• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2010 Erwin Coumans  http://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef _BT_TRIANGLE_INFO_MAP_H
17 #define _BT_TRIANGLE_INFO_MAP_H
18 
19 
20 #include "LinearMath/btHashMap.h"
21 #include "LinearMath/btSerializer.h"
22 
23 
24 ///for btTriangleInfo m_flags
25 #define TRI_INFO_V0V1_CONVEX 1
26 #define TRI_INFO_V1V2_CONVEX 2
27 #define TRI_INFO_V2V0_CONVEX 4
28 
29 #define TRI_INFO_V0V1_SWAP_NORMALB 8
30 #define TRI_INFO_V1V2_SWAP_NORMALB 16
31 #define TRI_INFO_V2V0_SWAP_NORMALB 32
32 
33 
34 ///The btTriangleInfo structure stores information to adjust collision normals to avoid collisions against internal edges
35 ///it can be generated using
36 struct	btTriangleInfo
37 {
btTriangleInfobtTriangleInfo38 	btTriangleInfo()
39 	{
40 		m_edgeV0V1Angle = SIMD_2_PI;
41 		m_edgeV1V2Angle = SIMD_2_PI;
42 		m_edgeV2V0Angle = SIMD_2_PI;
43 		m_flags=0;
44 	}
45 
46 	int			m_flags;
47 
48 	btScalar	m_edgeV0V1Angle;
49 	btScalar	m_edgeV1V2Angle;
50 	btScalar	m_edgeV2V0Angle;
51 
52 };
53 
54 typedef btHashMap<btHashInt,btTriangleInfo> btInternalTriangleInfoMap;
55 
56 
57 ///The btTriangleInfoMap stores edge angle information for some triangles. You can compute this information yourself or using btGenerateInternalEdgeInfo.
58 struct	btTriangleInfoMap : public btInternalTriangleInfoMap
59 {
60 	btScalar	m_convexEpsilon;///used to determine if an edge or contact normal is convex, using the dot product
61 	btScalar	m_planarEpsilon; ///used to determine if a triangle edge is planar with zero angle
62 	btScalar	m_equalVertexThreshold; ///used to compute connectivity: if the distance between two vertices is smaller than m_equalVertexThreshold, they are considered to be 'shared'
63 	btScalar	m_edgeDistanceThreshold; ///used to determine edge contacts: if the closest distance between a contact point and an edge is smaller than this distance threshold it is considered to "hit the edge"
64 	btScalar	m_maxEdgeAngleThreshold; //ignore edges that connect triangles at an angle larger than this m_maxEdgeAngleThreshold
65 	btScalar	m_zeroAreaThreshold; ///used to determine if a triangle is degenerate (length squared of cross product of 2 triangle edges < threshold)
66 
67 
btTriangleInfoMapbtTriangleInfoMap68 	btTriangleInfoMap()
69 	{
70 		m_convexEpsilon = 0.00f;
71 		m_planarEpsilon = 0.0001f;
72 		m_equalVertexThreshold = btScalar(0.0001)*btScalar(0.0001);
73 		m_edgeDistanceThreshold = btScalar(0.1);
74 		m_zeroAreaThreshold = btScalar(0.0001)*btScalar(0.0001);
75 		m_maxEdgeAngleThreshold = SIMD_2_PI;
76 	}
~btTriangleInfoMapbtTriangleInfoMap77 	virtual ~btTriangleInfoMap() {}
78 
79 	virtual	int	calculateSerializeBufferSize() const;
80 
81 	///fills the dataBuffer and returns the struct name (and 0 on failure)
82 	virtual	const char*	serialize(void* dataBuffer, btSerializer* serializer) const;
83 
84 	void	deSerialize(struct btTriangleInfoMapData& data);
85 
86 };
87 
88 ///those fields have to be float and not btScalar for the serialization to work properly
89 struct	btTriangleInfoData
90 {
91 	int			m_flags;
92 	float	m_edgeV0V1Angle;
93 	float	m_edgeV1V2Angle;
94 	float	m_edgeV2V0Angle;
95 };
96 
97 struct	btTriangleInfoMapData
98 {
99 	int					*m_hashTablePtr;
100 	int					*m_nextPtr;
101 	btTriangleInfoData	*m_valueArrayPtr;
102 	int					*m_keyArrayPtr;
103 
104 	float	m_convexEpsilon;
105 	float	m_planarEpsilon;
106 	float	m_equalVertexThreshold;
107 	float	m_edgeDistanceThreshold;
108 	float	m_zeroAreaThreshold;
109 
110 	int		m_nextSize;
111 	int		m_hashTableSize;
112 	int		m_numValues;
113 	int		m_numKeys;
114 	char	m_padding[4];
115 };
116 
calculateSerializeBufferSize()117 SIMD_FORCE_INLINE	int	btTriangleInfoMap::calculateSerializeBufferSize() const
118 {
119 	return sizeof(btTriangleInfoMapData);
120 }
121 
122 ///fills the dataBuffer and returns the struct name (and 0 on failure)
serialize(void * dataBuffer,btSerializer * serializer)123 SIMD_FORCE_INLINE	const char*	btTriangleInfoMap::serialize(void* dataBuffer, btSerializer* serializer) const
124 {
125 	btTriangleInfoMapData* tmapData = (btTriangleInfoMapData*) dataBuffer;
126 	tmapData->m_convexEpsilon = (float)m_convexEpsilon;
127 	tmapData->m_planarEpsilon = (float)m_planarEpsilon;
128 	tmapData->m_equalVertexThreshold =(float) m_equalVertexThreshold;
129 	tmapData->m_edgeDistanceThreshold = (float)m_edgeDistanceThreshold;
130 	tmapData->m_zeroAreaThreshold = (float)m_zeroAreaThreshold;
131 
132 	tmapData->m_hashTableSize = m_hashTable.size();
133 
134 	tmapData->m_hashTablePtr = tmapData->m_hashTableSize ? (int*)serializer->getUniquePointer((void*)&m_hashTable[0]) : 0;
135 	if (tmapData->m_hashTablePtr)
136 	{
137 		//serialize an int buffer
138 		int sz = sizeof(int);
139 		int numElem = tmapData->m_hashTableSize;
140 		btChunk* chunk = serializer->allocate(sz,numElem);
141 		int* memPtr = (int*)chunk->m_oldPtr;
142 		for (int i=0;i<numElem;i++,memPtr++)
143 		{
144 			*memPtr = m_hashTable[i];
145 		}
146 		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*)&m_hashTable[0]);
147 
148 	}
149 
150 	tmapData->m_nextSize = m_next.size();
151 	tmapData->m_nextPtr = tmapData->m_nextSize? (int*)serializer->getUniquePointer((void*)&m_next[0]): 0;
152 	if (tmapData->m_nextPtr)
153 	{
154 		int sz = sizeof(int);
155 		int numElem = tmapData->m_nextSize;
156 		btChunk* chunk = serializer->allocate(sz,numElem);
157 		int* memPtr = (int*)chunk->m_oldPtr;
158 		for (int i=0;i<numElem;i++,memPtr++)
159 		{
160 			*memPtr = m_next[i];
161 		}
162 		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*)&m_next[0]);
163 	}
164 
165 	tmapData->m_numValues = m_valueArray.size();
166 	tmapData->m_valueArrayPtr = tmapData->m_numValues ? (btTriangleInfoData*)serializer->getUniquePointer((void*)&m_valueArray[0]): 0;
167 	if (tmapData->m_valueArrayPtr)
168 	{
169 		int sz = sizeof(btTriangleInfoData);
170 		int numElem = tmapData->m_numValues;
171 		btChunk* chunk = serializer->allocate(sz,numElem);
172 		btTriangleInfoData* memPtr = (btTriangleInfoData*)chunk->m_oldPtr;
173 		for (int i=0;i<numElem;i++,memPtr++)
174 		{
175 			memPtr->m_edgeV0V1Angle = (float)m_valueArray[i].m_edgeV0V1Angle;
176 			memPtr->m_edgeV1V2Angle = (float)m_valueArray[i].m_edgeV1V2Angle;
177 			memPtr->m_edgeV2V0Angle = (float)m_valueArray[i].m_edgeV2V0Angle;
178 			memPtr->m_flags = m_valueArray[i].m_flags;
179 		}
180 		serializer->finalizeChunk(chunk,"btTriangleInfoData",BT_ARRAY_CODE,(void*) &m_valueArray[0]);
181 	}
182 
183 	tmapData->m_numKeys = m_keyArray.size();
184 	tmapData->m_keyArrayPtr = tmapData->m_numKeys ? (int*)serializer->getUniquePointer((void*)&m_keyArray[0]) : 0;
185 	if (tmapData->m_keyArrayPtr)
186 	{
187 		int sz = sizeof(int);
188 		int numElem = tmapData->m_numValues;
189 		btChunk* chunk = serializer->allocate(sz,numElem);
190 		int* memPtr = (int*)chunk->m_oldPtr;
191 		for (int i=0;i<numElem;i++,memPtr++)
192 		{
193 			*memPtr = m_keyArray[i].getUid1();
194 		}
195 		serializer->finalizeChunk(chunk,"int",BT_ARRAY_CODE,(void*) &m_keyArray[0]);
196 
197 	}
198 	return "btTriangleInfoMapData";
199 }
200 
201 
202 
203 ///fills the dataBuffer and returns the struct name (and 0 on failure)
deSerialize(btTriangleInfoMapData & tmapData)204 SIMD_FORCE_INLINE	void	btTriangleInfoMap::deSerialize(btTriangleInfoMapData& tmapData )
205 {
206 
207 
208 	m_convexEpsilon = tmapData.m_convexEpsilon;
209 	m_planarEpsilon = tmapData.m_planarEpsilon;
210 	m_equalVertexThreshold = tmapData.m_equalVertexThreshold;
211 	m_edgeDistanceThreshold = tmapData.m_edgeDistanceThreshold;
212 	m_zeroAreaThreshold = tmapData.m_zeroAreaThreshold;
213 	m_hashTable.resize(tmapData.m_hashTableSize);
214 	int i =0;
215 	for (i=0;i<tmapData.m_hashTableSize;i++)
216 	{
217 		m_hashTable[i] = tmapData.m_hashTablePtr[i];
218 	}
219 	m_next.resize(tmapData.m_nextSize);
220 	for (i=0;i<tmapData.m_nextSize;i++)
221 	{
222 		m_next[i] = tmapData.m_nextPtr[i];
223 	}
224 	m_valueArray.resize(tmapData.m_numValues);
225 	for (i=0;i<tmapData.m_numValues;i++)
226 	{
227 		m_valueArray[i].m_edgeV0V1Angle = tmapData.m_valueArrayPtr[i].m_edgeV0V1Angle;
228 		m_valueArray[i].m_edgeV1V2Angle = tmapData.m_valueArrayPtr[i].m_edgeV1V2Angle;
229 		m_valueArray[i].m_edgeV2V0Angle = tmapData.m_valueArrayPtr[i].m_edgeV2V0Angle;
230 		m_valueArray[i].m_flags = tmapData.m_valueArrayPtr[i].m_flags;
231 	}
232 
233 	m_keyArray.resize(tmapData.m_numKeys,btHashInt(0));
234 	for (i=0;i<tmapData.m_numKeys;i++)
235 	{
236 		m_keyArray[i].setUid1(tmapData.m_keyArrayPtr[i]);
237 	}
238 }
239 
240 
241 #endif //_BT_TRIANGLE_INFO_MAP_H
242