1 //===--- Type.cpp - Type representation and manipulation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related functionality.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/PrettyPrinter.h"
22 #include "clang/AST/Type.h"
23 #include "clang/AST/TypeVisitor.h"
24 #include "clang/Basic/Specifiers.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "llvm/ADT/APSInt.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace clang;
31
isStrictSupersetOf(Qualifiers Other) const32 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
33 return (*this != Other) &&
34 // CVR qualifiers superset
35 (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
36 // ObjC GC qualifiers superset
37 ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
38 (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
39 // Address space superset.
40 ((getAddressSpace() == Other.getAddressSpace()) ||
41 (hasAddressSpace()&& !Other.hasAddressSpace())) &&
42 // Lifetime qualifier superset.
43 ((getObjCLifetime() == Other.getObjCLifetime()) ||
44 (hasObjCLifetime() && !Other.hasObjCLifetime()));
45 }
46
getBaseTypeIdentifier() const47 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
48 const Type* ty = getTypePtr();
49 NamedDecl *ND = nullptr;
50 if (ty->isPointerType() || ty->isReferenceType())
51 return ty->getPointeeType().getBaseTypeIdentifier();
52 else if (ty->isRecordType())
53 ND = ty->getAs<RecordType>()->getDecl();
54 else if (ty->isEnumeralType())
55 ND = ty->getAs<EnumType>()->getDecl();
56 else if (ty->getTypeClass() == Type::Typedef)
57 ND = ty->getAs<TypedefType>()->getDecl();
58 else if (ty->isArrayType())
59 return ty->castAsArrayTypeUnsafe()->
60 getElementType().getBaseTypeIdentifier();
61
62 if (ND)
63 return ND->getIdentifier();
64 return nullptr;
65 }
66
isConstant(QualType T,ASTContext & Ctx)67 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
68 if (T.isConstQualified())
69 return true;
70
71 if (const ArrayType *AT = Ctx.getAsArrayType(T))
72 return AT->getElementType().isConstant(Ctx);
73
74 return T.getAddressSpace() == LangAS::opencl_constant;
75 }
76
getNumAddressingBits(ASTContext & Context,QualType ElementType,const llvm::APInt & NumElements)77 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
78 QualType ElementType,
79 const llvm::APInt &NumElements) {
80 uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
81
82 // Fast path the common cases so we can avoid the conservative computation
83 // below, which in common cases allocates "large" APSInt values, which are
84 // slow.
85
86 // If the element size is a power of 2, we can directly compute the additional
87 // number of addressing bits beyond those required for the element count.
88 if (llvm::isPowerOf2_64(ElementSize)) {
89 return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
90 }
91
92 // If both the element count and element size fit in 32-bits, we can do the
93 // computation directly in 64-bits.
94 if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
95 (NumElements.getZExtValue() >> 32) == 0) {
96 uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
97 return 64 - llvm::countLeadingZeros(TotalSize);
98 }
99
100 // Otherwise, use APSInt to handle arbitrary sized values.
101 llvm::APSInt SizeExtended(NumElements, true);
102 unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
103 SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
104 SizeExtended.getBitWidth()) * 2);
105
106 llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
107 TotalSize *= SizeExtended;
108
109 return TotalSize.getActiveBits();
110 }
111
getMaxSizeBits(ASTContext & Context)112 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
113 unsigned Bits = Context.getTypeSize(Context.getSizeType());
114
115 // Limit the number of bits in size_t so that maximal bit size fits 64 bit
116 // integer (see PR8256). We can do this as currently there is no hardware
117 // that supports full 64-bit virtual space.
118 if (Bits > 61)
119 Bits = 61;
120
121 return Bits;
122 }
123
DependentSizedArrayType(const ASTContext & Context,QualType et,QualType can,Expr * e,ArraySizeModifier sm,unsigned tq,SourceRange brackets)124 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
125 QualType et, QualType can,
126 Expr *e, ArraySizeModifier sm,
127 unsigned tq,
128 SourceRange brackets)
129 : ArrayType(DependentSizedArray, et, can, sm, tq,
130 (et->containsUnexpandedParameterPack() ||
131 (e && e->containsUnexpandedParameterPack()))),
132 Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
133 {
134 }
135
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,ArraySizeModifier SizeMod,unsigned TypeQuals,Expr * E)136 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
137 const ASTContext &Context,
138 QualType ET,
139 ArraySizeModifier SizeMod,
140 unsigned TypeQuals,
141 Expr *E) {
142 ID.AddPointer(ET.getAsOpaquePtr());
143 ID.AddInteger(SizeMod);
144 ID.AddInteger(TypeQuals);
145 E->Profile(ID, Context, true);
146 }
147
DependentSizedExtVectorType(const ASTContext & Context,QualType ElementType,QualType can,Expr * SizeExpr,SourceLocation loc)148 DependentSizedExtVectorType::DependentSizedExtVectorType(const
149 ASTContext &Context,
150 QualType ElementType,
151 QualType can,
152 Expr *SizeExpr,
153 SourceLocation loc)
154 : Type(DependentSizedExtVector, can, /*Dependent=*/true,
155 /*InstantiationDependent=*/true,
156 ElementType->isVariablyModifiedType(),
157 (ElementType->containsUnexpandedParameterPack() ||
158 (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
159 Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
160 loc(loc)
161 {
162 }
163
164 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,Expr * SizeExpr)165 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
166 const ASTContext &Context,
167 QualType ElementType, Expr *SizeExpr) {
168 ID.AddPointer(ElementType.getAsOpaquePtr());
169 SizeExpr->Profile(ID, Context, true);
170 }
171
VectorType(QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)172 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
173 VectorKind vecKind)
174 : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
175
VectorType(TypeClass tc,QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)176 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
177 QualType canonType, VectorKind vecKind)
178 : Type(tc, canonType, vecType->isDependentType(),
179 vecType->isInstantiationDependentType(),
180 vecType->isVariablyModifiedType(),
181 vecType->containsUnexpandedParameterPack()),
182 ElementType(vecType)
183 {
184 VectorTypeBits.VecKind = vecKind;
185 VectorTypeBits.NumElements = nElements;
186 }
187
188 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
189 /// element type of the array, potentially with type qualifiers missing.
190 /// This method should never be used when type qualifiers are meaningful.
getArrayElementTypeNoTypeQual() const191 const Type *Type::getArrayElementTypeNoTypeQual() const {
192 // If this is directly an array type, return it.
193 if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
194 return ATy->getElementType().getTypePtr();
195
196 // If the canonical form of this type isn't the right kind, reject it.
197 if (!isa<ArrayType>(CanonicalType))
198 return nullptr;
199
200 // If this is a typedef for an array type, strip the typedef off without
201 // losing all typedef information.
202 return cast<ArrayType>(getUnqualifiedDesugaredType())
203 ->getElementType().getTypePtr();
204 }
205
206 /// getDesugaredType - Return the specified type with any "sugar" removed from
207 /// the type. This takes off typedefs, typeof's etc. If the outer level of
208 /// the type is already concrete, it returns it unmodified. This is similar
209 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
210 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
211 /// concrete.
getDesugaredType(QualType T,const ASTContext & Context)212 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
213 SplitQualType split = getSplitDesugaredType(T);
214 return Context.getQualifiedType(split.Ty, split.Quals);
215 }
216
getSingleStepDesugaredTypeImpl(QualType type,const ASTContext & Context)217 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
218 const ASTContext &Context) {
219 SplitQualType split = type.split();
220 QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
221 return Context.getQualifiedType(desugar, split.Quals);
222 }
223
getLocallyUnqualifiedSingleStepDesugaredType() const224 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
225 switch (getTypeClass()) {
226 #define ABSTRACT_TYPE(Class, Parent)
227 #define TYPE(Class, Parent) \
228 case Type::Class: { \
229 const Class##Type *ty = cast<Class##Type>(this); \
230 if (!ty->isSugared()) return QualType(ty, 0); \
231 return ty->desugar(); \
232 }
233 #include "clang/AST/TypeNodes.def"
234 }
235 llvm_unreachable("bad type kind!");
236 }
237
getSplitDesugaredType(QualType T)238 SplitQualType QualType::getSplitDesugaredType(QualType T) {
239 QualifierCollector Qs;
240
241 QualType Cur = T;
242 while (true) {
243 const Type *CurTy = Qs.strip(Cur);
244 switch (CurTy->getTypeClass()) {
245 #define ABSTRACT_TYPE(Class, Parent)
246 #define TYPE(Class, Parent) \
247 case Type::Class: { \
248 const Class##Type *Ty = cast<Class##Type>(CurTy); \
249 if (!Ty->isSugared()) \
250 return SplitQualType(Ty, Qs); \
251 Cur = Ty->desugar(); \
252 break; \
253 }
254 #include "clang/AST/TypeNodes.def"
255 }
256 }
257 }
258
getSplitUnqualifiedTypeImpl(QualType type)259 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
260 SplitQualType split = type.split();
261
262 // All the qualifiers we've seen so far.
263 Qualifiers quals = split.Quals;
264
265 // The last type node we saw with any nodes inside it.
266 const Type *lastTypeWithQuals = split.Ty;
267
268 while (true) {
269 QualType next;
270
271 // Do a single-step desugar, aborting the loop if the type isn't
272 // sugared.
273 switch (split.Ty->getTypeClass()) {
274 #define ABSTRACT_TYPE(Class, Parent)
275 #define TYPE(Class, Parent) \
276 case Type::Class: { \
277 const Class##Type *ty = cast<Class##Type>(split.Ty); \
278 if (!ty->isSugared()) goto done; \
279 next = ty->desugar(); \
280 break; \
281 }
282 #include "clang/AST/TypeNodes.def"
283 }
284
285 // Otherwise, split the underlying type. If that yields qualifiers,
286 // update the information.
287 split = next.split();
288 if (!split.Quals.empty()) {
289 lastTypeWithQuals = split.Ty;
290 quals.addConsistentQualifiers(split.Quals);
291 }
292 }
293
294 done:
295 return SplitQualType(lastTypeWithQuals, quals);
296 }
297
IgnoreParens(QualType T)298 QualType QualType::IgnoreParens(QualType T) {
299 // FIXME: this seems inherently un-qualifiers-safe.
300 while (const ParenType *PT = T->getAs<ParenType>())
301 T = PT->getInnerType();
302 return T;
303 }
304
305 /// \brief This will check for a T (which should be a Type which can act as
306 /// sugar, such as a TypedefType) by removing any existing sugar until it
307 /// reaches a T or a non-sugared type.
getAsSugar(const Type * Cur)308 template<typename T> static const T *getAsSugar(const Type *Cur) {
309 while (true) {
310 if (const T *Sugar = dyn_cast<T>(Cur))
311 return Sugar;
312 switch (Cur->getTypeClass()) {
313 #define ABSTRACT_TYPE(Class, Parent)
314 #define TYPE(Class, Parent) \
315 case Type::Class: { \
316 const Class##Type *Ty = cast<Class##Type>(Cur); \
317 if (!Ty->isSugared()) return 0; \
318 Cur = Ty->desugar().getTypePtr(); \
319 break; \
320 }
321 #include "clang/AST/TypeNodes.def"
322 }
323 }
324 }
325
getAs() const326 template <> const TypedefType *Type::getAs() const {
327 return getAsSugar<TypedefType>(this);
328 }
329
getAs() const330 template <> const TemplateSpecializationType *Type::getAs() const {
331 return getAsSugar<TemplateSpecializationType>(this);
332 }
333
getAs() const334 template <> const AttributedType *Type::getAs() const {
335 return getAsSugar<AttributedType>(this);
336 }
337
338 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
339 /// sugar off the given type. This should produce an object of the
340 /// same dynamic type as the canonical type.
getUnqualifiedDesugaredType() const341 const Type *Type::getUnqualifiedDesugaredType() const {
342 const Type *Cur = this;
343
344 while (true) {
345 switch (Cur->getTypeClass()) {
346 #define ABSTRACT_TYPE(Class, Parent)
347 #define TYPE(Class, Parent) \
348 case Class: { \
349 const Class##Type *Ty = cast<Class##Type>(Cur); \
350 if (!Ty->isSugared()) return Cur; \
351 Cur = Ty->desugar().getTypePtr(); \
352 break; \
353 }
354 #include "clang/AST/TypeNodes.def"
355 }
356 }
357 }
isClassType() const358 bool Type::isClassType() const {
359 if (const RecordType *RT = getAs<RecordType>())
360 return RT->getDecl()->isClass();
361 return false;
362 }
isStructureType() const363 bool Type::isStructureType() const {
364 if (const RecordType *RT = getAs<RecordType>())
365 return RT->getDecl()->isStruct();
366 return false;
367 }
isObjCBoxableRecordType() const368 bool Type::isObjCBoxableRecordType() const {
369 if (const RecordType *RT = getAs<RecordType>())
370 return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
371 return false;
372 }
isInterfaceType() const373 bool Type::isInterfaceType() const {
374 if (const RecordType *RT = getAs<RecordType>())
375 return RT->getDecl()->isInterface();
376 return false;
377 }
isStructureOrClassType() const378 bool Type::isStructureOrClassType() const {
379 if (const RecordType *RT = getAs<RecordType>()) {
380 RecordDecl *RD = RT->getDecl();
381 return RD->isStruct() || RD->isClass() || RD->isInterface();
382 }
383 return false;
384 }
isVoidPointerType() const385 bool Type::isVoidPointerType() const {
386 if (const PointerType *PT = getAs<PointerType>())
387 return PT->getPointeeType()->isVoidType();
388 return false;
389 }
390
isUnionType() const391 bool Type::isUnionType() const {
392 if (const RecordType *RT = getAs<RecordType>())
393 return RT->getDecl()->isUnion();
394 return false;
395 }
396
isComplexType() const397 bool Type::isComplexType() const {
398 if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
399 return CT->getElementType()->isFloatingType();
400 return false;
401 }
402
isComplexIntegerType() const403 bool Type::isComplexIntegerType() const {
404 // Check for GCC complex integer extension.
405 return getAsComplexIntegerType();
406 }
407
getAsComplexIntegerType() const408 const ComplexType *Type::getAsComplexIntegerType() const {
409 if (const ComplexType *Complex = getAs<ComplexType>())
410 if (Complex->getElementType()->isIntegerType())
411 return Complex;
412 return nullptr;
413 }
414
getPointeeType() const415 QualType Type::getPointeeType() const {
416 if (const PointerType *PT = getAs<PointerType>())
417 return PT->getPointeeType();
418 if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
419 return OPT->getPointeeType();
420 if (const BlockPointerType *BPT = getAs<BlockPointerType>())
421 return BPT->getPointeeType();
422 if (const ReferenceType *RT = getAs<ReferenceType>())
423 return RT->getPointeeType();
424 if (const MemberPointerType *MPT = getAs<MemberPointerType>())
425 return MPT->getPointeeType();
426 if (const DecayedType *DT = getAs<DecayedType>())
427 return DT->getPointeeType();
428 return QualType();
429 }
430
getAsStructureType() const431 const RecordType *Type::getAsStructureType() const {
432 // If this is directly a structure type, return it.
433 if (const RecordType *RT = dyn_cast<RecordType>(this)) {
434 if (RT->getDecl()->isStruct())
435 return RT;
436 }
437
438 // If the canonical form of this type isn't the right kind, reject it.
439 if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
440 if (!RT->getDecl()->isStruct())
441 return nullptr;
442
443 // If this is a typedef for a structure type, strip the typedef off without
444 // losing all typedef information.
445 return cast<RecordType>(getUnqualifiedDesugaredType());
446 }
447 return nullptr;
448 }
449
getAsUnionType() const450 const RecordType *Type::getAsUnionType() const {
451 // If this is directly a union type, return it.
452 if (const RecordType *RT = dyn_cast<RecordType>(this)) {
453 if (RT->getDecl()->isUnion())
454 return RT;
455 }
456
457 // If the canonical form of this type isn't the right kind, reject it.
458 if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
459 if (!RT->getDecl()->isUnion())
460 return nullptr;
461
462 // If this is a typedef for a union type, strip the typedef off without
463 // losing all typedef information.
464 return cast<RecordType>(getUnqualifiedDesugaredType());
465 }
466
467 return nullptr;
468 }
469
isObjCIdOrObjectKindOfType(const ASTContext & ctx,const ObjCObjectType * & bound) const470 bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
471 const ObjCObjectType *&bound) const {
472 bound = nullptr;
473
474 const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>();
475 if (!OPT)
476 return false;
477
478 // Easy case: id.
479 if (OPT->isObjCIdType())
480 return true;
481
482 // If it's not a __kindof type, reject it now.
483 if (!OPT->isKindOfType())
484 return false;
485
486 // If it's Class or qualified Class, it's not an object type.
487 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
488 return false;
489
490 // Figure out the type bound for the __kindof type.
491 bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
492 ->getAs<ObjCObjectType>();
493 return true;
494 }
495
isObjCClassOrClassKindOfType() const496 bool Type::isObjCClassOrClassKindOfType() const {
497 const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>();
498 if (!OPT)
499 return false;
500
501 // Easy case: Class.
502 if (OPT->isObjCClassType())
503 return true;
504
505 // If it's not a __kindof type, reject it now.
506 if (!OPT->isKindOfType())
507 return false;
508
509 // If it's Class or qualified Class, it's a class __kindof type.
510 return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
511 }
512
513 /// Was this type written with the special inert-in-MRC __unsafe_unretained
514 /// qualifier?
515 ///
516 /// This approximates the answer to the following question: if this
517 /// translation unit were compiled in ARC, would this type be qualified
518 /// with __unsafe_unretained?
isObjCInertUnsafeUnretainedType() const519 bool Type::isObjCInertUnsafeUnretainedType() const {
520 const Type *cur = this;
521 while (true) {
522 if (auto attributed = dyn_cast<AttributedType>(cur)) {
523 if (attributed->getAttrKind() ==
524 AttributedType::attr_objc_inert_unsafe_unretained)
525 return true;
526 }
527
528 // Single-step desugar until we run out of sugar.
529 QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
530 if (next.getTypePtr() == cur) return false;
531 cur = next.getTypePtr();
532 }
533 }
534
ObjCObjectType(QualType Canonical,QualType Base,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)535 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
536 ArrayRef<QualType> typeArgs,
537 ArrayRef<ObjCProtocolDecl *> protocols,
538 bool isKindOf)
539 : Type(ObjCObject, Canonical, Base->isDependentType(),
540 Base->isInstantiationDependentType(),
541 Base->isVariablyModifiedType(),
542 Base->containsUnexpandedParameterPack()),
543 BaseType(Base)
544 {
545 ObjCObjectTypeBits.IsKindOf = isKindOf;
546
547 ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
548 assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
549 "bitfield overflow in type argument count");
550 ObjCObjectTypeBits.NumProtocols = protocols.size();
551 assert(getNumProtocols() == protocols.size() &&
552 "bitfield overflow in protocol count");
553 if (!typeArgs.empty())
554 memcpy(getTypeArgStorage(), typeArgs.data(),
555 typeArgs.size() * sizeof(QualType));
556 if (!protocols.empty())
557 memcpy(getProtocolStorage(), protocols.data(),
558 protocols.size() * sizeof(ObjCProtocolDecl*));
559
560 for (auto typeArg : typeArgs) {
561 if (typeArg->isDependentType())
562 setDependent();
563 else if (typeArg->isInstantiationDependentType())
564 setInstantiationDependent();
565
566 if (typeArg->containsUnexpandedParameterPack())
567 setContainsUnexpandedParameterPack();
568 }
569 }
570
isSpecialized() const571 bool ObjCObjectType::isSpecialized() const {
572 // If we have type arguments written here, the type is specialized.
573 if (ObjCObjectTypeBits.NumTypeArgs > 0)
574 return true;
575
576 // Otherwise, check whether the base type is specialized.
577 if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
578 // Terminate when we reach an interface type.
579 if (isa<ObjCInterfaceType>(objcObject))
580 return false;
581
582 return objcObject->isSpecialized();
583 }
584
585 // Not specialized.
586 return false;
587 }
588
getTypeArgs() const589 ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
590 // We have type arguments written on this type.
591 if (isSpecializedAsWritten())
592 return getTypeArgsAsWritten();
593
594 // Look at the base type, which might have type arguments.
595 if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
596 // Terminate when we reach an interface type.
597 if (isa<ObjCInterfaceType>(objcObject))
598 return { };
599
600 return objcObject->getTypeArgs();
601 }
602
603 // No type arguments.
604 return { };
605 }
606
isKindOfType() const607 bool ObjCObjectType::isKindOfType() const {
608 if (isKindOfTypeAsWritten())
609 return true;
610
611 // Look at the base type, which might have type arguments.
612 if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
613 // Terminate when we reach an interface type.
614 if (isa<ObjCInterfaceType>(objcObject))
615 return false;
616
617 return objcObject->isKindOfType();
618 }
619
620 // Not a "__kindof" type.
621 return false;
622 }
623
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const624 QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
625 const ASTContext &ctx) const {
626 if (!isKindOfType() && qual_empty())
627 return QualType(this, 0);
628
629 // Recursively strip __kindof.
630 SplitQualType splitBaseType = getBaseType().split();
631 QualType baseType(splitBaseType.Ty, 0);
632 if (const ObjCObjectType *baseObj
633 = splitBaseType.Ty->getAs<ObjCObjectType>()) {
634 baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
635 }
636
637 return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
638 splitBaseType.Quals),
639 getTypeArgsAsWritten(),
640 /*protocols=*/{ },
641 /*isKindOf=*/false);
642 }
643
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const644 const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
645 const ASTContext &ctx) const {
646 if (!isKindOfType() && qual_empty())
647 return this;
648
649 QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
650 return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
651 }
652
653 namespace {
654
655 template<typename F>
656 QualType simpleTransform(ASTContext &ctx, QualType type, F &&f);
657
658 /// Visitor used by simpleTransform() to perform the transformation.
659 template<typename F>
660 struct SimpleTransformVisitor
661 : public TypeVisitor<SimpleTransformVisitor<F>, QualType> {
662 ASTContext &Ctx;
663 F &&TheFunc;
664
recurse__anon0f57bea10111::SimpleTransformVisitor665 QualType recurse(QualType type) {
666 return simpleTransform(Ctx, type, std::move(TheFunc));
667 }
668
669 public:
SimpleTransformVisitor__anon0f57bea10111::SimpleTransformVisitor670 SimpleTransformVisitor(ASTContext &ctx, F &&f) : Ctx(ctx), TheFunc(std::move(f)) { }
671
672 // None of the clients of this transformation can occur where
673 // there are dependent types, so skip dependent types.
674 #define TYPE(Class, Base)
675 #define DEPENDENT_TYPE(Class, Base) \
676 QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
677 #include "clang/AST/TypeNodes.def"
678
679 #define TRIVIAL_TYPE_CLASS(Class) \
680 QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
681
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor682 TRIVIAL_TYPE_CLASS(Builtin)
683
684 QualType VisitComplexType(const ComplexType *T) {
685 QualType elementType = recurse(T->getElementType());
686 if (elementType.isNull())
687 return QualType();
688
689 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
690 return QualType(T, 0);
691
692 return Ctx.getComplexType(elementType);
693 }
694
VisitPointerType__anon0f57bea10111::SimpleTransformVisitor695 QualType VisitPointerType(const PointerType *T) {
696 QualType pointeeType = recurse(T->getPointeeType());
697 if (pointeeType.isNull())
698 return QualType();
699
700 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
701 return QualType(T, 0);
702
703 return Ctx.getPointerType(pointeeType);
704 }
705
VisitBlockPointerType__anon0f57bea10111::SimpleTransformVisitor706 QualType VisitBlockPointerType(const BlockPointerType *T) {
707 QualType pointeeType = recurse(T->getPointeeType());
708 if (pointeeType.isNull())
709 return QualType();
710
711 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
712 return QualType(T, 0);
713
714 return Ctx.getBlockPointerType(pointeeType);
715 }
716
VisitLValueReferenceType__anon0f57bea10111::SimpleTransformVisitor717 QualType VisitLValueReferenceType(const LValueReferenceType *T) {
718 QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
719 if (pointeeType.isNull())
720 return QualType();
721
722 if (pointeeType.getAsOpaquePtr()
723 == T->getPointeeTypeAsWritten().getAsOpaquePtr())
724 return QualType(T, 0);
725
726 return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
727 }
728
VisitRValueReferenceType__anon0f57bea10111::SimpleTransformVisitor729 QualType VisitRValueReferenceType(const RValueReferenceType *T) {
730 QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
731 if (pointeeType.isNull())
732 return QualType();
733
734 if (pointeeType.getAsOpaquePtr()
735 == T->getPointeeTypeAsWritten().getAsOpaquePtr())
736 return QualType(T, 0);
737
738 return Ctx.getRValueReferenceType(pointeeType);
739 }
740
VisitMemberPointerType__anon0f57bea10111::SimpleTransformVisitor741 QualType VisitMemberPointerType(const MemberPointerType *T) {
742 QualType pointeeType = recurse(T->getPointeeType());
743 if (pointeeType.isNull())
744 return QualType();
745
746 if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
747 return QualType(T, 0);
748
749 return Ctx.getMemberPointerType(pointeeType, T->getClass());
750 }
751
VisitConstantArrayType__anon0f57bea10111::SimpleTransformVisitor752 QualType VisitConstantArrayType(const ConstantArrayType *T) {
753 QualType elementType = recurse(T->getElementType());
754 if (elementType.isNull())
755 return QualType();
756
757 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
758 return QualType(T, 0);
759
760 return Ctx.getConstantArrayType(elementType, T->getSize(),
761 T->getSizeModifier(),
762 T->getIndexTypeCVRQualifiers());
763 }
764
VisitVariableArrayType__anon0f57bea10111::SimpleTransformVisitor765 QualType VisitVariableArrayType(const VariableArrayType *T) {
766 QualType elementType = recurse(T->getElementType());
767 if (elementType.isNull())
768 return QualType();
769
770 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
771 return QualType(T, 0);
772
773 return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
774 T->getSizeModifier(),
775 T->getIndexTypeCVRQualifiers(),
776 T->getBracketsRange());
777 }
778
VisitIncompleteArrayType__anon0f57bea10111::SimpleTransformVisitor779 QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
780 QualType elementType = recurse(T->getElementType());
781 if (elementType.isNull())
782 return QualType();
783
784 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
785 return QualType(T, 0);
786
787 return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
788 T->getIndexTypeCVRQualifiers());
789 }
790
VisitVectorType__anon0f57bea10111::SimpleTransformVisitor791 QualType VisitVectorType(const VectorType *T) {
792 QualType elementType = recurse(T->getElementType());
793 if (elementType.isNull())
794 return QualType();
795
796 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
797 return QualType(T, 0);
798
799 return Ctx.getVectorType(elementType, T->getNumElements(),
800 T->getVectorKind());
801 }
802
VisitExtVectorType__anon0f57bea10111::SimpleTransformVisitor803 QualType VisitExtVectorType(const ExtVectorType *T) {
804 QualType elementType = recurse(T->getElementType());
805 if (elementType.isNull())
806 return QualType();
807
808 if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
809 return QualType(T, 0);
810
811 return Ctx.getExtVectorType(elementType, T->getNumElements());
812 }
813
VisitFunctionNoProtoType__anon0f57bea10111::SimpleTransformVisitor814 QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
815 QualType returnType = recurse(T->getReturnType());
816 if (returnType.isNull())
817 return QualType();
818
819 if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
820 return QualType(T, 0);
821
822 return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
823 }
824
VisitFunctionProtoType__anon0f57bea10111::SimpleTransformVisitor825 QualType VisitFunctionProtoType(const FunctionProtoType *T) {
826 QualType returnType = recurse(T->getReturnType());
827 if (returnType.isNull())
828 return QualType();
829
830 // Transform parameter types.
831 SmallVector<QualType, 4> paramTypes;
832 bool paramChanged = false;
833 for (auto paramType : T->getParamTypes()) {
834 QualType newParamType = recurse(paramType);
835 if (newParamType.isNull())
836 return QualType();
837
838 if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
839 paramChanged = true;
840
841 paramTypes.push_back(newParamType);
842 }
843
844 // Transform extended info.
845 FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
846 bool exceptionChanged = false;
847 if (info.ExceptionSpec.Type == EST_Dynamic) {
848 SmallVector<QualType, 4> exceptionTypes;
849 for (auto exceptionType : info.ExceptionSpec.Exceptions) {
850 QualType newExceptionType = recurse(exceptionType);
851 if (newExceptionType.isNull())
852 return QualType();
853
854 if (newExceptionType.getAsOpaquePtr()
855 != exceptionType.getAsOpaquePtr())
856 exceptionChanged = true;
857
858 exceptionTypes.push_back(newExceptionType);
859 }
860
861 if (exceptionChanged) {
862 info.ExceptionSpec.Exceptions =
863 llvm::makeArrayRef(exceptionTypes).copy(Ctx);
864 }
865 }
866
867 if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
868 !paramChanged && !exceptionChanged)
869 return QualType(T, 0);
870
871 return Ctx.getFunctionType(returnType, paramTypes, info);
872 }
873
VisitParenType__anon0f57bea10111::SimpleTransformVisitor874 QualType VisitParenType(const ParenType *T) {
875 QualType innerType = recurse(T->getInnerType());
876 if (innerType.isNull())
877 return QualType();
878
879 if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
880 return QualType(T, 0);
881
882 return Ctx.getParenType(innerType);
883 }
884
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor885 TRIVIAL_TYPE_CLASS(Typedef)
886
887 QualType VisitAdjustedType(const AdjustedType *T) {
888 QualType originalType = recurse(T->getOriginalType());
889 if (originalType.isNull())
890 return QualType();
891
892 QualType adjustedType = recurse(T->getAdjustedType());
893 if (adjustedType.isNull())
894 return QualType();
895
896 if (originalType.getAsOpaquePtr()
897 == T->getOriginalType().getAsOpaquePtr() &&
898 adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
899 return QualType(T, 0);
900
901 return Ctx.getAdjustedType(originalType, adjustedType);
902 }
903
VisitDecayedType__anon0f57bea10111::SimpleTransformVisitor904 QualType VisitDecayedType(const DecayedType *T) {
905 QualType originalType = recurse(T->getOriginalType());
906 if (originalType.isNull())
907 return QualType();
908
909 if (originalType.getAsOpaquePtr()
910 == T->getOriginalType().getAsOpaquePtr())
911 return QualType(T, 0);
912
913 return Ctx.getDecayedType(originalType);
914 }
915
916 TRIVIAL_TYPE_CLASS(TypeOfExpr)
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor917 TRIVIAL_TYPE_CLASS(TypeOf)
918 TRIVIAL_TYPE_CLASS(Decltype)
919 TRIVIAL_TYPE_CLASS(UnaryTransform)
920 TRIVIAL_TYPE_CLASS(Record)
921 TRIVIAL_TYPE_CLASS(Enum)
922
923 // FIXME: Non-trivial to implement, but important for C++
924 TRIVIAL_TYPE_CLASS(Elaborated)
925
926 QualType VisitAttributedType(const AttributedType *T) {
927 QualType modifiedType = recurse(T->getModifiedType());
928 if (modifiedType.isNull())
929 return QualType();
930
931 QualType equivalentType = recurse(T->getEquivalentType());
932 if (equivalentType.isNull())
933 return QualType();
934
935 if (modifiedType.getAsOpaquePtr()
936 == T->getModifiedType().getAsOpaquePtr() &&
937 equivalentType.getAsOpaquePtr()
938 == T->getEquivalentType().getAsOpaquePtr())
939 return QualType(T, 0);
940
941 return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
942 equivalentType);
943 }
944
VisitSubstTemplateTypeParmType__anon0f57bea10111::SimpleTransformVisitor945 QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
946 QualType replacementType = recurse(T->getReplacementType());
947 if (replacementType.isNull())
948 return QualType();
949
950 if (replacementType.getAsOpaquePtr()
951 == T->getReplacementType().getAsOpaquePtr())
952 return QualType(T, 0);
953
954 return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
955 replacementType);
956 }
957
958 // FIXME: Non-trivial to implement, but important for C++
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor959 TRIVIAL_TYPE_CLASS(TemplateSpecialization)
960
961 QualType VisitAutoType(const AutoType *T) {
962 if (!T->isDeduced())
963 return QualType(T, 0);
964
965 QualType deducedType = recurse(T->getDeducedType());
966 if (deducedType.isNull())
967 return QualType();
968
969 if (deducedType.getAsOpaquePtr()
970 == T->getDeducedType().getAsOpaquePtr())
971 return QualType(T, 0);
972
973 return Ctx.getAutoType(deducedType, T->getKeyword(),
974 T->isDependentType());
975 }
976
977 // FIXME: Non-trivial to implement, but important for C++
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor978 TRIVIAL_TYPE_CLASS(PackExpansion)
979
980 QualType VisitObjCObjectType(const ObjCObjectType *T) {
981 QualType baseType = recurse(T->getBaseType());
982 if (baseType.isNull())
983 return QualType();
984
985 // Transform type arguments.
986 bool typeArgChanged = false;
987 SmallVector<QualType, 4> typeArgs;
988 for (auto typeArg : T->getTypeArgsAsWritten()) {
989 QualType newTypeArg = recurse(typeArg);
990 if (newTypeArg.isNull())
991 return QualType();
992
993 if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
994 typeArgChanged = true;
995
996 typeArgs.push_back(newTypeArg);
997 }
998
999 if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1000 !typeArgChanged)
1001 return QualType(T, 0);
1002
1003 return Ctx.getObjCObjectType(baseType, typeArgs,
1004 llvm::makeArrayRef(T->qual_begin(),
1005 T->getNumProtocols()),
1006 T->isKindOfTypeAsWritten());
1007 }
1008
TRIVIAL_TYPE_CLASS__anon0f57bea10111::SimpleTransformVisitor1009 TRIVIAL_TYPE_CLASS(ObjCInterface)
1010
1011 QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1012 QualType pointeeType = recurse(T->getPointeeType());
1013 if (pointeeType.isNull())
1014 return QualType();
1015
1016 if (pointeeType.getAsOpaquePtr()
1017 == T->getPointeeType().getAsOpaquePtr())
1018 return QualType(T, 0);
1019
1020 return Ctx.getObjCObjectPointerType(pointeeType);
1021 }
1022
VisitAtomicType__anon0f57bea10111::SimpleTransformVisitor1023 QualType VisitAtomicType(const AtomicType *T) {
1024 QualType valueType = recurse(T->getValueType());
1025 if (valueType.isNull())
1026 return QualType();
1027
1028 if (valueType.getAsOpaquePtr()
1029 == T->getValueType().getAsOpaquePtr())
1030 return QualType(T, 0);
1031
1032 return Ctx.getAtomicType(valueType);
1033 }
1034
1035 #undef TRIVIAL_TYPE_CLASS
1036 };
1037
1038 /// Perform a simple type transformation that does not change the
1039 /// semantics of the type.
1040 template<typename F>
simpleTransform(ASTContext & ctx,QualType type,F && f)1041 QualType simpleTransform(ASTContext &ctx, QualType type, F &&f) {
1042 // Transform the type. If it changed, return the transformed result.
1043 QualType transformed = f(type);
1044 if (transformed.getAsOpaquePtr() != type.getAsOpaquePtr())
1045 return transformed;
1046
1047 // Split out the qualifiers from the type.
1048 SplitQualType splitType = type.split();
1049
1050 // Visit the type itself.
1051 SimpleTransformVisitor<F> visitor(ctx, std::move(f));
1052 QualType result = visitor.Visit(splitType.Ty);
1053 if (result.isNull())
1054 return result;
1055
1056 // Reconstruct the transformed type by applying the local qualifiers
1057 // from the split type.
1058 return ctx.getQualifiedType(result, splitType.Quals);
1059 }
1060
1061 } // end anonymous namespace
1062
1063 /// Substitute the given type arguments for Objective-C type
1064 /// parameters within the given type, recursively.
substObjCTypeArgs(ASTContext & ctx,ArrayRef<QualType> typeArgs,ObjCSubstitutionContext context) const1065 QualType QualType::substObjCTypeArgs(
1066 ASTContext &ctx,
1067 ArrayRef<QualType> typeArgs,
1068 ObjCSubstitutionContext context) const {
1069 return simpleTransform(ctx, *this,
1070 [&](QualType type) -> QualType {
1071 SplitQualType splitType = type.split();
1072
1073 // Replace an Objective-C type parameter reference with the corresponding
1074 // type argument.
1075 if (const auto *typedefTy = dyn_cast<TypedefType>(splitType.Ty)) {
1076 if (auto *typeParam = dyn_cast<ObjCTypeParamDecl>(typedefTy->getDecl())) {
1077 // If we have type arguments, use them.
1078 if (!typeArgs.empty()) {
1079 // FIXME: Introduce SubstObjCTypeParamType ?
1080 QualType argType = typeArgs[typeParam->getIndex()];
1081 return ctx.getQualifiedType(argType, splitType.Quals);
1082 }
1083
1084 switch (context) {
1085 case ObjCSubstitutionContext::Ordinary:
1086 case ObjCSubstitutionContext::Parameter:
1087 case ObjCSubstitutionContext::Superclass:
1088 // Substitute the bound.
1089 return ctx.getQualifiedType(typeParam->getUnderlyingType(),
1090 splitType.Quals);
1091
1092 case ObjCSubstitutionContext::Result:
1093 case ObjCSubstitutionContext::Property: {
1094 // Substitute the __kindof form of the underlying type.
1095 const auto *objPtr = typeParam->getUnderlyingType()
1096 ->castAs<ObjCObjectPointerType>();
1097
1098 // __kindof types, id, and Class don't need an additional
1099 // __kindof.
1100 if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1101 return ctx.getQualifiedType(typeParam->getUnderlyingType(),
1102 splitType.Quals);
1103
1104 // Add __kindof.
1105 const auto *obj = objPtr->getObjectType();
1106 QualType resultTy = ctx.getObjCObjectType(obj->getBaseType(),
1107 obj->getTypeArgsAsWritten(),
1108 obj->getProtocols(),
1109 /*isKindOf=*/true);
1110
1111 // Rebuild object pointer type.
1112 resultTy = ctx.getObjCObjectPointerType(resultTy);
1113 return ctx.getQualifiedType(resultTy, splitType.Quals);
1114 }
1115 }
1116 }
1117 }
1118
1119 // If we have a function type, update the context appropriately.
1120 if (const auto *funcType = dyn_cast<FunctionType>(splitType.Ty)) {
1121 // Substitute result type.
1122 QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1123 ctx,
1124 typeArgs,
1125 ObjCSubstitutionContext::Result);
1126 if (returnType.isNull())
1127 return QualType();
1128
1129 // Handle non-prototyped functions, which only substitute into the result
1130 // type.
1131 if (isa<FunctionNoProtoType>(funcType)) {
1132 // If the return type was unchanged, do nothing.
1133 if (returnType.getAsOpaquePtr()
1134 == funcType->getReturnType().getAsOpaquePtr())
1135 return type;
1136
1137 // Otherwise, build a new type.
1138 return ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1139 }
1140
1141 const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1142
1143 // Transform parameter types.
1144 SmallVector<QualType, 4> paramTypes;
1145 bool paramChanged = false;
1146 for (auto paramType : funcProtoType->getParamTypes()) {
1147 QualType newParamType = paramType.substObjCTypeArgs(
1148 ctx,
1149 typeArgs,
1150 ObjCSubstitutionContext::Parameter);
1151 if (newParamType.isNull())
1152 return QualType();
1153
1154 if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1155 paramChanged = true;
1156
1157 paramTypes.push_back(newParamType);
1158 }
1159
1160 // Transform extended info.
1161 FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1162 bool exceptionChanged = false;
1163 if (info.ExceptionSpec.Type == EST_Dynamic) {
1164 SmallVector<QualType, 4> exceptionTypes;
1165 for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1166 QualType newExceptionType = exceptionType.substObjCTypeArgs(
1167 ctx,
1168 typeArgs,
1169 ObjCSubstitutionContext::Ordinary);
1170 if (newExceptionType.isNull())
1171 return QualType();
1172
1173 if (newExceptionType.getAsOpaquePtr()
1174 != exceptionType.getAsOpaquePtr())
1175 exceptionChanged = true;
1176
1177 exceptionTypes.push_back(newExceptionType);
1178 }
1179
1180 if (exceptionChanged) {
1181 info.ExceptionSpec.Exceptions =
1182 llvm::makeArrayRef(exceptionTypes).copy(ctx);
1183 }
1184 }
1185
1186 if (returnType.getAsOpaquePtr()
1187 == funcProtoType->getReturnType().getAsOpaquePtr() &&
1188 !paramChanged && !exceptionChanged)
1189 return type;
1190
1191 return ctx.getFunctionType(returnType, paramTypes, info);
1192 }
1193
1194 // Substitute into the type arguments of a specialized Objective-C object
1195 // type.
1196 if (const auto *objcObjectType = dyn_cast<ObjCObjectType>(splitType.Ty)) {
1197 if (objcObjectType->isSpecializedAsWritten()) {
1198 SmallVector<QualType, 4> newTypeArgs;
1199 bool anyChanged = false;
1200 for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1201 QualType newTypeArg = typeArg.substObjCTypeArgs(
1202 ctx, typeArgs,
1203 ObjCSubstitutionContext::Ordinary);
1204 if (newTypeArg.isNull())
1205 return QualType();
1206
1207 if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1208 // If we're substituting based on an unspecialized context type,
1209 // produce an unspecialized type.
1210 ArrayRef<ObjCProtocolDecl *> protocols(
1211 objcObjectType->qual_begin(),
1212 objcObjectType->getNumProtocols());
1213 if (typeArgs.empty() &&
1214 context != ObjCSubstitutionContext::Superclass) {
1215 return ctx.getObjCObjectType(
1216 objcObjectType->getBaseType(), { },
1217 protocols,
1218 objcObjectType->isKindOfTypeAsWritten());
1219 }
1220
1221 anyChanged = true;
1222 }
1223
1224 newTypeArgs.push_back(newTypeArg);
1225 }
1226
1227 if (anyChanged) {
1228 ArrayRef<ObjCProtocolDecl *> protocols(
1229 objcObjectType->qual_begin(),
1230 objcObjectType->getNumProtocols());
1231 return ctx.getObjCObjectType(objcObjectType->getBaseType(),
1232 newTypeArgs, protocols,
1233 objcObjectType->isKindOfTypeAsWritten());
1234 }
1235 }
1236
1237 return type;
1238 }
1239
1240 return type;
1241 });
1242 }
1243
substObjCMemberType(QualType objectType,const DeclContext * dc,ObjCSubstitutionContext context) const1244 QualType QualType::substObjCMemberType(QualType objectType,
1245 const DeclContext *dc,
1246 ObjCSubstitutionContext context) const {
1247 if (auto subs = objectType->getObjCSubstitutions(dc))
1248 return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1249
1250 return *this;
1251 }
1252
stripObjCKindOfType(const ASTContext & constCtx) const1253 QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1254 // FIXME: Because ASTContext::getAttributedType() is non-const.
1255 auto &ctx = const_cast<ASTContext &>(constCtx);
1256 return simpleTransform(ctx, *this,
1257 [&](QualType type) -> QualType {
1258 SplitQualType splitType = type.split();
1259 if (auto *objType = splitType.Ty->getAs<ObjCObjectType>()) {
1260 if (!objType->isKindOfType())
1261 return type;
1262
1263 QualType baseType
1264 = objType->getBaseType().stripObjCKindOfType(ctx);
1265 return ctx.getQualifiedType(
1266 ctx.getObjCObjectType(baseType,
1267 objType->getTypeArgsAsWritten(),
1268 objType->getProtocols(),
1269 /*isKindOf=*/false),
1270 splitType.Quals);
1271 }
1272
1273 return type;
1274 });
1275 }
1276
getObjCSubstitutions(const DeclContext * dc) const1277 Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
1278 const DeclContext *dc) const {
1279 // Look through method scopes.
1280 if (auto method = dyn_cast<ObjCMethodDecl>(dc))
1281 dc = method->getDeclContext();
1282
1283 // Find the class or category in which the type we're substituting
1284 // was declared.
1285 const ObjCInterfaceDecl *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1286 const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1287 ObjCTypeParamList *dcTypeParams = nullptr;
1288 if (dcClassDecl) {
1289 // If the class does not have any type parameters, there's no
1290 // substitution to do.
1291 dcTypeParams = dcClassDecl->getTypeParamList();
1292 if (!dcTypeParams)
1293 return None;
1294 } else {
1295 // If we are in neither a class nor a category, there's no
1296 // substitution to perform.
1297 dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1298 if (!dcCategoryDecl)
1299 return None;
1300
1301 // If the category does not have any type parameters, there's no
1302 // substitution to do.
1303 dcTypeParams = dcCategoryDecl->getTypeParamList();
1304 if (!dcTypeParams)
1305 return None;
1306
1307 dcClassDecl = dcCategoryDecl->getClassInterface();
1308 if (!dcClassDecl)
1309 return None;
1310 }
1311 assert(dcTypeParams && "No substitutions to perform");
1312 assert(dcClassDecl && "No class context");
1313
1314 // Find the underlying object type.
1315 const ObjCObjectType *objectType;
1316 if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1317 objectType = objectPointerType->getObjectType();
1318 } else if (getAs<BlockPointerType>()) {
1319 ASTContext &ctx = dc->getParentASTContext();
1320 objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, { })
1321 ->castAs<ObjCObjectType>();;
1322 } else {
1323 objectType = getAs<ObjCObjectType>();
1324 }
1325
1326 /// Extract the class from the receiver object type.
1327 ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1328 : nullptr;
1329 if (!curClassDecl) {
1330 // If we don't have a context type (e.g., this is "id" or some
1331 // variant thereof), substitute the bounds.
1332 return llvm::ArrayRef<QualType>();
1333 }
1334
1335 // Follow the superclass chain until we've mapped the receiver type
1336 // to the same class as the context.
1337 while (curClassDecl != dcClassDecl) {
1338 // Map to the superclass type.
1339 QualType superType = objectType->getSuperClassType();
1340 if (superType.isNull()) {
1341 objectType = nullptr;
1342 break;
1343 }
1344
1345 objectType = superType->castAs<ObjCObjectType>();
1346 curClassDecl = objectType->getInterface();
1347 }
1348
1349 // If we don't have a receiver type, or the receiver type does not
1350 // have type arguments, substitute in the defaults.
1351 if (!objectType || objectType->isUnspecialized()) {
1352 return llvm::ArrayRef<QualType>();
1353 }
1354
1355 // The receiver type has the type arguments we want.
1356 return objectType->getTypeArgs();
1357 }
1358
acceptsObjCTypeParams() const1359 bool Type::acceptsObjCTypeParams() const {
1360 if (auto *IfaceT = getAsObjCInterfaceType()) {
1361 if (auto *ID = IfaceT->getInterface()) {
1362 if (ID->getTypeParamList())
1363 return true;
1364 }
1365 }
1366
1367 return false;
1368 }
1369
computeSuperClassTypeSlow() const1370 void ObjCObjectType::computeSuperClassTypeSlow() const {
1371 // Retrieve the class declaration for this type. If there isn't one
1372 // (e.g., this is some variant of "id" or "Class"), then there is no
1373 // superclass type.
1374 ObjCInterfaceDecl *classDecl = getInterface();
1375 if (!classDecl) {
1376 CachedSuperClassType.setInt(true);
1377 return;
1378 }
1379
1380 // Extract the superclass type.
1381 const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1382 if (!superClassObjTy) {
1383 CachedSuperClassType.setInt(true);
1384 return;
1385 }
1386
1387 ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1388 if (!superClassDecl) {
1389 CachedSuperClassType.setInt(true);
1390 return;
1391 }
1392
1393 // If the superclass doesn't have type parameters, then there is no
1394 // substitution to perform.
1395 QualType superClassType(superClassObjTy, 0);
1396 ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1397 if (!superClassTypeParams) {
1398 CachedSuperClassType.setPointerAndInt(
1399 superClassType->castAs<ObjCObjectType>(), true);
1400 return;
1401 }
1402
1403 // If the superclass reference is unspecialized, return it.
1404 if (superClassObjTy->isUnspecialized()) {
1405 CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1406 return;
1407 }
1408
1409 // If the subclass is not parameterized, there aren't any type
1410 // parameters in the superclass reference to substitute.
1411 ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1412 if (!typeParams) {
1413 CachedSuperClassType.setPointerAndInt(
1414 superClassType->castAs<ObjCObjectType>(), true);
1415 return;
1416 }
1417
1418 // If the subclass type isn't specialized, return the unspecialized
1419 // superclass.
1420 if (isUnspecialized()) {
1421 QualType unspecializedSuper
1422 = classDecl->getASTContext().getObjCInterfaceType(
1423 superClassObjTy->getInterface());
1424 CachedSuperClassType.setPointerAndInt(
1425 unspecializedSuper->castAs<ObjCObjectType>(),
1426 true);
1427 return;
1428 }
1429
1430 // Substitute the provided type arguments into the superclass type.
1431 ArrayRef<QualType> typeArgs = getTypeArgs();
1432 assert(typeArgs.size() == typeParams->size());
1433 CachedSuperClassType.setPointerAndInt(
1434 superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1435 ObjCSubstitutionContext::Superclass)
1436 ->castAs<ObjCObjectType>(),
1437 true);
1438 }
1439
getInterfaceType() const1440 const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1441 if (auto interfaceDecl = getObjectType()->getInterface()) {
1442 return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1443 ->castAs<ObjCInterfaceType>();
1444 }
1445
1446 return nullptr;
1447 }
1448
getSuperClassType() const1449 QualType ObjCObjectPointerType::getSuperClassType() const {
1450 QualType superObjectType = getObjectType()->getSuperClassType();
1451 if (superObjectType.isNull())
1452 return superObjectType;
1453
1454 ASTContext &ctx = getInterfaceDecl()->getASTContext();
1455 return ctx.getObjCObjectPointerType(superObjectType);
1456 }
1457
getAsObjCQualifiedInterfaceType() const1458 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1459 // There is no sugar for ObjCObjectType's, just return the canonical
1460 // type pointer if it is the right class. There is no typedef information to
1461 // return and these cannot be Address-space qualified.
1462 if (const ObjCObjectType *T = getAs<ObjCObjectType>())
1463 if (T->getNumProtocols() && T->getInterface())
1464 return T;
1465 return nullptr;
1466 }
1467
isObjCQualifiedInterfaceType() const1468 bool Type::isObjCQualifiedInterfaceType() const {
1469 return getAsObjCQualifiedInterfaceType() != nullptr;
1470 }
1471
getAsObjCQualifiedIdType() const1472 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1473 // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1474 // type pointer if it is the right class.
1475 if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
1476 if (OPT->isObjCQualifiedIdType())
1477 return OPT;
1478 }
1479 return nullptr;
1480 }
1481
getAsObjCQualifiedClassType() const1482 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1483 // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1484 // type pointer if it is the right class.
1485 if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
1486 if (OPT->isObjCQualifiedClassType())
1487 return OPT;
1488 }
1489 return nullptr;
1490 }
1491
getAsObjCInterfaceType() const1492 const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1493 if (const ObjCObjectType *OT = getAs<ObjCObjectType>()) {
1494 if (OT->getInterface())
1495 return OT;
1496 }
1497 return nullptr;
1498 }
getAsObjCInterfacePointerType() const1499 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1500 if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
1501 if (OPT->getInterfaceType())
1502 return OPT;
1503 }
1504 return nullptr;
1505 }
1506
getPointeeCXXRecordDecl() const1507 const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1508 QualType PointeeType;
1509 if (const PointerType *PT = getAs<PointerType>())
1510 PointeeType = PT->getPointeeType();
1511 else if (const ReferenceType *RT = getAs<ReferenceType>())
1512 PointeeType = RT->getPointeeType();
1513 else
1514 return nullptr;
1515
1516 if (const RecordType *RT = PointeeType->getAs<RecordType>())
1517 return dyn_cast<CXXRecordDecl>(RT->getDecl());
1518
1519 return nullptr;
1520 }
1521
getAsCXXRecordDecl() const1522 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1523 return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1524 }
1525
getAsTagDecl() const1526 TagDecl *Type::getAsTagDecl() const {
1527 if (const auto *TT = getAs<TagType>())
1528 return cast<TagDecl>(TT->getDecl());
1529 if (const auto *Injected = getAs<InjectedClassNameType>())
1530 return Injected->getDecl();
1531
1532 return nullptr;
1533 }
1534
1535 namespace {
1536 class GetContainedAutoVisitor :
1537 public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
1538 public:
1539 using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
Visit(QualType T)1540 AutoType *Visit(QualType T) {
1541 if (T.isNull())
1542 return nullptr;
1543 return Visit(T.getTypePtr());
1544 }
1545
1546 // The 'auto' type itself.
VisitAutoType(const AutoType * AT)1547 AutoType *VisitAutoType(const AutoType *AT) {
1548 return const_cast<AutoType*>(AT);
1549 }
1550
1551 // Only these types can contain the desired 'auto' type.
VisitPointerType(const PointerType * T)1552 AutoType *VisitPointerType(const PointerType *T) {
1553 return Visit(T->getPointeeType());
1554 }
VisitBlockPointerType(const BlockPointerType * T)1555 AutoType *VisitBlockPointerType(const BlockPointerType *T) {
1556 return Visit(T->getPointeeType());
1557 }
VisitReferenceType(const ReferenceType * T)1558 AutoType *VisitReferenceType(const ReferenceType *T) {
1559 return Visit(T->getPointeeTypeAsWritten());
1560 }
VisitMemberPointerType(const MemberPointerType * T)1561 AutoType *VisitMemberPointerType(const MemberPointerType *T) {
1562 return Visit(T->getPointeeType());
1563 }
VisitArrayType(const ArrayType * T)1564 AutoType *VisitArrayType(const ArrayType *T) {
1565 return Visit(T->getElementType());
1566 }
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)1567 AutoType *VisitDependentSizedExtVectorType(
1568 const DependentSizedExtVectorType *T) {
1569 return Visit(T->getElementType());
1570 }
VisitVectorType(const VectorType * T)1571 AutoType *VisitVectorType(const VectorType *T) {
1572 return Visit(T->getElementType());
1573 }
VisitFunctionType(const FunctionType * T)1574 AutoType *VisitFunctionType(const FunctionType *T) {
1575 return Visit(T->getReturnType());
1576 }
VisitParenType(const ParenType * T)1577 AutoType *VisitParenType(const ParenType *T) {
1578 return Visit(T->getInnerType());
1579 }
VisitAttributedType(const AttributedType * T)1580 AutoType *VisitAttributedType(const AttributedType *T) {
1581 return Visit(T->getModifiedType());
1582 }
VisitAdjustedType(const AdjustedType * T)1583 AutoType *VisitAdjustedType(const AdjustedType *T) {
1584 return Visit(T->getOriginalType());
1585 }
1586 };
1587 }
1588
getContainedAutoType() const1589 AutoType *Type::getContainedAutoType() const {
1590 return GetContainedAutoVisitor().Visit(this);
1591 }
1592
hasIntegerRepresentation() const1593 bool Type::hasIntegerRepresentation() const {
1594 if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
1595 return VT->getElementType()->isIntegerType();
1596 else
1597 return isIntegerType();
1598 }
1599
1600 /// \brief Determine whether this type is an integral type.
1601 ///
1602 /// This routine determines whether the given type is an integral type per
1603 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1604 /// term "integral type", it has a similar term "integer type", and in C++
1605 /// the two terms are equivalent. However, C's "integer type" includes
1606 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1607 /// parameter is used to determine whether we should be following the C or
1608 /// C++ rules when determining whether this type is an integral/integer type.
1609 ///
1610 /// For cases where C permits "an integer type" and C++ permits "an integral
1611 /// type", use this routine.
1612 ///
1613 /// For cases where C permits "an integer type" and C++ permits "an integral
1614 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1615 ///
1616 /// \param Ctx The context in which this type occurs.
1617 ///
1618 /// \returns true if the type is considered an integral type, false otherwise.
isIntegralType(ASTContext & Ctx) const1619 bool Type::isIntegralType(ASTContext &Ctx) const {
1620 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1621 return BT->getKind() >= BuiltinType::Bool &&
1622 BT->getKind() <= BuiltinType::Int128;
1623
1624 // Complete enum types are integral in C.
1625 if (!Ctx.getLangOpts().CPlusPlus)
1626 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
1627 return ET->getDecl()->isComplete();
1628
1629 return false;
1630 }
1631
1632
isIntegralOrUnscopedEnumerationType() const1633 bool Type::isIntegralOrUnscopedEnumerationType() const {
1634 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1635 return BT->getKind() >= BuiltinType::Bool &&
1636 BT->getKind() <= BuiltinType::Int128;
1637
1638 // Check for a complete enum type; incomplete enum types are not properly an
1639 // enumeration type in the sense required here.
1640 // C++0x: However, if the underlying type of the enum is fixed, it is
1641 // considered complete.
1642 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
1643 return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1644
1645 return false;
1646 }
1647
1648
1649
isCharType() const1650 bool Type::isCharType() const {
1651 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1652 return BT->getKind() == BuiltinType::Char_U ||
1653 BT->getKind() == BuiltinType::UChar ||
1654 BT->getKind() == BuiltinType::Char_S ||
1655 BT->getKind() == BuiltinType::SChar;
1656 return false;
1657 }
1658
isWideCharType() const1659 bool Type::isWideCharType() const {
1660 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1661 return BT->getKind() == BuiltinType::WChar_S ||
1662 BT->getKind() == BuiltinType::WChar_U;
1663 return false;
1664 }
1665
isChar16Type() const1666 bool Type::isChar16Type() const {
1667 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1668 return BT->getKind() == BuiltinType::Char16;
1669 return false;
1670 }
1671
isChar32Type() const1672 bool Type::isChar32Type() const {
1673 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1674 return BT->getKind() == BuiltinType::Char32;
1675 return false;
1676 }
1677
1678 /// \brief Determine whether this type is any of the built-in character
1679 /// types.
isAnyCharacterType() const1680 bool Type::isAnyCharacterType() const {
1681 const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
1682 if (!BT) return false;
1683 switch (BT->getKind()) {
1684 default: return false;
1685 case BuiltinType::Char_U:
1686 case BuiltinType::UChar:
1687 case BuiltinType::WChar_U:
1688 case BuiltinType::Char16:
1689 case BuiltinType::Char32:
1690 case BuiltinType::Char_S:
1691 case BuiltinType::SChar:
1692 case BuiltinType::WChar_S:
1693 return true;
1694 }
1695 }
1696
1697 /// isSignedIntegerType - Return true if this is an integer type that is
1698 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1699 /// an enum decl which has a signed representation
isSignedIntegerType() const1700 bool Type::isSignedIntegerType() const {
1701 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1702 return BT->getKind() >= BuiltinType::Char_S &&
1703 BT->getKind() <= BuiltinType::Int128;
1704 }
1705
1706 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1707 // Incomplete enum types are not treated as integer types.
1708 // FIXME: In C++, enum types are never integer types.
1709 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1710 return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1711 }
1712
1713 return false;
1714 }
1715
isSignedIntegerOrEnumerationType() const1716 bool Type::isSignedIntegerOrEnumerationType() const {
1717 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1718 return BT->getKind() >= BuiltinType::Char_S &&
1719 BT->getKind() <= BuiltinType::Int128;
1720 }
1721
1722 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1723 if (ET->getDecl()->isComplete())
1724 return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1725 }
1726
1727 return false;
1728 }
1729
hasSignedIntegerRepresentation() const1730 bool Type::hasSignedIntegerRepresentation() const {
1731 if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
1732 return VT->getElementType()->isSignedIntegerOrEnumerationType();
1733 else
1734 return isSignedIntegerOrEnumerationType();
1735 }
1736
1737 /// isUnsignedIntegerType - Return true if this is an integer type that is
1738 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1739 /// decl which has an unsigned representation
isUnsignedIntegerType() const1740 bool Type::isUnsignedIntegerType() const {
1741 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1742 return BT->getKind() >= BuiltinType::Bool &&
1743 BT->getKind() <= BuiltinType::UInt128;
1744 }
1745
1746 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1747 // Incomplete enum types are not treated as integer types.
1748 // FIXME: In C++, enum types are never integer types.
1749 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1750 return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1751 }
1752
1753 return false;
1754 }
1755
isUnsignedIntegerOrEnumerationType() const1756 bool Type::isUnsignedIntegerOrEnumerationType() const {
1757 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1758 return BT->getKind() >= BuiltinType::Bool &&
1759 BT->getKind() <= BuiltinType::UInt128;
1760 }
1761
1762 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1763 if (ET->getDecl()->isComplete())
1764 return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1765 }
1766
1767 return false;
1768 }
1769
hasUnsignedIntegerRepresentation() const1770 bool Type::hasUnsignedIntegerRepresentation() const {
1771 if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
1772 return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
1773 else
1774 return isUnsignedIntegerOrEnumerationType();
1775 }
1776
isFloatingType() const1777 bool Type::isFloatingType() const {
1778 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1779 return BT->getKind() >= BuiltinType::Half &&
1780 BT->getKind() <= BuiltinType::LongDouble;
1781 if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
1782 return CT->getElementType()->isFloatingType();
1783 return false;
1784 }
1785
hasFloatingRepresentation() const1786 bool Type::hasFloatingRepresentation() const {
1787 if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
1788 return VT->getElementType()->isFloatingType();
1789 else
1790 return isFloatingType();
1791 }
1792
isRealFloatingType() const1793 bool Type::isRealFloatingType() const {
1794 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1795 return BT->isFloatingPoint();
1796 return false;
1797 }
1798
isRealType() const1799 bool Type::isRealType() const {
1800 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1801 return BT->getKind() >= BuiltinType::Bool &&
1802 BT->getKind() <= BuiltinType::LongDouble;
1803 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
1804 return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1805 return false;
1806 }
1807
isArithmeticType() const1808 bool Type::isArithmeticType() const {
1809 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1810 return BT->getKind() >= BuiltinType::Bool &&
1811 BT->getKind() <= BuiltinType::LongDouble;
1812 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
1813 // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
1814 // If a body isn't seen by the time we get here, return false.
1815 //
1816 // C++0x: Enumerations are not arithmetic types. For now, just return
1817 // false for scoped enumerations since that will disable any
1818 // unwanted implicit conversions.
1819 return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
1820 return isa<ComplexType>(CanonicalType);
1821 }
1822
getScalarTypeKind() const1823 Type::ScalarTypeKind Type::getScalarTypeKind() const {
1824 assert(isScalarType());
1825
1826 const Type *T = CanonicalType.getTypePtr();
1827 if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
1828 if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
1829 if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
1830 if (BT->isInteger()) return STK_Integral;
1831 if (BT->isFloatingPoint()) return STK_Floating;
1832 llvm_unreachable("unknown scalar builtin type");
1833 } else if (isa<PointerType>(T)) {
1834 return STK_CPointer;
1835 } else if (isa<BlockPointerType>(T)) {
1836 return STK_BlockPointer;
1837 } else if (isa<ObjCObjectPointerType>(T)) {
1838 return STK_ObjCObjectPointer;
1839 } else if (isa<MemberPointerType>(T)) {
1840 return STK_MemberPointer;
1841 } else if (isa<EnumType>(T)) {
1842 assert(cast<EnumType>(T)->getDecl()->isComplete());
1843 return STK_Integral;
1844 } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
1845 if (CT->getElementType()->isRealFloatingType())
1846 return STK_FloatingComplex;
1847 return STK_IntegralComplex;
1848 }
1849
1850 llvm_unreachable("unknown scalar type");
1851 }
1852
1853 /// \brief Determines whether the type is a C++ aggregate type or C
1854 /// aggregate or union type.
1855 ///
1856 /// An aggregate type is an array or a class type (struct, union, or
1857 /// class) that has no user-declared constructors, no private or
1858 /// protected non-static data members, no base classes, and no virtual
1859 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
1860 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
1861 /// includes union types.
isAggregateType() const1862 bool Type::isAggregateType() const {
1863 if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
1864 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
1865 return ClassDecl->isAggregate();
1866
1867 return true;
1868 }
1869
1870 return isa<ArrayType>(CanonicalType);
1871 }
1872
1873 /// isConstantSizeType - Return true if this is not a variable sized type,
1874 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
1875 /// incomplete types or dependent types.
isConstantSizeType() const1876 bool Type::isConstantSizeType() const {
1877 assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
1878 assert(!isDependentType() && "This doesn't make sense for dependent types");
1879 // The VAT must have a size, as it is known to be complete.
1880 return !isa<VariableArrayType>(CanonicalType);
1881 }
1882
1883 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
1884 /// - a type that can describe objects, but which lacks information needed to
1885 /// determine its size.
isIncompleteType(NamedDecl ** Def) const1886 bool Type::isIncompleteType(NamedDecl **Def) const {
1887 if (Def)
1888 *Def = nullptr;
1889
1890 switch (CanonicalType->getTypeClass()) {
1891 default: return false;
1892 case Builtin:
1893 // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
1894 // be completed.
1895 return isVoidType();
1896 case Enum: {
1897 EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
1898 if (Def)
1899 *Def = EnumD;
1900
1901 // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
1902 if (EnumD->isFixed())
1903 return false;
1904
1905 return !EnumD->isCompleteDefinition();
1906 }
1907 case Record: {
1908 // A tagged type (struct/union/enum/class) is incomplete if the decl is a
1909 // forward declaration, but not a full definition (C99 6.2.5p22).
1910 RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
1911 if (Def)
1912 *Def = Rec;
1913 return !Rec->isCompleteDefinition();
1914 }
1915 case ConstantArray:
1916 // An array is incomplete if its element type is incomplete
1917 // (C++ [dcl.array]p1).
1918 // We don't handle variable arrays (they're not allowed in C++) or
1919 // dependent-sized arrays (dependent types are never treated as incomplete).
1920 return cast<ArrayType>(CanonicalType)->getElementType()
1921 ->isIncompleteType(Def);
1922 case IncompleteArray:
1923 // An array of unknown size is an incomplete type (C99 6.2.5p22).
1924 return true;
1925 case MemberPointer: {
1926 // Member pointers in the MS ABI have special behavior in
1927 // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
1928 // to indicate which inheritance model to use.
1929 auto *MPTy = cast<MemberPointerType>(CanonicalType);
1930 const Type *ClassTy = MPTy->getClass();
1931 // Member pointers with dependent class types don't get special treatment.
1932 if (ClassTy->isDependentType())
1933 return false;
1934 const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
1935 ASTContext &Context = RD->getASTContext();
1936 // Member pointers not in the MS ABI don't get special treatment.
1937 if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
1938 return false;
1939 // The inheritance attribute might only be present on the most recent
1940 // CXXRecordDecl, use that one.
1941 RD = RD->getMostRecentDecl();
1942 // Nothing interesting to do if the inheritance attribute is already set.
1943 if (RD->hasAttr<MSInheritanceAttr>())
1944 return false;
1945 return true;
1946 }
1947 case ObjCObject:
1948 return cast<ObjCObjectType>(CanonicalType)->getBaseType()
1949 ->isIncompleteType(Def);
1950 case ObjCInterface: {
1951 // ObjC interfaces are incomplete if they are @class, not @interface.
1952 ObjCInterfaceDecl *Interface
1953 = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
1954 if (Def)
1955 *Def = Interface;
1956 return !Interface->hasDefinition();
1957 }
1958 }
1959 }
1960
isPODType(ASTContext & Context) const1961 bool QualType::isPODType(ASTContext &Context) const {
1962 // C++11 has a more relaxed definition of POD.
1963 if (Context.getLangOpts().CPlusPlus11)
1964 return isCXX11PODType(Context);
1965
1966 return isCXX98PODType(Context);
1967 }
1968
isCXX98PODType(ASTContext & Context) const1969 bool QualType::isCXX98PODType(ASTContext &Context) const {
1970 // The compiler shouldn't query this for incomplete types, but the user might.
1971 // We return false for that case. Except for incomplete arrays of PODs, which
1972 // are PODs according to the standard.
1973 if (isNull())
1974 return 0;
1975
1976 if ((*this)->isIncompleteArrayType())
1977 return Context.getBaseElementType(*this).isCXX98PODType(Context);
1978
1979 if ((*this)->isIncompleteType())
1980 return false;
1981
1982 if (Context.getLangOpts().ObjCAutoRefCount) {
1983 switch (getObjCLifetime()) {
1984 case Qualifiers::OCL_ExplicitNone:
1985 return true;
1986
1987 case Qualifiers::OCL_Strong:
1988 case Qualifiers::OCL_Weak:
1989 case Qualifiers::OCL_Autoreleasing:
1990 return false;
1991
1992 case Qualifiers::OCL_None:
1993 break;
1994 }
1995 }
1996
1997 QualType CanonicalType = getTypePtr()->CanonicalType;
1998 switch (CanonicalType->getTypeClass()) {
1999 // Everything not explicitly mentioned is not POD.
2000 default: return false;
2001 case Type::VariableArray:
2002 case Type::ConstantArray:
2003 // IncompleteArray is handled above.
2004 return Context.getBaseElementType(*this).isCXX98PODType(Context);
2005
2006 case Type::ObjCObjectPointer:
2007 case Type::BlockPointer:
2008 case Type::Builtin:
2009 case Type::Complex:
2010 case Type::Pointer:
2011 case Type::MemberPointer:
2012 case Type::Vector:
2013 case Type::ExtVector:
2014 return true;
2015
2016 case Type::Enum:
2017 return true;
2018
2019 case Type::Record:
2020 if (CXXRecordDecl *ClassDecl
2021 = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2022 return ClassDecl->isPOD();
2023
2024 // C struct/union is POD.
2025 return true;
2026 }
2027 }
2028
isTrivialType(ASTContext & Context) const2029 bool QualType::isTrivialType(ASTContext &Context) const {
2030 // The compiler shouldn't query this for incomplete types, but the user might.
2031 // We return false for that case. Except for incomplete arrays of PODs, which
2032 // are PODs according to the standard.
2033 if (isNull())
2034 return 0;
2035
2036 if ((*this)->isArrayType())
2037 return Context.getBaseElementType(*this).isTrivialType(Context);
2038
2039 // Return false for incomplete types after skipping any incomplete array
2040 // types which are expressly allowed by the standard and thus our API.
2041 if ((*this)->isIncompleteType())
2042 return false;
2043
2044 if (Context.getLangOpts().ObjCAutoRefCount) {
2045 switch (getObjCLifetime()) {
2046 case Qualifiers::OCL_ExplicitNone:
2047 return true;
2048
2049 case Qualifiers::OCL_Strong:
2050 case Qualifiers::OCL_Weak:
2051 case Qualifiers::OCL_Autoreleasing:
2052 return false;
2053
2054 case Qualifiers::OCL_None:
2055 if ((*this)->isObjCLifetimeType())
2056 return false;
2057 break;
2058 }
2059 }
2060
2061 QualType CanonicalType = getTypePtr()->CanonicalType;
2062 if (CanonicalType->isDependentType())
2063 return false;
2064
2065 // C++0x [basic.types]p9:
2066 // Scalar types, trivial class types, arrays of such types, and
2067 // cv-qualified versions of these types are collectively called trivial
2068 // types.
2069
2070 // As an extension, Clang treats vector types as Scalar types.
2071 if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2072 return true;
2073 if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
2074 if (const CXXRecordDecl *ClassDecl =
2075 dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2076 // C++11 [class]p6:
2077 // A trivial class is a class that has a default constructor,
2078 // has no non-trivial default constructors, and is trivially
2079 // copyable.
2080 return ClassDecl->hasDefaultConstructor() &&
2081 !ClassDecl->hasNonTrivialDefaultConstructor() &&
2082 ClassDecl->isTriviallyCopyable();
2083 }
2084
2085 return true;
2086 }
2087
2088 // No other types can match.
2089 return false;
2090 }
2091
isTriviallyCopyableType(ASTContext & Context) const2092 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
2093 if ((*this)->isArrayType())
2094 return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2095
2096 if (Context.getLangOpts().ObjCAutoRefCount) {
2097 switch (getObjCLifetime()) {
2098 case Qualifiers::OCL_ExplicitNone:
2099 return true;
2100
2101 case Qualifiers::OCL_Strong:
2102 case Qualifiers::OCL_Weak:
2103 case Qualifiers::OCL_Autoreleasing:
2104 return false;
2105
2106 case Qualifiers::OCL_None:
2107 if ((*this)->isObjCLifetimeType())
2108 return false;
2109 break;
2110 }
2111 }
2112
2113 // C++11 [basic.types]p9
2114 // Scalar types, trivially copyable class types, arrays of such types, and
2115 // non-volatile const-qualified versions of these types are collectively
2116 // called trivially copyable types.
2117
2118 QualType CanonicalType = getCanonicalType();
2119 if (CanonicalType->isDependentType())
2120 return false;
2121
2122 if (CanonicalType.isVolatileQualified())
2123 return false;
2124
2125 // Return false for incomplete types after skipping any incomplete array types
2126 // which are expressly allowed by the standard and thus our API.
2127 if (CanonicalType->isIncompleteType())
2128 return false;
2129
2130 // As an extension, Clang treats vector types as Scalar types.
2131 if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2132 return true;
2133
2134 if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
2135 if (const CXXRecordDecl *ClassDecl =
2136 dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2137 if (!ClassDecl->isTriviallyCopyable()) return false;
2138 }
2139
2140 return true;
2141 }
2142
2143 // No other types can match.
2144 return false;
2145 }
2146
2147
2148
isLiteralType(const ASTContext & Ctx) const2149 bool Type::isLiteralType(const ASTContext &Ctx) const {
2150 if (isDependentType())
2151 return false;
2152
2153 // C++1y [basic.types]p10:
2154 // A type is a literal type if it is:
2155 // -- cv void; or
2156 if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2157 return true;
2158
2159 // C++11 [basic.types]p10:
2160 // A type is a literal type if it is:
2161 // [...]
2162 // -- an array of literal type other than an array of runtime bound; or
2163 if (isVariableArrayType())
2164 return false;
2165 const Type *BaseTy = getBaseElementTypeUnsafe();
2166 assert(BaseTy && "NULL element type");
2167
2168 // Return false for incomplete types after skipping any incomplete array
2169 // types; those are expressly allowed by the standard and thus our API.
2170 if (BaseTy->isIncompleteType())
2171 return false;
2172
2173 // C++11 [basic.types]p10:
2174 // A type is a literal type if it is:
2175 // -- a scalar type; or
2176 // As an extension, Clang treats vector types and complex types as
2177 // literal types.
2178 if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2179 BaseTy->isAnyComplexType())
2180 return true;
2181 // -- a reference type; or
2182 if (BaseTy->isReferenceType())
2183 return true;
2184 // -- a class type that has all of the following properties:
2185 if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2186 // -- a trivial destructor,
2187 // -- every constructor call and full-expression in the
2188 // brace-or-equal-initializers for non-static data members (if any)
2189 // is a constant expression,
2190 // -- it is an aggregate type or has at least one constexpr
2191 // constructor or constructor template that is not a copy or move
2192 // constructor, and
2193 // -- all non-static data members and base classes of literal types
2194 //
2195 // We resolve DR1361 by ignoring the second bullet.
2196 if (const CXXRecordDecl *ClassDecl =
2197 dyn_cast<CXXRecordDecl>(RT->getDecl()))
2198 return ClassDecl->isLiteral();
2199
2200 return true;
2201 }
2202
2203 // We treat _Atomic T as a literal type if T is a literal type.
2204 if (const AtomicType *AT = BaseTy->getAs<AtomicType>())
2205 return AT->getValueType()->isLiteralType(Ctx);
2206
2207 // If this type hasn't been deduced yet, then conservatively assume that
2208 // it'll work out to be a literal type.
2209 if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2210 return true;
2211
2212 return false;
2213 }
2214
isStandardLayoutType() const2215 bool Type::isStandardLayoutType() const {
2216 if (isDependentType())
2217 return false;
2218
2219 // C++0x [basic.types]p9:
2220 // Scalar types, standard-layout class types, arrays of such types, and
2221 // cv-qualified versions of these types are collectively called
2222 // standard-layout types.
2223 const Type *BaseTy = getBaseElementTypeUnsafe();
2224 assert(BaseTy && "NULL element type");
2225
2226 // Return false for incomplete types after skipping any incomplete array
2227 // types which are expressly allowed by the standard and thus our API.
2228 if (BaseTy->isIncompleteType())
2229 return false;
2230
2231 // As an extension, Clang treats vector types as Scalar types.
2232 if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2233 if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2234 if (const CXXRecordDecl *ClassDecl =
2235 dyn_cast<CXXRecordDecl>(RT->getDecl()))
2236 if (!ClassDecl->isStandardLayout())
2237 return false;
2238
2239 // Default to 'true' for non-C++ class types.
2240 // FIXME: This is a bit dubious, but plain C structs should trivially meet
2241 // all the requirements of standard layout classes.
2242 return true;
2243 }
2244
2245 // No other types can match.
2246 return false;
2247 }
2248
2249 // This is effectively the intersection of isTrivialType and
2250 // isStandardLayoutType. We implement it directly to avoid redundant
2251 // conversions from a type to a CXXRecordDecl.
isCXX11PODType(ASTContext & Context) const2252 bool QualType::isCXX11PODType(ASTContext &Context) const {
2253 const Type *ty = getTypePtr();
2254 if (ty->isDependentType())
2255 return false;
2256
2257 if (Context.getLangOpts().ObjCAutoRefCount) {
2258 switch (getObjCLifetime()) {
2259 case Qualifiers::OCL_ExplicitNone:
2260 return true;
2261
2262 case Qualifiers::OCL_Strong:
2263 case Qualifiers::OCL_Weak:
2264 case Qualifiers::OCL_Autoreleasing:
2265 return false;
2266
2267 case Qualifiers::OCL_None:
2268 break;
2269 }
2270 }
2271
2272 // C++11 [basic.types]p9:
2273 // Scalar types, POD classes, arrays of such types, and cv-qualified
2274 // versions of these types are collectively called trivial types.
2275 const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2276 assert(BaseTy && "NULL element type");
2277
2278 // Return false for incomplete types after skipping any incomplete array
2279 // types which are expressly allowed by the standard and thus our API.
2280 if (BaseTy->isIncompleteType())
2281 return false;
2282
2283 // As an extension, Clang treats vector types as Scalar types.
2284 if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2285 if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2286 if (const CXXRecordDecl *ClassDecl =
2287 dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2288 // C++11 [class]p10:
2289 // A POD struct is a non-union class that is both a trivial class [...]
2290 if (!ClassDecl->isTrivial()) return false;
2291
2292 // C++11 [class]p10:
2293 // A POD struct is a non-union class that is both a trivial class and
2294 // a standard-layout class [...]
2295 if (!ClassDecl->isStandardLayout()) return false;
2296
2297 // C++11 [class]p10:
2298 // A POD struct is a non-union class that is both a trivial class and
2299 // a standard-layout class, and has no non-static data members of type
2300 // non-POD struct, non-POD union (or array of such types). [...]
2301 //
2302 // We don't directly query the recursive aspect as the requirements for
2303 // both standard-layout classes and trivial classes apply recursively
2304 // already.
2305 }
2306
2307 return true;
2308 }
2309
2310 // No other types can match.
2311 return false;
2312 }
2313
isPromotableIntegerType() const2314 bool Type::isPromotableIntegerType() const {
2315 if (const BuiltinType *BT = getAs<BuiltinType>())
2316 switch (BT->getKind()) {
2317 case BuiltinType::Bool:
2318 case BuiltinType::Char_S:
2319 case BuiltinType::Char_U:
2320 case BuiltinType::SChar:
2321 case BuiltinType::UChar:
2322 case BuiltinType::Short:
2323 case BuiltinType::UShort:
2324 case BuiltinType::WChar_S:
2325 case BuiltinType::WChar_U:
2326 case BuiltinType::Char16:
2327 case BuiltinType::Char32:
2328 return true;
2329 default:
2330 return false;
2331 }
2332
2333 // Enumerated types are promotable to their compatible integer types
2334 // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2335 if (const EnumType *ET = getAs<EnumType>()){
2336 if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2337 || ET->getDecl()->isScoped())
2338 return false;
2339
2340 return true;
2341 }
2342
2343 return false;
2344 }
2345
isSpecifierType() const2346 bool Type::isSpecifierType() const {
2347 // Note that this intentionally does not use the canonical type.
2348 switch (getTypeClass()) {
2349 case Builtin:
2350 case Record:
2351 case Enum:
2352 case Typedef:
2353 case Complex:
2354 case TypeOfExpr:
2355 case TypeOf:
2356 case TemplateTypeParm:
2357 case SubstTemplateTypeParm:
2358 case TemplateSpecialization:
2359 case Elaborated:
2360 case DependentName:
2361 case DependentTemplateSpecialization:
2362 case ObjCInterface:
2363 case ObjCObject:
2364 case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2365 return true;
2366 default:
2367 return false;
2368 }
2369 }
2370
2371 ElaboratedTypeKeyword
getKeywordForTypeSpec(unsigned TypeSpec)2372 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
2373 switch (TypeSpec) {
2374 default: return ETK_None;
2375 case TST_typename: return ETK_Typename;
2376 case TST_class: return ETK_Class;
2377 case TST_struct: return ETK_Struct;
2378 case TST_interface: return ETK_Interface;
2379 case TST_union: return ETK_Union;
2380 case TST_enum: return ETK_Enum;
2381 }
2382 }
2383
2384 TagTypeKind
getTagTypeKindForTypeSpec(unsigned TypeSpec)2385 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
2386 switch(TypeSpec) {
2387 case TST_class: return TTK_Class;
2388 case TST_struct: return TTK_Struct;
2389 case TST_interface: return TTK_Interface;
2390 case TST_union: return TTK_Union;
2391 case TST_enum: return TTK_Enum;
2392 }
2393
2394 llvm_unreachable("Type specifier is not a tag type kind.");
2395 }
2396
2397 ElaboratedTypeKeyword
getKeywordForTagTypeKind(TagTypeKind Kind)2398 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
2399 switch (Kind) {
2400 case TTK_Class: return ETK_Class;
2401 case TTK_Struct: return ETK_Struct;
2402 case TTK_Interface: return ETK_Interface;
2403 case TTK_Union: return ETK_Union;
2404 case TTK_Enum: return ETK_Enum;
2405 }
2406 llvm_unreachable("Unknown tag type kind.");
2407 }
2408
2409 TagTypeKind
getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)2410 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
2411 switch (Keyword) {
2412 case ETK_Class: return TTK_Class;
2413 case ETK_Struct: return TTK_Struct;
2414 case ETK_Interface: return TTK_Interface;
2415 case ETK_Union: return TTK_Union;
2416 case ETK_Enum: return TTK_Enum;
2417 case ETK_None: // Fall through.
2418 case ETK_Typename:
2419 llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2420 }
2421 llvm_unreachable("Unknown elaborated type keyword.");
2422 }
2423
2424 bool
KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)2425 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
2426 switch (Keyword) {
2427 case ETK_None:
2428 case ETK_Typename:
2429 return false;
2430 case ETK_Class:
2431 case ETK_Struct:
2432 case ETK_Interface:
2433 case ETK_Union:
2434 case ETK_Enum:
2435 return true;
2436 }
2437 llvm_unreachable("Unknown elaborated type keyword.");
2438 }
2439
getKeywordName(ElaboratedTypeKeyword Keyword)2440 StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
2441 switch (Keyword) {
2442 case ETK_None: return "";
2443 case ETK_Typename: return "typename";
2444 case ETK_Class: return "class";
2445 case ETK_Struct: return "struct";
2446 case ETK_Interface: return "__interface";
2447 case ETK_Union: return "union";
2448 case ETK_Enum: return "enum";
2449 }
2450
2451 llvm_unreachable("Unknown elaborated type keyword.");
2452 }
2453
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args,QualType Canon)2454 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2455 ElaboratedTypeKeyword Keyword,
2456 NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2457 unsigned NumArgs, const TemplateArgument *Args,
2458 QualType Canon)
2459 : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
2460 /*VariablyModified=*/false,
2461 NNS && NNS->containsUnexpandedParameterPack()),
2462 NNS(NNS), Name(Name), NumArgs(NumArgs) {
2463 assert((!NNS || NNS->isDependent()) &&
2464 "DependentTemplateSpecializatonType requires dependent qualifier");
2465 for (unsigned I = 0; I != NumArgs; ++I) {
2466 if (Args[I].containsUnexpandedParameterPack())
2467 setContainsUnexpandedParameterPack();
2468
2469 new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
2470 }
2471 }
2472
2473 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,ElaboratedTypeKeyword Keyword,NestedNameSpecifier * Qualifier,const IdentifierInfo * Name,unsigned NumArgs,const TemplateArgument * Args)2474 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
2475 const ASTContext &Context,
2476 ElaboratedTypeKeyword Keyword,
2477 NestedNameSpecifier *Qualifier,
2478 const IdentifierInfo *Name,
2479 unsigned NumArgs,
2480 const TemplateArgument *Args) {
2481 ID.AddInteger(Keyword);
2482 ID.AddPointer(Qualifier);
2483 ID.AddPointer(Name);
2484 for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
2485 Args[Idx].Profile(ID, Context);
2486 }
2487
isElaboratedTypeSpecifier() const2488 bool Type::isElaboratedTypeSpecifier() const {
2489 ElaboratedTypeKeyword Keyword;
2490 if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
2491 Keyword = Elab->getKeyword();
2492 else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
2493 Keyword = DepName->getKeyword();
2494 else if (const DependentTemplateSpecializationType *DepTST =
2495 dyn_cast<DependentTemplateSpecializationType>(this))
2496 Keyword = DepTST->getKeyword();
2497 else
2498 return false;
2499
2500 return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2501 }
2502
getTypeClassName() const2503 const char *Type::getTypeClassName() const {
2504 switch (TypeBits.TC) {
2505 #define ABSTRACT_TYPE(Derived, Base)
2506 #define TYPE(Derived, Base) case Derived: return #Derived;
2507 #include "clang/AST/TypeNodes.def"
2508 }
2509
2510 llvm_unreachable("Invalid type class.");
2511 }
2512
getName(const PrintingPolicy & Policy) const2513 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2514 switch (getKind()) {
2515 case Void:
2516 return "void";
2517 case Bool:
2518 return Policy.Bool ? "bool" : "_Bool";
2519 case Char_S:
2520 return "char";
2521 case Char_U:
2522 return "char";
2523 case SChar:
2524 return "signed char";
2525 case Short:
2526 return "short";
2527 case Int:
2528 return "int";
2529 case Long:
2530 return "long";
2531 case LongLong:
2532 return "long long";
2533 case Int128:
2534 return "__int128";
2535 case UChar:
2536 return "unsigned char";
2537 case UShort:
2538 return "unsigned short";
2539 case UInt:
2540 return "unsigned int";
2541 case ULong:
2542 return "unsigned long";
2543 case ULongLong:
2544 return "unsigned long long";
2545 case UInt128:
2546 return "unsigned __int128";
2547 case Half:
2548 return Policy.Half ? "half" : "__fp16";
2549 case Float:
2550 return "float";
2551 case Double:
2552 return "double";
2553 case LongDouble:
2554 return "long double";
2555 case WChar_S:
2556 case WChar_U:
2557 return Policy.MSWChar ? "__wchar_t" : "wchar_t";
2558 case Char16:
2559 return "char16_t";
2560 case Char32:
2561 return "char32_t";
2562 case NullPtr:
2563 return "nullptr_t";
2564 case Overload:
2565 return "<overloaded function type>";
2566 case BoundMember:
2567 return "<bound member function type>";
2568 case PseudoObject:
2569 return "<pseudo-object type>";
2570 case Dependent:
2571 return "<dependent type>";
2572 case UnknownAny:
2573 return "<unknown type>";
2574 case ARCUnbridgedCast:
2575 return "<ARC unbridged cast type>";
2576 case BuiltinFn:
2577 return "<builtin fn type>";
2578 case ObjCId:
2579 return "id";
2580 case ObjCClass:
2581 return "Class";
2582 case ObjCSel:
2583 return "SEL";
2584 case OCLImage1d:
2585 return "image1d_t";
2586 case OCLImage1dArray:
2587 return "image1d_array_t";
2588 case OCLImage1dBuffer:
2589 return "image1d_buffer_t";
2590 case OCLImage2d:
2591 return "image2d_t";
2592 case OCLImage2dArray:
2593 return "image2d_array_t";
2594 case OCLImage2dDepth:
2595 return "image2d_depth_t";
2596 case OCLImage2dArrayDepth:
2597 return "image2d_array_depth_t";
2598 case OCLImage2dMSAA:
2599 return "image2d_msaa_t";
2600 case OCLImage2dArrayMSAA:
2601 return "image2d_array_msaa_t";
2602 case OCLImage2dMSAADepth:
2603 return "image2d_msaa_depth_t";
2604 case OCLImage2dArrayMSAADepth:
2605 return "image2d_array_msaa_depth_t";
2606 case OCLImage3d:
2607 return "image3d_t";
2608 case OCLSampler:
2609 return "sampler_t";
2610 case OCLEvent:
2611 return "event_t";
2612 case OCLClkEvent:
2613 return "clk_event_t";
2614 case OCLQueue:
2615 return "queue_t";
2616 case OCLNDRange:
2617 return "event_t";
2618 case OCLReserveID:
2619 return "reserve_id_t";
2620 case OMPArraySection:
2621 return "<OpenMP array section type>";
2622 }
2623
2624 llvm_unreachable("Invalid builtin type.");
2625 }
2626
getNonLValueExprType(const ASTContext & Context) const2627 QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
2628 if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
2629 return RefType->getPointeeType();
2630
2631 // C++0x [basic.lval]:
2632 // Class prvalues can have cv-qualified types; non-class prvalues always
2633 // have cv-unqualified types.
2634 //
2635 // See also C99 6.3.2.1p2.
2636 if (!Context.getLangOpts().CPlusPlus ||
2637 (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
2638 return getUnqualifiedType();
2639
2640 return *this;
2641 }
2642
getNameForCallConv(CallingConv CC)2643 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
2644 switch (CC) {
2645 case CC_C: return "cdecl";
2646 case CC_X86StdCall: return "stdcall";
2647 case CC_X86FastCall: return "fastcall";
2648 case CC_X86ThisCall: return "thiscall";
2649 case CC_X86Pascal: return "pascal";
2650 case CC_X86VectorCall: return "vectorcall";
2651 case CC_X86_64Win64: return "ms_abi";
2652 case CC_X86_64SysV: return "sysv_abi";
2653 case CC_AAPCS: return "aapcs";
2654 case CC_AAPCS_VFP: return "aapcs-vfp";
2655 case CC_IntelOclBicc: return "intel_ocl_bicc";
2656 case CC_SpirFunction: return "spir_function";
2657 case CC_SpirKernel: return "spir_kernel";
2658 }
2659
2660 llvm_unreachable("Invalid calling convention.");
2661 }
2662
FunctionProtoType(QualType result,ArrayRef<QualType> params,QualType canonical,const ExtProtoInfo & epi)2663 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
2664 QualType canonical,
2665 const ExtProtoInfo &epi)
2666 : FunctionType(FunctionProto, result, canonical,
2667 result->isDependentType(),
2668 result->isInstantiationDependentType(),
2669 result->isVariablyModifiedType(),
2670 result->containsUnexpandedParameterPack(), epi.ExtInfo),
2671 NumParams(params.size()),
2672 NumExceptions(epi.ExceptionSpec.Exceptions.size()),
2673 ExceptionSpecType(epi.ExceptionSpec.Type),
2674 HasAnyConsumedParams(epi.ConsumedParameters != nullptr),
2675 Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn) {
2676 assert(NumParams == params.size() && "function has too many parameters");
2677
2678 FunctionTypeBits.TypeQuals = epi.TypeQuals;
2679 FunctionTypeBits.RefQualifier = epi.RefQualifier;
2680
2681 // Fill in the trailing argument array.
2682 QualType *argSlot = reinterpret_cast<QualType*>(this+1);
2683 for (unsigned i = 0; i != NumParams; ++i) {
2684 if (params[i]->isDependentType())
2685 setDependent();
2686 else if (params[i]->isInstantiationDependentType())
2687 setInstantiationDependent();
2688
2689 if (params[i]->containsUnexpandedParameterPack())
2690 setContainsUnexpandedParameterPack();
2691
2692 argSlot[i] = params[i];
2693 }
2694
2695 if (getExceptionSpecType() == EST_Dynamic) {
2696 // Fill in the exception array.
2697 QualType *exnSlot = argSlot + NumParams;
2698 unsigned I = 0;
2699 for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
2700 // Note that a dependent exception specification does *not* make
2701 // a type dependent; it's not even part of the C++ type system.
2702 if (ExceptionType->isInstantiationDependentType())
2703 setInstantiationDependent();
2704
2705 if (ExceptionType->containsUnexpandedParameterPack())
2706 setContainsUnexpandedParameterPack();
2707
2708 exnSlot[I++] = ExceptionType;
2709 }
2710 } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
2711 // Store the noexcept expression and context.
2712 Expr **noexSlot = reinterpret_cast<Expr **>(argSlot + NumParams);
2713 *noexSlot = epi.ExceptionSpec.NoexceptExpr;
2714
2715 if (epi.ExceptionSpec.NoexceptExpr) {
2716 if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
2717 epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
2718 setInstantiationDependent();
2719
2720 if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
2721 setContainsUnexpandedParameterPack();
2722 }
2723 } else if (getExceptionSpecType() == EST_Uninstantiated) {
2724 // Store the function decl from which we will resolve our
2725 // exception specification.
2726 FunctionDecl **slot =
2727 reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
2728 slot[0] = epi.ExceptionSpec.SourceDecl;
2729 slot[1] = epi.ExceptionSpec.SourceTemplate;
2730 // This exception specification doesn't make the type dependent, because
2731 // it's not instantiated as part of instantiating the type.
2732 } else if (getExceptionSpecType() == EST_Unevaluated) {
2733 // Store the function decl from which we will resolve our
2734 // exception specification.
2735 FunctionDecl **slot =
2736 reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
2737 slot[0] = epi.ExceptionSpec.SourceDecl;
2738 }
2739
2740 if (epi.ConsumedParameters) {
2741 bool *consumedParams = const_cast<bool *>(getConsumedParamsBuffer());
2742 for (unsigned i = 0; i != NumParams; ++i)
2743 consumedParams[i] = epi.ConsumedParameters[i];
2744 }
2745 }
2746
hasDependentExceptionSpec() const2747 bool FunctionProtoType::hasDependentExceptionSpec() const {
2748 if (Expr *NE = getNoexceptExpr())
2749 return NE->isValueDependent();
2750 for (QualType ET : exceptions())
2751 // A pack expansion with a non-dependent pattern is still dependent,
2752 // because we don't know whether the pattern is in the exception spec
2753 // or not (that depends on whether the pack has 0 expansions).
2754 if (ET->isDependentType() || ET->getAs<PackExpansionType>())
2755 return true;
2756 return false;
2757 }
2758
2759 FunctionProtoType::NoexceptResult
getNoexceptSpec(const ASTContext & ctx) const2760 FunctionProtoType::getNoexceptSpec(const ASTContext &ctx) const {
2761 ExceptionSpecificationType est = getExceptionSpecType();
2762 if (est == EST_BasicNoexcept)
2763 return NR_Nothrow;
2764
2765 if (est != EST_ComputedNoexcept)
2766 return NR_NoNoexcept;
2767
2768 Expr *noexceptExpr = getNoexceptExpr();
2769 if (!noexceptExpr)
2770 return NR_BadNoexcept;
2771 if (noexceptExpr->isValueDependent())
2772 return NR_Dependent;
2773
2774 llvm::APSInt value;
2775 bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, nullptr,
2776 /*evaluated*/false);
2777 (void)isICE;
2778 assert(isICE && "AST should not contain bad noexcept expressions.");
2779
2780 return value.getBoolValue() ? NR_Nothrow : NR_Throw;
2781 }
2782
isNothrow(const ASTContext & Ctx,bool ResultIfDependent) const2783 bool FunctionProtoType::isNothrow(const ASTContext &Ctx,
2784 bool ResultIfDependent) const {
2785 ExceptionSpecificationType EST = getExceptionSpecType();
2786 assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
2787 if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
2788 return true;
2789
2790 if (EST == EST_Dynamic && ResultIfDependent) {
2791 // A dynamic exception specification is throwing unless every exception
2792 // type is an (unexpanded) pack expansion type.
2793 for (unsigned I = 0, N = NumExceptions; I != N; ++I)
2794 if (!getExceptionType(I)->getAs<PackExpansionType>())
2795 return false;
2796 return ResultIfDependent;
2797 }
2798
2799 if (EST != EST_ComputedNoexcept)
2800 return false;
2801
2802 NoexceptResult NR = getNoexceptSpec(Ctx);
2803 if (NR == NR_Dependent)
2804 return ResultIfDependent;
2805 return NR == NR_Nothrow;
2806 }
2807
isTemplateVariadic() const2808 bool FunctionProtoType::isTemplateVariadic() const {
2809 for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
2810 if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
2811 return true;
2812
2813 return false;
2814 }
2815
Profile(llvm::FoldingSetNodeID & ID,QualType Result,const QualType * ArgTys,unsigned NumParams,const ExtProtoInfo & epi,const ASTContext & Context)2816 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
2817 const QualType *ArgTys, unsigned NumParams,
2818 const ExtProtoInfo &epi,
2819 const ASTContext &Context) {
2820
2821 // We have to be careful not to get ambiguous profile encodings.
2822 // Note that valid type pointers are never ambiguous with anything else.
2823 //
2824 // The encoding grammar begins:
2825 // type type* bool int bool
2826 // If that final bool is true, then there is a section for the EH spec:
2827 // bool type*
2828 // This is followed by an optional "consumed argument" section of the
2829 // same length as the first type sequence:
2830 // bool*
2831 // Finally, we have the ext info and trailing return type flag:
2832 // int bool
2833 //
2834 // There is no ambiguity between the consumed arguments and an empty EH
2835 // spec because of the leading 'bool' which unambiguously indicates
2836 // whether the following bool is the EH spec or part of the arguments.
2837
2838 ID.AddPointer(Result.getAsOpaquePtr());
2839 for (unsigned i = 0; i != NumParams; ++i)
2840 ID.AddPointer(ArgTys[i].getAsOpaquePtr());
2841 // This method is relatively performance sensitive, so as a performance
2842 // shortcut, use one AddInteger call instead of four for the next four
2843 // fields.
2844 assert(!(unsigned(epi.Variadic) & ~1) &&
2845 !(unsigned(epi.TypeQuals) & ~255) &&
2846 !(unsigned(epi.RefQualifier) & ~3) &&
2847 !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
2848 "Values larger than expected.");
2849 ID.AddInteger(unsigned(epi.Variadic) +
2850 (epi.TypeQuals << 1) +
2851 (epi.RefQualifier << 9) +
2852 (epi.ExceptionSpec.Type << 11));
2853 if (epi.ExceptionSpec.Type == EST_Dynamic) {
2854 for (QualType Ex : epi.ExceptionSpec.Exceptions)
2855 ID.AddPointer(Ex.getAsOpaquePtr());
2856 } else if (epi.ExceptionSpec.Type == EST_ComputedNoexcept &&
2857 epi.ExceptionSpec.NoexceptExpr) {
2858 epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, false);
2859 } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
2860 epi.ExceptionSpec.Type == EST_Unevaluated) {
2861 ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
2862 }
2863 if (epi.ConsumedParameters) {
2864 for (unsigned i = 0; i != NumParams; ++i)
2865 ID.AddBoolean(epi.ConsumedParameters[i]);
2866 }
2867 epi.ExtInfo.Profile(ID);
2868 ID.AddBoolean(epi.HasTrailingReturn);
2869 }
2870
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Ctx)2871 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
2872 const ASTContext &Ctx) {
2873 Profile(ID, getReturnType(), param_type_begin(), NumParams, getExtProtoInfo(),
2874 Ctx);
2875 }
2876
desugar() const2877 QualType TypedefType::desugar() const {
2878 return getDecl()->getUnderlyingType();
2879 }
2880
TypeOfExprType(Expr * E,QualType can)2881 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
2882 : Type(TypeOfExpr, can, E->isTypeDependent(),
2883 E->isInstantiationDependent(),
2884 E->getType()->isVariablyModifiedType(),
2885 E->containsUnexpandedParameterPack()),
2886 TOExpr(E) {
2887 }
2888
isSugared() const2889 bool TypeOfExprType::isSugared() const {
2890 return !TOExpr->isTypeDependent();
2891 }
2892
desugar() const2893 QualType TypeOfExprType::desugar() const {
2894 if (isSugared())
2895 return getUnderlyingExpr()->getType();
2896
2897 return QualType(this, 0);
2898 }
2899
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)2900 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
2901 const ASTContext &Context, Expr *E) {
2902 E->Profile(ID, Context, true);
2903 }
2904
DecltypeType(Expr * E,QualType underlyingType,QualType can)2905 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
2906 // C++11 [temp.type]p2: "If an expression e involves a template parameter,
2907 // decltype(e) denotes a unique dependent type." Hence a decltype type is
2908 // type-dependent even if its expression is only instantiation-dependent.
2909 : Type(Decltype, can, E->isInstantiationDependent(),
2910 E->isInstantiationDependent(),
2911 E->getType()->isVariablyModifiedType(),
2912 E->containsUnexpandedParameterPack()),
2913 E(E),
2914 UnderlyingType(underlyingType) {
2915 }
2916
isSugared() const2917 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
2918
desugar() const2919 QualType DecltypeType::desugar() const {
2920 if (isSugared())
2921 return getUnderlyingType();
2922
2923 return QualType(this, 0);
2924 }
2925
DependentDecltypeType(const ASTContext & Context,Expr * E)2926 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
2927 : DecltypeType(E, Context.DependentTy), Context(Context) { }
2928
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)2929 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
2930 const ASTContext &Context, Expr *E) {
2931 E->Profile(ID, Context, true);
2932 }
2933
TagType(TypeClass TC,const TagDecl * D,QualType can)2934 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
2935 : Type(TC, can, D->isDependentType(),
2936 /*InstantiationDependent=*/D->isDependentType(),
2937 /*VariablyModified=*/false,
2938 /*ContainsUnexpandedParameterPack=*/false),
2939 decl(const_cast<TagDecl*>(D)) {}
2940
getInterestingTagDecl(TagDecl * decl)2941 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
2942 for (auto I : decl->redecls()) {
2943 if (I->isCompleteDefinition() || I->isBeingDefined())
2944 return I;
2945 }
2946 // If there's no definition (not even in progress), return what we have.
2947 return decl;
2948 }
2949
UnaryTransformType(QualType BaseType,QualType UnderlyingType,UTTKind UKind,QualType CanonicalType)2950 UnaryTransformType::UnaryTransformType(QualType BaseType,
2951 QualType UnderlyingType,
2952 UTTKind UKind,
2953 QualType CanonicalType)
2954 : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
2955 UnderlyingType->isInstantiationDependentType(),
2956 UnderlyingType->isVariablyModifiedType(),
2957 BaseType->containsUnexpandedParameterPack())
2958 , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
2959 {}
2960
getDecl() const2961 TagDecl *TagType::getDecl() const {
2962 return getInterestingTagDecl(decl);
2963 }
2964
isBeingDefined() const2965 bool TagType::isBeingDefined() const {
2966 return getDecl()->isBeingDefined();
2967 }
2968
isQualifier() const2969 bool AttributedType::isQualifier() const {
2970 switch (getAttrKind()) {
2971 // These are type qualifiers in the traditional C sense: they annotate
2972 // something about a specific value/variable of a type. (They aren't
2973 // always part of the canonical type, though.)
2974 case AttributedType::attr_address_space:
2975 case AttributedType::attr_objc_gc:
2976 case AttributedType::attr_objc_ownership:
2977 case AttributedType::attr_objc_inert_unsafe_unretained:
2978 case AttributedType::attr_nonnull:
2979 case AttributedType::attr_nullable:
2980 case AttributedType::attr_null_unspecified:
2981 return true;
2982
2983 // These aren't qualifiers; they rewrite the modified type to be a
2984 // semantically different type.
2985 case AttributedType::attr_regparm:
2986 case AttributedType::attr_vector_size:
2987 case AttributedType::attr_neon_vector_type:
2988 case AttributedType::attr_neon_polyvector_type:
2989 case AttributedType::attr_pcs:
2990 case AttributedType::attr_pcs_vfp:
2991 case AttributedType::attr_noreturn:
2992 case AttributedType::attr_cdecl:
2993 case AttributedType::attr_fastcall:
2994 case AttributedType::attr_stdcall:
2995 case AttributedType::attr_thiscall:
2996 case AttributedType::attr_pascal:
2997 case AttributedType::attr_vectorcall:
2998 case AttributedType::attr_inteloclbicc:
2999 case AttributedType::attr_ms_abi:
3000 case AttributedType::attr_sysv_abi:
3001 case AttributedType::attr_ptr32:
3002 case AttributedType::attr_ptr64:
3003 case AttributedType::attr_sptr:
3004 case AttributedType::attr_uptr:
3005 case AttributedType::attr_objc_kindof:
3006 return false;
3007 }
3008 llvm_unreachable("bad attributed type kind");
3009 }
3010
isMSTypeSpec() const3011 bool AttributedType::isMSTypeSpec() const {
3012 switch (getAttrKind()) {
3013 default: return false;
3014 case attr_ptr32:
3015 case attr_ptr64:
3016 case attr_sptr:
3017 case attr_uptr:
3018 return true;
3019 }
3020 llvm_unreachable("invalid attr kind");
3021 }
3022
isCallingConv() const3023 bool AttributedType::isCallingConv() const {
3024 switch (getAttrKind()) {
3025 case attr_ptr32:
3026 case attr_ptr64:
3027 case attr_sptr:
3028 case attr_uptr:
3029 case attr_address_space:
3030 case attr_regparm:
3031 case attr_vector_size:
3032 case attr_neon_vector_type:
3033 case attr_neon_polyvector_type:
3034 case attr_objc_gc:
3035 case attr_objc_ownership:
3036 case attr_objc_inert_unsafe_unretained:
3037 case attr_noreturn:
3038 case attr_nonnull:
3039 case attr_nullable:
3040 case attr_null_unspecified:
3041 case attr_objc_kindof:
3042 return false;
3043
3044 case attr_pcs:
3045 case attr_pcs_vfp:
3046 case attr_cdecl:
3047 case attr_fastcall:
3048 case attr_stdcall:
3049 case attr_thiscall:
3050 case attr_vectorcall:
3051 case attr_pascal:
3052 case attr_ms_abi:
3053 case attr_sysv_abi:
3054 case attr_inteloclbicc:
3055 return true;
3056 }
3057 llvm_unreachable("invalid attr kind");
3058 }
3059
getDecl() const3060 CXXRecordDecl *InjectedClassNameType::getDecl() const {
3061 return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3062 }
3063
getIdentifier() const3064 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
3065 return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3066 }
3067
3068 SubstTemplateTypeParmPackType::
SubstTemplateTypeParmPackType(const TemplateTypeParmType * Param,QualType Canon,const TemplateArgument & ArgPack)3069 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3070 QualType Canon,
3071 const TemplateArgument &ArgPack)
3072 : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
3073 Replaced(Param),
3074 Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
3075 {
3076 }
3077
getArgumentPack() const3078 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
3079 return TemplateArgument(llvm::makeArrayRef(Arguments, NumArguments));
3080 }
3081
Profile(llvm::FoldingSetNodeID & ID)3082 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3083 Profile(ID, getReplacedParameter(), getArgumentPack());
3084 }
3085
Profile(llvm::FoldingSetNodeID & ID,const TemplateTypeParmType * Replaced,const TemplateArgument & ArgPack)3086 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3087 const TemplateTypeParmType *Replaced,
3088 const TemplateArgument &ArgPack) {
3089 ID.AddPointer(Replaced);
3090 ID.AddInteger(ArgPack.pack_size());
3091 for (const auto &P : ArgPack.pack_elements())
3092 ID.AddPointer(P.getAsType().getAsOpaquePtr());
3093 }
3094
3095 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo & Args,bool & InstantiationDependent)3096 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
3097 bool &InstantiationDependent) {
3098 return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
3099 InstantiationDependent);
3100 }
3101
3102 bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc * Args,unsigned N,bool & InstantiationDependent)3103 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
3104 bool &InstantiationDependent) {
3105 for (unsigned i = 0; i != N; ++i) {
3106 if (Args[i].getArgument().isDependent()) {
3107 InstantiationDependent = true;
3108 return true;
3109 }
3110
3111 if (Args[i].getArgument().isInstantiationDependent())
3112 InstantiationDependent = true;
3113 }
3114 return false;
3115 }
3116
3117 TemplateSpecializationType::
TemplateSpecializationType(TemplateName T,const TemplateArgument * Args,unsigned NumArgs,QualType Canon,QualType AliasedType)3118 TemplateSpecializationType(TemplateName T,
3119 const TemplateArgument *Args, unsigned NumArgs,
3120 QualType Canon, QualType AliasedType)
3121 : Type(TemplateSpecialization,
3122 Canon.isNull()? QualType(this, 0) : Canon,
3123 Canon.isNull()? true : Canon->isDependentType(),
3124 Canon.isNull()? true : Canon->isInstantiationDependentType(),
3125 false,
3126 T.containsUnexpandedParameterPack()),
3127 Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
3128 assert(!T.getAsDependentTemplateName() &&
3129 "Use DependentTemplateSpecializationType for dependent template-name");
3130 assert((T.getKind() == TemplateName::Template ||
3131 T.getKind() == TemplateName::SubstTemplateTemplateParm ||
3132 T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
3133 "Unexpected template name for TemplateSpecializationType");
3134
3135 TemplateArgument *TemplateArgs
3136 = reinterpret_cast<TemplateArgument *>(this + 1);
3137 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
3138 // Update instantiation-dependent and variably-modified bits.
3139 // If the canonical type exists and is non-dependent, the template
3140 // specialization type can be non-dependent even if one of the type
3141 // arguments is. Given:
3142 // template<typename T> using U = int;
3143 // U<T> is always non-dependent, irrespective of the type T.
3144 // However, U<Ts> contains an unexpanded parameter pack, even though
3145 // its expansion (and thus its desugared type) doesn't.
3146 if (Args[Arg].isInstantiationDependent())
3147 setInstantiationDependent();
3148 if (Args[Arg].getKind() == TemplateArgument::Type &&
3149 Args[Arg].getAsType()->isVariablyModifiedType())
3150 setVariablyModified();
3151 if (Args[Arg].containsUnexpandedParameterPack())
3152 setContainsUnexpandedParameterPack();
3153 new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
3154 }
3155
3156 // Store the aliased type if this is a type alias template specialization.
3157 if (TypeAlias) {
3158 TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3159 *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3160 }
3161 }
3162
3163 void
Profile(llvm::FoldingSetNodeID & ID,TemplateName T,const TemplateArgument * Args,unsigned NumArgs,const ASTContext & Context)3164 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3165 TemplateName T,
3166 const TemplateArgument *Args,
3167 unsigned NumArgs,
3168 const ASTContext &Context) {
3169 T.Profile(ID);
3170 for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
3171 Args[Idx].Profile(ID, Context);
3172 }
3173
3174 QualType
apply(const ASTContext & Context,QualType QT) const3175 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3176 if (!hasNonFastQualifiers())
3177 return QT.withFastQualifiers(getFastQualifiers());
3178
3179 return Context.getQualifiedType(QT, *this);
3180 }
3181
3182 QualType
apply(const ASTContext & Context,const Type * T) const3183 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3184 if (!hasNonFastQualifiers())
3185 return QualType(T, getFastQualifiers());
3186
3187 return Context.getQualifiedType(T, *this);
3188 }
3189
Profile(llvm::FoldingSetNodeID & ID,QualType BaseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)3190 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3191 QualType BaseType,
3192 ArrayRef<QualType> typeArgs,
3193 ArrayRef<ObjCProtocolDecl *> protocols,
3194 bool isKindOf) {
3195 ID.AddPointer(BaseType.getAsOpaquePtr());
3196 ID.AddInteger(typeArgs.size());
3197 for (auto typeArg : typeArgs)
3198 ID.AddPointer(typeArg.getAsOpaquePtr());
3199 ID.AddInteger(protocols.size());
3200 for (auto proto : protocols)
3201 ID.AddPointer(proto);
3202 ID.AddBoolean(isKindOf);
3203 }
3204
Profile(llvm::FoldingSetNodeID & ID)3205 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3206 Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3207 llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3208 isKindOfTypeAsWritten());
3209 }
3210
3211 namespace {
3212
3213 /// \brief The cached properties of a type.
3214 class CachedProperties {
3215 Linkage L;
3216 bool local;
3217
3218 public:
CachedProperties(Linkage L,bool local)3219 CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3220
getLinkage() const3221 Linkage getLinkage() const { return L; }
hasLocalOrUnnamedType() const3222 bool hasLocalOrUnnamedType() const { return local; }
3223
merge(CachedProperties L,CachedProperties R)3224 friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3225 Linkage MergedLinkage = minLinkage(L.L, R.L);
3226 return CachedProperties(MergedLinkage,
3227 L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3228 }
3229 };
3230 }
3231
3232 static CachedProperties computeCachedProperties(const Type *T);
3233
3234 namespace clang {
3235 /// The type-property cache. This is templated so as to be
3236 /// instantiated at an internal type to prevent unnecessary symbol
3237 /// leakage.
3238 template <class Private> class TypePropertyCache {
3239 public:
get(QualType T)3240 static CachedProperties get(QualType T) {
3241 return get(T.getTypePtr());
3242 }
3243
get(const Type * T)3244 static CachedProperties get(const Type *T) {
3245 ensure(T);
3246 return CachedProperties(T->TypeBits.getLinkage(),
3247 T->TypeBits.hasLocalOrUnnamedType());
3248 }
3249
ensure(const Type * T)3250 static void ensure(const Type *T) {
3251 // If the cache is valid, we're okay.
3252 if (T->TypeBits.isCacheValid()) return;
3253
3254 // If this type is non-canonical, ask its canonical type for the
3255 // relevant information.
3256 if (!T->isCanonicalUnqualified()) {
3257 const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3258 ensure(CT);
3259 T->TypeBits.CacheValid = true;
3260 T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3261 T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3262 return;
3263 }
3264
3265 // Compute the cached properties and then set the cache.
3266 CachedProperties Result = computeCachedProperties(T);
3267 T->TypeBits.CacheValid = true;
3268 T->TypeBits.CachedLinkage = Result.getLinkage();
3269 T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3270 }
3271 };
3272 }
3273
3274 // Instantiate the friend template at a private class. In a
3275 // reasonable implementation, these symbols will be internal.
3276 // It is terrible that this is the best way to accomplish this.
3277 namespace { class Private {}; }
3278 typedef TypePropertyCache<Private> Cache;
3279
computeCachedProperties(const Type * T)3280 static CachedProperties computeCachedProperties(const Type *T) {
3281 switch (T->getTypeClass()) {
3282 #define TYPE(Class,Base)
3283 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3284 #include "clang/AST/TypeNodes.def"
3285 llvm_unreachable("didn't expect a non-canonical type here");
3286
3287 #define TYPE(Class,Base)
3288 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3289 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3290 #include "clang/AST/TypeNodes.def"
3291 // Treat instantiation-dependent types as external.
3292 assert(T->isInstantiationDependentType());
3293 return CachedProperties(ExternalLinkage, false);
3294
3295 case Type::Auto:
3296 // Give non-deduced 'auto' types external linkage. We should only see them
3297 // here in error recovery.
3298 return CachedProperties(ExternalLinkage, false);
3299
3300 case Type::Builtin:
3301 // C++ [basic.link]p8:
3302 // A type is said to have linkage if and only if:
3303 // - it is a fundamental type (3.9.1); or
3304 return CachedProperties(ExternalLinkage, false);
3305
3306 case Type::Record:
3307 case Type::Enum: {
3308 const TagDecl *Tag = cast<TagType>(T)->getDecl();
3309
3310 // C++ [basic.link]p8:
3311 // - it is a class or enumeration type that is named (or has a name
3312 // for linkage purposes (7.1.3)) and the name has linkage; or
3313 // - it is a specialization of a class template (14); or
3314 Linkage L = Tag->getLinkageInternal();
3315 bool IsLocalOrUnnamed =
3316 Tag->getDeclContext()->isFunctionOrMethod() ||
3317 !Tag->hasNameForLinkage();
3318 return CachedProperties(L, IsLocalOrUnnamed);
3319 }
3320
3321 // C++ [basic.link]p8:
3322 // - it is a compound type (3.9.2) other than a class or enumeration,
3323 // compounded exclusively from types that have linkage; or
3324 case Type::Complex:
3325 return Cache::get(cast<ComplexType>(T)->getElementType());
3326 case Type::Pointer:
3327 return Cache::get(cast<PointerType>(T)->getPointeeType());
3328 case Type::BlockPointer:
3329 return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3330 case Type::LValueReference:
3331 case Type::RValueReference:
3332 return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3333 case Type::MemberPointer: {
3334 const MemberPointerType *MPT = cast<MemberPointerType>(T);
3335 return merge(Cache::get(MPT->getClass()),
3336 Cache::get(MPT->getPointeeType()));
3337 }
3338 case Type::ConstantArray:
3339 case Type::IncompleteArray:
3340 case Type::VariableArray:
3341 return Cache::get(cast<ArrayType>(T)->getElementType());
3342 case Type::Vector:
3343 case Type::ExtVector:
3344 return Cache::get(cast<VectorType>(T)->getElementType());
3345 case Type::FunctionNoProto:
3346 return Cache::get(cast<FunctionType>(T)->getReturnType());
3347 case Type::FunctionProto: {
3348 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
3349 CachedProperties result = Cache::get(FPT->getReturnType());
3350 for (const auto &ai : FPT->param_types())
3351 result = merge(result, Cache::get(ai));
3352 return result;
3353 }
3354 case Type::ObjCInterface: {
3355 Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3356 return CachedProperties(L, false);
3357 }
3358 case Type::ObjCObject:
3359 return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3360 case Type::ObjCObjectPointer:
3361 return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3362 case Type::Atomic:
3363 return Cache::get(cast<AtomicType>(T)->getValueType());
3364 }
3365
3366 llvm_unreachable("unhandled type class");
3367 }
3368
3369 /// \brief Determine the linkage of this type.
getLinkage() const3370 Linkage Type::getLinkage() const {
3371 Cache::ensure(this);
3372 return TypeBits.getLinkage();
3373 }
3374
hasUnnamedOrLocalType() const3375 bool Type::hasUnnamedOrLocalType() const {
3376 Cache::ensure(this);
3377 return TypeBits.hasLocalOrUnnamedType();
3378 }
3379
3380 static LinkageInfo computeLinkageInfo(QualType T);
3381
computeLinkageInfo(const Type * T)3382 static LinkageInfo computeLinkageInfo(const Type *T) {
3383 switch (T->getTypeClass()) {
3384 #define TYPE(Class,Base)
3385 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3386 #include "clang/AST/TypeNodes.def"
3387 llvm_unreachable("didn't expect a non-canonical type here");
3388
3389 #define TYPE(Class,Base)
3390 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3391 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3392 #include "clang/AST/TypeNodes.def"
3393 // Treat instantiation-dependent types as external.
3394 assert(T->isInstantiationDependentType());
3395 return LinkageInfo::external();
3396
3397 case Type::Builtin:
3398 return LinkageInfo::external();
3399
3400 case Type::Auto:
3401 return LinkageInfo::external();
3402
3403 case Type::Record:
3404 case Type::Enum:
3405 return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();
3406
3407 case Type::Complex:
3408 return computeLinkageInfo(cast<ComplexType>(T)->getElementType());
3409 case Type::Pointer:
3410 return computeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3411 case Type::BlockPointer:
3412 return computeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3413 case Type::LValueReference:
3414 case Type::RValueReference:
3415 return computeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3416 case Type::MemberPointer: {
3417 const MemberPointerType *MPT = cast<MemberPointerType>(T);
3418 LinkageInfo LV = computeLinkageInfo(MPT->getClass());
3419 LV.merge(computeLinkageInfo(MPT->getPointeeType()));
3420 return LV;
3421 }
3422 case Type::ConstantArray:
3423 case Type::IncompleteArray:
3424 case Type::VariableArray:
3425 return computeLinkageInfo(cast<ArrayType>(T)->getElementType());
3426 case Type::Vector:
3427 case Type::ExtVector:
3428 return computeLinkageInfo(cast<VectorType>(T)->getElementType());
3429 case Type::FunctionNoProto:
3430 return computeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3431 case Type::FunctionProto: {
3432 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
3433 LinkageInfo LV = computeLinkageInfo(FPT->getReturnType());
3434 for (const auto &ai : FPT->param_types())
3435 LV.merge(computeLinkageInfo(ai));
3436 return LV;
3437 }
3438 case Type::ObjCInterface:
3439 return cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
3440 case Type::ObjCObject:
3441 return computeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3442 case Type::ObjCObjectPointer:
3443 return computeLinkageInfo(cast<ObjCObjectPointerType>(T)->getPointeeType());
3444 case Type::Atomic:
3445 return computeLinkageInfo(cast<AtomicType>(T)->getValueType());
3446 }
3447
3448 llvm_unreachable("unhandled type class");
3449 }
3450
computeLinkageInfo(QualType T)3451 static LinkageInfo computeLinkageInfo(QualType T) {
3452 return computeLinkageInfo(T.getTypePtr());
3453 }
3454
isLinkageValid() const3455 bool Type::isLinkageValid() const {
3456 if (!TypeBits.isCacheValid())
3457 return true;
3458
3459 return computeLinkageInfo(getCanonicalTypeInternal()).getLinkage() ==
3460 TypeBits.getLinkage();
3461 }
3462
getLinkageAndVisibility() const3463 LinkageInfo Type::getLinkageAndVisibility() const {
3464 if (!isCanonicalUnqualified())
3465 return computeLinkageInfo(getCanonicalTypeInternal());
3466
3467 LinkageInfo LV = computeLinkageInfo(this);
3468 assert(LV.getLinkage() == getLinkage());
3469 return LV;
3470 }
3471
getNullability(const ASTContext & context) const3472 Optional<NullabilityKind> Type::getNullability(const ASTContext &context) const {
3473 QualType type(this, 0);
3474 do {
3475 // Check whether this is an attributed type with nullability
3476 // information.
3477 if (auto attributed = dyn_cast<AttributedType>(type.getTypePtr())) {
3478 if (auto nullability = attributed->getImmediateNullability())
3479 return nullability;
3480 }
3481
3482 // Desugar the type. If desugaring does nothing, we're done.
3483 QualType desugared = type.getSingleStepDesugaredType(context);
3484 if (desugared.getTypePtr() == type.getTypePtr())
3485 return None;
3486
3487 type = desugared;
3488 } while (true);
3489 }
3490
canHaveNullability() const3491 bool Type::canHaveNullability() const {
3492 QualType type = getCanonicalTypeInternal();
3493
3494 switch (type->getTypeClass()) {
3495 // We'll only see canonical types here.
3496 #define NON_CANONICAL_TYPE(Class, Parent) \
3497 case Type::Class: \
3498 llvm_unreachable("non-canonical type");
3499 #define TYPE(Class, Parent)
3500 #include "clang/AST/TypeNodes.def"
3501
3502 // Pointer types.
3503 case Type::Pointer:
3504 case Type::BlockPointer:
3505 case Type::MemberPointer:
3506 case Type::ObjCObjectPointer:
3507 return true;
3508
3509 // Dependent types that could instantiate to pointer types.
3510 case Type::UnresolvedUsing:
3511 case Type::TypeOfExpr:
3512 case Type::TypeOf:
3513 case Type::Decltype:
3514 case Type::UnaryTransform:
3515 case Type::TemplateTypeParm:
3516 case Type::SubstTemplateTypeParmPack:
3517 case Type::DependentName:
3518 case Type::DependentTemplateSpecialization:
3519 return true;
3520
3521 // Dependent template specializations can instantiate to pointer
3522 // types unless they're known to be specializations of a class
3523 // template.
3524 case Type::TemplateSpecialization:
3525 if (TemplateDecl *templateDecl
3526 = cast<TemplateSpecializationType>(type.getTypePtr())
3527 ->getTemplateName().getAsTemplateDecl()) {
3528 if (isa<ClassTemplateDecl>(templateDecl))
3529 return false;
3530 }
3531 return true;
3532
3533 // auto is considered dependent when it isn't deduced.
3534 case Type::Auto:
3535 return !cast<AutoType>(type.getTypePtr())->isDeduced();
3536
3537 case Type::Builtin:
3538 switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
3539 // Signed, unsigned, and floating-point types cannot have nullability.
3540 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3541 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3542 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
3543 #define BUILTIN_TYPE(Id, SingletonId)
3544 #include "clang/AST/BuiltinTypes.def"
3545 return false;
3546
3547 // Dependent types that could instantiate to a pointer type.
3548 case BuiltinType::Dependent:
3549 case BuiltinType::Overload:
3550 case BuiltinType::BoundMember:
3551 case BuiltinType::PseudoObject:
3552 case BuiltinType::UnknownAny:
3553 case BuiltinType::ARCUnbridgedCast:
3554 return true;
3555
3556 case BuiltinType::Void:
3557 case BuiltinType::ObjCId:
3558 case BuiltinType::ObjCClass:
3559 case BuiltinType::ObjCSel:
3560 case BuiltinType::OCLImage1d:
3561 case BuiltinType::OCLImage1dArray:
3562 case BuiltinType::OCLImage1dBuffer:
3563 case BuiltinType::OCLImage2d:
3564 case BuiltinType::OCLImage2dArray:
3565 case BuiltinType::OCLImage2dDepth:
3566 case BuiltinType::OCLImage2dArrayDepth:
3567 case BuiltinType::OCLImage2dMSAA:
3568 case BuiltinType::OCLImage2dArrayMSAA:
3569 case BuiltinType::OCLImage2dMSAADepth:
3570 case BuiltinType::OCLImage2dArrayMSAADepth:
3571 case BuiltinType::OCLImage3d:
3572 case BuiltinType::OCLSampler:
3573 case BuiltinType::OCLEvent:
3574 case BuiltinType::OCLClkEvent:
3575 case BuiltinType::OCLQueue:
3576 case BuiltinType::OCLNDRange:
3577 case BuiltinType::OCLReserveID:
3578 case BuiltinType::BuiltinFn:
3579 case BuiltinType::NullPtr:
3580 case BuiltinType::OMPArraySection:
3581 return false;
3582 }
3583
3584 // Non-pointer types.
3585 case Type::Complex:
3586 case Type::LValueReference:
3587 case Type::RValueReference:
3588 case Type::ConstantArray:
3589 case Type::IncompleteArray:
3590 case Type::VariableArray:
3591 case Type::DependentSizedArray:
3592 case Type::DependentSizedExtVector:
3593 case Type::Vector:
3594 case Type::ExtVector:
3595 case Type::FunctionProto:
3596 case Type::FunctionNoProto:
3597 case Type::Record:
3598 case Type::Enum:
3599 case Type::InjectedClassName:
3600 case Type::PackExpansion:
3601 case Type::ObjCObject:
3602 case Type::ObjCInterface:
3603 case Type::Atomic:
3604 return false;
3605 }
3606 llvm_unreachable("bad type kind!");
3607 }
3608
getImmediateNullability() const3609 llvm::Optional<NullabilityKind> AttributedType::getImmediateNullability() const {
3610 if (getAttrKind() == AttributedType::attr_nonnull)
3611 return NullabilityKind::NonNull;
3612 if (getAttrKind() == AttributedType::attr_nullable)
3613 return NullabilityKind::Nullable;
3614 if (getAttrKind() == AttributedType::attr_null_unspecified)
3615 return NullabilityKind::Unspecified;
3616 return None;
3617 }
3618
stripOuterNullability(QualType & T)3619 Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
3620 if (auto attributed = dyn_cast<AttributedType>(T.getTypePtr())) {
3621 if (auto nullability = attributed->getImmediateNullability()) {
3622 T = attributed->getModifiedType();
3623 return nullability;
3624 }
3625 }
3626
3627 return None;
3628 }
3629
isBlockCompatibleObjCPointerType(ASTContext & ctx) const3630 bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
3631 const ObjCObjectPointerType *objcPtr = getAs<ObjCObjectPointerType>();
3632 if (!objcPtr)
3633 return false;
3634
3635 if (objcPtr->isObjCIdType()) {
3636 // id is always okay.
3637 return true;
3638 }
3639
3640 // Blocks are NSObjects.
3641 if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
3642 if (iface->getIdentifier() != ctx.getNSObjectName())
3643 return false;
3644
3645 // Continue to check qualifiers, below.
3646 } else if (objcPtr->isObjCQualifiedIdType()) {
3647 // Continue to check qualifiers, below.
3648 } else {
3649 return false;
3650 }
3651
3652 // Check protocol qualifiers.
3653 for (ObjCProtocolDecl *proto : objcPtr->quals()) {
3654 // Blocks conform to NSObject and NSCopying.
3655 if (proto->getIdentifier() != ctx.getNSObjectName() &&
3656 proto->getIdentifier() != ctx.getNSCopyingName())
3657 return false;
3658 }
3659
3660 return true;
3661 }
3662
getObjCARCImplicitLifetime() const3663 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
3664 if (isObjCARCImplicitlyUnretainedType())
3665 return Qualifiers::OCL_ExplicitNone;
3666 return Qualifiers::OCL_Strong;
3667 }
3668
isObjCARCImplicitlyUnretainedType() const3669 bool Type::isObjCARCImplicitlyUnretainedType() const {
3670 assert(isObjCLifetimeType() &&
3671 "cannot query implicit lifetime for non-inferrable type");
3672
3673 const Type *canon = getCanonicalTypeInternal().getTypePtr();
3674
3675 // Walk down to the base type. We don't care about qualifiers for this.
3676 while (const ArrayType *array = dyn_cast<ArrayType>(canon))
3677 canon = array->getElementType().getTypePtr();
3678
3679 if (const ObjCObjectPointerType *opt
3680 = dyn_cast<ObjCObjectPointerType>(canon)) {
3681 // Class and Class<Protocol> don't require retention.
3682 if (opt->getObjectType()->isObjCClass())
3683 return true;
3684 }
3685
3686 return false;
3687 }
3688
isObjCNSObjectType() const3689 bool Type::isObjCNSObjectType() const {
3690 if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
3691 return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
3692 return false;
3693 }
isObjCIndependentClassType() const3694 bool Type::isObjCIndependentClassType() const {
3695 if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
3696 return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
3697 return false;
3698 }
isObjCRetainableType() const3699 bool Type::isObjCRetainableType() const {
3700 return isObjCObjectPointerType() ||
3701 isBlockPointerType() ||
3702 isObjCNSObjectType();
3703 }
isObjCIndirectLifetimeType() const3704 bool Type::isObjCIndirectLifetimeType() const {
3705 if (isObjCLifetimeType())
3706 return true;
3707 if (const PointerType *OPT = getAs<PointerType>())
3708 return OPT->getPointeeType()->isObjCIndirectLifetimeType();
3709 if (const ReferenceType *Ref = getAs<ReferenceType>())
3710 return Ref->getPointeeType()->isObjCIndirectLifetimeType();
3711 if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
3712 return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
3713 return false;
3714 }
3715
3716 /// Returns true if objects of this type have lifetime semantics under
3717 /// ARC.
isObjCLifetimeType() const3718 bool Type::isObjCLifetimeType() const {
3719 const Type *type = this;
3720 while (const ArrayType *array = type->getAsArrayTypeUnsafe())
3721 type = array->getElementType().getTypePtr();
3722 return type->isObjCRetainableType();
3723 }
3724
3725 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
3726 /// which is either an Objective-C object pointer type or an
isObjCARCBridgableType() const3727 bool Type::isObjCARCBridgableType() const {
3728 return isObjCObjectPointerType() || isBlockPointerType();
3729 }
3730
3731 /// \brief Determine whether the given type T is a "bridgeable" C type.
isCARCBridgableType() const3732 bool Type::isCARCBridgableType() const {
3733 const PointerType *Pointer = getAs<PointerType>();
3734 if (!Pointer)
3735 return false;
3736
3737 QualType Pointee = Pointer->getPointeeType();
3738 return Pointee->isVoidType() || Pointee->isRecordType();
3739 }
3740
hasSizedVLAType() const3741 bool Type::hasSizedVLAType() const {
3742 if (!isVariablyModifiedType()) return false;
3743
3744 if (const PointerType *ptr = getAs<PointerType>())
3745 return ptr->getPointeeType()->hasSizedVLAType();
3746 if (const ReferenceType *ref = getAs<ReferenceType>())
3747 return ref->getPointeeType()->hasSizedVLAType();
3748 if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
3749 if (isa<VariableArrayType>(arr) &&
3750 cast<VariableArrayType>(arr)->getSizeExpr())
3751 return true;
3752
3753 return arr->getElementType()->hasSizedVLAType();
3754 }
3755
3756 return false;
3757 }
3758
isDestructedTypeImpl(QualType type)3759 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
3760 switch (type.getObjCLifetime()) {
3761 case Qualifiers::OCL_None:
3762 case Qualifiers::OCL_ExplicitNone:
3763 case Qualifiers::OCL_Autoreleasing:
3764 break;
3765
3766 case Qualifiers::OCL_Strong:
3767 return DK_objc_strong_lifetime;
3768 case Qualifiers::OCL_Weak:
3769 return DK_objc_weak_lifetime;
3770 }
3771
3772 /// Currently, the only destruction kind we recognize is C++ objects
3773 /// with non-trivial destructors.
3774 const CXXRecordDecl *record =
3775 type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3776 if (record && record->hasDefinition() && !record->hasTrivialDestructor())
3777 return DK_cxx_destructor;
3778
3779 return DK_none;
3780 }
3781
getMostRecentCXXRecordDecl() const3782 CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
3783 return getClass()->getAsCXXRecordDecl()->getMostRecentDecl();
3784 }
3785