• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1996, 2006, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 /*
27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
28  * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
29  *
30  *   The original version of this source code and documentation is copyrighted
31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
32  * materials are provided under terms of a License Agreement between Taligent
33  * and Sun. This technology is protected by multiple US and International
34  * patents. This notice and attribution to Taligent may not be removed.
35  *   Taligent is a registered trademark of Taligent, Inc.
36  *
37  */
38 
39 package java.text;
40 
41 import java.math.BigDecimal;
42 import java.math.BigInteger;
43 import java.math.RoundingMode;
44 
45 /**
46  * Digit List. Private to DecimalFormat.
47  * Handles the transcoding
48  * between numeric values and strings of characters.  Only handles
49  * non-negative numbers.  The division of labor between DigitList and
50  * DecimalFormat is that DigitList handles the radix 10 representation
51  * issues; DecimalFormat handles the locale-specific issues such as
52  * positive/negative, grouping, decimal point, currency, and so on.
53  *
54  * A DigitList is really a representation of a floating point value.
55  * It may be an integer value; we assume that a double has sufficient
56  * precision to represent all digits of a long.
57  *
58  * The DigitList representation consists of a string of characters,
59  * which are the digits radix 10, from '0' to '9'.  It also has a radix
60  * 10 exponent associated with it.  The value represented by a DigitList
61  * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
62  * derived by placing all the digits of the list to the right of the
63  * decimal point, by 10^exponent.
64  *
65  * @see  Locale
66  * @see  Format
67  * @see  NumberFormat
68  * @see  DecimalFormat
69  * @see  ChoiceFormat
70  * @see  MessageFormat
71  * @author       Mark Davis, Alan Liu
72  */
73 final class DigitList implements Cloneable {
74     /**
75      * The maximum number of significant digits in an IEEE 754 double, that
76      * is, in a Java double.  This must not be increased, or garbage digits
77      * will be generated, and should not be decreased, or accuracy will be lost.
78      */
79     public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
80 
81     /**
82      * These data members are intentionally public and can be set directly.
83      *
84      * The value represented is given by placing the decimal point before
85      * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
86      * the decimal point and the first nonzero digit are implied.  If decimalAt
87      * is > count, then trailing zeros between the digits[count-1] and the
88      * decimal point are implied.
89      *
90      * Equivalently, the represented value is given by f * 10^decimalAt.  Here
91      * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
92      * the right of the decimal.
93      *
94      * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
95      * don't allow denormalized numbers because our exponent is effectively of
96      * unlimited magnitude.  The count value contains the number of significant
97      * digits present in digits[].
98      *
99      * Zero is represented by any DigitList with count == 0 or with each digits[i]
100      * for all i <= count == '0'.
101      */
102     public int decimalAt = 0;
103     public int count = 0;
104     public char[] digits = new char[MAX_COUNT];
105 
106     private char[] data;
107     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
108     private boolean isNegative = false;
109 
110     /**
111      * Return true if the represented number is zero.
112      */
isZero()113     boolean isZero() {
114         for (int i=0; i < count; ++i) {
115             if (digits[i] != '0') {
116                 return false;
117             }
118         }
119         return true;
120     }
121 
122     /**
123      * Set the rounding mode
124      */
setRoundingMode(RoundingMode r)125     void setRoundingMode(RoundingMode r) {
126         roundingMode = r;
127     }
128 
129     /**
130      * Clears out the digits.
131      * Use before appending them.
132      * Typically, you set a series of digits with append, then at the point
133      * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
134      * then go on appending digits.
135      */
clear()136     public void clear () {
137         decimalAt = 0;
138         count = 0;
139     }
140 
141     /**
142      * Appends a digit to the list, extending the list when necessary.
143      */
append(char digit)144     public void append(char digit) {
145         if (count == digits.length) {
146             char[] data = new char[count + 100];
147             System.arraycopy(digits, 0, data, 0, count);
148             digits = data;
149         }
150         digits[count++] = digit;
151     }
152 
153     /**
154      * Utility routine to get the value of the digit list
155      * If (count == 0) this throws a NumberFormatException, which
156      * mimics Long.parseLong().
157      */
getDouble()158     public final double getDouble() {
159         if (count == 0) {
160             return 0.0;
161         }
162 
163         StringBuffer temp = getStringBuffer();
164         temp.append('.');
165         temp.append(digits, 0, count);
166         temp.append('E');
167         temp.append(decimalAt);
168         return Double.parseDouble(temp.toString());
169     }
170 
171     /**
172      * Utility routine to get the value of the digit list.
173      * If (count == 0) this returns 0, unlike Long.parseLong().
174      */
getLong()175     public final long getLong() {
176         // for now, simple implementation; later, do proper IEEE native stuff
177 
178         if (count == 0) {
179             return 0;
180         }
181 
182         // We have to check for this, because this is the one NEGATIVE value
183         // we represent.  If we tried to just pass the digits off to parseLong,
184         // we'd get a parse failure.
185         if (isLongMIN_VALUE()) {
186             return Long.MIN_VALUE;
187         }
188 
189         StringBuffer temp = getStringBuffer();
190         temp.append(digits, 0, count);
191         for (int i = count; i < decimalAt; ++i) {
192             temp.append('0');
193         }
194         return Long.parseLong(temp.toString());
195     }
196 
getBigDecimal()197     public final BigDecimal getBigDecimal() {
198         if (count == 0) {
199             if (decimalAt == 0) {
200                 return BigDecimal.ZERO;
201             } else {
202                 return new BigDecimal("0E" + decimalAt);
203             }
204         }
205 
206        if (decimalAt == count) {
207            return new BigDecimal(digits, 0, count);
208        } else {
209            return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
210        }
211     }
212 
213     /**
214      * Return true if the number represented by this object can fit into
215      * a long.
216      * @param isPositive true if this number should be regarded as positive
217      * @param ignoreNegativeZero true if -0 should be regarded as identical to
218      * +0; otherwise they are considered distinct
219      * @return true if this number fits into a Java long
220      */
fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero)221     boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
222         // Figure out if the result will fit in a long.  We have to
223         // first look for nonzero digits after the decimal point;
224         // then check the size.  If the digit count is 18 or less, then
225         // the value can definitely be represented as a long.  If it is 19
226         // then it may be too large.
227 
228         // Trim trailing zeros.  This does not change the represented value.
229         while (count > 0 && digits[count - 1] == '0') {
230             --count;
231         }
232 
233         if (count == 0) {
234             // Positive zero fits into a long, but negative zero can only
235             // be represented as a double. - bug 4162852
236             return isPositive || ignoreNegativeZero;
237         }
238 
239         if (decimalAt < count || decimalAt > MAX_COUNT) {
240             return false;
241         }
242 
243         if (decimalAt < MAX_COUNT) return true;
244 
245         // At this point we have decimalAt == count, and count == MAX_COUNT.
246         // The number will overflow if it is larger than 9223372036854775807
247         // or smaller than -9223372036854775808.
248         for (int i=0; i<count; ++i) {
249             char dig = digits[i], max = LONG_MIN_REP[i];
250             if (dig > max) return false;
251             if (dig < max) return true;
252         }
253 
254         // At this point the first count digits match.  If decimalAt is less
255         // than count, then the remaining digits are zero, and we return true.
256         if (count < decimalAt) return true;
257 
258         // Now we have a representation of Long.MIN_VALUE, without the leading
259         // negative sign.  If this represents a positive value, then it does
260         // not fit; otherwise it fits.
261         return !isPositive;
262     }
263 
264     /**
265      * Set the digit list to a representation of the given double value.
266      * This method supports fixed-point notation.
267      * @param isNegative Boolean value indicating whether the number is negative.
268      * @param source Value to be converted; must not be Inf, -Inf, Nan,
269      * or a value <= 0.
270      * @param maximumFractionDigits The most fractional digits which should
271      * be converted.
272      */
set(boolean isNegative, double source, int maximumFractionDigits)273     public final void set(boolean isNegative, double source, int maximumFractionDigits) {
274         set(isNegative, source, maximumFractionDigits, true);
275     }
276 
277     /**
278      * Set the digit list to a representation of the given double value.
279      * This method supports both fixed-point and exponential notation.
280      * @param isNegative Boolean value indicating whether the number is negative.
281      * @param source Value to be converted; must not be Inf, -Inf, Nan,
282      * or a value <= 0.
283      * @param maximumDigits The most fractional or total digits which should
284      * be converted.
285      * @param fixedPoint If true, then maximumDigits is the maximum
286      * fractional digits to be converted.  If false, total digits.
287      */
set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint)288     final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
289         set(isNegative, Double.toString(source), maximumDigits, fixedPoint);
290     }
291 
292     /**
293      * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
294      * DDDDDE+/-DDDDD.
295      */
set(boolean isNegative, String s, int maximumDigits, boolean fixedPoint)296     final void set(boolean isNegative, String s, int maximumDigits, boolean fixedPoint) {
297         this.isNegative = isNegative;
298         int len = s.length();
299         char[] source = getDataChars(len);
300         s.getChars(0, len, source, 0);
301 
302         decimalAt = -1;
303         count = 0;
304         int exponent = 0;
305         // Number of zeros between decimal point and first non-zero digit after
306         // decimal point, for numbers < 1.
307         int leadingZerosAfterDecimal = 0;
308         boolean nonZeroDigitSeen = false;
309 
310         for (int i = 0; i < len; ) {
311             char c = source[i++];
312             if (c == '.') {
313                 decimalAt = count;
314             } else if (c == 'e' || c == 'E') {
315                 exponent = parseInt(source, i, len);
316                 break;
317             } else {
318                 if (!nonZeroDigitSeen) {
319                     nonZeroDigitSeen = (c != '0');
320                     if (!nonZeroDigitSeen && decimalAt != -1)
321                         ++leadingZerosAfterDecimal;
322                 }
323                 if (nonZeroDigitSeen) {
324                     digits[count++] = c;
325                 }
326             }
327         }
328         if (decimalAt == -1) {
329             decimalAt = count;
330         }
331         if (nonZeroDigitSeen) {
332             decimalAt += exponent - leadingZerosAfterDecimal;
333         }
334 
335         if (fixedPoint) {
336             // The negative of the exponent represents the number of leading
337             // zeros between the decimal and the first non-zero digit, for
338             // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
339             // is more than the maximum fraction digits, then we have an underflow
340             // for the printed representation.
341             if (-decimalAt > maximumDigits) {
342                 // Handle an underflow to zero when we round something like
343                 // 0.0009 to 2 fractional digits.
344                 count = 0;
345                 return;
346             } else if (-decimalAt == maximumDigits) {
347                 // If we round 0.0009 to 3 fractional digits, then we have to
348                 // create a new one digit in the least significant location.
349                 if (shouldRoundUp(0)) {
350                     count = 1;
351                     ++decimalAt;
352                     digits[0] = '1';
353                 } else {
354                     count = 0;
355                 }
356                 return;
357             }
358             // else fall through
359         }
360 
361         // Eliminate trailing zeros.
362         while (count > 1 && digits[count - 1] == '0') {
363             --count;
364         }
365 
366         // Eliminate digits beyond maximum digits to be displayed.
367         // Round up if appropriate.
368         round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
369     }
370 
371     /**
372      * Round the representation to the given number of digits.
373      * @param maximumDigits The maximum number of digits to be shown.
374      * Upon return, count will be less than or equal to maximumDigits.
375      */
round(int maximumDigits)376     private final void round(int maximumDigits) {
377         // Eliminate digits beyond maximum digits to be displayed.
378         // Round up if appropriate.
379         if (maximumDigits >= 0 && maximumDigits < count) {
380             if (shouldRoundUp(maximumDigits)) {
381                 // Rounding up involved incrementing digits from LSD to MSD.
382                 // In most cases this is simple, but in a worst case situation
383                 // (9999..99) we have to adjust the decimalAt value.
384                 for (;;) {
385                     --maximumDigits;
386                     if (maximumDigits < 0) {
387                         // We have all 9's, so we increment to a single digit
388                         // of one and adjust the exponent.
389                         digits[0] = '1';
390                         ++decimalAt;
391                         maximumDigits = 0; // Adjust the count
392                         break;
393                     }
394 
395                     ++digits[maximumDigits];
396                     if (digits[maximumDigits] <= '9') break;
397                     // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
398                 }
399                 ++maximumDigits; // Increment for use as count
400             }
401             count = maximumDigits;
402 
403             // Eliminate trailing zeros.
404             while (count > 1 && digits[count-1] == '0') {
405                 --count;
406             }
407         }
408     }
409 
410 
411     /**
412      * Return true if truncating the representation to the given number
413      * of digits will result in an increment to the last digit.  This
414      * method implements the rounding modes defined in the
415      * java.math.RoundingMode class.
416      * [bnf]
417      * @param maximumDigits the number of digits to keep, from 0 to
418      * <code>count-1</code>.  If 0, then all digits are rounded away, and
419      * this method returns true if a one should be generated (e.g., formatting
420      * 0.09 with "#.#").
421      * @exception ArithmeticException if rounding is needed with rounding
422      *            mode being set to RoundingMode.UNNECESSARY
423      * @return true if digit <code>maximumDigits-1</code> should be
424      * incremented
425      */
shouldRoundUp(int maximumDigits)426     private boolean shouldRoundUp(int maximumDigits) {
427         if (maximumDigits < count) {
428             switch(roundingMode) {
429             case UP:
430                 for (int i=maximumDigits; i<count; ++i) {
431                     if (digits[i] != '0') {
432                         return true;
433                     }
434                 }
435                 break;
436             case DOWN:
437                 break;
438             case CEILING:
439                 for (int i=maximumDigits; i<count; ++i) {
440                     if (digits[i] != '0') {
441                         return !isNegative;
442                     }
443                 }
444                 break;
445             case FLOOR:
446                 for (int i=maximumDigits; i<count; ++i) {
447                     if (digits[i] != '0') {
448                         return isNegative;
449                     }
450                 }
451                 break;
452             case HALF_UP:
453                 if (digits[maximumDigits] >= '5') {
454                     return true;
455                 }
456                 break;
457             case HALF_DOWN:
458                 if (digits[maximumDigits] > '5') {
459                     return true;
460                 } else if (digits[maximumDigits] == '5' ) {
461                     for (int i=maximumDigits+1; i<count; ++i) {
462                         if (digits[i] != '0') {
463                             return true;
464                         }
465                     }
466                 }
467                 break;
468             case HALF_EVEN:
469                 // Implement IEEE half-even rounding
470                 if (digits[maximumDigits] > '5') {
471                     return true;
472                 } else if (digits[maximumDigits] == '5' ) {
473                     for (int i=maximumDigits+1; i<count; ++i) {
474                         if (digits[i] != '0') {
475                             return true;
476                         }
477                     }
478                     return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
479                 }
480                 break;
481             case UNNECESSARY:
482                 for (int i=maximumDigits; i<count; ++i) {
483                     if (digits[i] != '0') {
484                         throw new ArithmeticException(
485                             "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
486                     }
487                 }
488                 break;
489             default:
490                 assert false;
491             }
492         }
493         return false;
494     }
495 
496     /**
497      * Utility routine to set the value of the digit list from a long
498      */
set(boolean isNegative, long source)499     public final void set(boolean isNegative, long source) {
500         set(isNegative, source, 0);
501     }
502 
503     /**
504      * Set the digit list to a representation of the given long value.
505      * @param isNegative Boolean value indicating whether the number is negative.
506      * @param source Value to be converted; must be >= 0 or ==
507      * Long.MIN_VALUE.
508      * @param maximumDigits The most digits which should be converted.
509      * If maximumDigits is lower than the number of significant digits
510      * in source, the representation will be rounded.  Ignored if <= 0.
511      */
set(boolean isNegative, long source, int maximumDigits)512     public final void set(boolean isNegative, long source, int maximumDigits) {
513         this.isNegative = isNegative;
514 
515         // This method does not expect a negative number. However,
516         // "source" can be a Long.MIN_VALUE (-9223372036854775808),
517         // if the number being formatted is a Long.MIN_VALUE.  In that
518         // case, it will be formatted as -Long.MIN_VALUE, a number
519         // which is outside the legal range of a long, but which can
520         // be represented by DigitList.
521         if (source <= 0) {
522             if (source == Long.MIN_VALUE) {
523                 decimalAt = count = MAX_COUNT;
524                 System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
525             } else {
526                 decimalAt = count = 0; // Values <= 0 format as zero
527             }
528         } else {
529             // Rewritten to improve performance.  I used to call
530             // Long.toString(), which was about 4x slower than this code.
531             int left = MAX_COUNT;
532             int right;
533             while (source > 0) {
534                 digits[--left] = (char)('0' + (source % 10));
535                 source /= 10;
536             }
537             decimalAt = MAX_COUNT - left;
538             // Don't copy trailing zeros.  We are guaranteed that there is at
539             // least one non-zero digit, so we don't have to check lower bounds.
540             for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
541                 ;
542             count = right - left + 1;
543             System.arraycopy(digits, left, digits, 0, count);
544         }
545         if (maximumDigits > 0) round(maximumDigits);
546     }
547 
548     /**
549      * Set the digit list to a representation of the given BigDecimal value.
550      * This method supports both fixed-point and exponential notation.
551      * @param isNegative Boolean value indicating whether the number is negative.
552      * @param source Value to be converted; must not be a value <= 0.
553      * @param maximumDigits The most fractional or total digits which should
554      * be converted.
555      * @param fixedPoint If true, then maximumDigits is the maximum
556      * fractional digits to be converted.  If false, total digits.
557      */
set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint)558     final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
559         String s = source.toString();
560         extendDigits(s.length());
561 
562         set(isNegative, s, maximumDigits, fixedPoint);
563     }
564 
565     /**
566      * Set the digit list to a representation of the given BigInteger value.
567      * @param isNegative Boolean value indicating whether the number is negative.
568      * @param source Value to be converted; must be >= 0.
569      * @param maximumDigits The most digits which should be converted.
570      * If maximumDigits is lower than the number of significant digits
571      * in source, the representation will be rounded.  Ignored if <= 0.
572      */
set(boolean isNegative, BigInteger source, int maximumDigits)573     final void set(boolean isNegative, BigInteger source, int maximumDigits) {
574         this.isNegative = isNegative;
575         String s = source.toString();
576         int len = s.length();
577         extendDigits(len);
578         s.getChars(0, len, digits, 0);
579 
580         decimalAt = len;
581         int right;
582         for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
583             ;
584         count = right + 1;
585 
586         if (maximumDigits > 0) {
587             round(maximumDigits);
588         }
589     }
590 
591     /**
592      * equality test between two digit lists.
593      */
equals(Object obj)594     public boolean equals(Object obj) {
595         if (this == obj)                      // quick check
596             return true;
597         if (!(obj instanceof DigitList))         // (1) same object?
598             return false;
599         DigitList other = (DigitList) obj;
600         if (count != other.count ||
601         decimalAt != other.decimalAt)
602             return false;
603         for (int i = 0; i < count; i++)
604             if (digits[i] != other.digits[i])
605                 return false;
606         return true;
607     }
608 
609     /**
610      * Generates the hash code for the digit list.
611      */
hashCode()612     public int hashCode() {
613         int hashcode = decimalAt;
614 
615         for (int i = 0; i < count; i++) {
616             hashcode = hashcode * 37 + digits[i];
617         }
618 
619         return hashcode;
620     }
621 
622     /**
623      * Creates a copy of this object.
624      * @return a clone of this instance.
625      */
clone()626     public Object clone() {
627         try {
628             DigitList other = (DigitList) super.clone();
629             char[] newDigits = new char[digits.length];
630             System.arraycopy(digits, 0, newDigits, 0, digits.length);
631             other.digits = newDigits;
632             other.tempBuffer = null;
633             return other;
634         } catch (CloneNotSupportedException e) {
635             throw new InternalError();
636         }
637     }
638 
639     /**
640      * Returns true if this DigitList represents Long.MIN_VALUE;
641      * false, otherwise.  This is required so that getLong() works.
642      */
isLongMIN_VALUE()643     private boolean isLongMIN_VALUE() {
644         if (decimalAt != count || count != MAX_COUNT) {
645             return false;
646         }
647 
648         for (int i = 0; i < count; ++i) {
649             if (digits[i] != LONG_MIN_REP[i]) return false;
650         }
651 
652         return true;
653     }
654 
parseInt(char[] str, int offset, int strLen)655     private static final int parseInt(char[] str, int offset, int strLen) {
656         char c;
657         boolean positive = true;
658         if ((c = str[offset]) == '-') {
659             positive = false;
660             offset++;
661         } else if (c == '+') {
662             offset++;
663         }
664 
665         int value = 0;
666         while (offset < strLen) {
667             c = str[offset++];
668             if (c >= '0' && c <= '9') {
669                 value = value * 10 + (c - '0');
670             } else {
671                 break;
672             }
673         }
674         return positive ? value : -value;
675     }
676 
677     // The digit part of -9223372036854775808L
678     private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
679 
toString()680     public String toString() {
681         if (isZero()) {
682             return "0";
683         }
684         StringBuffer buf = getStringBuffer();
685         buf.append("0.");
686         buf.append(digits, 0, count);
687         buf.append("x10^");
688         buf.append(decimalAt);
689         return buf.toString();
690     }
691 
692     private StringBuffer tempBuffer;
693 
getStringBuffer()694     private StringBuffer getStringBuffer() {
695         if (tempBuffer == null) {
696             tempBuffer = new StringBuffer(MAX_COUNT);
697         } else {
698             tempBuffer.setLength(0);
699         }
700         return tempBuffer;
701     }
702 
extendDigits(int len)703     private void extendDigits(int len) {
704         if (len > digits.length) {
705             digits = new char[len];
706         }
707     }
708 
getDataChars(int length)709     private final char[] getDataChars(int length) {
710         if (data == null || data.length < length) {
711             data = new char[length];
712         }
713         return data;
714     }
715 }
716