• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
7 // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
8 // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
9 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 #ifndef EIGEN_SVD_H
16 #define EIGEN_SVD_H
17 
18 namespace Eigen {
19 /** \ingroup SVD_Module
20  *
21  *
22  * \class SVDBase
23  *
24  * \brief Mother class of SVD classes algorithms
25  *
26  * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
27  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
28  *   \f[ A = U S V^* \f]
29  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
30  * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
31  * and right \em singular \em vectors of \a A respectively.
32  *
33  * Singular values are always sorted in decreasing order.
34  *
35  *
36  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
37  * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
38  * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
39  * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
40  *
41  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
42  * terminate in finite (and reasonable) time.
43  * \sa MatrixBase::genericSvd()
44  */
45 template<typename _MatrixType>
46 class SVDBase
47 {
48 
49 public:
50   typedef _MatrixType MatrixType;
51   typedef typename MatrixType::Scalar Scalar;
52   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
53   typedef typename MatrixType::Index Index;
54   enum {
55     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57     DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
58     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
59     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
60     MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
61     MatrixOptions = MatrixType::Options
62   };
63 
64   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
65 		 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
66   MatrixUType;
67   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
68 		 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
69   MatrixVType;
70   typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
71   typedef typename internal::plain_row_type<MatrixType>::type RowType;
72   typedef typename internal::plain_col_type<MatrixType>::type ColType;
73   typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
74 		 MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
75   WorkMatrixType;
76 
77 
78 
79 
80   /** \brief Method performing the decomposition of given matrix using custom options.
81    *
82    * \param matrix the matrix to decompose
83    * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
84    *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
85    *                           #ComputeFullV, #ComputeThinV.
86    *
87    * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
88    * available with the (non-default) FullPivHouseholderQR preconditioner.
89    */
90   SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
91 
92   /** \brief Method performing the decomposition of given matrix using current options.
93    *
94    * \param matrix the matrix to decompose
95    *
96    * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
97    */
98   //virtual SVDBase& compute(const MatrixType& matrix) = 0;
99   SVDBase& compute(const MatrixType& matrix);
100 
101   /** \returns the \a U matrix.
102    *
103    * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
104    * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
105    *
106    * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
107    *
108    * This method asserts that you asked for \a U to be computed.
109    */
matrixU()110   const MatrixUType& matrixU() const
111   {
112     eigen_assert(m_isInitialized && "SVD is not initialized.");
113     eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
114     return m_matrixU;
115   }
116 
117   /** \returns the \a V matrix.
118    *
119    * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
120    * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
121    *
122    * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
123    *
124    * This method asserts that you asked for \a V to be computed.
125    */
matrixV()126   const MatrixVType& matrixV() const
127   {
128     eigen_assert(m_isInitialized && "SVD is not initialized.");
129     eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
130     return m_matrixV;
131   }
132 
133   /** \returns the vector of singular values.
134    *
135    * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
136    * returned vector has size \a m.  Singular values are always sorted in decreasing order.
137    */
singularValues()138   const SingularValuesType& singularValues() const
139   {
140     eigen_assert(m_isInitialized && "SVD is not initialized.");
141     return m_singularValues;
142   }
143 
144 
145 
146   /** \returns the number of singular values that are not exactly 0 */
nonzeroSingularValues()147   Index nonzeroSingularValues() const
148   {
149     eigen_assert(m_isInitialized && "SVD is not initialized.");
150     return m_nonzeroSingularValues;
151   }
152 
153 
154   /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
computeU()155   inline bool computeU() const { return m_computeFullU || m_computeThinU; }
156   /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
computeV()157   inline bool computeV() const { return m_computeFullV || m_computeThinV; }
158 
159 
rows()160   inline Index rows() const { return m_rows; }
cols()161   inline Index cols() const { return m_cols; }
162 
163 
164 protected:
165   // return true if already allocated
166   bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
167 
168   MatrixUType m_matrixU;
169   MatrixVType m_matrixV;
170   SingularValuesType m_singularValues;
171   bool m_isInitialized, m_isAllocated;
172   bool m_computeFullU, m_computeThinU;
173   bool m_computeFullV, m_computeThinV;
174   unsigned int m_computationOptions;
175   Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
176 
177 
178   /** \brief Default Constructor.
179    *
180    * Default constructor of SVDBase
181    */
SVDBase()182   SVDBase()
183     : m_isInitialized(false),
184       m_isAllocated(false),
185       m_computationOptions(0),
186       m_rows(-1), m_cols(-1)
187   {}
188 
189 
190 };
191 
192 
193 template<typename MatrixType>
allocate(Index rows,Index cols,unsigned int computationOptions)194 bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
195 {
196   eigen_assert(rows >= 0 && cols >= 0);
197 
198   if (m_isAllocated &&
199       rows == m_rows &&
200       cols == m_cols &&
201       computationOptions == m_computationOptions)
202   {
203     return true;
204   }
205 
206   m_rows = rows;
207   m_cols = cols;
208   m_isInitialized = false;
209   m_isAllocated = true;
210   m_computationOptions = computationOptions;
211   m_computeFullU = (computationOptions & ComputeFullU) != 0;
212   m_computeThinU = (computationOptions & ComputeThinU) != 0;
213   m_computeFullV = (computationOptions & ComputeFullV) != 0;
214   m_computeThinV = (computationOptions & ComputeThinV) != 0;
215   eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
216   eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
217   eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
218 	       "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
219 
220   m_diagSize = (std::min)(m_rows, m_cols);
221   m_singularValues.resize(m_diagSize);
222   if(RowsAtCompileTime==Dynamic)
223     m_matrixU.resize(m_rows, m_computeFullU ? m_rows
224 		     : m_computeThinU ? m_diagSize
225 		     : 0);
226   if(ColsAtCompileTime==Dynamic)
227     m_matrixV.resize(m_cols, m_computeFullV ? m_cols
228 		     : m_computeThinV ? m_diagSize
229 		     : 0);
230 
231   return false;
232 }
233 
234 }// end namespace
235 
236 #endif // EIGEN_SVD_H
237