1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "opencv2/ts/cuda_test.hpp"
44 #include <stdexcept>
45
46 using namespace cv;
47 using namespace cv::cuda;
48 using namespace cvtest;
49 using namespace testing;
50 using namespace testing::internal;
51
52 namespace perf
53 {
54 CV_EXPORTS void printCudaInfo();
55 }
56
57 namespace cvtest
58 {
59 //////////////////////////////////////////////////////////////////////
60 // random generators
61
randomInt(int minVal,int maxVal)62 int randomInt(int minVal, int maxVal)
63 {
64 RNG& rng = TS::ptr()->get_rng();
65 return rng.uniform(minVal, maxVal);
66 }
67
randomDouble(double minVal,double maxVal)68 double randomDouble(double minVal, double maxVal)
69 {
70 RNG& rng = TS::ptr()->get_rng();
71 return rng.uniform(minVal, maxVal);
72 }
73
randomSize(int minVal,int maxVal)74 Size randomSize(int minVal, int maxVal)
75 {
76 return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal));
77 }
78
randomScalar(double minVal,double maxVal)79 Scalar randomScalar(double minVal, double maxVal)
80 {
81 return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal));
82 }
83
randomMat(Size size,int type,double minVal,double maxVal)84 Mat randomMat(Size size, int type, double minVal, double maxVal)
85 {
86 return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
87 }
88
89 //////////////////////////////////////////////////////////////////////
90 // GpuMat create
91
createMat(Size size,int type,bool useRoi)92 GpuMat createMat(Size size, int type, bool useRoi)
93 {
94 Size size0 = size;
95
96 if (useRoi)
97 {
98 size0.width += randomInt(5, 15);
99 size0.height += randomInt(5, 15);
100 }
101
102 GpuMat d_m(size0, type);
103
104 if (size0 != size)
105 d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height));
106
107 return d_m;
108 }
109
loadMat(const Mat & m,bool useRoi)110 GpuMat loadMat(const Mat& m, bool useRoi)
111 {
112 GpuMat d_m = createMat(m.size(), m.type(), useRoi);
113 d_m.upload(m);
114 return d_m;
115 }
116
117 //////////////////////////////////////////////////////////////////////
118 // Image load
119
readImage(const std::string & fileName,int flags)120 Mat readImage(const std::string& fileName, int flags)
121 {
122 return imread(TS::ptr()->get_data_path() + fileName, flags);
123 }
124
readImageType(const std::string & fname,int type)125 Mat readImageType(const std::string& fname, int type)
126 {
127 Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
128 if (CV_MAT_CN(type) == 4)
129 {
130 Mat temp;
131 cvtColor(src, temp, COLOR_BGR2BGRA);
132 swap(src, temp);
133 }
134 src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0);
135 return src;
136 }
137
138 //////////////////////////////////////////////////////////////////////
139 // Gpu devices
140
supportFeature(const DeviceInfo & info,FeatureSet feature)141 bool supportFeature(const DeviceInfo& info, FeatureSet feature)
142 {
143 return TargetArchs::builtWith(feature) && info.supports(feature);
144 }
145
instance()146 DeviceManager& DeviceManager::instance()
147 {
148 static DeviceManager obj;
149 return obj;
150 }
151
load(int i)152 void DeviceManager::load(int i)
153 {
154 devices_.clear();
155 devices_.reserve(1);
156
157 std::ostringstream msg;
158
159 if (i < 0 || i >= getCudaEnabledDeviceCount())
160 {
161 msg << "Incorrect device number - " << i;
162 throw std::runtime_error(msg.str());
163 }
164
165 DeviceInfo info(i);
166
167 if (!info.isCompatible())
168 {
169 msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current CUDA module build";
170 throw std::runtime_error(msg.str());
171 }
172
173 devices_.push_back(info);
174 }
175
loadAll()176 void DeviceManager::loadAll()
177 {
178 int deviceCount = getCudaEnabledDeviceCount();
179
180 devices_.clear();
181 devices_.reserve(deviceCount);
182
183 for (int i = 0; i < deviceCount; ++i)
184 {
185 DeviceInfo info(i);
186 if (info.isCompatible())
187 {
188 devices_.push_back(info);
189 }
190 }
191 }
192
parseCudaDeviceOptions(int argc,char ** argv)193 void parseCudaDeviceOptions(int argc, char **argv)
194 {
195 cv::CommandLineParser cmd(argc, argv,
196 "{ cuda_device | -1 | CUDA device on which tests will be executed (-1 means all devices) }"
197 "{ h help | false | Print help info }"
198 );
199
200 if (cmd.has("help"))
201 {
202 std::cout << "\nAvailable options besides google test option: \n";
203 cmd.printMessage();
204 }
205
206 int device = cmd.get<int>("cuda_device");
207 if (device < 0)
208 {
209 cvtest::DeviceManager::instance().loadAll();
210 std::cout << "Run tests on all supported CUDA devices \n" << std::endl;
211 }
212 else
213 {
214 cvtest::DeviceManager::instance().load(device);
215 cv::cuda::DeviceInfo info(device);
216 std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl;
217 }
218 }
219
220 //////////////////////////////////////////////////////////////////////
221 // Additional assertion
222
223 namespace
224 {
printMatValImpl(const Mat & m,Point p)225 template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p)
226 {
227 const int cn = m.channels();
228
229 std::ostringstream ostr;
230 ostr << "(";
231
232 p.x /= cn;
233
234 ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn));
235 for (int c = 1; c < m.channels(); ++c)
236 {
237 ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c));
238 }
239 ostr << ")";
240
241 return ostr.str();
242 }
243
printMatVal(const Mat & m,Point p)244 std::string printMatVal(const Mat& m, Point p)
245 {
246 typedef std::string (*func_t)(const Mat& m, Point p);
247
248 static const func_t funcs[] =
249 {
250 printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>,
251 printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double>
252 };
253
254 return funcs[m.depth()](m, p);
255 }
256 }
257
minMaxLocGold(const Mat & src,double * minVal_,double * maxVal_,Point * minLoc_,Point * maxLoc_,const Mat & mask)258 void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask)
259 {
260 if (src.depth() != CV_8S)
261 {
262 minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask);
263 return;
264 }
265
266 // OpenCV's minMaxLoc doesn't support CV_8S type
267 double minVal = std::numeric_limits<double>::max();
268 Point minLoc(-1, -1);
269
270 double maxVal = -std::numeric_limits<double>::max();
271 Point maxLoc(-1, -1);
272
273 for (int y = 0; y < src.rows; ++y)
274 {
275 const schar* src_row = src.ptr<schar>(y);
276 const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y);
277
278 for (int x = 0; x < src.cols; ++x)
279 {
280 if (!mask_row || mask_row[x])
281 {
282 schar val = src_row[x];
283
284 if (val < minVal)
285 {
286 minVal = val;
287 minLoc = cv::Point(x, y);
288 }
289
290 if (val > maxVal)
291 {
292 maxVal = val;
293 maxLoc = cv::Point(x, y);
294 }
295 }
296 }
297 }
298
299 if (minVal_) *minVal_ = minVal;
300 if (maxVal_) *maxVal_ = maxVal;
301
302 if (minLoc_) *minLoc_ = minLoc;
303 if (maxLoc_) *maxLoc_ = maxLoc;
304 }
305
getMat(InputArray arr)306 Mat getMat(InputArray arr)
307 {
308 if (arr.kind() == _InputArray::CUDA_GPU_MAT)
309 {
310 Mat m;
311 arr.getGpuMat().download(m);
312 return m;
313 }
314
315 return arr.getMat();
316 }
317
assertMatNear(const char * expr1,const char * expr2,const char * eps_expr,InputArray m1_,InputArray m2_,double eps)318 AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps)
319 {
320 Mat m1 = getMat(m1_);
321 Mat m2 = getMat(m2_);
322
323 if (m1.size() != m2.size())
324 {
325 return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \""
326 << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \""
327 << expr2 << "\" [" << PrintToString(m2.size()) << "]";
328 }
329
330 if (m1.type() != m2.type())
331 {
332 return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \""
333 << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \""
334 << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]";
335 }
336
337 Mat diff;
338 absdiff(m1.reshape(1), m2.reshape(1), diff);
339
340 double maxVal = 0.0;
341 Point maxLoc;
342 minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc);
343
344 if (maxVal > eps)
345 {
346 return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2
347 << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")"
348 << ", which exceeds \"" << eps_expr << "\", where \""
349 << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \""
350 << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \""
351 << eps_expr << "\" evaluates to " << eps;
352 }
353
354 return AssertionSuccess();
355 }
356
checkSimilarity(InputArray m1,InputArray m2)357 double checkSimilarity(InputArray m1, InputArray m2)
358 {
359 Mat diff;
360 matchTemplate(getMat(m1), getMat(m2), diff, TM_CCORR_NORMED);
361 return std::abs(diff.at<float>(0, 0) - 1.f);
362 }
363
364 //////////////////////////////////////////////////////////////////////
365 // Helper structs for value-parameterized tests
366
types(int depth_start,int depth_end,int cn_start,int cn_end)367 vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
368 {
369 vector<MatType> v;
370
371 v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1));
372
373 for (int depth = depth_start; depth <= depth_end; ++depth)
374 {
375 for (int cn = cn_start; cn <= cn_end; ++cn)
376 {
377 v.push_back(MatType(CV_MAKE_TYPE(depth, cn)));
378 }
379 }
380
381 return v;
382 }
383
all_types()384 const vector<MatType>& all_types()
385 {
386 static vector<MatType> v = types(CV_8U, CV_64F, 1, 4);
387
388 return v;
389 }
390
PrintTo(const UseRoi & useRoi,std::ostream * os)391 void PrintTo(const UseRoi& useRoi, std::ostream* os)
392 {
393 if (useRoi)
394 (*os) << "sub matrix";
395 else
396 (*os) << "whole matrix";
397 }
398
PrintTo(const Inverse & inverse,std::ostream * os)399 void PrintTo(const Inverse& inverse, std::ostream* os)
400 {
401 if (inverse)
402 (*os) << "inverse";
403 else
404 (*os) << "direct";
405 }
406
407 //////////////////////////////////////////////////////////////////////
408 // Other
409
dumpImage(const std::string & fileName,const Mat & image)410 void dumpImage(const std::string& fileName, const Mat& image)
411 {
412 imwrite(TS::ptr()->get_data_path() + fileName, image);
413 }
414
showDiff(InputArray gold_,InputArray actual_,double eps)415 void showDiff(InputArray gold_, InputArray actual_, double eps)
416 {
417 Mat gold = getMat(gold_);
418 Mat actual = getMat(actual_);
419
420 Mat diff;
421 absdiff(gold, actual, diff);
422 threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY);
423
424 namedWindow("gold", WINDOW_NORMAL);
425 namedWindow("actual", WINDOW_NORMAL);
426 namedWindow("diff", WINDOW_NORMAL);
427
428 imshow("gold", gold);
429 imshow("actual", actual);
430 imshow("diff", diff);
431
432 waitKey();
433 }
434
435 namespace
436 {
keyPointsEquals(const cv::KeyPoint & p1,const cv::KeyPoint & p2)437 bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
438 {
439 const double maxPtDif = 1.0;
440 const double maxSizeDif = 1.0;
441 const double maxAngleDif = 2.0;
442 const double maxResponseDif = 0.1;
443
444 double dist = cv::norm(p1.pt - p2.pt);
445
446 if (dist < maxPtDif &&
447 fabs(p1.size - p2.size) < maxSizeDif &&
448 abs(p1.angle - p2.angle) < maxAngleDif &&
449 abs(p1.response - p2.response) < maxResponseDif &&
450 p1.octave == p2.octave &&
451 p1.class_id == p2.class_id)
452 {
453 return true;
454 }
455
456 return false;
457 }
458
459 struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool>
460 {
operator ()cvtest::__anond9ab320c0211::KeyPointLess461 bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const
462 {
463 return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x);
464 }
465 };
466 }
467
assertKeyPointsEquals(const char * gold_expr,const char * actual_expr,std::vector<cv::KeyPoint> & gold,std::vector<cv::KeyPoint> & actual)468 testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
469 {
470 if (gold.size() != actual.size())
471 {
472 return testing::AssertionFailure() << "KeyPoints size mistmach\n"
473 << "\"" << gold_expr << "\" : " << gold.size() << "\n"
474 << "\"" << actual_expr << "\" : " << actual.size();
475 }
476
477 std::sort(actual.begin(), actual.end(), KeyPointLess());
478 std::sort(gold.begin(), gold.end(), KeyPointLess());
479
480 for (size_t i = 0; i < gold.size(); ++i)
481 {
482 const cv::KeyPoint& p1 = gold[i];
483 const cv::KeyPoint& p2 = actual[i];
484
485 if (!keyPointsEquals(p1, p2))
486 {
487 return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n"
488 << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n"
489 << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n"
490 << "size : " << p1.size << " vs " << p2.size << "\n"
491 << "angle : " << p1.angle << " vs " << p2.angle << "\n"
492 << "response : " << p1.response << " vs " << p2.response << "\n"
493 << "octave : " << p1.octave << " vs " << p2.octave << "\n"
494 << "class_id : " << p1.class_id << " vs " << p2.class_id;
495 }
496 }
497
498 return ::testing::AssertionSuccess();
499 }
500
getMatchedPointsCount(std::vector<cv::KeyPoint> & gold,std::vector<cv::KeyPoint> & actual)501 int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
502 {
503 std::sort(actual.begin(), actual.end(), KeyPointLess());
504 std::sort(gold.begin(), gold.end(), KeyPointLess());
505
506 int validCount = 0;
507
508 for (size_t i = 0; i < gold.size(); ++i)
509 {
510 const cv::KeyPoint& p1 = gold[i];
511 const cv::KeyPoint& p2 = actual[i];
512
513 if (keyPointsEquals(p1, p2))
514 ++validCount;
515 }
516
517 return validCount;
518 }
519
getMatchedPointsCount(const std::vector<cv::KeyPoint> & keypoints1,const std::vector<cv::KeyPoint> & keypoints2,const std::vector<cv::DMatch> & matches)520 int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
521 {
522 int validCount = 0;
523
524 for (size_t i = 0; i < matches.size(); ++i)
525 {
526 const cv::DMatch& m = matches[i];
527
528 const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
529 const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
530
531 if (keyPointsEquals(p1, p2))
532 ++validCount;
533 }
534
535 return validCount;
536 }
537
printCudaInfo()538 void printCudaInfo()
539 {
540 perf::printCudaInfo();
541 }
542 }
543
544
PrintTo(const DeviceInfo & info,std::ostream * os)545 void cv::cuda::PrintTo(const DeviceInfo& info, std::ostream* os)
546 {
547 (*os) << info.name();
548 }
549