• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some templates that are useful if you are working with the
11 // STL at all.
12 //
13 // No library is required when using these functions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/Support/Compiler.h"
21 #include <algorithm> // for std::all_of
22 #include <cassert>
23 #include <cstddef> // for std::size_t
24 #include <cstdlib> // for qsort
25 #include <functional>
26 #include <iterator>
27 #include <memory>
28 #include <utility> // for std::pair
29 
30 namespace llvm {
31 
32 //===----------------------------------------------------------------------===//
33 //     Extra additions to <functional>
34 //===----------------------------------------------------------------------===//
35 
36 template<class Ty>
37 struct identity : public std::unary_function<Ty, Ty> {
operatoridentity38   Ty &operator()(Ty &self) const {
39     return self;
40   }
operatoridentity41   const Ty &operator()(const Ty &self) const {
42     return self;
43   }
44 };
45 
46 template<class Ty>
47 struct less_ptr : public std::binary_function<Ty, Ty, bool> {
operatorless_ptr48   bool operator()(const Ty* left, const Ty* right) const {
49     return *left < *right;
50   }
51 };
52 
53 template<class Ty>
54 struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
operatorgreater_ptr55   bool operator()(const Ty* left, const Ty* right) const {
56     return *right < *left;
57   }
58 };
59 
60 /// An efficient, type-erasing, non-owning reference to a callable. This is
61 /// intended for use as the type of a function parameter that is not used
62 /// after the function in question returns.
63 ///
64 /// This class does not own the callable, so it is not in general safe to store
65 /// a function_ref.
66 template<typename Fn> class function_ref;
67 
68 template<typename Ret, typename ...Params>
69 class function_ref<Ret(Params...)> {
70   Ret (*callback)(intptr_t callable, Params ...params);
71   intptr_t callable;
72 
73   template<typename Callable>
callback_fn(intptr_t callable,Params...params)74   static Ret callback_fn(intptr_t callable, Params ...params) {
75     return (*reinterpret_cast<Callable*>(callable))(
76         std::forward<Params>(params)...);
77   }
78 
79 public:
80   template <typename Callable>
81   function_ref(Callable &&callable,
82                typename std::enable_if<
83                    !std::is_same<typename std::remove_reference<Callable>::type,
84                                  function_ref>::value>::type * = nullptr)
callback(callback_fn<typename std::remove_reference<Callable>::type>)85       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
86         callable(reinterpret_cast<intptr_t>(&callable)) {}
operator()87   Ret operator()(Params ...params) const {
88     return callback(callable, std::forward<Params>(params)...);
89   }
90 };
91 
92 // deleter - Very very very simple method that is used to invoke operator
93 // delete on something.  It is used like this:
94 //
95 //   for_each(V.begin(), B.end(), deleter<Interval>);
96 //
97 template <class T>
deleter(T * Ptr)98 inline void deleter(T *Ptr) {
99   delete Ptr;
100 }
101 
102 
103 
104 //===----------------------------------------------------------------------===//
105 //     Extra additions to <iterator>
106 //===----------------------------------------------------------------------===//
107 
108 // mapped_iterator - This is a simple iterator adapter that causes a function to
109 // be dereferenced whenever operator* is invoked on the iterator.
110 //
111 template <class RootIt, class UnaryFunc>
112 class mapped_iterator {
113   RootIt current;
114   UnaryFunc Fn;
115 public:
116   typedef typename std::iterator_traits<RootIt>::iterator_category
117           iterator_category;
118   typedef typename std::iterator_traits<RootIt>::difference_type
119           difference_type;
120   typedef typename UnaryFunc::result_type value_type;
121 
122   typedef void pointer;
123   //typedef typename UnaryFunc::result_type *pointer;
124   typedef void reference;        // Can't modify value returned by fn
125 
126   typedef RootIt iterator_type;
127 
getCurrent()128   inline const RootIt &getCurrent() const { return current; }
getFunc()129   inline const UnaryFunc &getFunc() const { return Fn; }
130 
mapped_iterator(const RootIt & I,UnaryFunc F)131   inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
132     : current(I), Fn(F) {}
133 
134   inline value_type operator*() const {   // All this work to do this
135     return Fn(*current);         // little change
136   }
137 
138   mapped_iterator &operator++() {
139     ++current;
140     return *this;
141   }
142   mapped_iterator &operator--() {
143     --current;
144     return *this;
145   }
146   mapped_iterator operator++(int) {
147     mapped_iterator __tmp = *this;
148     ++current;
149     return __tmp;
150   }
151   mapped_iterator operator--(int) {
152     mapped_iterator __tmp = *this;
153     --current;
154     return __tmp;
155   }
156   mapped_iterator operator+(difference_type n) const {
157     return mapped_iterator(current + n, Fn);
158   }
159   mapped_iterator &operator+=(difference_type n) {
160     current += n;
161     return *this;
162   }
163   mapped_iterator operator-(difference_type n) const {
164     return mapped_iterator(current - n, Fn);
165   }
166   mapped_iterator &operator-=(difference_type n) {
167     current -= n;
168     return *this;
169   }
170   reference operator[](difference_type n) const { return *(*this + n); }
171 
172   bool operator!=(const mapped_iterator &X) const { return !operator==(X); }
173   bool operator==(const mapped_iterator &X) const {
174     return current == X.current;
175   }
176   bool operator<(const mapped_iterator &X) const { return current < X.current; }
177 
178   difference_type operator-(const mapped_iterator &X) const {
179     return current - X.current;
180   }
181 };
182 
183 template <class Iterator, class Func>
184 inline mapped_iterator<Iterator, Func>
185 operator+(typename mapped_iterator<Iterator, Func>::difference_type N,
186           const mapped_iterator<Iterator, Func> &X) {
187   return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc());
188 }
189 
190 
191 // map_iterator - Provide a convenient way to create mapped_iterators, just like
192 // make_pair is useful for creating pairs...
193 //
194 template <class ItTy, class FuncTy>
map_iterator(const ItTy & I,FuncTy F)195 inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
196   return mapped_iterator<ItTy, FuncTy>(I, F);
197 }
198 
199 /// \brief Metafunction to determine if type T has a member called rbegin().
200 template <typename T> struct has_rbegin {
201   template <typename U> static char(&f(const U &, decltype(&U::rbegin)))[1];
202   static char(&f(...))[2];
203   const static bool value = sizeof(f(std::declval<T>(), nullptr)) == 1;
204 };
205 
206 // Returns an iterator_range over the given container which iterates in reverse.
207 // Note that the container must have rbegin()/rend() methods for this to work.
208 template <typename ContainerTy>
209 auto reverse(ContainerTy &&C,
210              typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
211                  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
212   return make_range(C.rbegin(), C.rend());
213 }
214 
215 // Returns a std::reverse_iterator wrapped around the given iterator.
216 template <typename IteratorTy>
make_reverse_iterator(IteratorTy It)217 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
218   return std::reverse_iterator<IteratorTy>(It);
219 }
220 
221 // Returns an iterator_range over the given container which iterates in reverse.
222 // Note that the container must have begin()/end() methods which return
223 // bidirectional iterators for this to work.
224 template <typename ContainerTy>
225 auto reverse(
226     ContainerTy &&C,
227     typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
228     -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
229                            llvm::make_reverse_iterator(std::begin(C)))) {
230   return make_range(llvm::make_reverse_iterator(std::end(C)),
231                     llvm::make_reverse_iterator(std::begin(C)));
232 }
233 
234 //===----------------------------------------------------------------------===//
235 //     Extra additions to <utility>
236 //===----------------------------------------------------------------------===//
237 
238 /// \brief Function object to check whether the first component of a std::pair
239 /// compares less than the first component of another std::pair.
240 struct less_first {
operatorless_first241   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
242     return lhs.first < rhs.first;
243   }
244 };
245 
246 /// \brief Function object to check whether the second component of a std::pair
247 /// compares less than the second component of another std::pair.
248 struct less_second {
operatorless_second249   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
250     return lhs.second < rhs.second;
251   }
252 };
253 
254 // A subset of N3658. More stuff can be added as-needed.
255 
256 /// \brief Represents a compile-time sequence of integers.
257 template <class T, T... I> struct integer_sequence {
258   typedef T value_type;
259 
sizeinteger_sequence260   static LLVM_CONSTEXPR size_t size() { return sizeof...(I); }
261 };
262 
263 /// \brief Alias for the common case of a sequence of size_ts.
264 template <size_t... I>
265 struct index_sequence : integer_sequence<std::size_t, I...> {};
266 
267 template <std::size_t N, std::size_t... I>
268 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
269 template <std::size_t... I>
270 struct build_index_impl<0, I...> : index_sequence<I...> {};
271 
272 /// \brief Creates a compile-time integer sequence for a parameter pack.
273 template <class... Ts>
274 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
275 
276 //===----------------------------------------------------------------------===//
277 //     Extra additions for arrays
278 //===----------------------------------------------------------------------===//
279 
280 /// Find the length of an array.
281 template <class T, std::size_t N>
282 LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
283   return N;
284 }
285 
286 /// Adapt std::less<T> for array_pod_sort.
287 template<typename T>
288 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
289   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
290                      *reinterpret_cast<const T*>(P2)))
291     return -1;
292   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
293                      *reinterpret_cast<const T*>(P1)))
294     return 1;
295   return 0;
296 }
297 
298 /// get_array_pod_sort_comparator - This is an internal helper function used to
299 /// get type deduction of T right.
300 template<typename T>
301 inline int (*get_array_pod_sort_comparator(const T &))
302              (const void*, const void*) {
303   return array_pod_sort_comparator<T>;
304 }
305 
306 
307 /// array_pod_sort - This sorts an array with the specified start and end
308 /// extent.  This is just like std::sort, except that it calls qsort instead of
309 /// using an inlined template.  qsort is slightly slower than std::sort, but
310 /// most sorts are not performance critical in LLVM and std::sort has to be
311 /// template instantiated for each type, leading to significant measured code
312 /// bloat.  This function should generally be used instead of std::sort where
313 /// possible.
314 ///
315 /// This function assumes that you have simple POD-like types that can be
316 /// compared with std::less and can be moved with memcpy.  If this isn't true,
317 /// you should use std::sort.
318 ///
319 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
320 /// default to std::less.
321 template<class IteratorTy>
322 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
323   // Don't inefficiently call qsort with one element or trigger undefined
324   // behavior with an empty sequence.
325   auto NElts = End - Start;
326   if (NElts <= 1) return;
327   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
328 }
329 
330 template <class IteratorTy>
331 inline void array_pod_sort(
332     IteratorTy Start, IteratorTy End,
333     int (*Compare)(
334         const typename std::iterator_traits<IteratorTy>::value_type *,
335         const typename std::iterator_traits<IteratorTy>::value_type *)) {
336   // Don't inefficiently call qsort with one element or trigger undefined
337   // behavior with an empty sequence.
338   auto NElts = End - Start;
339   if (NElts <= 1) return;
340   qsort(&*Start, NElts, sizeof(*Start),
341         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
342 }
343 
344 //===----------------------------------------------------------------------===//
345 //     Extra additions to <algorithm>
346 //===----------------------------------------------------------------------===//
347 
348 /// For a container of pointers, deletes the pointers and then clears the
349 /// container.
350 template<typename Container>
351 void DeleteContainerPointers(Container &C) {
352   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
353     delete *I;
354   C.clear();
355 }
356 
357 /// In a container of pairs (usually a map) whose second element is a pointer,
358 /// deletes the second elements and then clears the container.
359 template<typename Container>
360 void DeleteContainerSeconds(Container &C) {
361   for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
362     delete I->second;
363   C.clear();
364 }
365 
366 /// Provide wrappers to std::all_of which take ranges instead of having to pass
367 /// begin/end explicitly.
368 template<typename R, class UnaryPredicate>
369 bool all_of(R &&Range, UnaryPredicate &&P) {
370   return std::all_of(Range.begin(), Range.end(),
371                      std::forward<UnaryPredicate>(P));
372 }
373 
374 /// Provide wrappers to std::any_of which take ranges instead of having to pass
375 /// begin/end explicitly.
376 template <typename R, class UnaryPredicate>
377 bool any_of(R &&Range, UnaryPredicate &&P) {
378   return std::any_of(Range.begin(), Range.end(),
379                      std::forward<UnaryPredicate>(P));
380 }
381 
382 /// Provide wrappers to std::find which take ranges instead of having to pass
383 /// begin/end explicitly.
384 template<typename R, class T>
385 auto find(R &&Range, const T &val) -> decltype(Range.begin()) {
386   return std::find(Range.begin(), Range.end(), val);
387 }
388 
389 //===----------------------------------------------------------------------===//
390 //     Extra additions to <memory>
391 //===----------------------------------------------------------------------===//
392 
393 // Implement make_unique according to N3656.
394 
395 /// \brief Constructs a `new T()` with the given args and returns a
396 ///        `unique_ptr<T>` which owns the object.
397 ///
398 /// Example:
399 ///
400 ///     auto p = make_unique<int>();
401 ///     auto p = make_unique<std::tuple<int, int>>(0, 1);
402 template <class T, class... Args>
403 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
404 make_unique(Args &&... args) {
405   return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
406 }
407 
408 /// \brief Constructs a `new T[n]` with the given args and returns a
409 ///        `unique_ptr<T[]>` which owns the object.
410 ///
411 /// \param n size of the new array.
412 ///
413 /// Example:
414 ///
415 ///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
416 template <class T>
417 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
418                         std::unique_ptr<T>>::type
419 make_unique(size_t n) {
420   return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
421 }
422 
423 /// This function isn't used and is only here to provide better compile errors.
424 template <class T, class... Args>
425 typename std::enable_if<std::extent<T>::value != 0>::type
426 make_unique(Args &&...) = delete;
427 
428 struct FreeDeleter {
429   void operator()(void* v) {
430     ::free(v);
431   }
432 };
433 
434 template<typename First, typename Second>
435 struct pair_hash {
436   size_t operator()(const std::pair<First, Second> &P) const {
437     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
438   }
439 };
440 
441 /// A functor like C++14's std::less<void> in its absence.
442 struct less {
443   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
444     return std::forward<A>(a) < std::forward<B>(b);
445   }
446 };
447 
448 /// A functor like C++14's std::equal<void> in its absence.
449 struct equal {
450   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
451     return std::forward<A>(a) == std::forward<B>(b);
452   }
453 };
454 
455 /// Binary functor that adapts to any other binary functor after dereferencing
456 /// operands.
457 template <typename T> struct deref {
458   T func;
459   // Could be further improved to cope with non-derivable functors and
460   // non-binary functors (should be a variadic template member function
461   // operator()).
462   template <typename A, typename B>
463   auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
464     assert(lhs);
465     assert(rhs);
466     return func(*lhs, *rhs);
467   }
468 };
469 
470 } // End llvm namespace
471 
472 #endif
473