= shr[0] * row[0];
536 
537     // Now, compute Y scale.
538     scl.y = row[1].length ();
539     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
540     return false;
541 
542     // Normalize 2nd row and correct the XY shear factor for Y scaling.
543     row[1] /= scl.y;
544     shr[0] /= scl.y;
545 
546     // Compute XZ and YZ shears, orthogonalize 3rd row.
547     shr[1]  = row[0].dot (row[2]);
548     row[2] -= shr[1] * row[0];
549     shr[2]  = row[1].dot (row[2]);
550     row[2] -= shr[2] * row[1];
551 
552     // Next, get Z scale.
553     scl.z = row[2].length ();
554     if (! checkForZeroScaleInRow (scl.z, row[2], exc))
555     return false;
556 
557     // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
558     row[2] /= scl.z;
559     shr[1] /= scl.z;
560     shr[2] /= scl.z;
561 
562     // At this point, the upper 3x3 matrix in mat is orthonormal.
563     // Check for a coordinate system flip. If the determinant
564     // is less than zero, then negate the matrix and the scaling factors.
565     if (row[0].dot (row[1].cross (row[2])) < 0)
566     for (int  i=0; i < 3; i++)
567     {
568         scl[i] *= -1;
569         row[i] *= -1;
570     }
571 
572     // Copy over the orthonormal rows into the returned matrix.
573     // The upper 3x3 matrix in mat is now a rotation matrix.
574     for (int i=0; i < 3; i++)
575     {
576     mat[i][0] = row[i][0];
577     mat[i][1] = row[i][1];
578     mat[i][2] = row[i][2];
579     }
580 
581     // Correct the scaling factors for the normalization step that we
582     // performed above; shear and rotation are not affected by the
583     // normalization.
584     scl *= maxVal;
585 
586     return true;
587 }
588 
589 
590 template <class T>
591 void
extractEulerXYZ(const Matrix44<T> & mat,Vec3<T> & rot)592 extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
593 {
594     //
595     // Normalize the local x, y and z axes to remove scaling.
596     //
597 
598     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
599     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
600     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
601 
602     i.normalize();
603     j.normalize();
604     k.normalize();
605 
606     Matrix44<T> M (i[0], i[1], i[2], 0,
607            j[0], j[1], j[2], 0,
608            k[0], k[1], k[2], 0,
609            0,    0,    0,    1);
610 
611     //
612     // Extract the first angle, rot.x.
613     //
614 
615     rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
616 
617     //
618     // Remove the rot.x rotation from M, so that the remaining
619     // rotation, N, is only around two axes, and gimbal lock
620     // cannot occur.
621     //
622 
623     Matrix44<T> N;
624     N.rotate (Vec3<T> (-rot.x, 0, 0));
625     N = N * M;
626 
627     //
628     // Extract the other two angles, rot.y and rot.z, from N.
629     //
630 
631     T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
632     rot.y = Math<T>::atan2 (-N[0][2], cy);
633     rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
634 }
635 
636 
637 template <class T>
638 void
extractEulerZYX(const Matrix44<T> & mat,Vec3<T> & rot)639 extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
640 {
641     //
642     // Normalize the local x, y and z axes to remove scaling.
643     //
644 
645     Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
646     Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
647     Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
648 
649     i.normalize();
650     j.normalize();
651     k.normalize();
652 
653     Matrix44<T> M (i[0], i[1], i[2], 0,
654            j[0], j[1], j[2], 0,
655            k[0], k[1], k[2], 0,
656            0,    0,    0,    1);
657 
658     //
659     // Extract the first angle, rot.x.
660     //
661 
662     rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
663 
664     //
665     // Remove the x rotation from M, so that the remaining
666     // rotation, N, is only around two axes, and gimbal lock
667     // cannot occur.
668     //
669 
670     Matrix44<T> N;
671     N.rotate (Vec3<T> (0, 0, -rot.x));
672     N = N * M;
673 
674     //
675     // Extract the other two angles, rot.y and rot.z, from N.
676     //
677 
678     T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
679     rot.y = -Math<T>::atan2 (-N[2][0], cy);
680     rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
681 }
682 
683 
684 template <class T>
685 Quat<T>
extractQuat(const Matrix44<T> & mat)686 extractQuat (const Matrix44<T> &mat)
687 {
688   Matrix44<T> rot;
689 
690   T        tr, s;
691   T         q[4];
692   int    i, j, k;
693   Quat<T>   quat;
694 
695   int nxt[3] = {1, 2, 0};
696   tr = mat[0][0] + mat[1][1] + mat[2][2];
697 
698   // check the diagonal
699   if (tr > 0.0) {
700      s = Math<T>::sqrt (tr + T(1.0));
701      quat.r = s / T(2.0);
702      s = T(0.5) / s;
703 
704      quat.v.x = (mat[1][2] - mat[2][1]) * s;
705      quat.v.y = (mat[2][0] - mat[0][2]) * s;
706      quat.v.z = (mat[0][1] - mat[1][0]) * s;
707   }
708   else {
709      // diagonal is negative
710      i = 0;
711      if (mat[1][1] > mat[0][0])
712         i=1;
713      if (mat[2][2] > mat[i][i])
714         i=2;
715 
716      j = nxt[i];
717      k = nxt[j];
718      s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
719 
720      q[i] = s * T(0.5);
721      if (s != T(0.0))
722         s = T(0.5) / s;
723 
724      q[3] = (mat[j][k] - mat[k][j]) * s;
725      q[j] = (mat[i][j] + mat[j][i]) * s;
726      q[k] = (mat[i][k] + mat[k][i]) * s;
727 
728      quat.v.x = q[0];
729      quat.v.y = q[1];
730      quat.v.z = q[2];
731      quat.r = q[3];
732  }
733 
734   return quat;
735 }
736 
737 template <class T>
738 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Vec3<T> & r,Vec3<T> & t,bool exc,typename Euler<T>::Order rOrder)739 extractSHRT (const Matrix44<T> &mat,
740          Vec3<T> &s,
741          Vec3<T> &h,
742          Vec3<T> &r,
743          Vec3<T> &t,
744          bool exc /* = true */ ,
745          typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
746 {
747     Matrix44<T> rot;
748 
749     rot = mat;
750     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
751     return false;
752 
753     extractEulerXYZ (rot, r);
754 
755     t.x = mat[3][0];
756     t.y = mat[3][1];
757     t.z = mat[3][2];
758 
759     if (rOrder != Euler<T>::XYZ)
760     {
761     Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
762     Imath::Euler<T> e (eXYZ, rOrder);
763     r = e.toXYZVector ();
764     }
765 
766     return true;
767 }
768 
769 template <class T>
770 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Vec3<T> & r,Vec3<T> & t,bool exc)771 extractSHRT (const Matrix44<T> &mat,
772          Vec3<T> &s,
773          Vec3<T> &h,
774          Vec3<T> &r,
775          Vec3<T> &t,
776          bool exc)
777 {
778     return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
779 }
780 
781 template <class T>
782 bool
extractSHRT(const Matrix44<T> & mat,Vec3<T> & s,Vec3<T> & h,Euler<T> & r,Vec3<T> & t,bool exc)783 extractSHRT (const Matrix44<T> &mat,
784          Vec3<T> &s,
785          Vec3<T> &h,
786          Euler<T> &r,
787          Vec3<T> &t,
788          bool exc /* = true */)
789 {
790     return extractSHRT (mat, s, h, r, t, exc, r.order ());
791 }
792 
793 
794 template <class T>
795 bool
checkForZeroScaleInRow(const T & scl,const Vec3<T> & row,bool exc)796 checkForZeroScaleInRow (const T& scl,
797             const Vec3<T> &row,
798             bool exc /* = true */ )
799 {
800     for (int i = 0; i < 3; i++)
801     {
802     if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
803     {
804         if (exc)
805         throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
806                        "from matrix.");
807         else
808         return false;
809     }
810     }
811 
812     return true;
813 }
814 
815 template <class T>
816 Matrix44<T>
outerProduct(const Vec4<T> & a,const Vec4<T> & b)817 outerProduct (const Vec4<T> &a, const Vec4<T> &b )
818 {
819     return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
820                         a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
821                         a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
822                         a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
823 }
824 
825 template <class T>
826 Matrix44<T>
rotationMatrix(const Vec3<T> & from,const Vec3<T> & to)827 rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
828 {
829     Quat<T> q;
830     q.setRotation(from, to);
831     return q.toMatrix44();
832 }
833 
834 
835 template <class T>
836 Matrix44<T>
rotationMatrixWithUpDir(const Vec3<T> & fromDir,const Vec3<T> & toDir,const Vec3<T> & upDir)837 rotationMatrixWithUpDir (const Vec3<T> &fromDir,
838              const Vec3<T> &toDir,
839              const Vec3<T> &upDir)
840 {
841     //
842     // The goal is to obtain a rotation matrix that takes
843     // "fromDir" to "toDir".  We do this in two steps and
844     // compose the resulting rotation matrices;
845     //    (a) rotate "fromDir" into the z-axis
846     //    (b) rotate the z-axis into "toDir"
847     //
848 
849     // The from direction must be non-zero; but we allow zero to and up dirs.
850     if (fromDir.length () == 0)
851     return Matrix44<T> ();
852 
853     else
854     {
855     Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED );
856     alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
857 
858     Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
859 
860     Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED );
861     alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
862 
863     return fromDir2zAxis * zAxis2ToDir;
864     }
865 }
866 
867 
868 template <class T>
869 void
alignZAxisWithTargetDir(Matrix44<T> & result,Vec3<T> targetDir,Vec3<T> upDir)870 alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
871 {
872     //
873     // Ensure that the target direction is non-zero.
874     //
875 
876     if ( targetDir.length () == 0 )
877     targetDir = Vec3<T> (0, 0, 1);
878 
879     //
880     // Ensure that the up direction is non-zero.
881     //
882 
883     if ( upDir.length () == 0 )
884     upDir = Vec3<T> (0, 1, 0);
885 
886     //
887     // Check for degeneracies.  If the upDir and targetDir are parallel
888     // or opposite, then compute a new, arbitrary up direction that is
889     // not parallel or opposite to the targetDir.
890     //
891 
892     if (upDir.cross (targetDir).length () == 0)
893     {
894     upDir = targetDir.cross (Vec3<T> (1, 0, 0));
895     if (upDir.length() == 0)
896         upDir = targetDir.cross(Vec3<T> (0, 0, 1));
897     }
898 
899     //
900     // Compute the x-, y-, and z-axis vectors of the new coordinate system.
901     //
902 
903     Vec3<T> targetPerpDir = upDir.cross (targetDir);
904     Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
905 
906     //
907     // Rotate the x-axis into targetPerpDir (row 0),
908     // rotate the y-axis into targetUpDir   (row 1),
909     // rotate the z-axis into targetDir     (row 2).
910     //
911 
912     Vec3<T> row[3];
913     row[0] = targetPerpDir.normalized ();
914     row[1] = targetUpDir  .normalized ();
915     row[2] = targetDir    .normalized ();
916 
917     result.x[0][0] = row[0][0];
918     result.x[0][1] = row[0][1];
919     result.x[0][2] = row[0][2];
920     result.x[0][3] = (T)0;
921 
922     result.x[1][0] = row[1][0];
923     result.x[1][1] = row[1][1];
924     result.x[1][2] = row[1][2];
925     result.x[1][3] = (T)0;
926 
927     result.x[2][0] = row[2][0];
928     result.x[2][1] = row[2][1];
929     result.x[2][2] = row[2][2];
930     result.x[2][3] = (T)0;
931 
932     result.x[3][0] = (T)0;
933     result.x[3][1] = (T)0;
934     result.x[3][2] = (T)0;
935     result.x[3][3] = (T)1;
936 }
937 
938 
939 // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
940 // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
941 // Inputs are :
942 //     -the position of the frame
943 //     -the x axis direction of the frame
944 //     -a normal to the y axis of the frame
945 // Return is the orthonormal frame
946 template <class T>
947 Matrix44<T>
computeLocalFrame(const Vec3<T> & p,const Vec3<T> & xDir,const Vec3<T> & normal)948 computeLocalFrame( const Vec3<T>& p,
949                    const Vec3<T>& xDir,
950                    const Vec3<T>& normal)
951 {
952     Vec3<T> _xDir(xDir);
953     Vec3<T> x = _xDir.normalize();
954     Vec3<T> y = (normal % x).normalize();
955     Vec3<T> z = (x % y).normalize();
956 
957     Matrix44<T> L;
958     L[0][0] = x[0];
959     L[0][1] = x[1];
960     L[0][2] = x[2];
961     L[0][3] = 0.0;
962 
963     L[1][0] = y[0];
964     L[1][1] = y[1];
965     L[1][2] = y[2];
966     L[1][3] = 0.0;
967 
968     L[2][0] = z[0];
969     L[2][1] = z[1];
970     L[2][2] = z[2];
971     L[2][3] = 0.0;
972 
973     L[3][0] = p[0];
974     L[3][1] = p[1];
975     L[3][2] = p[2];
976     L[3][3] = 1.0;
977 
978     return L;
979 }
980 
981 // Add a translate/rotate/scale offset to an input frame
982 // and put it in another frame of reference
983 // Inputs are :
984 //     - input frame
985 //     - translate offset
986 //     - rotate    offset in degrees
987 //     - scale     offset
988 //     - frame of reference
989 // Output is the offsetted frame
990 template <class T>
991 Matrix44<T>
addOffset(const Matrix44<T> & inMat,const Vec3<T> & tOffset,const Vec3<T> & rOffset,const Vec3<T> & sOffset,const Matrix44<T> & ref)992 addOffset( const Matrix44<T>& inMat,
993            const Vec3<T>&     tOffset,
994            const Vec3<T>&     rOffset,
995            const Vec3<T>&     sOffset,
996            const Matrix44<T>& ref)
997 {
998     Matrix44<T> O;
999 
1000     Vec3<T> _rOffset(rOffset);
1001     _rOffset *= M_PI / 180.0;
1002     O.rotate (_rOffset);
1003 
1004     O[3][0] = tOffset[0];
1005     O[3][1] = tOffset[1];
1006     O[3][2] = tOffset[2];
1007 
1008     Matrix44<T> S;
1009     S.scale (sOffset);
1010 
1011     Matrix44<T> X = S * O * inMat * ref;
1012 
1013     return X;
1014 }
1015 
1016 // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
1017 // Inputs are :
1018 //      -keepRotateA : if true keep rotate from matrix A, use B otherwise
1019 //      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
1020 //      -Matrix A
1021 //      -Matrix B
1022 // Return Matrix A with tweaked rotation/scale
1023 template <class T>
1024 Matrix44<T>
computeRSMatrix(bool keepRotateA,bool keepScaleA,const Matrix44<T> & A,const Matrix44<T> & B)1025 computeRSMatrix( bool               keepRotateA,
1026                  bool               keepScaleA,
1027                  const Matrix44<T>& A,
1028                  const Matrix44<T>& B)
1029 {
1030     Vec3<T> as, ah, ar, at;
1031     extractSHRT (A, as, ah, ar, at);
1032 
1033     Vec3<T> bs, bh, br, bt;
1034     extractSHRT (B, bs, bh, br, bt);
1035 
1036     if (!keepRotateA)
1037         ar = br;
1038 
1039     if (!keepScaleA)
1040         as = bs;
1041 
1042     Matrix44<T> mat;
1043     mat.makeIdentity();
1044     mat.translate (at);
1045     mat.rotate (ar);
1046     mat.scale (as);
1047 
1048     return mat;
1049 }
1050 
1051 
1052 
1053 //-----------------------------------------------------------------------------
1054 // Implementation for 3x3 Matrix
1055 //------------------------------
1056 
1057 
1058 template <class T>
1059 bool
extractScaling(const Matrix33<T> & mat,Vec2<T> & scl,bool exc)1060 extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
1061 {
1062     T shr;
1063     Matrix33<T> M (mat);
1064 
1065     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1066     return false;
1067 
1068     return true;
1069 }
1070 
1071 
1072 template <class T>
1073 Matrix33<T>
sansScaling(const Matrix33<T> & mat,bool exc)1074 sansScaling (const Matrix33<T> &mat, bool exc)
1075 {
1076     Vec2<T> scl;
1077     T shr;
1078     T rot;
1079     Vec2<T> tran;
1080 
1081     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1082     return mat;
1083 
1084     Matrix33<T> M;
1085 
1086     M.translate (tran);
1087     M.rotate (rot);
1088     M.shear (shr);
1089 
1090     return M;
1091 }
1092 
1093 
1094 template <class T>
1095 bool
removeScaling(Matrix33<T> & mat,bool exc)1096 removeScaling (Matrix33<T> &mat, bool exc)
1097 {
1098     Vec2<T> scl;
1099     T shr;
1100     T rot;
1101     Vec2<T> tran;
1102 
1103     if (! extractSHRT (mat, scl, shr, rot, tran, exc))
1104     return false;
1105 
1106     mat.makeIdentity ();
1107     mat.translate (tran);
1108     mat.rotate (rot);
1109     mat.shear (shr);
1110 
1111     return true;
1112 }
1113 
1114 
1115 template <class T>
1116 bool
extractScalingAndShear(const Matrix33<T> & mat,Vec2<T> & scl,T & shr,bool exc)1117 extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
1118 {
1119     Matrix33<T> M (mat);
1120 
1121     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1122     return false;
1123 
1124     return true;
1125 }
1126 
1127 
1128 template <class T>
1129 Matrix33<T>
sansScalingAndShear(const Matrix33<T> & mat,bool exc)1130 sansScalingAndShear (const Matrix33<T> &mat, bool exc)
1131 {
1132     Vec2<T> scl;
1133     T shr;
1134     Matrix33<T> M (mat);
1135 
1136     if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
1137     return mat;
1138 
1139     return M;
1140 }
1141 
1142 
1143 template <class T>
1144 bool
removeScalingAndShear(Matrix33<T> & mat,bool exc)1145 removeScalingAndShear (Matrix33<T> &mat, bool exc)
1146 {
1147     Vec2<T> scl;
1148     T shr;
1149 
1150     if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
1151     return false;
1152 
1153     return true;
1154 }
1155 
1156 template <class T>
1157 bool
extractAndRemoveScalingAndShear(Matrix33<T> & mat,Vec2<T> & scl,T & shr,bool exc)1158 extractAndRemoveScalingAndShear (Matrix33<T> &mat,
1159                  Vec2<T> &scl, T &shr, bool exc)
1160 {
1161     Vec2<T> row[2];
1162 
1163     row[0] = Vec2<T> (mat[0][0], mat[0][1]);
1164     row[1] = Vec2<T> (mat[1][0], mat[1][1]);
1165 
1166     T maxVal = 0;
1167     for (int i=0; i < 2; i++)
1168     for (int j=0; j < 2; j++)
1169         if (Imath::abs (row[i][j]) > maxVal)
1170         maxVal = Imath::abs (row[i][j]);
1171 
1172     //
1173     // We normalize the 2x2 matrix here.
1174     // It was noticed that this can improve numerical stability significantly,
1175     // especially when many of the upper 2x2 matrix's coefficients are very
1176     // close to zero; we correct for this step at the end by multiplying the
1177     // scaling factors by maxVal at the end (shear and rotation are not
1178     // affected by the normalization).
1179 
1180     if (maxVal != 0)
1181     {
1182     for (int i=0; i < 2; i++)
1183         if (! checkForZeroScaleInRow (maxVal, row[i], exc))
1184         return false;
1185         else
1186         row[i] /= maxVal;
1187     }
1188 
1189     // Compute X scale factor.
1190     scl.x = row[0].length ();
1191     if (! checkForZeroScaleInRow (scl.x, row[0], exc))
1192     return false;
1193 
1194     // Normalize first row.
1195     row[0] /= scl.x;
1196 
1197     // An XY shear factor will shear the X coord. as the Y coord. changes.
1198     // There are 2 combinations (XY, YX), although we only extract the XY
1199     // shear factor because we can effect the an YX shear factor by
1200     // shearing in XY combined with rotations and scales.
1201     //
1202     // shear matrix <   1,  YX,  0,
1203     //                 XY,   1,  0,
1204     //                  0,   0,  1 >
1205 
1206     // Compute XY shear factor and make 2nd row orthogonal to 1st.
1207     shr     = row[0].dot (row[1]);
1208     row[1] -= shr * row[0];
1209 
1210     // Now, compute Y scale.
1211     scl.y = row[1].length ();
1212     if (! checkForZeroScaleInRow (scl.y, row[1], exc))
1213     return false;
1214 
1215     // Normalize 2nd row and correct the XY shear factor for Y scaling.
1216     row[1] /= scl.y;
1217     shr    /= scl.y;
1218 
1219     // At this point, the upper 2x2 matrix in mat is orthonormal.
1220     // Check for a coordinate system flip. If the determinant
1221     // is -1, then flip the rotation matrix and adjust the scale(Y)
1222     // and shear(XY) factors to compensate.
1223     if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
1224     {
1225     row[1][0] *= -1;
1226     row[1][1] *= -1;
1227     scl[1] *= -1;
1228     shr *= -1;
1229     }
1230 
1231     // Copy over the orthonormal rows into the returned matrix.
1232     // The upper 2x2 matrix in mat is now a rotation matrix.
1233     for (int i=0; i < 2; i++)
1234     {
1235     mat[i][0] = row[i][0];
1236     mat[i][1] = row[i][1];
1237     }
1238 
1239     scl *= maxVal;
1240 
1241     return true;
1242 }
1243 
1244 
1245 template <class T>
1246 void
extractEuler(const Matrix33<T> & mat,T & rot)1247 extractEuler (const Matrix33<T> &mat, T &rot)
1248 {
1249     //
1250     // Normalize the local x and y axes to remove scaling.
1251     //
1252 
1253     Vec2<T> i (mat[0][0], mat[0][1]);
1254     Vec2<T> j (mat[1][0], mat[1][1]);
1255 
1256     i.normalize();
1257     j.normalize();
1258 
1259     //
1260     // Extract the angle, rot.
1261     //
1262 
1263     rot = - Math<T>::atan2 (j[0], i[0]);
1264 }
1265 
1266 
1267 template <class T>
1268 bool
extractSHRT(const Matrix33<T> & mat,Vec2<T> & s,T & h,T & r,Vec2<T> & t,bool exc)1269 extractSHRT (const Matrix33<T> &mat,
1270          Vec2<T> &s,
1271          T       &h,
1272          T       &r,
1273          Vec2<T> &t,
1274          bool    exc)
1275 {
1276     Matrix33<T> rot;
1277 
1278     rot = mat;
1279     if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
1280     return false;
1281 
1282     extractEuler (rot, r);
1283 
1284     t.x = mat[2][0];
1285     t.y = mat[2][1];
1286 
1287     return true;
1288 }
1289 
1290 
1291 template <class T>
1292 bool
checkForZeroScaleInRow(const T & scl,const Vec2<T> & row,bool exc)1293 checkForZeroScaleInRow (const T& scl,
1294             const Vec2<T> &row,
1295             bool exc /* = true */ )
1296 {
1297     for (int i = 0; i < 2; i++)
1298     {
1299     if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
1300     {
1301         if (exc)
1302         throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
1303                        "from matrix.");
1304         else
1305         return false;
1306     }
1307     }
1308 
1309     return true;
1310 }
1311 
1312 
1313 template <class T>
1314 Matrix33<T>
outerProduct(const Vec3<T> & a,const Vec3<T> & b)1315 outerProduct (const Vec3<T> &a, const Vec3<T> &b )
1316 {
1317     return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
1318                         a.y*b.x, a.y*b.y, a.y*b.z,
1319                         a.z*b.x, a.z*b.y, a.z*b.z );
1320 }
1321 
1322 
1323 // Computes the translation and rotation that brings the 'from' points
1324 // as close as possible to the 'to' points under the Frobenius norm.
1325 // To be more specific, let x be the matrix of 'from' points and y be
1326 // the matrix of 'to' points, we want to find the matrix A of the form
1327 //    [ R t ]
1328 //    [ 0 1 ]
1329 // that minimizes
1330 //     || (A*x - y)^T * W * (A*x - y) ||_F
1331 // If doScaling is true, then a uniform scale is allowed also.
1332 template <typename T>
1333 Imath::M44d
1334 procrustesRotationAndTranslation (const Imath::Vec3<T>* A,  // From these
1335                                   const Imath::Vec3<T>* B,  // To these
1336                                   const T* weights,
1337                                   const size_t numPoints,
1338                                   const bool doScaling = false);
1339 
1340 // Unweighted:
1341 template <typename T>
1342 Imath::M44d
1343 procrustesRotationAndTranslation (const Imath::Vec3<T>* A,
1344                                   const Imath::Vec3<T>* B,
1345                                   const size_t numPoints,
1346                                   const bool doScaling = false);
1347 
1348 // Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
1349 // should be quite accurate (competitive with LAPACK) even for poorly
1350 // conditioned matrices, and because it has been written specifically for the
1351 // 3x3/4x4 case it is much faster than calling out to LAPACK.
1352 //
1353 // The SVD of a 3x3/4x4 matrix A is defined as follows:
1354 //     A = U * S * V^T
1355 // where S is the diagonal matrix of singular values and both U and V are
1356 // orthonormal.  By convention, the entries S are all positive and sorted from
1357 // the largest to the smallest.  However, some uses of this function may
1358 // require that the matrix U*V^T have positive determinant; in this case, we
1359 // may make the smallest singular value negative to ensure that this is
1360 // satisfied.
1361 //
1362 // Currently only available for single- and double-precision matrices.
1363 template <typename T>
1364 void
1365 jacobiSVD (const Imath::Matrix33<T>& A,
1366            Imath::Matrix33<T>& U,
1367            Imath::Vec3<T>& S,
1368            Imath::Matrix33<T>& V,
1369            const T tol = Imath::limits<T>::epsilon(),
1370            const bool forcePositiveDeterminant = false);
1371 
1372 template <typename T>
1373 void
1374 jacobiSVD (const Imath::Matrix44<T>& A,
1375            Imath::Matrix44<T>& U,
1376            Imath::Vec4<T>& S,
1377            Imath::Matrix44<T>& V,
1378            const T tol = Imath::limits<T>::epsilon(),
1379            const bool forcePositiveDeterminant = false);
1380 
1381 // Compute the eigenvalues (S) and the eigenvectors (V) of
1382 // a real symmetric matrix using Jacobi transformation.
1383 //
1384 // Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
1385 // 	A = V * S * V^T
1386 // where V is orthonormal and S is the diagonal matrix of eigenvalues.
1387 // Input matrix A must be symmetric. A is also modified during
1388 // the computation so that upper diagonal entries of A become zero.
1389 //
1390 template <typename T>
1391 void
1392 jacobiEigenSolver (Matrix33<T>& A,
1393                    Vec3<T>& S,
1394                    Matrix33<T>& V,
1395                    const T tol);
1396 
1397 template <typename T>
1398 inline
1399 void
jacobiEigenSolver(Matrix33<T> & A,Vec3<T> & S,Matrix33<T> & V)1400 jacobiEigenSolver (Matrix33<T>& A,
1401                    Vec3<T>& S,
1402                    Matrix33<T>& V)
1403 {
1404     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1405 }
1406 
1407 template <typename T>
1408 void
1409 jacobiEigenSolver (Matrix44<T>& A,
1410                    Vec4<T>& S,
1411                    Matrix44<T>& V,
1412                    const T tol);
1413 
1414 template <typename T>
1415 inline
1416 void
jacobiEigenSolver(Matrix44<T> & A,Vec4<T> & S,Matrix44<T> & V)1417 jacobiEigenSolver (Matrix44<T>& A,
1418                    Vec4<T>& S,
1419                    Matrix44<T>& V)
1420 {
1421     jacobiEigenSolver(A,S,V,limits<T>::epsilon());
1422 }
1423 
1424 // Compute a eigenvector corresponding to the abs max/min eigenvalue
1425 // of a real symmetric matrix using Jacobi transformation.
1426 template <typename TM, typename TV>
1427 void
1428 maxEigenVector (TM& A, TV& S);
1429 template <typename TM, typename TV>
1430 void
1431 minEigenVector (TM& A, TV& S);
1432 
1433 } // namespace Imath
1434 
1435 #endif
1436