1# Copyright 2016 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import its.image 16import its.caps 17import its.device 18import its.objects 19import os.path 20import numpy 21import cv2 22import math 23 24 25def main(): 26 """ Test that the lens shading correction is applied appropriately, and 27 color of a monochrome uniform scene is evenly distributed, for example, 28 when a diffuser is placed in front of the camera. 29 Perform this test on a yuv frame with auto 3a. Lens shading is evaluated 30 based on the y channel. Measure the average y value for each sample block 31 specified, and then determine pass/fail by comparing with the center y 32 value. 33 The color uniformity test is evaluated in r/g and b/g space. At specified 34 radius of the image, the variance of r/g and b/g value need to be less than 35 a threshold in order to pass the test. 36 """ 37 NAME = os.path.basename(__file__).split(".")[0] 38 # Sample block center location and length 39 Num_radius = 8 40 spb_r = 1/2./(Num_radius*2-1) 41 SPB_CT_LIST = numpy.arange(spb_r, 1/2., spb_r*2) 42 43 # Threshold for pass/fail 44 THRES_LS_CT = 0.9 # len shading allowance for center 45 THRES_LS_CN = 0.6 # len shading allowance for corner 46 THRES_LS_HIGH = 0.2 # max allowed percentage for a patch to be brighter 47 # than center 48 THRES_UFMT = 0.1 # uniformity allowance 49 # Drawing color 50 RED = (1, 0, 0) # blocks failed the test 51 GREEN = (0, 0.7, 0.3) # blocks passed the test 52 53 with its.device.ItsSession() as cam: 54 props = cam.get_camera_properties() 55 # Converge 3A and get the estimates. 56 sens, exp, gains, xform, focus = cam.do_3a(get_results=True, 57 do_af=False, 58 lock_ae=True, 59 lock_awb=True) 60 print "AE sensitivity %d, exposure %dms" % (sens, exp / 1000000.0) 61 print "AWB gains", gains 62 print "AWB transform", xform 63 print "AF distance", focus 64 req = its.objects.auto_capture_request() 65 img_size = its.objects.get_available_output_sizes("yuv", props) 66 w = img_size[0][0] 67 h = img_size[0][1] 68 out_surface = {"format": "yuv"} 69 cap = cam.do_capture(req, out_surface) 70 print "Captured yuv %dx%d" % (w, h) 71 # rgb image 72 img_rgb = its.image.convert_capture_to_rgb_image(cap) 73 img_g_pos = img_rgb[:, :, 1] + 0.001 # in case g channel is zero. 74 r_g = img_rgb[:, :, 0] / img_g_pos 75 b_g = img_rgb[:, :, 2] / img_g_pos 76 # y channel 77 img_y = its.image.convert_capture_to_planes(cap)[0] 78 its.image.write_image(img_y, "%s_y_plane.png" % NAME, True) 79 80 # Evaluation begins 81 # image with legend 82 img_legend_ls = numpy.copy(img_rgb) 83 img_legend_ufmt = numpy.copy(img_rgb) 84 line_width = max(2, int(max(h, w)/500)) # line width of legend 85 font_scale = line_width / 7.0 # font scale of the basic font size 86 text_height = cv2.getTextSize('gf', cv2.FONT_HERSHEY_SIMPLEX, 87 font_scale, line_width)[0][1] 88 text_offset = int(text_height*1.5) 89 90 # center block average Y value, r/g, and b/g 91 top = int((0.5-spb_r)*h) 92 bottom = int((0.5+spb_r)*h) 93 left = int((0.5-spb_r)*w) 94 right = int((0.5+spb_r)*w) 95 center_y = numpy.mean(img_y[top:bottom, left:right]) 96 center_r_g = numpy.mean(r_g[top:bottom, left:right]) 97 center_b_g = numpy.mean(b_g[top:bottom, left:right]) 98 # add legend to lens Shading figure 99 cv2.rectangle(img_legend_ls, (left, top), (right, bottom), GREEN, 100 line_width) 101 draw_legend(img_legend_ls, ["Y: %.2f" % center_y], 102 [left+text_offset, bottom-text_offset], 103 font_scale, text_offset, GREEN, int(line_width/2)) 104 # add legend to color uniformity figure 105 cv2.rectangle(img_legend_ufmt, (left, top), (right, bottom), GREEN, 106 line_width) 107 texts = ["r/g: %.2f" % center_r_g, 108 "b/g: %.2f" % center_b_g] 109 draw_legend(img_legend_ufmt, texts, 110 [left+text_offset, bottom-text_offset*2], 111 font_scale, text_offset, GREEN, int(line_width/2)) 112 113 # evaluate y and r/g, b/g for each block 114 ls_test_failed = [] 115 cu_test_failed = [] 116 ls_thres_h = center_y * (1 + THRES_LS_HIGH) 117 dist_max = math.sqrt(pow(w, 2)+pow(h, 2))/2 118 for spb_ct in SPB_CT_LIST: 119 # list sample block center location 120 num_sample = (1-spb_ct*2)/spb_r/2 + 1 121 ct_cord_x = numpy.concatenate( 122 (numpy.arange(spb_ct, 1-spb_ct+spb_r, spb_r*2), 123 spb_ct*numpy.ones((num_sample-1)), 124 (1-spb_ct)*numpy.ones((num_sample-1)), 125 numpy.arange(spb_ct, 1-spb_ct+spb_r, spb_r*2))) 126 ct_cord_y = numpy.concatenate( 127 (spb_ct*numpy.ones(num_sample+1), 128 numpy.arange(spb_ct+spb_r*2, 1-spb_ct, spb_r*2), 129 numpy.arange(spb_ct+spb_r*2, 1-spb_ct, spb_r*2), 130 (1-spb_ct)*numpy.ones(num_sample+1))) 131 132 blocks_info = [] 133 max_r_g = 0 134 min_r_g = float("inf") 135 max_b_g = 0 136 min_b_g = float("inf") 137 for spb_ctx, spb_cty in zip(ct_cord_x, ct_cord_y): 138 top = int((spb_cty-spb_r)*h) 139 bottom = int((spb_cty+spb_r)*h) 140 left = int((spb_ctx-spb_r)*w) 141 right = int((spb_ctx+spb_r)*w) 142 dist_to_img_center = math.sqrt(pow(abs(spb_ctx-0.5)*w, 2) 143 + pow(abs(spb_cty-0.5)*h, 2)) 144 ls_thres_l = ((THRES_LS_CT-THRES_LS_CN)*(1-dist_to_img_center 145 /dist_max)+THRES_LS_CN) * center_y 146 147 # compute block average value 148 block_y = numpy.mean(img_y[top:bottom, left:right]) 149 block_r_g = numpy.mean(r_g[top:bottom, left:right]) 150 block_b_g = numpy.mean(b_g[top:bottom, left:right]) 151 max_r_g = max(max_r_g, block_r_g) 152 min_r_g = min(min_r_g, block_r_g) 153 max_b_g = max(max_b_g, block_b_g) 154 min_b_g = min(min_b_g, block_b_g) 155 blocks_info.append({"pos": [top, bottom, left, right], 156 "block_r_g": block_r_g, 157 "block_b_g": block_b_g}) 158 # check lens shading and draw legend 159 if block_y > ls_thres_h or block_y < ls_thres_l: 160 ls_test_failed.append({"pos": [top, bottom, left, 161 right], 162 "val": block_y, 163 "thres_l": ls_thres_l}) 164 legend_color = RED 165 else: 166 legend_color = GREEN 167 text_bottom = bottom - text_offset 168 cv2.rectangle(img_legend_ls, (left, top), (right, bottom), 169 legend_color, line_width) 170 draw_legend(img_legend_ls, ["Y: %.2f" % block_y], 171 [left+text_offset, text_bottom], font_scale, 172 text_offset, legend_color, int(line_width/2)) 173 174 # check color uniformity and draw legend 175 ufmt_r_g = (max_r_g-min_r_g) / center_r_g 176 ufmt_b_g = (max_b_g-min_b_g) / center_b_g 177 if ufmt_r_g > THRES_UFMT or ufmt_b_g > THRES_UFMT: 178 cu_test_failed.append({"pos": spb_ct, 179 "ufmt_r_g": ufmt_r_g, 180 "ufmt_b_g": ufmt_b_g}) 181 legend_color = RED 182 else: 183 legend_color = GREEN 184 for block in blocks_info: 185 top, bottom, left, right = block["pos"] 186 cv2.rectangle(img_legend_ufmt, (left, top), (right, bottom), 187 legend_color, line_width) 188 texts = ["r/g: %.2f" % block["block_r_g"], 189 "b/g: %.2f" % block["block_b_g"]] 190 text_bottom = bottom - text_offset * 2 191 draw_legend(img_legend_ufmt, texts, 192 [left+text_offset, text_bottom], font_scale, 193 text_offset, legend_color, int(line_width/2)) 194 195 # Save images 196 its.image.write_image(img_legend_ufmt, 197 "%s_color_uniformity_result.png" % NAME, True) 198 its.image.write_image(img_legend_ls, 199 "%s_lens_shading_result.png" % NAME, True) 200 201 # print results 202 lens_shading_test_passed = True 203 color_uniformity_test_passed = True 204 if len(ls_test_failed) > 0: 205 lens_shading_test_passed = False 206 print "\nLens shading test summary" 207 print "Center block average Y value: %.3f" % center_y 208 print "Blocks failed in the lens shading test:" 209 for block in ls_test_failed: 210 top, bottom, left, right = block["pos"] 211 print "Block position: [top: %d, bottom: %d, left: %d, right: "\ 212 "%d]; average Y value: %.3f; valid value range: %.3f ~ " \ 213 "%.3f" % (top, bottom, left, right, block["val"], 214 block["thres_l"], ls_thres_h) 215 if len(cu_test_failed) > 0: 216 color_uniformity_test_passed = False 217 print "\nColor uniformity test summary" 218 print "Valid color uniformity value range: 0 ~ ", THRES_UFMT 219 print "Areas that failed the color uniformity test:" 220 for rd in cu_test_failed: 221 print "Radius position: %.3f; r/g uniformity: %.3f; b/g " \ 222 "uniformity: %.3f" % (rd["pos"], rd["ufmt_r_g"], 223 rd["ufmt_b_g"]) 224 assert lens_shading_test_passed 225 assert color_uniformity_test_passed 226 227 228def draw_legend(img, texts, text_org, font_scale, text_offset, legend_color, 229 line_width): 230 """ Draw legend on an image. 231 232 Args: 233 img: Numpy float image array in RGB, with pixel values in [0,1]. 234 texts: list of legends. Each element in the list is a line of legend. 235 text_org: tuple of the bottom left corner of the text position in 236 pixels, horizontal and vertical. 237 font_scale: float number. Font scale of the basic font size. 238 text_offset: text line width in pixels. 239 legend_color: text color in rgb value. 240 line_width: strokes width in pixels. 241 """ 242 for text in texts: 243 cv2.putText(img, text, (text_org[0], text_org[1]), 244 cv2.FONT_HERSHEY_SIMPLEX, font_scale, 245 legend_color, line_width) 246 text_org[1] += text_offset 247 248 249if __name__ == '__main__': 250 main() 251