• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mark_sweep.h"
18 
19 #include <atomic>
20 #include <functional>
21 #include <numeric>
22 #include <climits>
23 #include <vector>
24 
25 #include "base/bounded_fifo.h"
26 #include "base/logging.h"
27 #include "base/macros.h"
28 #include "base/mutex-inl.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "base/timing_logger.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "gc/accounting/heap_bitmap-inl.h"
34 #include "gc/accounting/mod_union_table.h"
35 #include "gc/accounting/space_bitmap-inl.h"
36 #include "gc/heap.h"
37 #include "gc/reference_processor.h"
38 #include "gc/space/large_object_space.h"
39 #include "gc/space/space-inl.h"
40 #include "mark_sweep-inl.h"
41 #include "mirror/object-inl.h"
42 #include "runtime.h"
43 #include "scoped_thread_state_change.h"
44 #include "thread-inl.h"
45 #include "thread_list.h"
46 
47 namespace art {
48 namespace gc {
49 namespace collector {
50 
51 // Performance options.
52 static constexpr bool kUseRecursiveMark = false;
53 static constexpr bool kUseMarkStackPrefetch = true;
54 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
55 static constexpr bool kPreCleanCards = true;
56 
57 // Parallelism options.
58 static constexpr bool kParallelCardScan = true;
59 static constexpr bool kParallelRecursiveMark = true;
60 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
61 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
62 // having this can add overhead in ProcessReferences since we may end up doing many calls of
63 // ProcessMarkStack with very small mark stacks.
64 static constexpr size_t kMinimumParallelMarkStackSize = 128;
65 static constexpr bool kParallelProcessMarkStack = true;
66 
67 // Profiling and information flags.
68 static constexpr bool kProfileLargeObjects = false;
69 static constexpr bool kMeasureOverhead = false;
70 static constexpr bool kCountTasks = false;
71 static constexpr bool kCountMarkedObjects = false;
72 
73 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
74 static constexpr bool kCheckLocks = kDebugLocking;
75 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
76 
77 // If true, revoke the rosalloc thread-local buffers at the
78 // checkpoint, as opposed to during the pause.
79 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
80 
BindBitmaps()81 void MarkSweep::BindBitmaps() {
82   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
83   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
84   // Mark all of the spaces we never collect as immune.
85   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
86     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
87       immune_spaces_.AddSpace(space);
88     }
89   }
90 }
91 
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)92 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
93     : GarbageCollector(heap,
94                        name_prefix +
95                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
96       current_space_bitmap_(nullptr),
97       mark_bitmap_(nullptr),
98       mark_stack_(nullptr),
99       gc_barrier_(new Barrier(0)),
100       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101       is_concurrent_(is_concurrent),
102       live_stack_freeze_size_(0) {
103   std::string error_msg;
104   MemMap* mem_map = MemMap::MapAnonymous(
105       "mark sweep sweep array free buffer", nullptr,
106       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
107       PROT_READ | PROT_WRITE, false, false, &error_msg);
108   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
109   sweep_array_free_buffer_mem_map_.reset(mem_map);
110 }
111 
InitializePhase()112 void MarkSweep::InitializePhase() {
113   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
114   mark_stack_ = heap_->GetMarkStack();
115   DCHECK(mark_stack_ != nullptr);
116   immune_spaces_.Reset();
117   no_reference_class_count_.StoreRelaxed(0);
118   normal_count_.StoreRelaxed(0);
119   class_count_.StoreRelaxed(0);
120   object_array_count_.StoreRelaxed(0);
121   other_count_.StoreRelaxed(0);
122   reference_count_.StoreRelaxed(0);
123   large_object_test_.StoreRelaxed(0);
124   large_object_mark_.StoreRelaxed(0);
125   overhead_time_ .StoreRelaxed(0);
126   work_chunks_created_.StoreRelaxed(0);
127   work_chunks_deleted_.StoreRelaxed(0);
128   mark_null_count_.StoreRelaxed(0);
129   mark_immune_count_.StoreRelaxed(0);
130   mark_fastpath_count_.StoreRelaxed(0);
131   mark_slowpath_count_.StoreRelaxed(0);
132   {
133     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
134     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
135     mark_bitmap_ = heap_->GetMarkBitmap();
136   }
137   if (!GetCurrentIteration()->GetClearSoftReferences()) {
138     // Always clear soft references if a non-sticky collection.
139     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
140   }
141 }
142 
RunPhases()143 void MarkSweep::RunPhases() {
144   Thread* self = Thread::Current();
145   InitializePhase();
146   Locks::mutator_lock_->AssertNotHeld(self);
147   if (IsConcurrent()) {
148     GetHeap()->PreGcVerification(this);
149     {
150       ReaderMutexLock mu(self, *Locks::mutator_lock_);
151       MarkingPhase();
152     }
153     ScopedPause pause(this);
154     GetHeap()->PrePauseRosAllocVerification(this);
155     PausePhase();
156     RevokeAllThreadLocalBuffers();
157   } else {
158     ScopedPause pause(this);
159     GetHeap()->PreGcVerificationPaused(this);
160     MarkingPhase();
161     GetHeap()->PrePauseRosAllocVerification(this);
162     PausePhase();
163     RevokeAllThreadLocalBuffers();
164   }
165   {
166     // Sweeping always done concurrently, even for non concurrent mark sweep.
167     ReaderMutexLock mu(self, *Locks::mutator_lock_);
168     ReclaimPhase();
169   }
170   GetHeap()->PostGcVerification(this);
171   FinishPhase();
172 }
173 
ProcessReferences(Thread * self)174 void MarkSweep::ProcessReferences(Thread* self) {
175   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
176   GetHeap()->GetReferenceProcessor()->ProcessReferences(
177       true,
178       GetTimings(),
179       GetCurrentIteration()->GetClearSoftReferences(),
180       this);
181 }
182 
PausePhase()183 void MarkSweep::PausePhase() {
184   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
185   Thread* self = Thread::Current();
186   Locks::mutator_lock_->AssertExclusiveHeld(self);
187   if (IsConcurrent()) {
188     // Handle the dirty objects if we are a concurrent GC.
189     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190     // Re-mark root set.
191     ReMarkRoots();
192     // Scan dirty objects, this is only required if we are not doing concurrent GC.
193     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
194   }
195   {
196     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
197     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198     heap_->SwapStacks();
199     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
200     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
201     // stacks and don't want anybody to allocate into the live stack.
202     RevokeAllThreadLocalAllocationStacks(self);
203   }
204   heap_->PreSweepingGcVerification(this);
205   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
206   // weak before we sweep them. Since this new system weak may not be marked, the GC may
207   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
208   // reference to a string that is about to be swept.
209   Runtime::Current()->DisallowNewSystemWeaks();
210   // Enable the reference processing slow path, needs to be done with mutators paused since there
211   // is no lock in the GetReferent fast path.
212   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
213 }
214 
PreCleanCards()215 void MarkSweep::PreCleanCards() {
216   // Don't do this for non concurrent GCs since they don't have any dirty cards.
217   if (kPreCleanCards && IsConcurrent()) {
218     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
219     Thread* self = Thread::Current();
220     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
221     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
222     heap_->ProcessCards(GetTimings(), false, true, false);
223     // The checkpoint root marking is required to avoid a race condition which occurs if the
224     // following happens during a reference write:
225     // 1. mutator dirties the card (write barrier)
226     // 2. GC ages the card (the above ProcessCards call)
227     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
228     // 4. mutator writes the value (corresponding to the write barrier in 1.)
229     // This causes the GC to age the card but not necessarily mark the reference which the mutator
230     // wrote into the object stored in the card.
231     // Having the checkpoint fixes this issue since it ensures that the card mark and the
232     // reference write are visible to the GC before the card is scanned (this is due to locks being
233     // acquired / released in the checkpoint code).
234     // The other roots are also marked to help reduce the pause.
235     MarkRootsCheckpoint(self, false);
236     MarkNonThreadRoots();
237     MarkConcurrentRoots(
238         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
239     // Process the newly aged cards.
240     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
241     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
242     // in the next GC.
243   }
244 }
245 
RevokeAllThreadLocalAllocationStacks(Thread * self)246 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
247   if (kUseThreadLocalAllocationStack) {
248     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
249     Locks::mutator_lock_->AssertExclusiveHeld(self);
250     heap_->RevokeAllThreadLocalAllocationStacks(self);
251   }
252 }
253 
MarkingPhase()254 void MarkSweep::MarkingPhase() {
255   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
256   Thread* self = Thread::Current();
257   BindBitmaps();
258   FindDefaultSpaceBitmap();
259   // Process dirty cards and add dirty cards to mod union tables.
260   // If the GC type is non sticky, then we just clear the cards instead of ageing them.
261   heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
262   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
263   MarkRoots(self);
264   MarkReachableObjects();
265   // Pre-clean dirtied cards to reduce pauses.
266   PreCleanCards();
267 }
268 
269 class MarkSweep::ScanObjectVisitor {
270  public:
ScanObjectVisitor(MarkSweep * const mark_sweep)271   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
272       : mark_sweep_(mark_sweep) {}
273 
operator ()(mirror::Object * obj) const274   void operator()(mirror::Object* obj) const
275       ALWAYS_INLINE
276       REQUIRES(Locks::heap_bitmap_lock_)
277       SHARED_REQUIRES(Locks::mutator_lock_) {
278     if (kCheckLocks) {
279       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
280       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
281     }
282     mark_sweep_->ScanObject(obj);
283   }
284 
285  private:
286   MarkSweep* const mark_sweep_;
287 };
288 
UpdateAndMarkModUnion()289 void MarkSweep::UpdateAndMarkModUnion() {
290   for (const auto& space : immune_spaces_.GetSpaces()) {
291     const char* name = space->IsZygoteSpace()
292         ? "UpdateAndMarkZygoteModUnionTable"
293         : "UpdateAndMarkImageModUnionTable";
294     DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
295     TimingLogger::ScopedTiming t(name, GetTimings());
296     accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
297     if (mod_union_table != nullptr) {
298       mod_union_table->UpdateAndMarkReferences(this);
299     } else {
300       // No mod-union table, scan all the live bits. This can only occur for app images.
301       space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
302                                                reinterpret_cast<uintptr_t>(space->End()),
303                                                ScanObjectVisitor(this));
304     }
305   }
306 }
307 
MarkReachableObjects()308 void MarkSweep::MarkReachableObjects() {
309   UpdateAndMarkModUnion();
310   // Recursively mark all the non-image bits set in the mark bitmap.
311   RecursiveMark();
312 }
313 
ReclaimPhase()314 void MarkSweep::ReclaimPhase() {
315   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
316   Thread* const self = Thread::Current();
317   // Process the references concurrently.
318   ProcessReferences(self);
319   SweepSystemWeaks(self);
320   Runtime* const runtime = Runtime::Current();
321   runtime->AllowNewSystemWeaks();
322   // Clean up class loaders after system weaks are swept since that is how we know if class
323   // unloading occurred.
324   runtime->GetClassLinker()->CleanupClassLoaders();
325   {
326     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
327     GetHeap()->RecordFreeRevoke();
328     // Reclaim unmarked objects.
329     Sweep(false);
330     // Swap the live and mark bitmaps for each space which we modified space. This is an
331     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
332     // bitmaps.
333     SwapBitmaps();
334     // Unbind the live and mark bitmaps.
335     GetHeap()->UnBindBitmaps();
336   }
337 }
338 
FindDefaultSpaceBitmap()339 void MarkSweep::FindDefaultSpaceBitmap() {
340   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
341   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
342     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
343     // We want to have the main space instead of non moving if possible.
344     if (bitmap != nullptr &&
345         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
346       current_space_bitmap_ = bitmap;
347       // If we are not the non moving space exit the loop early since this will be good enough.
348       if (space != heap_->GetNonMovingSpace()) {
349         break;
350       }
351     }
352   }
353   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
354       << heap_->DumpSpaces();
355 }
356 
ExpandMarkStack()357 void MarkSweep::ExpandMarkStack() {
358   ResizeMarkStack(mark_stack_->Capacity() * 2);
359 }
360 
ResizeMarkStack(size_t new_size)361 void MarkSweep::ResizeMarkStack(size_t new_size) {
362   // Rare case, no need to have Thread::Current be a parameter.
363   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
364     // Someone else acquired the lock and expanded the mark stack before us.
365     return;
366   }
367   std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
368   CHECK_LE(mark_stack_->Size(), new_size);
369   mark_stack_->Resize(new_size);
370   for (auto& obj : temp) {
371     mark_stack_->PushBack(obj.AsMirrorPtr());
372   }
373 }
374 
MarkObject(mirror::Object * obj)375 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
376   MarkObject(obj, nullptr, MemberOffset(0));
377   return obj;
378 }
379 
MarkObjectNonNullParallel(mirror::Object * obj)380 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
381   DCHECK(obj != nullptr);
382   if (MarkObjectParallel(obj)) {
383     MutexLock mu(Thread::Current(), mark_stack_lock_);
384     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
385       ExpandMarkStack();
386     }
387     // The object must be pushed on to the mark stack.
388     mark_stack_->PushBack(obj);
389   }
390 }
391 
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * ref)392 bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
393   return IsMarked(ref->AsMirrorPtr());
394 }
395 
396 class MarkSweep::MarkObjectSlowPath {
397  public:
MarkObjectSlowPath(MarkSweep * mark_sweep,mirror::Object * holder=nullptr,MemberOffset offset=MemberOffset (0))398   explicit MarkObjectSlowPath(MarkSweep* mark_sweep,
399                               mirror::Object* holder = nullptr,
400                               MemberOffset offset = MemberOffset(0))
401       : mark_sweep_(mark_sweep),
402         holder_(holder),
403         offset_(offset) {}
404 
operator ()(const mirror::Object * obj) const405   void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
406     if (kProfileLargeObjects) {
407       // TODO: Differentiate between marking and testing somehow.
408       ++mark_sweep_->large_object_test_;
409       ++mark_sweep_->large_object_mark_;
410     }
411     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
412     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
413                  (kIsDebugBuild && large_object_space != nullptr &&
414                      !large_object_space->Contains(obj)))) {
415       LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
416       if (holder_ != nullptr) {
417         size_t holder_size = holder_->SizeOf();
418         ArtField* field = holder_->FindFieldByOffset(offset_);
419         LOG(INTERNAL_FATAL) << "Field info: "
420                             << " holder=" << holder_
421                             << " holder is "
422                             << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
423                                 ? "alive" : "dead")
424                             << " holder_size=" << holder_size
425                             << " holder_type=" << PrettyTypeOf(holder_)
426                             << " offset=" << offset_.Uint32Value()
427                             << " field=" << (field != nullptr ? field->GetName() : "nullptr")
428                             << " field_type="
429                             << (field != nullptr ? field->GetTypeDescriptor() : "")
430                             << " first_ref_field_offset="
431                             << (holder_->IsClass()
432                                 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
433                                     sizeof(void*))
434                                 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
435                             << " num_of_ref_fields="
436                             << (holder_->IsClass()
437                                 ? holder_->AsClass()->NumReferenceStaticFields()
438                                 : holder_->GetClass()->NumReferenceInstanceFields())
439                             << "\n";
440         // Print the memory content of the holder.
441         for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
442           uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
443           LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
444                               << std::hex << p[i];
445         }
446       }
447       PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
448       MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
449       {
450         LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
451         Thread* self = Thread::Current();
452         if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
453           mark_sweep_->VerifyRoots();
454         } else {
455           const bool heap_bitmap_exclusive_locked =
456               Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
457           if (heap_bitmap_exclusive_locked) {
458             Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
459           }
460           {
461             ScopedThreadSuspension(self, kSuspended);
462             ScopedSuspendAll ssa(__FUNCTION__);
463             mark_sweep_->VerifyRoots();
464           }
465           if (heap_bitmap_exclusive_locked) {
466             Locks::heap_bitmap_lock_->ExclusiveLock(self);
467           }
468         }
469       }
470       LOG(FATAL) << "Can't mark invalid object";
471     }
472   }
473 
474  private:
475   MarkSweep* const mark_sweep_;
476   mirror::Object* const holder_;
477   MemberOffset offset_;
478 };
479 
MarkObjectNonNull(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)480 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
481                                          mirror::Object* holder,
482                                          MemberOffset offset) {
483   DCHECK(obj != nullptr);
484   if (kUseBakerOrBrooksReadBarrier) {
485     // Verify all the objects have the correct pointer installed.
486     obj->AssertReadBarrierPointer();
487   }
488   if (immune_spaces_.IsInImmuneRegion(obj)) {
489     if (kCountMarkedObjects) {
490       ++mark_immune_count_;
491     }
492     DCHECK(mark_bitmap_->Test(obj));
493   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
494     if (kCountMarkedObjects) {
495       ++mark_fastpath_count_;
496     }
497     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
498       PushOnMarkStack(obj);  // This object was not previously marked.
499     }
500   } else {
501     if (kCountMarkedObjects) {
502       ++mark_slowpath_count_;
503     }
504     MarkObjectSlowPath visitor(this, holder, offset);
505     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
506     // will check again.
507     if (!mark_bitmap_->Set(obj, visitor)) {
508       PushOnMarkStack(obj);  // Was not already marked, push.
509     }
510   }
511 }
512 
PushOnMarkStack(mirror::Object * obj)513 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
514   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
515     // Lock is not needed but is here anyways to please annotalysis.
516     MutexLock mu(Thread::Current(), mark_stack_lock_);
517     ExpandMarkStack();
518   }
519   // The object must be pushed on to the mark stack.
520   mark_stack_->PushBack(obj);
521 }
522 
MarkObjectParallel(mirror::Object * obj)523 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
524   DCHECK(obj != nullptr);
525   if (kUseBakerOrBrooksReadBarrier) {
526     // Verify all the objects have the correct pointer installed.
527     obj->AssertReadBarrierPointer();
528   }
529   if (immune_spaces_.IsInImmuneRegion(obj)) {
530     DCHECK(IsMarked(obj) != nullptr);
531     return false;
532   }
533   // Try to take advantage of locality of references within a space, failing this find the space
534   // the hard way.
535   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
536   if (LIKELY(object_bitmap->HasAddress(obj))) {
537     return !object_bitmap->AtomicTestAndSet(obj);
538   }
539   MarkObjectSlowPath visitor(this);
540   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
541 }
542 
MarkHeapReference(mirror::HeapReference<mirror::Object> * ref)543 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
544   MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
545 }
546 
547 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)548 inline void MarkSweep::MarkObject(mirror::Object* obj,
549                                   mirror::Object* holder,
550                                   MemberOffset offset) {
551   if (obj != nullptr) {
552     MarkObjectNonNull(obj, holder, offset);
553   } else if (kCountMarkedObjects) {
554     ++mark_null_count_;
555   }
556 }
557 
558 class MarkSweep::VerifyRootMarkedVisitor : public SingleRootVisitor {
559  public:
VerifyRootMarkedVisitor(MarkSweep * collector)560   explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
561 
VisitRoot(mirror::Object * root,const RootInfo & info)562   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
563       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
564     CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
565   }
566 
567  private:
568   MarkSweep* const collector_;
569 };
570 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)571 void MarkSweep::VisitRoots(mirror::Object*** roots,
572                            size_t count,
573                            const RootInfo& info ATTRIBUTE_UNUSED) {
574   for (size_t i = 0; i < count; ++i) {
575     MarkObjectNonNull(*roots[i]);
576   }
577 }
578 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)579 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
580                            size_t count,
581                            const RootInfo& info ATTRIBUTE_UNUSED) {
582   for (size_t i = 0; i < count; ++i) {
583     MarkObjectNonNull(roots[i]->AsMirrorPtr());
584   }
585 }
586 
587 class MarkSweep::VerifyRootVisitor : public SingleRootVisitor {
588  public:
VisitRoot(mirror::Object * root,const RootInfo & info)589   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
590       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
591     // See if the root is on any space bitmap.
592     auto* heap = Runtime::Current()->GetHeap();
593     if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
594       space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
595       if (large_object_space != nullptr && !large_object_space->Contains(root)) {
596         LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
597       }
598     }
599   }
600 };
601 
VerifyRoots()602 void MarkSweep::VerifyRoots() {
603   VerifyRootVisitor visitor;
604   Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
605 }
606 
MarkRoots(Thread * self)607 void MarkSweep::MarkRoots(Thread* self) {
608   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
609   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
610     // If we exclusively hold the mutator lock, all threads must be suspended.
611     Runtime::Current()->VisitRoots(this);
612     RevokeAllThreadLocalAllocationStacks(self);
613   } else {
614     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
615     // At this point the live stack should no longer have any mutators which push into it.
616     MarkNonThreadRoots();
617     MarkConcurrentRoots(
618         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
619   }
620 }
621 
MarkNonThreadRoots()622 void MarkSweep::MarkNonThreadRoots() {
623   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
624   Runtime::Current()->VisitNonThreadRoots(this);
625 }
626 
MarkConcurrentRoots(VisitRootFlags flags)627 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
628   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
629   // Visit all runtime roots and clear dirty flags.
630   Runtime::Current()->VisitConcurrentRoots(
631       this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
632 }
633 
634 class MarkSweep::DelayReferenceReferentVisitor {
635  public:
DelayReferenceReferentVisitor(MarkSweep * collector)636   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
637 
operator ()(mirror::Class * klass,mirror::Reference * ref) const638   void operator()(mirror::Class* klass, mirror::Reference* ref) const
639       REQUIRES(Locks::heap_bitmap_lock_)
640       SHARED_REQUIRES(Locks::mutator_lock_) {
641     collector_->DelayReferenceReferent(klass, ref);
642   }
643 
644  private:
645   MarkSweep* const collector_;
646 };
647 
648 template <bool kUseFinger = false>
649 class MarkSweep::MarkStackTask : public Task {
650  public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack)651   MarkStackTask(ThreadPool* thread_pool,
652                 MarkSweep* mark_sweep,
653                 size_t mark_stack_size,
654                 StackReference<mirror::Object>* mark_stack)
655       : mark_sweep_(mark_sweep),
656         thread_pool_(thread_pool),
657         mark_stack_pos_(mark_stack_size) {
658     // We may have to copy part of an existing mark stack when another mark stack overflows.
659     if (mark_stack_size != 0) {
660       DCHECK(mark_stack != nullptr);
661       // TODO: Check performance?
662       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
663     }
664     if (kCountTasks) {
665       ++mark_sweep_->work_chunks_created_;
666     }
667   }
668 
669   static const size_t kMaxSize = 1 * KB;
670 
671  protected:
672   class MarkObjectParallelVisitor {
673    public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)674     ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
675                                             MarkSweep* mark_sweep)
676         : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
677 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const678     ALWAYS_INLINE void operator()(mirror::Object* obj,
679                     MemberOffset offset,
680                     bool is_static ATTRIBUTE_UNUSED) const
681         SHARED_REQUIRES(Locks::mutator_lock_) {
682       Mark(obj->GetFieldObject<mirror::Object>(offset));
683     }
684 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const685     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
686         SHARED_REQUIRES(Locks::mutator_lock_) {
687       if (!root->IsNull()) {
688         VisitRoot(root);
689       }
690     }
691 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const692     void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
693         SHARED_REQUIRES(Locks::mutator_lock_) {
694       if (kCheckLocks) {
695         Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
696         Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
697       }
698       Mark(root->AsMirrorPtr());
699     }
700 
701    private:
Mark(mirror::Object * ref) const702     ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
703       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
704         if (kUseFinger) {
705           std::atomic_thread_fence(std::memory_order_seq_cst);
706           if (reinterpret_cast<uintptr_t>(ref) >=
707               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
708             return;
709           }
710         }
711         chunk_task_->MarkStackPush(ref);
712       }
713     }
714 
715     MarkStackTask<kUseFinger>* const chunk_task_;
716     MarkSweep* const mark_sweep_;
717   };
718 
719   class ScanObjectParallelVisitor {
720    public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)721     ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
722         : chunk_task_(chunk_task) {}
723 
724     // No thread safety analysis since multiple threads will use this visitor.
operator ()(mirror::Object * obj) const725     void operator()(mirror::Object* obj) const
726         REQUIRES(Locks::heap_bitmap_lock_)
727         SHARED_REQUIRES(Locks::mutator_lock_) {
728       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
729       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
730       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
731       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
732     }
733 
734    private:
735     MarkStackTask<kUseFinger>* const chunk_task_;
736   };
737 
~MarkStackTask()738   virtual ~MarkStackTask() {
739     // Make sure that we have cleared our mark stack.
740     DCHECK_EQ(mark_stack_pos_, 0U);
741     if (kCountTasks) {
742       ++mark_sweep_->work_chunks_deleted_;
743     }
744   }
745 
746   MarkSweep* const mark_sweep_;
747   ThreadPool* const thread_pool_;
748   // Thread local mark stack for this task.
749   StackReference<mirror::Object> mark_stack_[kMaxSize];
750   // Mark stack position.
751   size_t mark_stack_pos_;
752 
MarkStackPush(mirror::Object * obj)753   ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
754       SHARED_REQUIRES(Locks::mutator_lock_) {
755     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
756       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
757       mark_stack_pos_ /= 2;
758       auto* task = new MarkStackTask(thread_pool_,
759                                      mark_sweep_,
760                                      kMaxSize - mark_stack_pos_,
761                                      mark_stack_ + mark_stack_pos_);
762       thread_pool_->AddTask(Thread::Current(), task);
763     }
764     DCHECK(obj != nullptr);
765     DCHECK_LT(mark_stack_pos_, kMaxSize);
766     mark_stack_[mark_stack_pos_++].Assign(obj);
767   }
768 
Finalize()769   virtual void Finalize() {
770     delete this;
771   }
772 
773   // Scans all of the objects
Run(Thread * self ATTRIBUTE_UNUSED)774   virtual void Run(Thread* self ATTRIBUTE_UNUSED)
775       REQUIRES(Locks::heap_bitmap_lock_)
776       SHARED_REQUIRES(Locks::mutator_lock_) {
777     ScanObjectParallelVisitor visitor(this);
778     // TODO: Tune this.
779     static const size_t kFifoSize = 4;
780     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
781     for (;;) {
782       mirror::Object* obj = nullptr;
783       if (kUseMarkStackPrefetch) {
784         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
785           mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
786           DCHECK(mark_stack_obj != nullptr);
787           __builtin_prefetch(mark_stack_obj);
788           prefetch_fifo.push_back(mark_stack_obj);
789         }
790         if (UNLIKELY(prefetch_fifo.empty())) {
791           break;
792         }
793         obj = prefetch_fifo.front();
794         prefetch_fifo.pop_front();
795       } else {
796         if (UNLIKELY(mark_stack_pos_ == 0)) {
797           break;
798         }
799         obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
800       }
801       DCHECK(obj != nullptr);
802       visitor(obj);
803     }
804   }
805 };
806 
807 class MarkSweep::CardScanTask : public MarkStackTask<false> {
808  public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uint8_t * begin,uint8_t * end,uint8_t minimum_age,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack_obj,bool clear_card)809   CardScanTask(ThreadPool* thread_pool,
810                MarkSweep* mark_sweep,
811                accounting::ContinuousSpaceBitmap* bitmap,
812                uint8_t* begin,
813                uint8_t* end,
814                uint8_t minimum_age,
815                size_t mark_stack_size,
816                StackReference<mirror::Object>* mark_stack_obj,
817                bool clear_card)
818       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
819         bitmap_(bitmap),
820         begin_(begin),
821         end_(end),
822         minimum_age_(minimum_age),
823         clear_card_(clear_card) {}
824 
825  protected:
826   accounting::ContinuousSpaceBitmap* const bitmap_;
827   uint8_t* const begin_;
828   uint8_t* const end_;
829   const uint8_t minimum_age_;
830   const bool clear_card_;
831 
Finalize()832   virtual void Finalize() {
833     delete this;
834   }
835 
Run(Thread * self)836   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
837     ScanObjectParallelVisitor visitor(this);
838     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
839     size_t cards_scanned = clear_card_
840         ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
841         : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
842     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
843         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
844     // Finish by emptying our local mark stack.
845     MarkStackTask::Run(self);
846   }
847 };
848 
GetThreadCount(bool paused) const849 size_t MarkSweep::GetThreadCount(bool paused) const {
850   // Use less threads if we are in a background state (non jank perceptible) since we want to leave
851   // more CPU time for the foreground apps.
852   if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
853     return 1;
854   }
855   return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
856 }
857 
ScanGrayObjects(bool paused,uint8_t minimum_age)858 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
859   accounting::CardTable* card_table = GetHeap()->GetCardTable();
860   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
861   size_t thread_count = GetThreadCount(paused);
862   // The parallel version with only one thread is faster for card scanning, TODO: fix.
863   if (kParallelCardScan && thread_count > 1) {
864     Thread* self = Thread::Current();
865     // Can't have a different split for each space since multiple spaces can have their cards being
866     // scanned at the same time.
867     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
868         GetTimings());
869     // Try to take some of the mark stack since we can pass this off to the worker tasks.
870     StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
871     StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
872     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
873     // Estimated number of work tasks we will create.
874     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
875     DCHECK_NE(mark_stack_tasks, 0U);
876     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
877                                              mark_stack_size / mark_stack_tasks + 1);
878     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
879       if (space->GetMarkBitmap() == nullptr) {
880         continue;
881       }
882       uint8_t* card_begin = space->Begin();
883       uint8_t* card_end = space->End();
884       // Align up the end address. For example, the image space's end
885       // may not be card-size-aligned.
886       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
887       DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
888       DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
889       // Calculate how many bytes of heap we will scan,
890       const size_t address_range = card_end - card_begin;
891       // Calculate how much address range each task gets.
892       const size_t card_delta = RoundUp(address_range / thread_count + 1,
893                                         accounting::CardTable::kCardSize);
894       // If paused and the space is neither zygote nor image space, we could clear the dirty
895       // cards to avoid accumulating them to increase card scanning load in the following GC
896       // cycles. We need to keep dirty cards of image space and zygote space in order to track
897       // references to the other spaces.
898       bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
899       // Create the worker tasks for this space.
900       while (card_begin != card_end) {
901         // Add a range of cards.
902         size_t addr_remaining = card_end - card_begin;
903         size_t card_increment = std::min(card_delta, addr_remaining);
904         // Take from the back of the mark stack.
905         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
906         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
907         mark_stack_end -= mark_stack_increment;
908         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
909         DCHECK_EQ(mark_stack_end, mark_stack_->End());
910         // Add the new task to the thread pool.
911         auto* task = new CardScanTask(thread_pool,
912                                       this,
913                                       space->GetMarkBitmap(),
914                                       card_begin,
915                                       card_begin + card_increment,
916                                       minimum_age,
917                                       mark_stack_increment,
918                                       mark_stack_end,
919                                       clear_card);
920         thread_pool->AddTask(self, task);
921         card_begin += card_increment;
922       }
923     }
924 
925     // Note: the card scan below may dirty new cards (and scan them)
926     // as a side effect when a Reference object is encountered and
927     // queued during the marking. See b/11465268.
928     thread_pool->SetMaxActiveWorkers(thread_count - 1);
929     thread_pool->StartWorkers(self);
930     thread_pool->Wait(self, true, true);
931     thread_pool->StopWorkers(self);
932   } else {
933     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
934       if (space->GetMarkBitmap() != nullptr) {
935         // Image spaces are handled properly since live == marked for them.
936         const char* name = nullptr;
937         switch (space->GetGcRetentionPolicy()) {
938         case space::kGcRetentionPolicyNeverCollect:
939           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
940           break;
941         case space::kGcRetentionPolicyFullCollect:
942           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
943           break;
944         case space::kGcRetentionPolicyAlwaysCollect:
945           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
946           break;
947         default:
948           LOG(FATAL) << "Unreachable";
949           UNREACHABLE();
950         }
951         TimingLogger::ScopedTiming t(name, GetTimings());
952         ScanObjectVisitor visitor(this);
953         bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
954         if (clear_card) {
955           card_table->Scan<true>(space->GetMarkBitmap(),
956                                  space->Begin(),
957                                  space->End(),
958                                  visitor,
959                                  minimum_age);
960         } else {
961           card_table->Scan<false>(space->GetMarkBitmap(),
962                                   space->Begin(),
963                                   space->End(),
964                                   visitor,
965                                   minimum_age);
966         }
967       }
968     }
969   }
970 }
971 
972 class MarkSweep::RecursiveMarkTask : public MarkStackTask<false> {
973  public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)974   RecursiveMarkTask(ThreadPool* thread_pool,
975                     MarkSweep* mark_sweep,
976                     accounting::ContinuousSpaceBitmap* bitmap,
977                     uintptr_t begin,
978                     uintptr_t end)
979       : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
980         bitmap_(bitmap),
981         begin_(begin),
982         end_(end) {}
983 
984  protected:
985   accounting::ContinuousSpaceBitmap* const bitmap_;
986   const uintptr_t begin_;
987   const uintptr_t end_;
988 
Finalize()989   virtual void Finalize() {
990     delete this;
991   }
992 
993   // Scans all of the objects
Run(Thread * self)994   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
995     ScanObjectParallelVisitor visitor(this);
996     bitmap_->VisitMarkedRange(begin_, end_, visitor);
997     // Finish by emptying our local mark stack.
998     MarkStackTask::Run(self);
999   }
1000 };
1001 
1002 // Populates the mark stack based on the set of marked objects and
1003 // recursively marks until the mark stack is emptied.
RecursiveMark()1004 void MarkSweep::RecursiveMark() {
1005   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1006   // RecursiveMark will build the lists of known instances of the Reference classes. See
1007   // DelayReferenceReferent for details.
1008   if (kUseRecursiveMark) {
1009     const bool partial = GetGcType() == kGcTypePartial;
1010     ScanObjectVisitor scan_visitor(this);
1011     auto* self = Thread::Current();
1012     ThreadPool* thread_pool = heap_->GetThreadPool();
1013     size_t thread_count = GetThreadCount(false);
1014     const bool parallel = kParallelRecursiveMark && thread_count > 1;
1015     mark_stack_->Reset();
1016     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1017       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
1018           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
1019         current_space_bitmap_ = space->GetMarkBitmap();
1020         if (current_space_bitmap_ == nullptr) {
1021           continue;
1022         }
1023         if (parallel) {
1024           // We will use the mark stack the future.
1025           // CHECK(mark_stack_->IsEmpty());
1026           // This function does not handle heap end increasing, so we must use the space end.
1027           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1028           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1029           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
1030 
1031           // Create a few worker tasks.
1032           const size_t n = thread_count * 2;
1033           while (begin != end) {
1034             uintptr_t start = begin;
1035             uintptr_t delta = (end - begin) / n;
1036             delta = RoundUp(delta, KB);
1037             if (delta < 16 * KB) delta = end - begin;
1038             begin += delta;
1039             auto* task = new RecursiveMarkTask(thread_pool,
1040                                                this,
1041                                                current_space_bitmap_,
1042                                                start,
1043                                                begin);
1044             thread_pool->AddTask(self, task);
1045           }
1046           thread_pool->SetMaxActiveWorkers(thread_count - 1);
1047           thread_pool->StartWorkers(self);
1048           thread_pool->Wait(self, true, true);
1049           thread_pool->StopWorkers(self);
1050         } else {
1051           // This function does not handle heap end increasing, so we must use the space end.
1052           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1053           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1054           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
1055         }
1056       }
1057     }
1058   }
1059   ProcessMarkStack(false);
1060 }
1061 
RecursiveMarkDirtyObjects(bool paused,uint8_t minimum_age)1062 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
1063   ScanGrayObjects(paused, minimum_age);
1064   ProcessMarkStack(paused);
1065 }
1066 
ReMarkRoots()1067 void MarkSweep::ReMarkRoots() {
1068   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1069   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1070   Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1071       kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1072   if (kVerifyRootsMarked) {
1073     TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1074     VerifyRootMarkedVisitor visitor(this);
1075     Runtime::Current()->VisitRoots(&visitor);
1076   }
1077 }
1078 
SweepSystemWeaks(Thread * self)1079 void MarkSweep::SweepSystemWeaks(Thread* self) {
1080   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1081   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1082   Runtime::Current()->SweepSystemWeaks(this);
1083 }
1084 
1085 class MarkSweep::VerifySystemWeakVisitor : public IsMarkedVisitor {
1086  public:
VerifySystemWeakVisitor(MarkSweep * mark_sweep)1087   explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1088 
IsMarked(mirror::Object * obj)1089   virtual mirror::Object* IsMarked(mirror::Object* obj)
1090       OVERRIDE
1091       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1092     mark_sweep_->VerifyIsLive(obj);
1093     return obj;
1094   }
1095 
1096   MarkSweep* const mark_sweep_;
1097 };
1098 
VerifyIsLive(const mirror::Object * obj)1099 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1100   if (!heap_->GetLiveBitmap()->Test(obj)) {
1101     // TODO: Consider live stack? Has this code bitrotted?
1102     CHECK(!heap_->allocation_stack_->Contains(obj))
1103         << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1104   }
1105 }
1106 
VerifySystemWeaks()1107 void MarkSweep::VerifySystemWeaks() {
1108   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1109   // Verify system weaks, uses a special object visitor which returns the input object.
1110   VerifySystemWeakVisitor visitor(this);
1111   Runtime::Current()->SweepSystemWeaks(&visitor);
1112 }
1113 
1114 class MarkSweep::CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1115  public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1116   CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1117                             bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1118       : mark_sweep_(mark_sweep),
1119         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1120             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1121   }
1122 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1123   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1124       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1125       REQUIRES(Locks::heap_bitmap_lock_) {
1126     for (size_t i = 0; i < count; ++i) {
1127       mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1128     }
1129   }
1130 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1131   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1132                   size_t count,
1133                   const RootInfo& info ATTRIBUTE_UNUSED)
1134       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1135       REQUIRES(Locks::heap_bitmap_lock_) {
1136     for (size_t i = 0; i < count; ++i) {
1137       mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1138     }
1139   }
1140 
Run(Thread * thread)1141   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1142     ScopedTrace trace("Marking thread roots");
1143     // Note: self is not necessarily equal to thread since thread may be suspended.
1144     Thread* const self = Thread::Current();
1145     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1146         << thread->GetState() << " thread " << thread << " self " << self;
1147     thread->VisitRoots(this);
1148     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1149       ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
1150       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1151     }
1152     // If thread is a running mutator, then act on behalf of the garbage collector.
1153     // See the code in ThreadList::RunCheckpoint.
1154     mark_sweep_->GetBarrier().Pass(self);
1155   }
1156 
1157  private:
1158   MarkSweep* const mark_sweep_;
1159   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1160 };
1161 
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1162 void MarkSweep::MarkRootsCheckpoint(Thread* self,
1163                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1164   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1165   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1166   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1167   // Request the check point is run on all threads returning a count of the threads that must
1168   // run through the barrier including self.
1169   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1170   // Release locks then wait for all mutator threads to pass the barrier.
1171   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1172   // then no need to release locks.
1173   if (barrier_count == 0) {
1174     return;
1175   }
1176   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1177   Locks::mutator_lock_->SharedUnlock(self);
1178   {
1179     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1180     gc_barrier_->Increment(self, barrier_count);
1181   }
1182   Locks::mutator_lock_->SharedLock(self);
1183   Locks::heap_bitmap_lock_->ExclusiveLock(self);
1184 }
1185 
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1186 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1187   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1188   Thread* self = Thread::Current();
1189   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1190       sweep_array_free_buffer_mem_map_->BaseBegin());
1191   size_t chunk_free_pos = 0;
1192   ObjectBytePair freed;
1193   ObjectBytePair freed_los;
1194   // How many objects are left in the array, modified after each space is swept.
1195   StackReference<mirror::Object>* objects = allocations->Begin();
1196   size_t count = allocations->Size();
1197   // Change the order to ensure that the non-moving space last swept as an optimization.
1198   std::vector<space::ContinuousSpace*> sweep_spaces;
1199   space::ContinuousSpace* non_moving_space = nullptr;
1200   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1201     if (space->IsAllocSpace() &&
1202         !immune_spaces_.ContainsSpace(space) &&
1203         space->GetLiveBitmap() != nullptr) {
1204       if (space == heap_->GetNonMovingSpace()) {
1205         non_moving_space = space;
1206       } else {
1207         sweep_spaces.push_back(space);
1208       }
1209     }
1210   }
1211   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1212   // the other alloc spaces as an optimization.
1213   if (non_moving_space != nullptr) {
1214     sweep_spaces.push_back(non_moving_space);
1215   }
1216   // Start by sweeping the continuous spaces.
1217   for (space::ContinuousSpace* space : sweep_spaces) {
1218     space::AllocSpace* alloc_space = space->AsAllocSpace();
1219     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1220     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1221     if (swap_bitmaps) {
1222       std::swap(live_bitmap, mark_bitmap);
1223     }
1224     StackReference<mirror::Object>* out = objects;
1225     for (size_t i = 0; i < count; ++i) {
1226       mirror::Object* const obj = objects[i].AsMirrorPtr();
1227       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1228         continue;
1229       }
1230       if (space->HasAddress(obj)) {
1231         // This object is in the space, remove it from the array and add it to the sweep buffer
1232         // if needed.
1233         if (!mark_bitmap->Test(obj)) {
1234           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1235             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1236             freed.objects += chunk_free_pos;
1237             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1238             chunk_free_pos = 0;
1239           }
1240           chunk_free_buffer[chunk_free_pos++] = obj;
1241         }
1242       } else {
1243         (out++)->Assign(obj);
1244       }
1245     }
1246     if (chunk_free_pos > 0) {
1247       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1248       freed.objects += chunk_free_pos;
1249       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1250       chunk_free_pos = 0;
1251     }
1252     // All of the references which space contained are no longer in the allocation stack, update
1253     // the count.
1254     count = out - objects;
1255   }
1256   // Handle the large object space.
1257   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1258   if (large_object_space != nullptr) {
1259     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1260     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1261     if (swap_bitmaps) {
1262       std::swap(large_live_objects, large_mark_objects);
1263     }
1264     for (size_t i = 0; i < count; ++i) {
1265       mirror::Object* const obj = objects[i].AsMirrorPtr();
1266       // Handle large objects.
1267       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1268         continue;
1269       }
1270       if (!large_mark_objects->Test(obj)) {
1271         ++freed_los.objects;
1272         freed_los.bytes += large_object_space->Free(self, obj);
1273       }
1274     }
1275   }
1276   {
1277     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1278     RecordFree(freed);
1279     RecordFreeLOS(freed_los);
1280     t2.NewTiming("ResetStack");
1281     allocations->Reset();
1282   }
1283   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1284 }
1285 
Sweep(bool swap_bitmaps)1286 void MarkSweep::Sweep(bool swap_bitmaps) {
1287   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1288   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1289   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1290   {
1291     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1292     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1293     // knowing that new allocations won't be marked as live.
1294     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1295     heap_->MarkAllocStackAsLive(live_stack);
1296     live_stack->Reset();
1297     DCHECK(mark_stack_->IsEmpty());
1298   }
1299   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1300     if (space->IsContinuousMemMapAllocSpace()) {
1301       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1302       TimingLogger::ScopedTiming split(
1303           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
1304           GetTimings());
1305       RecordFree(alloc_space->Sweep(swap_bitmaps));
1306     }
1307   }
1308   SweepLargeObjects(swap_bitmaps);
1309 }
1310 
SweepLargeObjects(bool swap_bitmaps)1311 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1312   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1313   if (los != nullptr) {
1314     TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1315     RecordFreeLOS(los->Sweep(swap_bitmaps));
1316   }
1317 }
1318 
1319 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1320 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1321 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1322   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1323 }
1324 
1325 class MarkVisitor {
1326  public:
MarkVisitor(MarkSweep * const mark_sweep)1327   ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
1328 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1329   ALWAYS_INLINE void operator()(mirror::Object* obj,
1330                                 MemberOffset offset,
1331                                 bool is_static ATTRIBUTE_UNUSED) const
1332       REQUIRES(Locks::heap_bitmap_lock_)
1333       SHARED_REQUIRES(Locks::mutator_lock_) {
1334     if (kCheckLocks) {
1335       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1336       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1337     }
1338     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1339   }
1340 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1341   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1342       REQUIRES(Locks::heap_bitmap_lock_)
1343       SHARED_REQUIRES(Locks::mutator_lock_) {
1344     if (!root->IsNull()) {
1345       VisitRoot(root);
1346     }
1347   }
1348 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1349   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1350       REQUIRES(Locks::heap_bitmap_lock_)
1351       SHARED_REQUIRES(Locks::mutator_lock_) {
1352     if (kCheckLocks) {
1353       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1354       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1355     }
1356     mark_sweep_->MarkObject(root->AsMirrorPtr());
1357   }
1358 
1359  private:
1360   MarkSweep* const mark_sweep_;
1361 };
1362 
1363 // Scans an object reference.  Determines the type of the reference
1364 // and dispatches to a specialized scanning routine.
ScanObject(mirror::Object * obj)1365 void MarkSweep::ScanObject(mirror::Object* obj) {
1366   MarkVisitor mark_visitor(this);
1367   DelayReferenceReferentVisitor ref_visitor(this);
1368   ScanObjectVisit(obj, mark_visitor, ref_visitor);
1369 }
1370 
ProcessMarkStackParallel(size_t thread_count)1371 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1372   Thread* self = Thread::Current();
1373   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1374   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1375                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1376   CHECK_GT(chunk_size, 0U);
1377   // Split the current mark stack up into work tasks.
1378   for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1379     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1380     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1381     it += delta;
1382   }
1383   thread_pool->SetMaxActiveWorkers(thread_count - 1);
1384   thread_pool->StartWorkers(self);
1385   thread_pool->Wait(self, true, true);
1386   thread_pool->StopWorkers(self);
1387   mark_stack_->Reset();
1388   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1389            work_chunks_deleted_.LoadSequentiallyConsistent())
1390       << " some of the work chunks were leaked";
1391 }
1392 
1393 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1394 void MarkSweep::ProcessMarkStack(bool paused) {
1395   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1396   size_t thread_count = GetThreadCount(paused);
1397   if (kParallelProcessMarkStack && thread_count > 1 &&
1398       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1399     ProcessMarkStackParallel(thread_count);
1400   } else {
1401     // TODO: Tune this.
1402     static const size_t kFifoSize = 4;
1403     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1404     for (;;) {
1405       mirror::Object* obj = nullptr;
1406       if (kUseMarkStackPrefetch) {
1407         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1408           mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1409           DCHECK(mark_stack_obj != nullptr);
1410           __builtin_prefetch(mark_stack_obj);
1411           prefetch_fifo.push_back(mark_stack_obj);
1412         }
1413         if (prefetch_fifo.empty()) {
1414           break;
1415         }
1416         obj = prefetch_fifo.front();
1417         prefetch_fifo.pop_front();
1418       } else {
1419         if (mark_stack_->IsEmpty()) {
1420           break;
1421         }
1422         obj = mark_stack_->PopBack();
1423       }
1424       DCHECK(obj != nullptr);
1425       ScanObject(obj);
1426     }
1427   }
1428 }
1429 
IsMarked(mirror::Object * object)1430 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1431   if (immune_spaces_.IsInImmuneRegion(object)) {
1432     return object;
1433   }
1434   if (current_space_bitmap_->HasAddress(object)) {
1435     return current_space_bitmap_->Test(object) ? object : nullptr;
1436   }
1437   return mark_bitmap_->Test(object) ? object : nullptr;
1438 }
1439 
FinishPhase()1440 void MarkSweep::FinishPhase() {
1441   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1442   if (kCountScannedTypes) {
1443     VLOG(gc)
1444         << "MarkSweep scanned"
1445         << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
1446         << " normal objects=" << normal_count_.LoadRelaxed()
1447         << " classes=" << class_count_.LoadRelaxed()
1448         << " object arrays=" << object_array_count_.LoadRelaxed()
1449         << " references=" << reference_count_.LoadRelaxed()
1450         << " other=" << other_count_.LoadRelaxed();
1451   }
1452   if (kCountTasks) {
1453     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1454   }
1455   if (kMeasureOverhead) {
1456     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1457   }
1458   if (kProfileLargeObjects) {
1459     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1460         << " marked " << large_object_mark_.LoadRelaxed();
1461   }
1462   if (kCountMarkedObjects) {
1463     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1464         << " immune=" <<  mark_immune_count_.LoadRelaxed()
1465         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1466         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1467   }
1468   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1469   mark_stack_->Reset();
1470   Thread* const self = Thread::Current();
1471   ReaderMutexLock mu(self, *Locks::mutator_lock_);
1472   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
1473   heap_->ClearMarkedObjects();
1474 }
1475 
RevokeAllThreadLocalBuffers()1476 void MarkSweep::RevokeAllThreadLocalBuffers() {
1477   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1478     // If concurrent, rosalloc thread-local buffers are revoked at the
1479     // thread checkpoint. Bump pointer space thread-local buffers must
1480     // not be in use.
1481     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1482   } else {
1483     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1484     GetHeap()->RevokeAllThreadLocalBuffers();
1485   }
1486 }
1487 
1488 }  // namespace collector
1489 }  // namespace gc
1490 }  // namespace art
1491